JP2017194301A - 顔形状測定装置及び方法 - Google Patents

顔形状測定装置及び方法 Download PDF

Info

Publication number
JP2017194301A
JP2017194301A JP2016083310A JP2016083310A JP2017194301A JP 2017194301 A JP2017194301 A JP 2017194301A JP 2016083310 A JP2016083310 A JP 2016083310A JP 2016083310 A JP2016083310 A JP 2016083310A JP 2017194301 A JP2017194301 A JP 2017194301A
Authority
JP
Japan
Prior art keywords
face
image
feature points
coordinates
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016083310A
Other languages
English (en)
Inventor
清水 敏雄
Toshio Shimizu
敏雄 清水
拓 畠山
Hiroshi Hatakeyama
拓 畠山
樹里 池谷
Juri Iketani
樹里 池谷
亮佑 清水
Ryosuke Shimizu
亮佑 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIGITAL HANDS CO Ltd
Original Assignee
DIGITAL HANDS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIGITAL HANDS CO Ltd filed Critical DIGITAL HANDS CO Ltd
Priority to JP2016083310A priority Critical patent/JP2017194301A/ja
Publication of JP2017194301A publication Critical patent/JP2017194301A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】校正板や測量専用の機材等を用いることなく顔の3次元形状等の効率的な測定を行うことができる顔形状測定装置及び顔形状測定方法を提供する。【解決手段】この顔形状測定装置は、被測定者の顔を撮像して画像データを生成する撮像部と、前記被測定者の顔を撮像して得られる画像データに顔認識処理を施すことにより、前記被測定者の顔において認識される複数の特徴点を抽出し、該複数の特徴点の座標を求める特徴点抽出部と、前記被測定者の顔を所定の角度で撮像して得られる第1の画像における複数の特徴点の内の少なくとも3つの特徴点を校正点として用いて、前記被測定者の顔を複数の異なる角度で撮像して得られる複数の画像における複数の特徴点の座標に基づいて該複数の特徴点の3次元座標を計算し、該複数の特徴点の3次元座標を表す3次元座標データを生成する3次元座標計算部とを備える。【選択図】図1

