JP2017190522A - Steel material - Google Patents

Steel material Download PDF

Info

Publication number
JP2017190522A
JP2017190522A JP2016220915A JP2016220915A JP2017190522A JP 2017190522 A JP2017190522 A JP 2017190522A JP 2016220915 A JP2016220915 A JP 2016220915A JP 2016220915 A JP2016220915 A JP 2016220915A JP 2017190522 A JP2017190522 A JP 2017190522A
Authority
JP
Japan
Prior art keywords
less
steel material
steel
antibacterial properties
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016220915A
Other languages
Japanese (ja)
Inventor
至 寒澤
Itaru Samuzawa
至 寒澤
塩谷 和彦
Kazuhiko Shiotani
和彦 塩谷
長谷 和邦
Kazukuni Hase
和邦 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017190522A publication Critical patent/JP2017190522A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel material excellent in antibacterial property and bacterial corrosion resistance.SOLUTION: There is provided a steel material which has a component composition containing, in mass%, C:0.50% or less, Si:1.00% or less, Mn:0.10% or more and 3.00% or less, P:0.030% or less, S:0.0100% or less, N:0.0100% or less, and Al:0.010% or more and 0.500% or less, further one or more kinds selected from Cu:0.010% or more and less than 2.000%, Ni:0.010% or more and 2.000% or less, Mo:0.010% or more and 1.000% or less, W:0.010% or more and 1.000% or less and Sn:0.010% or more and 0.500% or less and the balance Fe with inevitable impurities.SELECTED DRAWING: None

Description

本発明は、抗菌性および耐微生物腐食特性に優れた鋼材に関し、特に、食品加工機器、事務機器、厨房機器、家電機器といった生活関連用品、および自動車用部材、建築用部材、機械部材、船舶部材、油田付帯設備用部材といった構造用部材に好適な、抗菌性および耐微生物腐食特性に優れた低合金の鋼材に関する。   The present invention relates to a steel material excellent in antibacterial and microbial corrosion resistance, and in particular, life-related products such as food processing equipment, office equipment, kitchen equipment, and home appliances, and automobile members, building members, mechanical members, and ship members. The present invention relates to a low alloy steel material excellent in antibacterial properties and microbial corrosion resistance, suitable for structural members such as oil field incidental equipment members.

従前、大腸菌、サルモネラ菌に代表される病原性細菌、および硫酸塩還元菌、硫黄酸化細菌に代表される腐食性細菌などのような、我々の社会生活の中で、衛生的および工業的側面から、その増殖を忌避すべき細菌が知られている。特に近年では、分析および生物学分野の著しい進歩に伴い、細菌による社会生活への負の影響が広く認知されてきている。その一つが微生物腐食現象である。微生物腐食は非常に局部腐食性が高い腐食現象であり、構造物に生じた微生物腐食部が貫通孔となり、深刻な事故を招く危険性がある。そのため、細菌増殖抑制効果(抗菌性)を有する材料に対する関心が高まってきている。このような流れから、鋼材分野においても、鋼素材に抗菌性を付与する試みが行われている。   From the hygienic and industrial aspects of our social life, such as Escherichia coli, pathogenic bacteria represented by Salmonella, and sulfate-reducing bacteria, corrosive bacteria represented by sulfur-oxidizing bacteria, etc. Bacteria whose growth should be avoided are known. Especially in recent years, the negative impact of bacteria on social life has been widely recognized with remarkable progress in the field of analysis and biology. One of them is the microbial corrosion phenomenon. Microbial corrosion is a corrosion phenomenon with extremely high local corrosiveness, and the microbial corroded part generated in the structure becomes a through hole, which may cause a serious accident. Therefore, interest in materials having a bacterial growth inhibitory effect (antibacterial properties) has increased. From such a flow, attempts have been made to impart antibacterial properties to steel materials also in the steel material field.

例えば、鋼素材そのものに抗菌性を付与する技術として、特許文献1では、Ag:0.001〜0.09%、Cu:0.30%超4.0%以下を、Ag/(Ag+Cu)<0.07(ここで、Ag,Cu:各元素の含有量(mass%))を満足することで、優れた抗菌性を得るオーステナイト系ステンレス鋼が報告されており、特許文献2では、Ag:0.001〜0.09%、Cu:0.05%〜2.0%を、Ag/(Ag+Cu)<0.07(ここで、Ag,Cu:各元素の含有量(mass%))を満足することで、優れた抗菌性を有するフェライト系ステンレス鋼が報告されている。   For example, as a technique for imparting antibacterial properties to a steel material itself, in Patent Document 1, Ag: 0.001 to 0.09%, Cu: more than 0.30% and 4.0% or less, Ag / (Ag + Cu) <0.07 (where Ag, Cu : Austenitic stainless steel that obtains excellent antibacterial properties by satisfying the content (mass%) of each element has been reported. In Patent Document 2, Ag: 0.001 to 0.09%, Cu: 0.05% to Ferritic stainless steel with excellent antibacterial properties has been reported by satisfying 2.0%, Ag / (Ag + Cu) <0.07 (where Ag, Cu: content of each element (mass%)) .

また、特許文献3では、普通鋼および炭素鋼に代替し得る安価な抗菌性鋼素材が報告されており、鋼中にCuを2.0〜5.0%の範囲で含有させることで、優れた抗菌性が付与されるとしている。   Moreover, in patent document 3, the cheap antibacterial steel raw material which can substitute for normal steel and carbon steel is reported, and the antibacterial property which was excellent by containing Cu in 2.0 to 5.0% of range in steel is reported. It is going to be granted.

一方、表面に抗菌機能を付与する技術として、特許文献4では、アルミニウム又はアルミニウム合金めっき層の表面にモリブデン金属粉末を露出状態で付着させることにより、優れた抗菌性を有するアルミニウム系めっき鋼板が提案されている。   On the other hand, as a technique for imparting an antibacterial function to the surface, Patent Document 4 proposes an aluminum-based plated steel sheet having excellent antibacterial properties by adhering molybdenum metal powder to the surface of an aluminum or aluminum alloy plating layer in an exposed state. Has been.

また、特許文献5では、銀イオン:0.0001〜1.0mol/l、硝酸:1〜200g/lを含む硝酸水溶液に浸漬することが記載されており、これにより、材料表面へAg粒子を析出付着させ、コストを抑えつつ良好な抗菌性を安定して引き出すことが可能であるとしている。   Patent Document 5 describes immersion in a nitric acid aqueous solution containing silver ions: 0.0001 to 1.0 mol / l and nitric acid: 1 to 200 g / l, thereby depositing Ag particles on the material surface. It is said that it is possible to stably bring out good antibacterial properties while suppressing costs.

