JP2011042859A - Continuous casting method for low alloy steel for corrosion resistant thick plate, and continuously cast slab - Google Patents

Continuous casting method for low alloy steel for corrosion resistant thick plate, and continuously cast slab Download PDF

Info

Publication number
JP2011042859A
JP2011042859A JP2009193516A JP2009193516A JP2011042859A JP 2011042859 A JP2011042859 A JP 2011042859A JP 2009193516 A JP2009193516 A JP 2009193516A JP 2009193516 A JP2009193516 A JP 2009193516A JP 2011042859 A JP2011042859 A JP 2011042859A
Authority
JP
Japan
Prior art keywords
steel
mass
slab
composition
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009193516A
Other languages
Japanese (ja)
Other versions
JP5299169B2 (en
Inventor
Naotada Yoshida
直嗣 吉田
Kenji Taguchi
謙治 田口
Naoki Tajima
直樹 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009193516A priority Critical patent/JP5299169B2/en
Publication of JP2011042859A publication Critical patent/JP2011042859A/en
Application granted granted Critical
Publication of JP5299169B2 publication Critical patent/JP5299169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the generation of surface flaws upon continuous casting for a low alloy plate for a corrosion resistant thick plate to which, by mass, 0.09 to 0.20% C and 0.05 to 0.50% Sn are added. <P>SOLUTION: A low alloy steel for a corrosion resistant thick plate comprising, by mass, 0.09 to 0.20% C, 0.05 to 1.00% Si, 0.20 to 2.50% Mn, &le;0.05% P, &le;0.02% S, 0.003 to 0.1% Al, 0.05 to 0.50% Sn, 0.01 to 0.20% Cu and 0.01 to 0.20% Ni, and the balance Fe with impurities is cast in such a manner that the value of componential ratios in mass%, Cu/Sn is controlled to 0.02 to 0.5, and the value of (Cu+Ni)/Sn is controlled to 0.04 to 0.7. In this way, the low alloy steel for a corrosion resistant thick plate to which 0.09 to 0.20% C and 0.05 to 0.50% Sn are added can be continuously cast with the generation of surface flaws prevented. Further, even in hot rolling in the post-step, a continuously cast slab having low crack sensitivity can be provided. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、連続鋳造時に表面疵の発生がなく、後工程の熱間圧延でも割れ感受性の低い熱間圧延用母材となる、表面品質の良好な、Snを含有する耐食性厚板用低合金鋼を連続鋳造する方法、および、この方法により製造した連続鋳造鋳片に関するものである。   The present invention is a low alloy for corrosion-resistant thick plates containing Sn with good surface quality, which does not generate surface flaws during continuous casting and is a base material for hot rolling with low cracking sensitivity even in the subsequent hot rolling. The present invention relates to a method for continuously casting steel, and a continuously cast slab produced by this method.

Cuと同様、Snはスクラップ鉄中のトランプエレメントであるが、鋼の耐食性を向上させることも知られている。しかしながら、Snは鋼の熱間加工時に割れを生じさせる脆化元素でもあるため、Snを含有する耐食鋼を製造する際は、表面疵の防止が最大の課題となる。   Like Cu, Sn is a trump element in scrap iron, but it is also known to improve the corrosion resistance of steel. However, since Sn is also an embrittlement element that causes cracking during hot working of steel, prevention of surface flaws is the biggest issue when producing corrosion-resistant steel containing Sn.

特許文献1には、Snによる耐候性向上効果を利用した橋梁用鋼材が開示されている。この橋梁用鋼材では、耐食性の観点からCuとNiの上限が規制されている。   Patent Document 1 discloses a steel material for bridges that uses the effect of improving the weather resistance by Sn. In this steel for bridges, the upper limit of Cu and Ni is regulated from the viewpoint of corrosion resistance.

しかしながら、この特許文献1には、熱間の表面脆化や連続鋳造時の表面疵防止に関する記載はない。   However, this Patent Document 1 does not describe hot surface embrittlement or surface flaw prevention during continuous casting.

また、特許文献2には、熱間加工時に表面疵を発生させずに製造することができるCu、Sn含有熱延鋼が開示されている。このCu、Sn含有熱延鋼は、質量%で、 C:1.0%以下 、Si:1.0%以下、 Mn:0.1〜1.5%、 Al:0.001〜0.1%、 Cu:0.1〜0.5%、 Sn:0.2〜1.0% を含み、かつ、Snの濃度を、2×Cu%以上としたものである。   Patent Document 2 discloses a hot rolled steel containing Cu and Sn that can be produced without generating surface defects during hot working. This Cu and Sn containing hot rolled steel is in mass%, C: 1.0% or less, Si: 1.0% or less, Mn: 0.1-1.5%, Al: 0.001-0.1 %, Cu: 0.1 to 0.5%, Sn: 0.2 to 1.0%, and the Sn concentration is 2 × Cu% or more.