Description

本発明は、人間の顔の形状等を測定して顔の形状等に関する情報を取得するために用いられる顔形状測定装置及び顔形状測定方法に関する。
例えば、人間の顔の形状を測定して3次元形状情報を取得し、お化粧や美容のカウンセリングにおいて利用したり、健康や体調の管理情報として利用したりすることが要望されている。また、人間の顔又は顔の一部の形状を測定して取得された情報を個人照合に利用することも行われている。
関連する技術として、特許文献1には、顔全体の3次元形状を測定する場合のように局所平面の法線ベクトルの方向が場所によって著しく異なっている場合でも正確な3次元形状を測定することのできる3次元形状測定装置が開示されている。この3次元形状測定装置は、可動体上に搭載された左カメラ及び右カメラと、該可動体の動きを測定対象物の周囲の軌道上に規制する規制手段と、測定対象物の周囲の複数の位置から左カメラ及び右カメラが撮影した画像から測定対象物の3次元形状を計算する計算手段とを具備している。
特開2001−194127号公報(段落0005−0006、図5)
特許文献1の3次元形状測定装置においては、例えば、図5に示されているように、左カメラ及び右カメラが搭載された可動体を円周方向に移動させる必要があるので、3次元形状測定装置が大型になり、被測定者が自宅等において自らの顔の形状を測定するような用途には使用できない。
一般に、従来のステレオ写真測量においては、撮像対象の近傍に校正板を設置する必要があるので、非効率的であると共に、校正板とカメラ等の撮像装置との設置位置に関する制約が多く、校正板又は撮像対象が撮像範囲から外れてしまうと測量ができないという問題がある。
さらに、複数の画像を撮影する際に撮像対象と校正板との相対的な位置関係を維持する必要があるので、被測定者が自宅等において自らの顔の形状を測定することは困難である。一方、ステレオ写真測量を用いない従来の測量方法によれば、スキャナー等の測量専用の機材を用意して事前に厳密な校正が必要となる。
そこで、上記の点に鑑み、本発明の第1の目的は、校正板や測量専用の機材等を用いることなく顔の3次元形状等の効率的な測定を行うことができる顔形状測定装置及び顔形状測定方法を提供することである。また、本発明の第2の目的は、被測定者が自宅等においても自らの顔の3次元形状等を正確に測定することを可能にする顔形状測定装置及び顔形状測定方法を提供することである。
以上の課題の少なくとも一部を解決するため、本発明の1つの観点に係る顔形状測定装置は、被測定者の顔を撮像して画像データを生成する撮像部と、前記被測定者の顔を撮像して得られる画像データに顔認識処理を施すことにより、前記被測定者の顔において認識される複数の特徴点を抽出し、該複数の特徴点の座標を求める特徴点抽出部と、前記被測定者の顔を所定の角度で撮像して得られる第1の画像における複数の特徴点の内の少なくとも3つの特徴点を校正点として用いて、前記被測定者の顔を複数の異なる角度で撮像して得られる複数の画像における複数の特徴点の座標に基づいて該複数の特徴点の3次元座標を計算し、該複数の特徴点の3次元座標を表す3次元座標データを生成する3次元座標計算部とを備える。
また、本発明の1つの観点に係る顔形状測定方法は、被測定者の顔を所定の角度で撮像して第1の画像を表す画像データを生成すると共に、前記第1の画像を表す画像データに顔認識処理を施すことにより、前記被測定者の顔において認識される複数の特徴点を抽出し、前記第1の画像における複数の特徴点の座標を求めるステップ(a)と、前記被測定者の顔を前記所定の角度と異なる角度で撮像して少なくとも1つの画像を表す画像データを生成すると共に、前記少なくとも1つの画像を表す画像データに顔認識処理を施すことにより、前記被測定者の顔において認識される複数の特徴点を抽出し、前記少なくとも1つの画像における複数の特徴点の座標を求めるステップ(b)と、前記第1の画像における複数の特徴点の内の少なくとも3つの特徴点を校正点として用いて、前記被測定者の顔を複数の異なる角度で撮像して得られる複数の画像における複数の特徴点の座標に基づいて該複数の特徴点の3次元座標を計算し、該複数の特徴点の3次元座標を表す3次元座標データを生成するステップ(c)とを備える。
本発明の1つの観点によれば、第1の画像に基づいて少なくとも3つの校正点の実寸座標が求められるので、それらの校正点の実寸座標を基準として、被測定者の顔を複数の異なる角度で撮像して得られる複数の画像の各々における少なくとも3つの校正点の座標に基づいて、その画像の投影面の姿勢を求めることができる。それにより、校正板や測量専用の機材等を用いることなく、顔の3次元形状等の効率的な測定を行うことができる。また、被測定者の顔を撮像して得られる画像における複数の特徴点の座標に基づいて、適切な画像が取得されたか否かを判定することにより、被測定者が自宅等においても自らの顔の3次元形状等を正確に測定することが可能である。
例えば、人間の顔の形状を測定することにより、顔のバランス、たるみ、やつれ、又は、しわ等の3次元形状情報を取得することができる。さらに、人間の顔の色相、明度、又は、彩度を測定することにより、肌の色、しみ、血流、又は、水分量の分布等の肌状態情報を取得することができる。そのような情報を、お化粧や美容のカウンセリングにおいて利用したり、健康や体調の管理情報として利用したりすることが可能になる。
あるいは、顔の3次元形状情報を、生体認証に利用したり、顔をID(識別要素)としたクラスタリングに利用したりすることが可能になる。また、顔に関するオーダーメイド商品を、自宅等からインターネットを介して注文する際にも、顔の3次元形状情報を利用することができる。そのようなオーダーメイド商品としては、美容マスク、化粧又は仮装用マスク、防塵マスク、メガネフレーム、及び、ゴーグル等が該当する。
本発明の一実施形態に係る顔形状測定装置の構成例を示すブロック図。 特徴点抽出部によって行われる顔認識処理の例を示すフローチャート。 3つの異なる角度で被測定者の顔を撮像している状態を示す図。 被測定者の上向き顔又は下向き顔の画像が取得されたか否かの判定方法の例を説明するための図。 3つの異なる角度で撮像された被測定者の顔における特徴点の配置の例を示す図。 被測定者の顔に設定された校正点の例を示す図。 ステレオ写真測量法を説明するための概念図。 本発明の一実施形態に係る顔形状測定方法を示すフローチャート。 本発明の一実施形態に係る顔形状測定方法を示すフローチャート。 本発明の一実施形態に係る顔形状測定方法を示すフローチャート。 測定された顔の形状等を表す画像の例を示す図。
以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
<顔形状測定装置>
図1は、本発明の一実施形態に係る顔形状測定装置の構成例を示すブロック図である。図1に示すように、この顔形状測定装置は、撮像部10と、特徴点抽出部20と、3次元座標計算部30と、画像データ生成部40と、表示部50と、操作部60と、制御部70と、格納部80とを含んでいる。
格納部80は、画像データ格納部81と、学習データ格納部82と、座標情報格納部83と、撮像パラメーター格納部84と、校正点情報格納部85と、3次元座標データ格納部86と、3次元画像データ格納部87とを含んでいる。なお、図1に示す構成要素の一部を省略又は変更しても良いし、あるいは、図1に示す構成要素に他の構成要素を付加しても良い。
撮像部10は、被測定者の顔を撮像して画像データを生成する。例えば、顔形状測定装置がスマートフォン又はタブレット端末で構成される場合に、撮像部10は、スマートフォン又はタブレット端末のカメラ部分で構成される。あるいは、撮像部10として、デジタルスチルカメラ等を用いても良い。そのような場合に、被測定者は、自宅等において自らの顔を撮像することができる。
特徴点抽出部20〜画像データ生成部40、及び、制御部70は、CPU(中央演算装置)と、CPUに各種の処理を行わせるためのソフトウェア(顔形状測定プログラム)とで構成しても良い。ソフトウェアは、格納部80の記録媒体に記録される。記録媒体としては、各種のメモリー、ハードディスク、フレキシブルディスク、MO、MT、CD−ROM、又は、DVD−ROM等を用いることができる。
表示部50は、例えば、LCD(液晶表示装置)等を含み、画像データ生成部40から供給される表示用画像データに基づいて各種の情報を表示する。操作部60は、例えば、操作キーやボタンスイッチ等を含む入力装置であり、顔形状測定装置を操作するために用いられる。操作部60は、オペレーターによる操作に応じた操作信号を制御部70に出力する。制御部70は、操作部60から出力される操作信号に応答して、顔形状測定装置の各部を制御する。
撮像部10によって生成される画像データが画像データ格納部81に格納されると、特徴点抽出部20は、画像データ格納部81から画像データを読み出して、被測定者の顔を撮像して得られる画像データに、画像処理の一種である顔認識処理を施す。それにより、特徴点抽出部20は、被測定者の顔において認識される複数の特徴点を抽出し、それらの特徴点の座標を求める。
<顔認識処理のフロー>