特開2005-232511号公報Japanese Unexamined Patent Publication No. 2005-232511 特開2005-232510号公報Japanese Unexamined Patent Publication No. 2005-232510 特開2000-160295号公報JP 2000-160295 A 特開2001-40489号公報JP 2001-40489 特開2001-11659号公報JP 2001-11659

特許文献1および特許文献2に記載されたステンレス鋼は、抗菌性は十分に有していると考えられるものの、ステンレス鋼は非常に高価であるために、特別に高い耐食性が要求されるような過酷な用途以外では過剰性能となる。すなわち、従来、低合金の鋼材が適用されているような部材に対しては、コスト上、使用が現実的ではない。   Although the stainless steels described in Patent Document 1 and Patent Document 2 are considered to have sufficient antibacterial properties, stainless steel is very expensive, and thus requires particularly high corrosion resistance. Except for harsh applications, the performance is excessive. In other words, it is not practical to use a member for which a low alloy steel material has been applied.

また、特許文献3に記載の鋼素材は、安価な低合金鋼材において、高い抗菌性を得ていると考えられるものの、Cuを2.0%以上含有する必要があり、製造性の観点から実用性は不十分である。また、特許文献4に記載されたアルミニウム系めっき鋼板は、低合金鋼材への適用によっても抗菌性を得ることができるために、汎用性の高い抗菌技術であるといえるが、衝撃や切創等により、ひとたび表面に傷がついてしまった場合には、傷がついた部分の抗菌性は期待できず、長期的な抗菌性を得ることは難しい。特許文献5に記載されているAg粒子の析出付着技術に関しても、同様の理由から、金属製品への長期的な抗菌性の付与は期待できない。   Moreover, although the steel raw material of patent document 3 is thought to have acquired high antibacterial property in an inexpensive low alloy steel material, it is necessary to contain Cu 2.0% or more, and it is practical from a viewpoint of manufacturability. It is insufficient. The aluminum-based plated steel sheet described in Patent Document 4 can be said to be a highly versatile antibacterial technology because it can be antibacterial even when applied to a low alloy steel material. Therefore, once the surface has been scratched, antibacterial properties of the scratched portion cannot be expected, and it is difficult to obtain long-term antibacterial properties. For the same reason, it is not possible to expect long-term antibacterial properties to be imparted to metal products for the same reason as for the precipitation deposition technique of Ag particles described in Patent Document 5.

このように、低合金の鋼材分野において、めっきや表質改善による抗菌性の向上手法は、長期的な抗菌性の担保の観点から、その効果が十分ではない。そのため、材料そのものの抗菌性を向上させる技術が有効になる。しかしながら、従来の抗菌性を有する鋼材に関する技術は、大量のCu添加が必須であり、製造上の観点から実用性は不十分である。すなわち、熱間圧延工程にて、大量のCu添加に起因する熱間脆性による割れが発生し、製品として品質を担保することが困難となる。
本発明は、かかる従来技術の問題を解決し、製造上実用的な、抗菌特性および耐微生物腐食特性に優れた低合金の鋼材を提供することを目的とする。
Thus, in the field of low-alloy steel materials, antibacterial enhancement methods by plating and surface quality improvement are not sufficient in terms of long-term antibacterial security. For this reason, a technique for improving the antibacterial property of the material itself is effective. However, conventional techniques related to steel materials having antibacterial properties require the addition of a large amount of Cu, and their practicality is insufficient from the viewpoint of manufacturing. That is, in the hot rolling process, cracks due to hot brittleness due to the addition of a large amount of Cu occur, making it difficult to ensure the quality of the product.
An object of the present invention is to solve such problems of the prior art and to provide a low alloy steel material excellent in antibacterial properties and microbial corrosion resistance, which is practical in production.

発明者らは、上記の課題を解決すべく、鋭意検討を重ねた。
その結果、抗菌特性を向上させるためには、Alの添加が有効であり、さらにCu、Ni、Mo、W、Snのうち少なくとも1種を添加することが効果的であるとわかった。本発明は、上記の新規な知見に基づき、さらに検討を重ねた末に完成されたもので、その要旨構成は、以下の通りである。
Inventors repeated earnest examination in order to solve said subject.
As a result, in order to improve the antibacterial properties, it was found that addition of Al is effective, and that it is effective to add at least one of Cu, Ni, Mo, W, and Sn. The present invention has been completed after further studies based on the above-described novel findings, and the gist of the present invention is as follows.

1.質量%で、
C:0.50%以下、
Si:1.00%以下、
Mn:0.10%以上3.00%以下、
P:0.030%以下、
S:0.0100%以下、
N:0.0100%以下および
Al:0.010%以上0.500%以下
を含有し、さらに
Cu:0.010%以上2.000%未満、
Ni:0.010%以上2.000%以下、
Mo:0.010%以上1.000%以下、
W:0.010%以上1.000%以下および
Sn:0.010%以上0.500%以下
のうちから選ばれる1種または2種以上を含有し、残部はFeおよび不可避的不純物からなる成分組成を有することを特徴とする、鋼材。
1. % By mass
C: 0.50% or less,
Si: 1.00% or less,
Mn: 0.10% to 3.00%,
P: 0.030% or less,
S: 0.0100% or less,
N: 0.0100% or less and
Al: contained 0.010% or more and 0.500% or less, and
Cu: 0.010% or more and less than 2.000%,
Ni: 0.010% to 2.000%,
Mo: 0.010% to 1.000%,
W: 0.010% to 1.000% and
Sn: A steel material characterized by containing one or more selected from 0.010% or more and 0.500% or less, with the balance having a component composition consisting of Fe and inevitable impurities.

2.前記成分組成は、さらに、
質量%で、
Ca:0.0001%以上0.0100%以下、
Mg:0.0001%以上0.0200%以下および
REM:0.0010%以上0.2000%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする、上記1に記載の鋼材。
2. The component composition further includes:
% By mass
Ca: 0.0001% or more and 0.0100% or less,
Mg: 0.0001% to 0.0200% and
REM: The steel material according to 1 above, containing one or more selected from 0.0010% to 0.2000%.

3.前記成分組成は、さらに、
質量%で、
Ti:0.005%以上0.100%以下、
Zr:0.005%以上0.100%以下、
Nb:0.005%以上0.100%以下および
V:0.005%以上0.100%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする、上記1または2に記載の鋼材。
3. The component composition further includes:
% By mass
Ti: 0.005% or more and 0.100% or less,
Zr: 0.005% or more and 0.100% or less,
Nb: 0.005% or more and 0.100% or less, and V: 0.005% or more and 0.100% or less, 1 type, or 2 types or more selected from the above, Steel material of said 1 or 2 characterized by the above-mentioned.

4.前記成分組成は、さらに、
質量%で、
Co:0.01%以上0.50%以下
を含有することを特徴とする、上記1から3のいずれかに記載の鋼材。
4). The component composition further includes:
% By mass
Co: The steel material according to any one of 1 to 3 above, containing 0.01% to 0.50%.