図2は、特徴点抽出部によって行われる顔認識処理の例を示すフローチャートである。ステップS1において、特徴点抽出部20が、被測定者の顔の画像を表す画像データを画像データ格納部81から入力する。
ステップS2において、特徴点抽出部20が、入力された画像データによって表される画像(以下においては、「入力画像」ともいう)における顔の位置を検出する。例えば、特徴点抽出部20は、OpenCV等のソフトウェアを用いて、顔の位置や領域等を検出することができる。
ステップS3において、特徴点抽出部20が、顔の位置を検出できたか否かを判定する。顔の位置を検出できた場合には、処理がステップS4に移行し、顔の位置を検出できなかった場合には、処理がステップS8に移行する。
ステップS4において、特徴点抽出部20が、入力された画像データと、学習データ格納部82に予め格納されている学習データとを用いて、入力画像における被測定者の顔を認識する。この顔認識処理においては、例えば、アクティブ・アピアランス・モデル(AAM)が用いられる。
ステップS5において、特徴点抽出部20が、被測定者の顔を認識できたか否かを判定する。例えば、特徴点抽出部20は、顔認識処理における認識誤差を表す指標としてフィット率を求め、入力画像における顔認識の結果として求められた被測定者の顔のフィット率が予め設定された閾値以下であるか否かを判定する。なお、フィット率の計算方法については、後で詳しく説明する。特徴点抽出部20は、フィット率が閾値以下である場合に、被測定者の顔を認識できたと判定し、フィット率が閾値を超えた場合に、被測定者の顔を認識できなかったと判定する。
被測定者の顔を認識できなかった場合には、被測定者の顔の撮像がやり直されて、処理がステップS1に戻り、特徴点抽出部20が、被測定者の顔の画像を表す別の画像データを画像データ格納部81から入力する。あるいは、被測定者の顔を認識できなかった場合に、処理がステップS8に移行しても良い。一方、被測定者の顔を認識できた場合には、処理がステップS6に移行する。
ステップS6において、特徴点抽出部20が、被測定者の顔において認識される複数の特徴点を抽出し、入力画像における複数の特徴点の座標を求める。ステップS7において、特徴点抽出部20が、複数の特徴点の座標を、それらの特徴点を特定するコードと共に制御部70に出力する。また、特徴点抽出部20は、被測定者の顔のフィット率を制御部70に出力する。
ステップS8において、特徴点抽出部20が、顔認認識処理を終了するか否かを判定する。顔認認識処理を終了しない場合には、処理がステップS1に戻る。一方、操作部60がオペレーターからの終了指示を受け付けた場合や、画像データ格納部81に新たな画像データが格納されていない場合等には、処理が終了する。
<特徴点の抽出>
学習データ格納部82には、例えば、標準的な人間の顔又はその模型等を用いて予め撮影された画像を表す画像データと、その画像において設定された複数の特徴点の座標と、それらの特徴点を特定するコードとが、学習データとして予め格納されている。特徴点抽出部20は、学習データに基づいて、被測定者の顔を撮像して得られる画像データに顔認識処理を施すことにより、被測定者の顔から複数の特徴点を抽出し、それらの特徴点の座標を求める。
上記の顔認識処理において用いることができるアクティブ・アピアランス・モデルとは、対象となる物体の画像を形状(shape)とテクスチャー(appearance)とに分けて、それぞれを主成分分析(principal component analysis)によって次元圧縮することにより、少ないパラメーターで対象の形状の変化とテクスチャーの変化とを表現できるようにしたモデルである。形状及びテクスチャーの情報は、低次元のパラメーターで表現することができる。
アクティブ・アピアランス・モデルにおいて、全特徴点を並べた形状ベクトルxは、予め学習データから求められた平均形状ベクトルuと、平均形状ベクトルuからの偏差を主成分分析して得られる固有ベクトル行列Pとを用いて、次式(1)によって表される。
x=u+P ・・・(1)
ここで、bは、パラメーターベクトルであり、形状パラメーターと呼ばれる。
また、正規化されたテクスチャーの輝度値を並べたアピアランスベクトルgは、予め学習データから求められた平均アピアランスベクトルvと、平均アピアランスベクトルvからの偏差を主成分分析して得られる固有ベクトル行列Pとを用いて、次式(2)によって表される。
g=v+P ・・・(2)
ここで、bは、パラメーターベクトルであり、アピアランスパラメーターと呼ばれる。形状パラメーターb及びアピアランスパラメーターbは、平均からの変化を表すパラメーターであり、これらを変化させることによって、形状及びアピアランスを変化させることができる。
また、形状とアピアランスとの間に相関があることから、形状パラメーターb及びアピアランスパラメーターbをさらに主成分分析することにより、形状とアピアランスとの両方を制御する低次元のパラメーターベクトル(以下においては、「結合パラメーター」ともいう)cを用いて、形状ベクトルx(c)及びテクスチャーベクトルg(c)が、次式(3)及び(4)によって表される。
x(c)=u+P −1c ・・・(3)
g(c)=v+Pc ・・・(4)
ここで、Wは、形状ベクトルとアピアランスベクトルとの単位の違いを正規化する行列であり、Qは、形状に関する固有ベクトル行列であり、Qは、アピアランスに関する固有ベクトル行列である。このようにして、結合パラメーターcを制御することによって、形状とアピアランスとを同時に扱い、対象の変化を表現することが可能となる。
次に、対象が、画像中のどこに、どんなサイズで、どんな向きで存在するかという広域的な変化に関するパラメーター(以下においては、「姿勢パラメーター」ともいう)qを考慮する。姿勢パラメーターqは、次式(5)によって表される。
q=[roll scale trans_x trans_y] ・・・(5)
ここで、rollは、画像平面に対するモデルの回転角度を表し、scaleは、モデルのサイズを表し、trans_x及びtrans_yは、それぞれx軸方向及びy軸方向におけるモデルの平行移動量を表している。
アクティブ・アピアランス・モデルにおいて、モデルの探索とは、モデルを結合パラメーターc及び姿勢パラメーターqによって局所的及び広域的に変化させて対象の画像を生成し、生成された画像と入力画像とを比較して、誤差が最小となるような結合パラメーターc及び姿勢パラメーターqを求めることである。アクティブ・アピアランス・モデルによれば、対象の方向の変化に対して頑健かつ高速に特徴点を抽出することが可能である。
具体的には、ある結合パラメーターc’及び姿勢パラメーターq’に対して、結合パラメーターc’から得られる形状パラメーターb’と姿勢パラメーターq’とによって形状Xを変形する関数をW(X;q’,b’)とする。また、入力画像Imgと形状Xとが与えられたときに形状X内の輝度値を求める関数をI(Img,X)とすると、モデルの探索における誤差値Erは、次式(6)によって表される。
Er=[(v+Pc’)−I(Img,W(X;q’,b’))]
・・・(6)
例えば、被測定者の顔を構成するN個の形状X(1)、X(2)、・・・、X(N)についてそれぞれの誤差値が求められる場合に(Nは自然数)、それぞれの誤差値をEr(1)、Er(2)、・・・、Er(N)とすると、フィット率Frは、次式(7)によって表される。
Fr=(Er(1)+Er(2)+・・・+Er(N))/N ・・・(7)
従って、誤差値Er又はフィット率Frが小さくなるような結合パラメーターc及び姿勢パラメーターqを決定することにより、高精度な顔認識を行うことができる。
<校正用画像及び測定用画像の取得>
図3は、3つの異なる角度で被測定者の顔を撮像している状態を示す図である。この例においては、被測定者が、オペレーターとしてスマートフォンを操作して自らの顔を撮像している。スマートフォンは、壁等に固定されても良いし、被測定者の手に保持されても良いし、被測定者が操作する自撮り棒に保持されても良い。スマートフォンは、撮像部10と表示部50とを備えている。被測定者は、スマートフォンの表示部50に表示される画像を見ながら、撮像方向(撮像部10の光軸方向)を調整することができる。
被測定者の顔の撮像は、少なくとも2回行われる。例えば、第1回目の撮像において、被測定者の顔を所定の角度で撮像することにより、校正用画像及び測定用画像として第1の画像が取得される。また、第2回目の撮像において、被測定者の顔を所定の角度と異なる角度で撮像することにより、もう1つの測定用画像が取得される。
あるいは、第1回目及び第2回目の撮像において視差が十分でない場合には、第3回目の撮像が行われる。その場合には、第2回目及び第3回目の撮像において、被測定者の顔を複数の異なる角度で撮像することにより、2つの測定用画像が取得される。以下の実施形態においては、被測定者の顔の形状等を安定的に測定するために、3回の撮像が行われる。
図3(A)に示すように、被測定者の顔を所定の角度で撮像することにより、被測定者の正面顔の画像が校正用画像として取得される。その後、被測定者の顔を複数の異なる角度で撮像することにより、複数の測定用画像が取得される。例えば、被測定者の上向き顔及び下向き顔を撮像することにより、視差のある複数の測定用画像を取得することができる。以下においては、一例として、第2回目の撮像において、図3(B)に示すように被測定者の上向き顔が撮像され、第3回目の撮像において、図3(C)に示すように被測定者の下向き顔が撮像される場合について説明する。
図1に示す制御部70は、顔形状の測定を開始する際に、被測定者の正面顔を撮像することを促すメッセージを表示部50に表示させる。図3(A)に示すように、被測定者の正面顔が撮像される際には、被測定者の右口角、左口角、左目頭、及び、右目頭の内の少なくとも3つの点を通る平面が撮像方向に対して略直交するように、撮像部10に対する被測定者の顔の角度が調整される。なお、人間の顔の対称性により、被測定者の両方の口角及び両方の目頭の4つの点は、同一平面の近くに位置している。第1回目の撮像が終了すると、制御部70は、被測定者の正面顔の画像が取得されたか否かを、例えば、以下の基準(1)〜(3)に従って判定する。
(1)入力画像の顔認識処理において求められたフィット率が所定の値以下であること。
制御部70は、第1回目の撮像が終了すると、入力画像における顔認識の結果として求められたフィット率を特徴点抽出部20から受信して、フィット率が所定の値以下であるか否かを判定する。顔認識処理に用いられる学習データは、正面顔に重みをつけた学習によって準備されているので、上向き顔又は下向き顔の認識時と比較して正面顔の認識時には認識精度が高いことが予測される。従って、所定の値は、被測定者の顔を認識できたか否かを判定する際に用いられる閾値よりも小さいことが望ましい。
(2)入力画像において顔の正中線上に位置する2点のx座標が略等しい値であること。
ここで、正中線とは、左右対称形の生物体において、前面・背面の中央を頭から縦にまっすぐ通る線のことをいう。また、x座標は、撮像方向に直交する投影面の水平方向(x軸方向)における座標である。顔の正中線上に位置する2点は、例えば、左の目頭と右の目頭との中間に位置する特徴点、及び、正中線上における顎の下端に位置する特徴点でも良い。制御部70は、第1回目の撮像が終了すると、入力画像から抽出された特徴点の座標に基づいて、顔の正中線上に位置する2つの特徴点のx座標の差が所定の範囲内であるか否かを判定する。
(3)入力画像において顔の正中線上に位置する点から顔の正中線の左右両側に位置する2つの部位の点までの距離が略等しい値であること。
顔の正中線上に位置する点は、例えば、左の目頭と右の目頭との中間に位置する特徴点でも良く、顔の正中線の左右両側に位置する2つの部位の点は、例えは、左の目頭に位置する特徴点、及び、右の目頭に位置する特徴点でも良い。制御部70は、第1回目の撮像が終了すると、入力画像から抽出された特徴点の座標に基づいて、顔の正中線上に位置する特徴点から顔の正中線の左右両側に位置する2つの特徴点までの距離の差が所定の範囲内であるか否かを判定する。
入力画像が基準(1)〜(3)のいずれかを満たさなければ、制御部70は、校正用画像が取得されなかったと判定し、第1回目の撮像によって得られた情報を破棄すると共に、第1回目の撮像をやり直すことを促すメッセージを表示部50に表示させる。一方、入力画像が基準(1)〜(3)のすべてを満たす場合に、制御部70は、校正用画像が取得されたと判定する。なお、上記において、基準(2)及び(3)の内の一方を省略しても良い。
このようにして、制御部70は、被測定者の顔を撮像して得られる入力画像の顔認識処理における認識誤差を表す指標の値、及び、入力画像において被測定者の顔の正中線上に位置する2つの特徴点の座標、又は、入力画像において被測定者の顔の正中線上に位置する特徴点と正中線の左右両側に位置する2つの特徴点との間の距離に基づいて、校正用画像が取得されたか否かを判定する。
入力画像が基準を満たす場合に、制御部70は、入力画像における複数の特徴点の座標をそれらの特徴点のコードに対応付けて校正用画像の座標情報として座標情報格納部83に格納するように特徴点抽出部20を制御する。また、制御部70は、入力画像における複数の特徴点のテクスチャー(色相、明度、又は、彩度)に関する情報をそれらの特徴点のコードに対応付けて座標情報格納部83に格納するように特徴点抽出部20を制御する。その後、制御部70は、被測定者の上向き顔を撮像することを促すメッセージを表示部50に表示させる。
第2回目の撮像において、図3(B)に示すように、被測定者の上向き顔が撮像される。制御部70は、被測定者の上向き顔の画像が取得されなかったと判定した場合に、第2回目の撮像によって得られた情報を破棄すると共に、第2回目の撮像をやり直すことを促すメッセージを表示部50に表示させる。一方、制御部70は、被測定者の上向き顔の画像が取得されたと判定した場合に、入力画像における複数の特徴点の座標をそれらの特徴点のコードに対応付けて第1の測定用画像の座標情報として座標情報格納部83に格納するように特徴点抽出部20を制御する。その後、制御部70は、被測定者の下向き顔を撮像することを促すメッセージを表示部50に表示させる。
第3回目の撮像において、図3(C)に示すように、被測定者の下向き顔が撮像される。制御部70は、被測定者の下向き顔の画像が取得されなかったと判定した場合に、第3回目の撮像によって得られた情報を破棄すると共に、第3回目の撮像をやり直すことを促すメッセージを表示部50に表示させる。一方、制御部70は、被測定者の下向き顔の画像が取得されたと判定した場合に、入力画像における複数の特徴点の座標をそれらの特徴点のコードに対応付けて第2の測定用画像の座標情報として座標情報格納部83に格納するように特徴点抽出部20を制御する。その後、制御部70は、撮像が終了したことを表すメッセージを表示部50に表示させる。
図4は、被測定者の上向き顔又は下向き顔の画像が取得されたか否かの判定方法の例を説明するための図である。図1に示す制御部70は、第2回目又は第3回目の撮像が終了すると、被測定者の上向き顔又は下向き顔の画像が取得されたか否かを、例えば、次の基準に従って判定する。
校正用画像が取得されると、制御部70は、校正用画像において被測定者の顔の正中線上に位置する3つの特徴点のy座標を特徴点抽出部20から受信する。ここで、y座標は、撮像方向及びx軸方向に直交する投影面の垂直方向(y軸方向)における座標である。第2回目又は第3回目の撮像が終了すると、制御部70は、入力画像における上記3つの特徴点のy座標を特徴点抽出部20から受信する。制御部70は、校正用画像及び入力画像における上記3つの特徴点のy座標の相対的な位置関係に基づいて、被測定者の顔が上向きであるか否か、又は、被測定者の顔が下向きであるか否かを判定する。
図4に示す例において、被測定者の顔の正中線上に位置する3つの特徴点は、正中線上における額の上端に位置する特徴点、正中線上における顎の下端に位置する特徴点、及び、正中線上における下唇の下端に位置する特徴点である。制御部70は、それら3つの特徴点のy座標に基づいて、額の上端に位置する特徴点から顎の下端に位置する特徴点までの距離(即ち、顔の正中線の高さ方向の距離)L1と、下唇の下端に位置する特徴点から顎の下端に位置する特徴点までの距離L2を求め、距離L1に対する距離L2の割合(以下においては、「距離比率」ともいう)L2/L1を計算する。
制御部70は、入力画像における距離比率を校正用画像における距離比率と比較することにより、被測定者の顔が上向きであるか否か、又は、被測定者の顔が下向きであるか否かを判定する。このように、距離比率に基づいて判定を行うことにより、撮像部と被測定者の顔との間の距離の変化による縮尺の変動の影響を取り除くことができる。
例えば、制御部70は、入力画像における距離比率を校正用画像における距離比率で割って得られる値が1.2〜1.8の範囲内に収まっている場合に、被測定者の顔が上向きであると判定する。また、制御部70は、入力画像における距離比率を校正用画像における距離比率で割って得られる値が0.6〜0.85の範囲内に収まっている場合に、被測定者の顔が下向きであると判定する。
このようにして、制御部70は、校正用画像及び入力画像において被測定者の顔の正中線上に位置する3つの特徴点の座標の相対的な位置関係に基づいて、複数の測定用画像の各々が取得されたか否かを判定する。なお、以上の判定方法は一例であり、本発明はこれに限定されるものではない。
本実施形態において、特徴点抽出部20又は制御部70は、被測定者の顔を撮像して得られる入力画像における各々の特徴点のx座標又はy座標をピクセル番号で求めても良い。また、特徴点抽出部20又は制御部70は、入力画像における2つの特徴点間の距離L1及びL2等をピクセル数として求めても良い。それにより、距離の算出が簡単になる。
図5は、3つの異なる角度で撮像された被測定者の顔における特徴点の配置の例を示す図である。図5においては、特徴点を見易くするために、特徴点の数が少なくされている。図5(A)は、被測定者の正面顔の画像(校正用画像)と共に、校正用画像において抽出された特徴点を示している。フィット率は、1.359598である。図5(B)は、被測定者の上向き顔の画像(第1の測定用画像)と共に、第1の測定用画像において抽出された特徴点を示している。フィット率は、1.498014である。図5(C)は、被測定者の下向き顔の画像(第2の測定用画像)と共に、第2の測定用画像において抽出された特徴点を示している。フィット率は、1.413600である。