5.前記成分組成は、さらに、
質量%で、
B:0.0001%以上0.0300%以下
を含有することを特徴とする、上記1から4のいずれかに記載の鋼材。
5. The component composition further includes:
% By mass
B: The steel material according to any one of 1 to 4 above, which contains 0.0001% or more and 0.0300% or less.

6.前記成分組成は、さらに、
質量%で、
Cr:0.01%以上0.50%以下
を含有することを特徴とする、上記1から5のいずれかに記載の鋼材。
6). The component composition further includes:
% By mass
The steel material according to any one of 1 to 5 above, containing Cr: 0.01% to 0.50%.

7.前記成分組成は、さらに、
質量%で、
Ag:0.003%以上0.100%以下
を含有することを特徴とする、上記1から6のいずれかに記載の鋼材。
7). The component composition further includes:
% By mass
Ag: The steel material according to any one of 1 to 6 above, which contains 0.003% or more and 0.100% or less.

本発明によれば、食品加工機器、事務機器、厨房機器、家電機器といった生活関連用品や、自動車用部材、建築用部材、機械部材、船舶部材、油田付帯設備用部材といった構造用部材に使用した場合に、従来と比較してより安価に抗菌特性を得ることが可能であり、それによって高い耐微生物腐食特性を得ることが可能である。
また、鋼材製造過程での、表面欠陥の発生が、従来に比べて抑制され、表面手入等の工程を省略することができ、生産性の向上と製造コストの低減効果が得られ、産業上極めて有用である。
According to the present invention, it is used in daily life-related products such as food processing equipment, office equipment, kitchen equipment, home appliances, and structural members such as automobile members, building members, mechanical members, ship members, oil field incidental equipment members. In some cases, it is possible to obtain antibacterial properties at a lower cost than in the past, thereby obtaining high microbial corrosion resistance properties.
In addition, the occurrence of surface defects in the steel material manufacturing process is suppressed compared to the conventional method, and processes such as surface care can be omitted, resulting in improved productivity and reduced manufacturing costs. Very useful.

以下、本発明の一実施形態による低合金鋼材について説明する。まず、鋼材の成分組成の限定理由について述べる。なお、本明細書において、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。   Hereinafter, the low alloy steel material by one Embodiment of this invention is demonstrated. First, the reasons for limiting the component composition of steel will be described. In the present specification, “%” representing the content of each component element means “% by mass” unless otherwise specified.

C:0.50%以下
Cは、鋼の強度確保に必要な元素であり、好ましくは0.02%以上で添加する。一方で、0.50%を超える添加では加工性、溶接性が著しく劣化するため、本発明では0.50%以下に制限した。好ましくは0.40%以下であり、より好ましくは0.30%以下である。
C: 0.50% or less C is an element necessary for securing the strength of steel, and is preferably added at 0.02% or more. On the other hand, if it exceeds 0.50%, workability and weldability deteriorate significantly, so in the present invention it is limited to 0.50% or less. Preferably it is 0.40% or less, More preferably, it is 0.30% or less.

Si:1.00%以下
Siは、脱酸のため添加するが、1.00%を超えると靭性や溶接性を劣化させるため、Si含有量は1.00%以下とする。なお、十分な脱酸効果を得るためには0.01%以上が好ましく、0.01%以上0.80%以下の範囲とすることが好ましい。さらに好ましくは、0.03%以上0.70%以下の範囲である。
Si: 1.00% or less
Si is added for deoxidation, but if it exceeds 1.00%, the toughness and weldability deteriorate, so the Si content should be 1.00% or less. In order to obtain a sufficient deoxidizing effect, the content is preferably 0.01% or more, and preferably 0.01% or more and 0.80% or less. More preferably, it is 0.03% to 0.70% of range.

Mn:0.10%以上3.00%以下
Mnは、強度、靭性を改善するために添加するが、0.10%未満ではその効果が十分でなく、一方3.00%を超えると溶接性が劣化するため、Mn含有量は0.10%以上3.00%以下とする。好ましくは0.20%以上2.00%以下の範囲である。
Mn: 0.10% to 3.00%
Mn is added to improve strength and toughness, but if it is less than 0.10%, the effect is not sufficient, while if it exceeds 3.00%, weldability deteriorates, so the Mn content is 0.10% or more and 3.00% or less. To do. Preferably it is 0.20% or more and 2.00% or less of range.

P:0.030%以下
Pは、含有量が多くなると、靭性及び溶接性を劣化させるため、Pの含有量は0.030%以下に抑制するものとした。好ましくは0.025%以下である。0.002%未満とするのは工業的規模の製造では難しいため、0.002%以上の含有は許容される。
P: 0.030% or less P increases the content, and deteriorates toughness and weldability. Therefore, the P content is suppressed to 0.030% or less. Preferably it is 0.025% or less. Since it is difficult to make it less than 0.002% in industrial scale production, a content of 0.002% or more is allowed.

S:0.0100%以下
Sは、鋼の靭性および溶接性を劣化させる有害元素であるので、極力低減することが望ましい。加えて、含有量が多くなると、抗菌特性を持たない硫化析出物の形成が促進され、抗菌特性の観点からも悪影響を及ぼす可能性がある。特に、Sの含有量が0.0100%を超えると、母材靭性および溶接部靭性の劣化が大きくなる。よって、S量は0.0100%以下とする。好ましくは0.0080%以下、さらに好ましくは0.0060%以下である。0.0002%未満とするのは工業的規模の製造では難しいため、0.0002%以上の含有は許容される。
S: 0.0100% or less Since S is a harmful element that deteriorates the toughness and weldability of steel, it is desirable to reduce it as much as possible. In addition, when the content is increased, the formation of sulfide precipitates having no antibacterial properties is promoted, which may adversely affect the antibacterial properties. In particular, when the S content exceeds 0.0100%, the deterioration of the base metal toughness and the weld zone toughness increases. Therefore, the S amount is 0.0100% or less. Preferably it is 0.0080% or less, More preferably, it is 0.0060% or less. Since it is difficult to make it less than 0.0002% in industrial scale production, the content of 0.0002% or more is allowed.

N:0.0100%以下
Nは、多量に添加されると、粗大な窒化物を形成し、鋼の靱性および溶接性を低下させる。加えて、含有量が多くなると、抗菌特性を持たない窒化析出物の形成が促進され、抗菌特性の観点からも悪影響を及ぼす可能性がある。このため、Nは0.0100%以下に限定した。好ましくは0.0070%以下である。0.0010%未満とするのは工業的規模の製造では難しいため、0.0010%以上の含有は許容される。
N: 0.0100% or less When N is added in a large amount, coarse nitrides are formed, and the toughness and weldability of the steel are lowered. In addition, when the content is increased, formation of a nitride precipitate having no antibacterial properties is promoted, which may have an adverse effect from the viewpoint of the antibacterial properties. For this reason, N was limited to 0.0100% or less. Preferably it is 0.0070% or less. Since it is difficult to make it less than 0.0010% in industrial scale production, a content of 0.0010% or more is allowed.