<3次元座標計算部>
図1に示す座標情報格納部83に格納されている座標情報において、複数の特徴点の座標が、撮像部10におけるレンズの焦点距離の誤差やレンズの歪によって本来の座標と異なる場合がある。そこで、撮像パラメーター格納部84は、撮像部10におけるレンズ等に関する撮像パラメーターを格納している。
撮像パラメーターとしては、例えば、レンズの焦点距離、投影面上における1画素当りの幅、及び、画像の中心点等が該当する。3次元座標計算部30は、撮像パラメーター格納部84から読み出された撮像パラメーターに基づいて、入力画像における複数の特徴点の座標を補正する。
校正用画像及び複数の測定用画像が取得されると、3次元座標計算部30は、被測定者の顔を所定の角度で撮像して得られる校正用画像における複数の特徴点の内の少なくとも3つの特徴点を校正点として用いて、被測定者の顔を複数の異なる角度で撮像して得られる複数の測定用画像における複数の特徴点の座標に基づいてそれらの特徴点の3次元座標を計算し、それらの特徴点の3次元座標を表す3次元座標データを生成する。
<校正点の座標計算>
図6は、被測定者の顔に設定された校正点の例を示す図である。図6には、被測定者の右口角、左口角、左目頭、及び、右目頭に位置する4つの校正点P〜Pが示されている。校正点の位置を決定する理由としては、骨格形状に基づいて同一平面の近くに存在すること、及び、必ず顔上にある点であり、AAM等を用いた画像処理による検出が容易であること等が挙げられる。
図6に示す4つの校正点P〜Pは、上記の基準を満たしている。なお、1つの平面(投影面)を決定するためには3つの校正点があれば足りるので、3次元座標計算部30は、図6に示す4つの校正点P〜Pの内の少なくとも3つの特徴点を校正点として用いても良い。以下においては、一例として、3つの校正点P〜Pを用いる場合について説明する。
3つの校正点P〜Pに対応する特徴点(画像上の校正点)のコードは、学習データとして学習データ格納部82に格納されている。3次元座標計算部30は、校正用画像における複数の特徴点の内の3つの校正点の座標情報を座標情報格納部83から読み出して、校正用画像における3つの校正点の座標に基づいて3つの校正点の実寸座標を求める。
前提として、第1に、2つの校正点(例えば、校正点P及びP)間の実寸距離が既知である必要がある。本実施形態においては、例えば、日本人成人女性における右口角と左口角との間の統計的平均距離(実寸距離)が、校正点情報として校正点情報格納部85に格納されている。
第2に、3つの校正点を通る平面が撮像部の投影面に略平行である必要がある。本実施形態においては、3つの校正点P〜Pを通る平面(以下においては、「校正面」ともいう)が撮像方向に対して略直交している(図3(A)参照)。その場合に、実寸座標における図形と校正用画像における図形とは相似関係となるので、2つの校正点(例えば、校正点P及びP)間の実寸距離と校正用画像において対応する2つの校正点間の距離との縮尺比率を求めることによって、校正用画像における校正点の座標から校正点の実寸座標を算出することができる。
第3に、校正用画像における3つの校正点の座標を求める必要がある。本実施形態においては、特徴点抽出部20が、校正用画像において被測定者の顔から抽出された複数の特徴点の座標を求めて座標情報格納部83に格納する。3次元座標計算部30は、それらの特徴点の内で3つの校正点P〜Pに対応する3つの校正点PC1〜PC3の座標を座標情報格納部83から読み出す。
校正用画像のx軸方向における2点間のピクセル数に対する実寸距離の縮尺比率をkとすると、縮尺比率kは、校正点Pと校正点Pとの間の実寸距離A(mm)と校正用画像において対応する校正点PC1と校正点PC2との間のピクセル数aとを用いて、次式(8)によって表される。
=A/a ・・・(8)
また、校正用画像のy軸方向における2点間のピクセル数に対する実寸距離の縮尺比率をkとすると、縮尺比率kと縮尺比率kとの関係は既知であり、縮尺比率kは、定数αを用いて次式(9)によって表される。
=αk=αA/a ・・・(9)
従って、校正面(Z=0)における3つの校正点P〜Pの実寸座標は、校正用画像において対応する3つの校正点の座標PC1(x,y)、PC2(x,y)、PC3(x,y)を用いて、次のように求められる。
(X,Y,Z)=P(k,k,0)
(X,Y,Z)=P(k,k,0)
(X,Y,Z)=P(k,k,0)
3次元座標計算部30は、複数の測定用画像についても、被測定者の顔から抽出された複数の特徴点の内で3つの校正点P〜Pに対応する3つの特徴点(画像上の校正点)の座標を座標情報格納部83から読み出す。それにより、3次元座標計算部30は、3つの校正点P〜Pの実寸座標を基準として、各々の測定用画像における3つの校正点の座標に基づいて、その測定用画像の投影面の姿勢を求めることができる。
<3次元座標の計算>
次に、3次元座標計算部30は、座標情報格納部83から複数の測定用画像に関する座標情報を読み出し、複数の測定用画像における複数の特徴点の座標に基づいて、それらの特徴点の3次元座標を計算する。3次元座標の計算には、例えば、複数の視点から撮影した画像に基づいて測定点の位置を算出するステレオ写真測量法が用いられる。
図7は、ステレオ写真測量法を説明するための概念図である。ここでは、1つの撮像部を2つの異なる位置(視点)に移動させて測定対象を撮影して得られる2つの測定用画像から特徴点の3次元座標を計算する場合について説明する。図7に示すように、測定対象における特徴点P(X,Y,Z)が、ステレオ画像上の点P(x,y)及びP(x,y)として撮影される。
特徴点P(X,Y,Z)と2つの異なる位置における撮像部の投影中心(焦点)とを含む平面(エピポーラ面)が2つの投影面と交わる交線を、エピポーラ線という。一方の画像上において1つの点(例えば、P(x,y))が与えられると、他方の画像上におけるその対応点(例えば、P(x,y))は、必ず対応するエピポーラ線上にある。
上記の関係は、次式(10)によって表される。
wEw’=0 ・・・(10)
ここで、Eは、基本行列を表し、w及びw’は、2つの画像上における対応点の正規化画像座標の同次座標ベクトルを表している。一方、撮像部の内部変数の関数である基礎行列Fは、撮像部の内部行列Aを用いて、次式(11)によって表される。
F=A−TEA’−1 ・・・(11)
従って、撮像部の内部変数を知れば、基礎行列Fから基本行列Eを求めることができる。
次に、2つの異なる位置における撮像部の投影中心(焦点)から特徴点を通る直線を引き、2本の直線が3次元空間において交わる点の座標が計算される。一連の計算は、線形計算で行うことができるが、線形計算を連続して行うと誤差が増大する。そこで、バンドル調整法を用いて、最適な結果を計算するようにしても良い。
バンドル調整法とは、3次元空間における点を2次元画像に逆投影して得られる位置と2次元画像における実際の特徴点の位置との間のユークリッド距離の自乗和を最小にする手法である。このユークリッド距離の自乗和の平均根は、逆投影誤差と呼ばれている。3次元座標計算部30は、逆投影誤差を計算することにより、逆投影誤差を最小にする最適な3次元座標を求めることができる。
一般に、1つの撮像部を2つの異なる位置に移動させてステレオ画像を得る場合には、特徴点として多数の反射マーカー等が設けられた校正板を設置する必要があるので非効率的である。また、長さや間隔等の距離を測定する場合には、スケールバーを設置する必要がある。それに対し、本実施形態においては、校正用画像に基づいて少なくとも3つの校正点の実寸座標が求められるので、それらの校正点が校正板の役割を果たす。従って、複数の測定用画像におけるそれらの校正点の座標に基づいて、それらの校正点に対する複数の測定用画像の投影面の相対的な位置関係が求められるので、校正板等を設置する必要がなく、効率的な測定を行うことができる。
再び図1を参照すると、3次元座標計算部30は、複数の特徴点の3次元座標を表す3次元座標データを生成して3次元座標データ格納部86に格納する。画像データ生成部40は、3次元座標データ格納部86から読み出された3次元座標データに、座標情報格納部83から読み出された校正用画像のテクスチャー(色相、明度、又は、彩度)に関する情報を追加して、被測定者の顔の形状等を表す3次元画像データを生成する。その際に、画像データ生成部40は、3次元画像データにシェーディング処理を施すことにより、3次元画像に明暗のコントラストを付けて立体感を与えるようにしても良い。
さらに、画像データ生成部40は、3次元画像データを3次元画像データ格納部87に格納すると共に、3次元画像データに基づいて表示用画像データを生成して表示部50に出力する。それにより、表示部50が、測定された顔の形状等を表す画像を表示する。表示用画像データは、所望の方向から被測定者の顔を見た画像を表す2次元画像データでも良い。