Al:0.010%以上0.500%以下
本発明の鋼において、抗菌特性の観点から重要な元素であり、その効果は0.010%以上の含有において顕著となる。Alは鋼材表面からAl3+イオンとして容易に遊離する性質を持つ。遊離したAl3+イオンは、微生物の酵素活性を低下させ、鋼材の抗菌性を高める。また、遊離したAl3+イオンは、環境中の水分子と加水分解反応を起こし、鋼材表面のpHを低下させ、後述する鋼材中のCu、Ni、Mo、W、Snのイオンの遊離化を促進させる。これにより、Cu、Ni、Mo、W、Snの抗菌作用が大きく向上することとなる。一方、Alの過剰添加は、溶接金属部の靭性を低下させる。そのため0.500%を上限とした。好ましくは0.015%以上0.300%以下の範囲である。
Al: 0.010% or more and 0.500% or less In the steel of the present invention, it is an important element from the viewpoint of antibacterial properties, and the effect becomes remarkable when the content is 0.010% or more. Al has the property of being easily released as Al 3+ ions from the steel surface. The liberated Al 3+ ions reduce the enzyme activity of microorganisms and increase the antibacterial properties of steel. In addition, the released Al 3+ ions cause a hydrolysis reaction with water molecules in the environment, lowering the pH of the steel surface, and promoting the liberation of Cu, Ni, Mo, W, and Sn ions in the steel material described later. Let Thereby, the antibacterial action of Cu, Ni, Mo, W, and Sn is greatly improved. On the other hand, excessive addition of Al reduces the toughness of the weld metal part. Therefore, the upper limit was 0.500%. Preferably it is 0.015% or more and 0.300% or less of range.

Cu:0.010%以上2.000%未満、Ni:0.010%以上2.000%以下、Mo:0.010%以上1.000%以下、W:0.010%以上1.000%以下およびSn:0.010%以上0.500%以下のうちから選ばれる1種または2種以上
Cu、Ni、Mo、W、Snは、本発明の鋼材において、抗菌特性を得るために重要な元素であり、少なくとも1種以上を含有させる。それぞれ、鋼材表面からCu2+イオン、Ni2+イオン、MoO4 2−イオン、WO4 2−イオン、SnO2−イオンとして遊離し、微生物の酵素系のチオール基と結びつき、代謝を阻害することで、抗菌性を発現する。この効果は、上記の成分組成のいずれかを0.010%以上含有することにより得ることができる。また、上述のとおり、Alが共存した場合において抗菌特性の効果が顕著に高くなる。しかしながら、いずれの成分組成についても、多くの量を含有させた場合には、溶接性や靱性を劣化させるため、また、コストの観点からも不利になるため、Cuを0.010%以上2.000%未満、Niを0.010%以上2.000%以下、Moを0.010%以上1.000%以下、Wを0.010%以上1.000%以下、Snを0.010%以上0.500%以下、の添加量の範囲とした。好ましくはCuを0.030%以上1.000%以下、Niを0.030%以上1.000%以下、Moを0.030%以上0.800%以下、Wを0.030%以上0.800%以下、Snを0.030%以上0.400%以下、の添加量の範囲とする。より好ましくはCuを0.030%以上0.800%以下、Niを0.030%以上0.800%以下、Moを0.030%以上0.600%以下、Wを0.030%以上0.600%以下、Snを0.030%以上0.300%以下、の添加量の範囲とする。
Cu: 0.010% or more and less than 2.000%, Ni: 0.010% or more and 2.000% or less, Mo: 0.010% or more and 1.000% or less, W: 0.010% or more and 1.000% or less and Sn: 0.010% or more and 0.500% or less 1 Seeds or more
Cu, Ni, Mo, W, and Sn are elements important for obtaining antibacterial properties in the steel material of the present invention, and contain at least one kind. Each is released from the steel surface as Cu 2+ ions, Ni 2+ ions, MoO 4 2− ions, WO 4 2− ions, SnO 2− ions, combined with the thiol group of the microbial enzyme system, and inhibiting metabolism, Appears antibacterial. This effect can be obtained by containing 0.010% or more of any of the above component compositions. Further, as described above, when Al coexists, the effect of the antibacterial property is remarkably increased. However, for any component composition, if a large amount is contained, the weldability and toughness are deteriorated, and also from the viewpoint of cost, Cu is 0.010% or more and less than 2.000%, Ni was added in the range of 0.010% to 2.000%, Mo in the range of 0.010% to 1.000%, W in the range of 0.010% to 1.000% and Sn in the range of 0.010% to 0.500%. Preferably, 0.030% or more and 1.000% or less of Cu, 0.030% or more and 1.000% or less of Ni, 0.030% or more and 0.800% or less of Mo, 0.030% or more and 0.800% or less of Sn, and 0.030% or more and 0.400% or less of Sn The range. More preferably, Cu is added from 0.030% to 0.800%, Ni is added from 0.030% to 0.800%, Mo is added from 0.030% to 0.600%, W is added from 0.030% to 0.600%, and Sn is added from 0.030% to 0.300%. A range of quantities.

以上、本発明の基本成分について説明した。上記成分以外の残部はFeおよび不可避的不純物であるが、その他にも必要に応じて、以下の元素を適宜含有させることができる。   The basic components of the present invention have been described above. The balance other than the above components is Fe and inevitable impurities, but in addition, the following elements can be appropriately contained as required.

Ca:0.0001%以上0.0100%以下、Mg:0.0001%以上0.0200%以下およびREM:0.0010%以上0.2000%以下のうちから選ばれる1種または2種以上
Ca、Mg、REMは、溶接部の靱性を確保する目的で、1種または2種以上を含有させることができる。しかしながら、添加量が多い場合には、溶接部の靱性劣化やコスト増加を招くため、Ca含有量は0.0001%以上0.0100%以下、Mg含有量は0.0001%以上0.0200%以下、REM含有量は0.0010%以上0.2000%以下の範囲とする。
Ca: 0.0001% or more and 0.0100% or less, Mg: 0.0001% or more and 0.0200% or less and REM: 0.0010% or more and 0.2000% or less
Ca, Mg, and REM can be used alone or in combination of two or more for the purpose of ensuring the toughness of the weld. However, if the addition amount is large, the toughness of the weld zone is deteriorated and the cost is increased, so the Ca content is 0.0001% or more and 0.0100% or less, the Mg content is 0.0001% or more and 0.0200% or less, and the REM content is 0.0010%. The range is 0.2000% or more.