<顔形状測定方法>
次に、本発明の一実施形態に係る顔形状測定装置によって実施される顔形状測定方法について、図1〜図10を参照しながら説明する。図8〜図10は、本発明の一実施形態に係る顔形状測定方法を示すフローチャートである。なお、互いに独立な処理については、それらを並列に行っても良い。
図8に示すステップS11において、被測定者の正面顔の画像を取得するために、撮像部10が、被測定者の顔を所定の角度で撮像して画像データを生成することにより、被測定者の顔の画像を取得する。撮像部10によって生成された画像データは、画像データ格納部81に格納される。
ステップS12において、特徴点抽出部20が、画像データ格納部81から画像データを読み出して、画像データに顔認識処理を施す。それにより、特徴点抽出部20は、被測定者の顔において認識される複数の特徴点を抽出し、取得された画像における複数の特徴点の座標を求める。
ステップS13において、制御部70が、被測定者の正面顔の画像が取得されたか否かを判定する。被測定者の正面顔の画像が取得されなかった場合には、処理がステップS11に戻る。一方、被測定者の正面顔の画像が取得された場合には、処理がステップS14に移行する。
ステップS14において、特徴点抽出部20が、被測定者の正面顔の画像における複数の特徴点の座標を、それらの特徴点のコードに対応付けて、校正用画像の座標情報として座標情報格納部83に格納する。さらに、ステップS15において、特徴点抽出部20が、被測定者の正面顔の画像における複数の特徴点のテクスチャー(色相、明度、又は、彩度)に関する情報を、それらの特徴点のコードに対応付けて座標情報格納部83に格納する。
次に、ステップS16において、被測定者の上向き顔の画像を取得するために、撮像部10が、被測定者の顔を撮像して画像データを生成することにより、被測定者の顔の画像を取得する。撮像部10によって生成された画像データは、画像データ格納部81に格納される。
ステップS17において、特徴点抽出部20が、画像データ格納部81から画像データを読み出して、画像データに顔認識処理を施す。それにより、特徴点抽出部20は、被測定者の顔において認識される複数の特徴点を抽出し、それらの特徴点の座標を求める。
ステップS18において、制御部70が、被測定者の上向き顔の画像が取得されたか否かを判定する。被測定者の上向き顔の画像が取得されなかった場合には、処理がステップS16に戻る。一方、被測定者の上向き顔の画像が取得された場合には、処理がステップS19に移行する。
図9に示すステップS19において、特徴点抽出部20が、被測定者の上向き顔の画像における複数の特徴点の座標を、それらの特徴点のコードに対応付けて、第1の測定用画像の座標情報として座標情報格納部83に格納する。
次に、ステップS20において、被測定者の下向き顔の画像を取得するために、撮像部10が、被測定者の顔を撮像して画像データを生成することにより、被測定者の顔の画像を取得する。撮像部10によって生成された画像データは、画像データ格納部81に格納される。
ステップS21において、特徴点抽出部20が、画像データ格納部81から画像データを読み出して、画像データに顔認識処理を施す。それにより、特徴点抽出部20は、被測定者の顔において認識される複数の特徴点を抽出し、それらの特徴点の座標を求める。
ステップS22において、制御部70が、被測定者の下向き顔の画像が取得されたか否かを判定する。被測定者の下向き顔の画像が取得されなかった場合には、処理がステップS20に戻る。一方、被測定者の下向き顔の画像が取得された場合には、処理がステップS23に移行する。
ステップS23において、特徴点抽出部20が、被測定者の下向き顔の画像における複数の特徴点の座標を、それらの特徴点のコードに対応付けて、第2の測定用画像の座標情報として座標情報格納部83に格納する。このように、被測定者の顔を複数の異なる角度で撮像することにより、複数の測定用画像を表す画像データが生成される。
次に、ステップS24において、3次元座標計算部30が、撮像パラメーター格納部84から撮像パラメーターを読み出しておく。ステップS25において、3次元座標計算部30が、座標情報格納部83から校正用画像の座標情報を読み出す。その際に、3次元座標計算部30は、撮像パラメーターに基づいて、校正用画像における複数の特徴点の座標を補正しても良い。ステップS26において、3次元座標計算部30が、校正用画像における2つの校正点間の距離をピクセル数として求める。
図10に示すステップS27において、3次元座標計算部30が、校正点情報格納部85から2つの校正点間の実寸距離を読み出し、校正用画像の2点間のピクセル数に対する実寸距離の比率(縮尺比率)を求める。ステップS28において、3次元座標計算部30が、縮尺比率に基づいて、少なくとも3つの校正点の実寸座標を求める。
ステップS29において、3次元座標計算部30が、座標情報格納部83から複数の測定用画像の座標情報を読み出す。その際に、3次元座標計算部30は、撮像パラメーターに基づいて、各々の測定用画像における複数の特徴点の座標を補正しても良い。
ステップS30において、3次元座標計算部30が、校正用画像における複数の特徴点の内の少なくとも3つの特徴点を校正点として用いて、複数の測定用画像における複数の特徴点の座標に基づいてそれらの特徴点の3次元座標を計算する。即ち、3次元座標計算部30は、校正用画像における少なくとも3つの校正点の座標に基づいてそれらの実寸座標を求め、それらの実寸座標と各々の測定用画像において対応する校正点の座標とに基づいて、複数の特徴点の3次元座標を計算して3次元座標データを生成する。ステップS31において、3次元座標計算部30が、複数の特徴点の3次元座標を表す3次元座標データを3次元座標データ格納部86に格納する。
次に、ステップS32において、画像データ生成部40が、3次元座標データ格納部86から3次元座標データを読み出し、複数の特徴点の3次元座標データに、座標情報格納部83から読み出された校正用画像のテクスチャー(色相、明度、又は、彩度)に関する情報を追加して、3次元画像データを生成する。ステップS33において、画像データ生成部40が、3次元画像データを3次元画像データ格納部87に格納する。
ステップS34において、画像データ生成部40が、3次元画像データに基づいて表示用画像データを生成して表示部50に出力することにより、測定された顔の形状等を表す画像が表示部50に表示される。その後、処理が終了する。
図11は、測定された顔の形状等を表す画像の例を示す図である。図11においては、一例として、正面顔(A)、左横顔(B)、及び、右横顔(C)が示されている。図11に示すように、所望の方向から被測定者の顔を見た画像が表示部50(図1)に表示される。また、図中の補助線は、顔の横軸及び縦軸の回転を表している。
以上説明したように、本発明の一実施形態によれば、校正用画像に基づいて少なくとも3つの校正点の実寸座標が求められるので、それらの校正点の実寸座標を基準として、各々の測定用画像における少なくとも3つの校正点の座標に基づいて、その測定用画像の投影面の姿勢を求めることができる。それにより、校正板や測量専用の機材等を用いることなく、顔の3次元形状等の効率的な測定を行うことができる。また、被測定者の顔を撮像して得られる画像における複数の特徴点の座標に基づいて、適切な校正用画像又は測定用画像が取得されたか否かを判定することにより、被測定者が自宅等においても自らの顔の3次元形状等を正確に測定することが可能である。
例えば、人間の顔の形状を測定することにより、顔のバランス、たるみ、やつれ、又は、しわ等の3次元形状情報を取得することができる。さらに、人間の顔の色相、明度、又は、彩度を測定することにより、肌の色、しみ、血流、又は、水分量の分布等の肌状態情報を取得することができる。そのような情報を、お化粧や美容のカウンセリングにおいて利用したり、健康や体調の管理情報として利用したりすることが可能になる。
あるいは、顔の3次元形状情報を、生体認証に利用したり、顔をID(識別要素)としたクラスタリングに利用したりすることが可能になる。また、顔に関するオーダーメイド商品を、自宅等からインターネットを介して注文する際にも、顔の3次元形状情報を利用することができる。そのようなオーダーメイド商品としては、美容マスク、化粧又は仮装用マスク、防塵マスク、メガネフレーム、及び、ゴーグル等が該当する。
本発明は、以上説明した実施形態に限定されるものではなく、当該技術分野において通常の知識を有する者によって、本発明の技術的思想内で多くの変形が可能である。
本発明は、人間の顔の形状等を測定して顔の形状等に関する情報を取得するために用いられる顔形状測定装置及び顔形状測定方法において利用することが可能である。
10…撮像部、20…特徴点抽出部、30…3次元座標計算部、40…画像データ生成部、50…表示部、60…操作部、70…制御部、80…格納部、81…画像データ格納部、82…学習データ格納部、83…座標情報格納部、84…撮像パラメーター格納部、85…校正点情報格納部、86…次元座標データ格納部、87…次元画像データ格納部

Claims (6)

  1. 被測定者の顔を撮像して画像データを生成する撮像部と、
    前記被測定者の顔を撮像して得られる画像データに顔認識処理を施すことにより、前記被測定者の顔において認識される複数の特徴点を抽出し、該複数の特徴点の座標を求める特徴点抽出部と、
    前記被測定者の顔を所定の角度で撮像して得られる第1の画像における複数の特徴点の内の少なくとも3つの特徴点を校正点として用いて、前記被測定者の顔を複数の異なる角度で撮像して得られる複数の画像における複数の特徴点の座標に基づいて該複数の特徴点の3次元座標を計算し、該複数の特徴点の3次元座標を表す3次元座標データを生成する3次元座標計算部と、
    を備える顔形状測定装置。
  2. 前記3次元座標計算部が、前記第1の画像において前記被測定者の右口角、左口角、左目頭、及び、右目頭に位置する4つの特徴点の内の少なくとも3つの特徴点を校正点として用いる、請求項1記載の顔形状測定装置。
  3. 前記被測定者の顔を撮像して得られる画像の顔認識処理における認識誤差を表す指標の値、及び、該画像において前記被測定者の顔の正中線上に位置する2つの特徴点の座標、又は、該画像において前記被測定者の顔の正中線上に位置する特徴点と正中線の両側に位置する2つの特徴点との間の距離に基づいて、前記第1の画像が取得されたか否かを判定する制御部をさらに備える、請求項1又は2記載の顔形状測定装置。
  4. 前記制御部が、前記被測定者の顔を複数の異なる角度で撮像して得られる複数の画像の各々において前記被測定者の顔の正中線上に位置する3つの特徴点の座標の相対的な位置関係に基づいて、測定に必要な画像が取得されたか否かを判定する、請求項3記載の顔形状測定装置。
  5. 前記制御部が、前記被測定者の顔を撮像して得られる画像における2つの特徴点間の距離をピクセル数として求める、請求項3又は4記載の顔形状測定装置。
  6. 被測定者の顔を所定の角度で撮像して第1の画像を表す画像データを生成すると共に、前記第1の画像を表す画像データに顔認識処理を施すことにより、前記被測定者の顔において認識される複数の特徴点を抽出し、前記第1の画像における複数の特徴点の座標を求めるステップ(a)と、
    前記被測定者の顔を前記所定の角度と異なる角度で撮像して少なくとも1つの画像を表す画像データを生成すると共に、前記少なくとも1つの画像を表す画像データに顔認識処理を施すことにより、前記被測定者の顔において認識される複数の特徴点を抽出し、前記少なくとも1つの画像における複数の特徴点の座標を求めるステップ(b)と、
    前記第1の画像における複数の特徴点の内の少なくとも3つの特徴点を校正点として用いて、前記被測定者の顔を複数の異なる角度で撮像して得られる複数の画像における複数の特徴点の座標に基づいて該複数の特徴点の3次元座標を計算し、該複数の特徴点の3次元座標を表す3次元座標データを生成するステップ(c)と、
    を備える顔形状測定方法。
JP2016083310A 2016-04-19 2016-04-19 顔形状測定装置及び方法 Pending JP2017194301A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016083310A JP2017194301A (ja) 2016-04-19 2016-04-19 顔形状測定装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016083310A JP2017194301A (ja) 2016-04-19 2016-04-19 顔形状測定装置及び方法