Ti:0.005%以上0.100%以下、Zr:0.005%以上0.100%以下、Nb:0.005%以上0.100%以下およびV:0.005%以上0.100%以下のうちから選ばれる1種または2種以上
Ti、Zr、Nb、Vは、目的とする強度を確保するために、1種または2種以上を含有させることができる。しかしながら、いずれも多く含有させた場合には、靱性と溶接性を劣化させることから、0.005%以上0.100%以下の添加量の範囲とした。好ましくは0.005%以上0.050%以下の範囲である。
Ti: 0.005% to 0.100%, Zr: 0.005% to 0.100%, Nb: 0.005% to 0.100% and V: 0.005% to 0.100% or less
Ti, Zr, Nb, and V can contain 1 type, or 2 or more types, in order to ensure the target intensity | strength. However, when both are contained in a large amount, the toughness and weldability are deteriorated, so the range of addition amount is 0.005% or more and 0.100% or less. Preferably it is 0.005% or more and 0.050% or less of range.

Co:0.01%以上0.50%以下
Coは、鋼材の強度を高める元素であり、必要に応じて含有させることができる。鋼材の強度を高めるためには、Coを0.01%以上含有させることが好ましい。しかし、0.50%を超えて含有させると靱性や溶接性が劣化するため、上記の範囲で含有させることとした。好ましくは0.01%以上0.30%以下の範囲である。
Co: 0.01% to 0.50%
Co is an element that increases the strength of the steel material, and can be contained as necessary. In order to increase the strength of the steel material, it is preferable to contain 0.01% or more of Co. However, when the content exceeds 0.50%, toughness and weldability deteriorate, so the content is determined within the above range. Preferably it is 0.01% or more and 0.30% or less of range.

B:0.0001%以上0.0300%以下
Bは鋼材の焼入性を向上させる元素である。また、鋼材の強度を確保する目的でBを含有させることができる。しかしながら、過剰に含有させた場合、靱性の大幅な劣化を招く。強度の向上効果は、Bの含有量が0.0001%未満では乏しく、靱性の劣化は、0.0300%を超えた場合に顕著となるため、Bの含有量は0.0001%以上0.0300%以下の範囲とした。
B: 0.0001% to 0.0300% B is an element that improves the hardenability of the steel material. Moreover, B can be contained for the purpose of ensuring the strength of the steel material. However, when excessively contained, the toughness is greatly deteriorated. The effect of improving the strength is poor when the B content is less than 0.0001%, and the deterioration of toughness becomes significant when the content exceeds 0.0300%. Therefore, the B content is set in the range of 0.0001% to 0.0300%.

Cr:0.01%以上0.50%以下
鋼材の耐食性を高める目的で、Crを含有させることができる。鋼材の耐食性を高めるためには、Crを0.01%以上含有させることが好ましい。しかし、多量添加した場合には、溶接部特性が大きく劣化してしまう。そのため、含有量は0.01%以上0.50%以下の範囲とした。
Cr: 0.01% or more and 0.50% or less Cr can be contained for the purpose of improving the corrosion resistance of the steel material. In order to improve the corrosion resistance of the steel material, it is preferable to contain Cr by 0.01% or more. However, when a large amount is added, the welded portion characteristics are greatly deteriorated. Therefore, the content is in the range of 0.01% to 0.50%.

Ag:0.003%以上0.100%以下
鋼材の抗菌性を一層高める目的で、Agを含有させることができる。鋼材の抗菌性を高めるためには、Agを0.003%以上含有させることが好ましい。しかし、Agは高価な金属であるため、過剰な含有量とすることはコスト上好ましくない。そのため、含有量は0.003%以上0.100%以下の範囲とした。
Ag: 0.003% or more and 0.100% or less Ag can be contained for the purpose of further enhancing the antibacterial properties of the steel material. In order to improve the antibacterial properties of the steel material, it is preferable to contain 0.003% or more of Ag. However, since Ag is an expensive metal, it is not preferable in terms of cost to have an excessive content. Therefore, the content is in the range of 0.003% to 0.100%.

なお、本発明の効果を損なわない範囲内であれば、上記以外の成分の含有を拒むものではない。   In addition, if it is in the range which does not impair the effect of this invention, inclusion of components other than the above is not refused.

次に、本発明に係る鋼材の製造条件について説明する。
上記した成分組成を有する溶鋼を、転炉や電気炉等の公知の炉で溶製し、連続鋳造法や造塊法等の公知の方法でスラブやビレット等の鋼素材とする。なお、溶製に際して、真空脱ガス精錬等を実施しても良い。
溶鋼の成分調整方法は、公知の鋼製錬方法に従えばよい。
Next, the manufacturing conditions of the steel material according to the present invention will be described.
Molten steel having the above-described component composition is melted in a known furnace such as a converter or an electric furnace, and is made into a steel material such as a slab or billet by a known method such as a continuous casting method or an ingot forming method. In addition, vacuum degassing refining or the like may be performed at the time of melting.
The component adjustment method of molten steel should just follow a well-known steel smelting method.

次に、上記の鋼素材を所望の寸法形状に熱間圧延する際には、1000℃〜1350℃の温度に加熱する。加熱温度が1000℃未満では変形抵抗が大きく、熱間圧延が難しくなるためであり、一方、1350℃を超える加熱は、表面痕の発生原因となったり、スケールロスや燃料原単位が増加するためである。好ましくは、1050〜1300℃の範囲で加熱する。なお、鋼素材の温度が、もともと1000〜1350℃の範囲の場合には、加熱せずに、そのまま熱間圧延に供してもよい。なお、熱間圧延後、再加熱処理、酸洗、冷間圧延を施し、所定板厚の冷延板としてもよい。   Next, when the steel material is hot-rolled to a desired size and shape, it is heated to a temperature of 1000 ° C. to 1350 ° C. This is because when the heating temperature is less than 1000 ° C, deformation resistance is large and hot rolling becomes difficult, while heating above 1350 ° C causes surface marks and increases scale loss and fuel consumption rate. It is. Preferably, it heats in the range of 1050-1300 degreeC. In addition, when the temperature of the steel material is originally in the range of 1000 to 1350 ° C., it may be subjected to hot rolling as it is without being heated. In addition, after a hot rolling, it is good also as a cold-rolled board of predetermined plate | board thickness by performing reheating process, pickling, and cold rolling.

熱間圧延では、熱間仕上圧延の終了温度を適正化することが好ましく、具体的には600℃以上850℃以下とすることが好ましい。熱間仕上圧延の終了温度が600℃未満では、変形抵抗の増大により圧延荷重が増加し、圧延の実施が困難となるためであり、一方、850℃超とすると所望の強度を得られないことがあるためである。熱間仕上圧延の終了後の冷却は、空冷または冷却速度:150℃/s以下の加速冷却とすることが好ましいが、後工程において熱処理を施す場合はこの限りではない。   In the hot rolling, it is preferable to optimize the end temperature of the hot finish rolling, and specifically, it is preferably set to 600 ° C. or higher and 850 ° C. or lower. If the finish temperature of hot finish rolling is less than 600 ° C, the rolling load increases due to an increase in deformation resistance, making it difficult to perform rolling. On the other hand, if it exceeds 850 ° C, the desired strength cannot be obtained. Because there is. Cooling after completion of hot finish rolling is preferably air cooling or accelerated cooling at a cooling rate of 150 ° C./s or less, but this is not the case when heat treatment is performed in a subsequent process.