Publications (1)

Publication Number Publication Date
JP2017194301A true JP2017194301A (ja) 2017-10-26

Family

ID=60154767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083310A Pending JP2017194301A (ja) 2016-04-19 2016-04-19 顔形状測定装置及び方法

Country Status (1)

Country Link
JP (1) JP2017194301A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109579731A (zh) * 2018-11-28 2019-04-05 华中科技大学 一种基于图像融合来执行三维表面形貌测量的方法
JP2019219929A (ja) * 2018-06-20 2019-12-26 株式会社フォーディーアイズ 常時キャリブレーションシステム及びその方法
WO2021020305A1 (ja) * 2019-07-29 2021-02-04 京セラ株式会社 画像処理システム、機械学習器、画像処理器及び撮像装置
JP2021022250A (ja) * 2019-07-29 2021-02-18 京セラ株式会社 画像処理システム、機械学習器、撮像装置及び学習方法
US20220300728A1 (en) * 2021-03-22 2022-09-22 Snap Inc. True size eyewear experience in real time

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170112A (ja) * 2000-12-04 2002-06-14 Minolta Co Ltd 解像度変換プログラムを記録したコンピュータ読取可能な記録媒体、解像度変換装置および解像度変換方法
JP2010072700A (ja) * 2008-09-16 2010-04-02 Univ Of Electro-Communications 画像処理装置、画像処理方法、及び、撮像システム
US20130286161A1 (en) * 2012-04-25 2013-10-31 Futurewei Technologies, Inc. Three-dimensional face recognition for mobile devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170112A (ja) * 2000-12-04 2002-06-14 Minolta Co Ltd 解像度変換プログラムを記録したコンピュータ読取可能な記録媒体、解像度変換装置および解像度変換方法
JP2010072700A (ja) * 2008-09-16 2010-04-02 Univ Of Electro-Communications 画像処理装置、画像処理方法、及び、撮像システム
US20130286161A1 (en) * 2012-04-25 2013-10-31 Futurewei Technologies, Inc. Three-dimensional face recognition for mobile devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019219929A (ja) * 2018-06-20 2019-12-26 株式会社フォーディーアイズ 常時キャリブレーションシステム及びその方法
CN109579731A (zh) * 2018-11-28 2019-04-05 华中科技大学 一种基于图像融合来执行三维表面形貌测量的方法
WO2021020305A1 (ja) * 2019-07-29 2021-02-04 京セラ株式会社 画像処理システム、機械学習器、画像処理器及び撮像装置
JP2021022250A (ja) * 2019-07-29 2021-02-18 京セラ株式会社 画像処理システム、機械学習器、撮像装置及び学習方法
JP7309506B2 (ja) 2019-07-29 2023-07-18 京セラ株式会社 画像処理システム、機械学習器、撮像装置及び学習方法
US20220300728A1 (en) * 2021-03-22 2022-09-22 Snap Inc. True size eyewear experience in real time

Similar Documents

Publication Publication Date Title
US11867978B2 (en) Method and device for determining parameters for spectacle fitting
US11495002B2 (en) Systems and methods for determining the scale of human anatomy from images
US10201273B2 (en) Method for determining ocular measurements using a consumer sensor
JP6363608B2 (ja) 患者の顔面データにアクセスするためのシステム
US10269139B2 (en) Computer program, head-mounted display device, and calibration method
US20150029322A1 (en) Method and computations for calculating an optical axis vector of an imaged eye
TWI496108B (zh) AR image processing apparatus and method
JP2017194301A (ja) 顔形状測定装置及び方法
JP2016173313A (ja) 視線方向推定システム、視線方向推定方法及び視線方向推定プログラム
EP2894851B1 (en) Image processing device, image processing method, program, and computer-readable storage medium
CN106462738B (zh) 用于构建个人的面部的模型的方法、用于使用这样的模型分析姿态的方法和设备
TWI433049B (zh) 眼鏡虛擬試戴互動服務系統與方法
KR20200006621A (ko) 근거리 시력 지점을 결정하기 위한 방법, 장치 및 컴퓨터 프로그램
US20220035183A1 (en) Method and device for measuring the local refractive power and/or refractive power distribution of a spectacle lens
CN114375177A (zh) 身体测量装置及其控制方法
JP4682372B2 (ja) 視線方向の検出装置、視線方向の検出方法およびコンピュータに当該視線方向の検出方法を実行させるためのプログラム
JP3711053B2 (ja) 視線測定装置及びその方法と、視線測定プログラム及びそのプログラムを記録した記録媒体
CN106461982A (zh) 用于确定至少一个行为参数的方法
KR101818992B1 (ko) 영상의 깊이 정보를 이용한 성형결과 이미지 도출방법
CN113343879A (zh) 全景面部图像的制作方法、装置、电子设备及存储介质
JP2011118767A (ja) 表情モニタリング方法および表情モニタリング装置
US20220395176A1 (en) System and method for digital optician measurements
CN110753511A (zh) 用于确定个体的瞳孔距离的方法和系统
CN117882031A (zh) 用于进行对象的数字测量的系统和方法
JP7321029B2 (ja) キャリブレーション装置及びその制御方法及びプログラム及び記憶媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200929