その他の製造条件は、鋼材の一般的な製造方法に従えばよい。   Other manufacturing conditions may follow the general manufacturing method of steel materials.

次に、本発明の実施例について説明する。なお、本発明は以下の実施例のみに限定されるものではない。
表1に示す組成の溶鋼を、通常公知の手法により溶製、連続鋳造してスラブ(鋼素材)とした。ついで、1230℃に加熱後、熱間圧延により板厚20mmの熱延板とした。
Next, examples of the present invention will be described. In addition, this invention is not limited only to a following example.
The molten steel having the composition shown in Table 1 was melted and continuously cast by a generally known method to obtain a slab (steel material). Then, after heating to 1230 ° C., a hot-rolled sheet having a thickness of 20 mm was formed by hot rolling.

Figure 2017190522
Figure 2017190522

上記により得られた鋼板から25mm×25mm×3.5mmt(tは厚さを意味する)の試験片を採取し、JIS Z2801の規定に準拠したフィルム密着法により、抗菌特性を評価した。評価手順と方法を以下に示す。
サンプルの25mm×25mm表面をアルミナ研磨材により鏡面研磨で仕上げ、エタノールを用いて洗浄・脱脂した。サンプル表面に1/500に普通ブイヨンで調整した菌液0.2mL(フィルム1枚あたり1.0×105CFU、CFU:コロニー形成単位)を、20mm×20mmのフィルムで密着させた後、35℃±1.0℃、RH(相対湿度)90%以上を確保した条件にて保存した。サンプル上の菌液について、試験開始から24時間後の生菌数を測定した。
Test pieces of 25 mm × 25 mm × 3.5 mmt (t means thickness) were collected from the steel sheet obtained as described above, and antibacterial properties were evaluated by a film adhesion method in accordance with the provisions of JIS Z2801. The evaluation procedure and method are shown below.
The 25 mm × 25 mm surface of the sample was finished by mirror polishing with an alumina abrasive and washed and degreased using ethanol. After attaching 0.2mL of bacterial solution (1.0 × 10 5 CFU per film, CFU: colony forming unit) per 20mm × 20mm film, adjusted to 1/500 with normal bouillon on the sample surface, 35 ° C ± 1.0 It preserve | saved on the conditions which ensured ℃ and RH (relative humidity) 90% or more. For the bacterial solution on the sample, the viable cell count was measured 24 hours after the start of the test.

抗菌特性は以下の式より算出された24時間後の菌減少率に基づき評価した。
菌減少率(%)=[(対照の菌数−試験後の菌数)/(対照の菌数)]×100
The antibacterial properties were evaluated based on the bacterial reduction rate after 24 hours calculated by the following formula.
Bacterial reduction rate (%) = [(control bacteria count−number of bacteria after test) / (control bacteria count)] × 100

対照とは、ポリエチレンフィルム上で同様の試験を実施した結果であり、値は1.6×107CFU/枚であった。
なお、試験開始時点での生菌数を維持した場合での菌減少率は99.4%である。すなわち、この減少率より大きい値であれば抗菌性を有しているといえる。なお、本発明においての「優れた」抗菌特性は菌減少率が99.9%以上であることを指す。
The control was the result of carrying out the same test on a polyethylene film, and the value was 1.6 × 10 7 CFU / sheet.
In addition, when the number of viable bacteria is maintained at the start of the test, the bacterial reduction rate is 99.4%. That is, if it is a value larger than this decreasing rate, it can be said that it has antibacterial property. The “excellent” antibacterial property in the present invention indicates that the bacteria reduction rate is 99.9% or more.

併せて、耐微生物腐食性に関しては、同じ鋼板について、硫酸塩還元細菌を含む海水への浸漬腐食試験を行い評価した。評価手順と方法を以下に示す。
上記鋼板から、20mm×40mm×3mmt(tは厚さを意味する)の試験片を切り出し、片面を番手600の研磨面で仕上げた。ついで、裏面および端面は腐食しないようにテープでシールし、35℃にて試験片を海水に浸漬した。試験海水は予め、リアルタイムPCR分析により硫酸塩還元菌の存在が認められた海水を用いた。
At the same time, the microbial corrosion resistance was evaluated by performing an immersion corrosion test on the same steel sheet in seawater containing sulfate-reducing bacteria. The evaluation procedure and method are shown below.
A test piece of 20 mm × 40 mm × 3 mmt (t means thickness) was cut out from the steel sheet, and one side was finished with a polished surface of a count 600. Subsequently, the back and end surfaces were sealed with tape so as not to corrode, and the test piece was immersed in seawater at 35 ° C. Seawater in which the presence of sulfate-reducing bacteria was recognized in advance by real-time PCR analysis was used as test seawater.

上記浸漬を90日間行った後に、試験片を取り出し、表面に付着したさびをスポンジ等で洗い流したのち、インヒビターを添加した酸中で完全にさびを除去した。ついで、純水で洗浄したのち、エタノール中で洗浄し、風乾した。その後、試験片の表面の孔食深さを3次元レーザー顕微鏡(レーザー波長658nm、測定ピッチ0.5μm)により測定し、最大孔食深さを評価した。
耐微生物腐食特性はこの最大孔食深さ値より、以下の基準にて評価した。
○:30μm未満
△:30μm以上50μm未満
×:50μm以上
After the immersion for 90 days, the test piece was taken out, and the rust adhering to the surface was washed away with a sponge or the like, and then the rust was completely removed in the acid to which the inhibitor was added. Then, after washing with pure water, it was washed in ethanol and air-dried. Thereafter, the pitting corrosion depth on the surface of the test piece was measured with a three-dimensional laser microscope (laser wavelength 658 nm, measurement pitch 0.5 μm), and the maximum pitting corrosion depth was evaluated.
The microbial corrosion resistance was evaluated from the maximum pitting depth value according to the following criteria.
○: Less than 30μm △: 30μm or more and less than 50μm ×: 50μm or more

得られた結果を表2に記載する。
表2に示したとおり、発明例は、全て、99.9%以上の菌減少率を示し、優れた抗菌特性を有している。また、そのために、最大腐食深さが全て30μm未満であり、優れた耐微生物腐食特性を有している。一方、比較例のNo.29は、鋼中にCu、Ni、Sn、W、Moを含まず、かつAl量が本発明で規定される下限値を下回っているため、比較例のNo.30,57は、鋼中にCu、Ni、Mo、W、Snを含まないため、比較例のNo.31〜35,38,49はAl量が本発明で規定される下限値を下回っているため、比較例のNo.36〜37,50〜54は鋼中のCu、Ni、Mo、W、Sn量が本発明で規定される下限値を下回っているため菌減少率は99.9%に満たず、優れた抗菌性を有しているとはいえない。また、そのために、最大腐食深さが全て30μm以上であり、優れた耐微生物腐食特性を有しているとはいえない。
The results obtained are listed in Table 2.
As shown in Table 2, all of the inventive examples show a bacteria reduction rate of 99.9% or more and have excellent antibacterial properties. For this reason, the maximum corrosion depths are all less than 30 μm and have excellent microbial corrosion resistance. On the other hand, No. 29 of the comparative example does not contain Cu, Ni, Sn, W, and Mo in the steel, and the Al amount is lower than the lower limit defined in the present invention. , 57 does not contain Cu, Ni, Mo, W, or Sn in the steel, so No. 31 to 35, 38, and 49 in the comparative examples have an Al amount below the lower limit defined in the present invention. In Comparative Examples Nos. 36 to 37 and 50 to 54, the amount of Cu, Ni, Mo, W, and Sn in the steel is below the lower limit defined in the present invention, so the bacteria reduction rate is less than 99.9%. It cannot be said that it has excellent antibacterial properties. For this reason, the maximum corrosion depths are all 30 μm or more, and it cannot be said that they have excellent microbial corrosion resistance.

Figure 2017190522
Figure 2017190522

Claims (7)

質量%で、
C:0.50%以下、
Si:1.00%以下、
Mn:0.10%以上3.00%以下、
P:0.030%以下、
S:0.0100%以下、
N:0.0100%以下および
Al:0.010%以上0.500%以下
を含有し、さらに
Cu:0.010%以上2.000%未満、
Ni:0.010%以上2.000%以下、
Mo:0.010%以上1.000%以下、
W:0.010%以上1.000%以下および
Sn:0.010%以上0.500%以下
のうちから選ばれる1種または2種以上を含有し、残部はFeおよび不可避的不純物からなる成分組成を有することを特徴とする、鋼材。
% By mass
C: 0.50% or less,
Si: 1.00% or less,
Mn: 0.10% to 3.00%,
P: 0.030% or less,
S: 0.0100% or less,
N: 0.0100% or less and
Al: contained 0.010% or more and 0.500% or less, and
Cu: 0.010% or more and less than 2.000%,
Ni: 0.010% to 2.000%,
Mo: 0.010% to 1.000%,
W: 0.010% to 1.000% and
Sn: A steel material characterized by containing one or more selected from 0.010% or more and 0.500% or less, with the balance having a component composition consisting of Fe and inevitable impurities.
前記成分組成は、さらに、
質量%で、
Ca:0.0001%以上0.0100%以下、
Mg:0.0001%以上0.0200%以下および
REM:0.0010%以上0.2000%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする、請求項1に記載の鋼材。
The component composition further includes:
% By mass
Ca: 0.0001% or more and 0.0100% or less,
Mg: 0.0001% to 0.0200% and
The steel material according to claim 1, comprising one or more selected from REM: 0.0010% or more and 0.2000% or less.
前記成分組成は、さらに、
質量%で、
Ti:0.005%以上0.100%以下、
Zr:0.005%以上0.100%以下、
Nb:0.005%以上0.100%以下および
V:0.005%以上0.100%以下
のうちから選ばれる1種または2種以上を含有することを特徴とする、請求項1または2に記載の鋼材。
The component composition further includes:
% By mass
Ti: 0.005% or more and 0.100% or less,
Zr: 0.005% or more and 0.100% or less,
The steel material according to claim 1 or 2, comprising one or more selected from Nb: 0.005% to 0.100% and V: 0.005% to 0.100%.
前記成分組成は、さらに、
質量%で、
Co:0.01%以上0.50%以下
を含有することを特徴とする、請求項1から3のいずれかに記載の鋼材。
The component composition further includes:
% By mass
Co: Steel material according to any one of claims 1 to 3, characterized in that it contains 0.01% or more and 0.50% or less.
前記成分組成は、さらに、
質量%で、
B:0.0001%以上0.0300%以下
を含有することを特徴とする、請求項1から4のいずれかに記載の鋼材。
The component composition further includes:
% By mass
B: The steel material according to any one of claims 1 to 4, characterized by containing 0.0001% or more and 0.0300% or less.
前記成分組成は、さらに、
質量%で、
Cr:0.01%以上0.50%以下
を含有することを特徴とする、請求項1から5のいずれかに記載の鋼材。
The component composition further includes:
% By mass
The steel according to any one of claims 1 to 5, characterized by containing Cr: 0.01% or more and 0.50% or less.
前記成分組成は、さらに、
質量%で、
Ag:0.003%以上0.100%以下
を含有することを特徴とする、請求項1から6のいずれかに記載の鋼材。
The component composition further includes:
% By mass
The steel material according to any one of claims 1 to 6, characterized by containing Ag: 0.003% or more and 0.100% or less.
JP2016220915A 2016-04-11 2016-11-11 Steel material Pending JP2017190522A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016078978 2016-04-11
JP2016078978 2016-04-11

Publications (1)

Publication Number Publication Date
JP2017190522A true JP2017190522A (en) 2017-10-19

Family

ID=60084442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016220915A Pending JP2017190522A (en) 2016-04-11 2016-11-11 Steel material

Country Status (1)

Country Link
JP (1) JP2017190522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181895A1 (en) * 2022-03-22 2023-09-28 Jfeスチール株式会社 Microorganism-corrosion-resistant low-alloy steel material and method for producing same
WO2024024236A1 (en) * 2022-07-29 2024-02-01 Jfeスチール株式会社 Microbiologically assisted cracking-resistant low-alloy steel

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250416A (en) * 1987-04-08 1988-10-18 Nippon Steel Corp Manufacture of steel material excellent in stress corrosion cracking resistance and having low yield ratio in sulfide-rich circumstances
JPH05195077A (en) * 1992-01-21 1993-08-03 Nisshin Steel Co Ltd Production of high tensile strength plated steel sheet excellent in pit corrosion resistance
JPH07246481A (en) * 1994-03-10 1995-09-26 Nippon Steel Corp Production of high strength clad steel sheet
JPH07292437A (en) * 1994-04-25 1995-11-07 Nkk Corp Cold rolled steel sheet for deep drawing, excellent in corrosion resistance, and its production
JP2002266052A (en) * 2001-03-09 2002-09-18 Kawasaki Steel Corp Marine steel having excellent coating film life property
JP2003213367A (en) * 2001-11-19 2003-07-30 Nippon Steel Corp Low alloy steel having excellent hydrochloric acid- corrosion and sulfuric acid-corrosion resistance and welded joint thereof
JP2004359980A (en) * 2003-06-03 2004-12-24 Jfe Steel Kk Steel material for bottom plate of crude oil tank
JP2005097709A (en) * 2003-09-26 2005-04-14 Jfe Steel Kk Steel material for bottom plate of crude oil tank
JP2005290479A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Steel material for bottom plate of crude oil tank
JP2007063610A (en) * 2005-08-31 2007-03-15 Jfe Steel Kk Anti-corrosive steel material for crude oil tank
JP2007262441A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Steel for crude oil tank and its production method
JP2007291494A (en) * 2006-03-30 2007-11-08 Jfe Steel Kk Corrosion-resistant steel material for crude oil storage tank, and crude oil storage tank
JP2009097083A (en) * 2007-09-25 2009-05-07 Jfe Steel Corp Hot-rolled shape steel for crude oil tank and process for manufacturing the same
JP2010196166A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Corrosion resistant steel for crude oil tank and production method therefor, and crude oil tank
JP2010216005A (en) * 2008-12-24 2010-09-30 Jfe Steel Corp Corrosion-resistant steel material for crude oil tanker
JP2010222701A (en) * 2009-02-26 2010-10-07 Jfe Steel Corp Steel for crude oil tanker
JP2011042859A (en) * 2009-08-24 2011-03-03 Sumitomo Metal Ind Ltd Continuous casting method for low alloy steel for corrosion resistant thick plate, and continuously cast slab
JP2014201755A (en) * 2013-04-01 2014-10-27 Jfeスチール株式会社 Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250416A (en) * 1987-04-08 1988-10-18 Nippon Steel Corp Manufacture of steel material excellent in stress corrosion cracking resistance and having low yield ratio in sulfide-rich circumstances
JPH05195077A (en) * 1992-01-21 1993-08-03 Nisshin Steel Co Ltd Production of high tensile strength plated steel sheet excellent in pit corrosion resistance
JPH07246481A (en) * 1994-03-10 1995-09-26 Nippon Steel Corp Production of high strength clad steel sheet
JPH07292437A (en) * 1994-04-25 1995-11-07 Nkk Corp Cold rolled steel sheet for deep drawing, excellent in corrosion resistance, and its production
JP2002266052A (en) * 2001-03-09 2002-09-18 Kawasaki Steel Corp Marine steel having excellent coating film life property
JP2003213367A (en) * 2001-11-19 2003-07-30 Nippon Steel Corp Low alloy steel having excellent hydrochloric acid- corrosion and sulfuric acid-corrosion resistance and welded joint thereof
JP2004359980A (en) * 2003-06-03 2004-12-24 Jfe Steel Kk Steel material for bottom plate of crude oil tank
JP2005097709A (en) * 2003-09-26 2005-04-14 Jfe Steel Kk Steel material for bottom plate of crude oil tank
JP2005290479A (en) * 2004-03-31 2005-10-20 Jfe Steel Kk Steel material for bottom plate of crude oil tank
JP2007063610A (en) * 2005-08-31 2007-03-15 Jfe Steel Kk Anti-corrosive steel material for crude oil tank
JP2007262441A (en) * 2006-03-27 2007-10-11 Jfe Steel Kk Steel for crude oil tank and its production method
JP2007291494A (en) * 2006-03-30 2007-11-08 Jfe Steel Kk Corrosion-resistant steel material for crude oil storage tank, and crude oil storage tank
JP2009097083A (en) * 2007-09-25 2009-05-07 Jfe Steel Corp Hot-rolled shape steel for crude oil tank and process for manufacturing the same
JP2010216005A (en) * 2008-12-24 2010-09-30 Jfe Steel Corp Corrosion-resistant steel material for crude oil tanker
JP2010196166A (en) * 2009-01-30 2010-09-09 Jfe Steel Corp Corrosion resistant steel for crude oil tank and production method therefor, and crude oil tank
JP2010222701A (en) * 2009-02-26 2010-10-07 Jfe Steel Corp Steel for crude oil tanker
JP2011042859A (en) * 2009-08-24 2011-03-03 Sumitomo Metal Ind Ltd Continuous casting method for low alloy steel for corrosion resistant thick plate, and continuously cast slab
JP2014201755A (en) * 2013-04-01 2014-10-27 Jfeスチール株式会社 Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181895A1 (en) * 2022-03-22 2023-09-28 Jfeスチール株式会社 Microorganism-corrosion-resistant low-alloy steel material and method for producing same
WO2024024236A1 (en) * 2022-07-29 2024-02-01 Jfeスチール株式会社 Microbiologically assisted cracking-resistant low-alloy steel

Similar Documents

Publication Publication Date Title
JP6836600B2 (en) Hot stamping material
TWI461547B (en) And a method for producing the iron-based stainless steel sheet excellent in surface gloss and rust resistance
JP5218703B2 (en) Hot-dip Al-plated steel sheet excellent in heat blackening resistance and method for producing the same
EP2980251B1 (en) Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
CN111575588B (en) Martensite precipitation hardening stainless steel and preparation method and application thereof
JP6004653B2 (en) Ferritic stainless steel wire, steel wire, and manufacturing method thereof
JP6379282B2 (en) Ferritic / austenitic stainless steel sheet with excellent corrosion resistance on the shear end face
TWI402358B (en) Ferritic stainless steel having resistance characteristics against rust streaks
EP3088558B1 (en) Steel sheet for hot press forming with excellent corrosion resistance and weldability, forming member, and manufacturing method therefor
JP2012140690A (en) Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance
RU2689824C1 (en) Sheet steel with applied metal coating, which is based on aluminium and contains titanium
TW201435096A (en) Ferritic stainless steel sheet
JP6406475B1 (en) Al-plated welded pipe for quenching, Al-plated hollow member and method for producing the same
JP2010065301A (en) High-strength steel excellent in corrosion resistance at coating in seashore area, and method of producing the same
JP2017190522A (en) Steel material
JP6635890B2 (en) Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance
TW201343933A (en) Cost-effective ferritic stainless steel
JP2002146488A (en) Martensitic stainless steel having excellent workability
JP3227405B2 (en) Ferritic stainless steel with excellent antibacterial properties
TW201835358A (en) Hot-rolled steel with very high strength and method for production
JP2005232511A (en) Austenitic stainless steel having excellent antibacterial property and hot workability
JP2001254151A (en) Ag-CONTAINING MARTENSITIC STAINLESS STEEL EXCELLENT IN ANTIBACTERIAL PROPERTY AND ITS PRODUCING METHOD
JP2010229474A (en) Quench hardened martensitic stainless steel excellent in corrosion resistance
JP5625442B2 (en) High-strength steel sheet with a tensile strength of 1180 MPa or more with excellent delayed fracture resistance
WO2020049833A1 (en) Steel sheet for hot pressing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190514