しかしながら、特許文献2で開示されたCu、Sn含有熱延鋼は、Feの選択酸化によって生じるCu、Sn融液の組成比の影響により発生する表面疵の防止に限定されたものである。また、Cuの他にSnを含む場合、Niの割れ防止効果を低下することが記載されているだけで、Niが共存する場合の効果については十分な記載がない。さらに、C量が0.09〜0.20質量%のような縦割れ感受性の高まるC領域では、鋳造割れを防止する必要があるが、その手段についての言及もない。   However, the Cu and Sn-containing hot rolled steel disclosed in Patent Document 2 is limited to prevention of surface flaws generated due to the influence of the composition ratio of Cu and Sn melts caused by selective oxidation of Fe. Further, when Sn is contained in addition to Cu, it is only described that the effect of preventing cracking of Ni is lowered, and there is no sufficient description about the effect when Ni coexists. Furthermore, in the C region where the sensitivity to vertical cracks such as the C content of 0.09 to 0.20% by mass is increased, it is necessary to prevent casting cracks, but there is no mention of the means.

また、非特許文献1には、CuやSnに起因する表面赤熱脆性の抑制方法が記載されている。この非特許文献1では、表面赤熱脆性(液体脆化)による熱間の加工割れに及ぼすCu、Snの影響は、次のように説明されている。   Non-Patent Document 1 describes a method for suppressing surface red hot brittleness caused by Cu or Sn. In this Non-Patent Document 1, the influence of Cu and Sn on hot work cracking due to surface red hot embrittlement (liquid embrittlement) is explained as follows.

1000℃以上に加熱された鋼材は、大気酸化によってその表面にスケールが生成する。0.3質量%程度のCu含有鋼では、主成分のFeが選択酸化され、表層部にCuが濃化する。その際、融点が低いCuは表層部に液相として析出し、これが結晶粒界に侵入して液膜脆化を招く。   The steel material heated to 1000 ° C. or more generates a scale on the surface by atmospheric oxidation. In a Cu-containing steel of about 0.3% by mass, the main component Fe is selectively oxidized, and Cu is concentrated in the surface layer portion. At that time, Cu having a low melting point precipitates as a liquid phase on the surface layer portion, and this penetrates into the crystal grain boundary and causes embrittlement of the liquid film.

CuのほかSnおよびNiは母相の主成分であるFeより酸化されにくい貴な金属元素である。Feより貴な金属のうちCuとSnを含有するCu−Sn含有鋼(0.3質量%Cu−0.04質量%Sn)は、Feより貴な金属のうちCuのみを含有するCu単独含有鋼(0.3質量%Cu)に比べて表面割れが顕著になる。ところが、Feより貴な金属のうちSnのみを含有するSn単独含有鋼の場合は、表面割れを生じない。たとえば0.04質量%Sn、あるいは0.3質量%Snを単独添加した鋼材を大気酸化させても表面割れは生じない。   In addition to Cu, Sn and Ni are noble metal elements that are less susceptible to oxidation than Fe, the main component of the matrix. Cu-Sn containing steel (0.3 mass% Cu-0.04 mass% Sn) containing Cu and Sn among metals nobler than Fe contains Cu alone containing only Cu among metals nobler than Fe Surface cracking becomes more prominent than steel (0.3 mass% Cu). However, surface cracking does not occur in the case of the Sn-only steel containing only Sn among the metals nobler than Fe. For example, surface cracking does not occur even when a steel material to which 0.04 mass% Sn or 0.3 mass% Sn is added alone is oxidized in the atmosphere.

非特許文献1では、Niによる脆化抑制効果についても検討されている。0.3質量%Cu鋼の脆化は、Niを0.15質量%添加することで抑制されるが、0.3質量%Cu−0.04質量%Sn鋼では、Niを0.15質量%添加するだけでは不十分で、0.3質量%のNiを添加することで脆化を抑制できる。   Non-Patent Document 1 also examines the effect of embrittlement suppression by Ni. Embrittlement of 0.3 mass% Cu steel is suppressed by adding 0.15 mass% of Ni, but in 0.3 mass% Cu-0.04 mass% Sn steel, Ni is 0.15 mass%. % Addition is insufficient, and embrittlement can be suppressed by adding 0.3% by mass of Ni.

このように、非特許文献1では、0.3質量%程度のCu含有鋼の脆化に及ぼすSn、Niの影響と、Sn単独鋼は脆化しないことが明らかにされている。   Thus, Non-Patent Document 1 clarifies the effect of Sn and Ni on the embrittlement of Cu-containing steel of about 0.3% by mass and that the Sn single steel does not embrittle.

特開2008−163374JP2008-163374 特開平6−256904JP-A-6-256904

材料とプロセス、Vol.13、2000年、 p.1080Materials and Processes, Vol.13, 2000, p.1080

本発明が解決しようとする問題点は、Snを含有する耐食鋼を製造する際は、表面疵の防止が最大の課題となるが、橋梁用鋼材について開示された特許文献1には、熱間の表面脆化や連続鋳造時の表面疵防止に関する配慮はないという点である。   The problem to be solved by the present invention is that, when producing corrosion-resistant steel containing Sn, the biggest problem is prevention of surface flaws. There is no consideration for surface embrittlement and surface flaw prevention during continuous casting.

また、特許文献2に開示されたCu、Sn含有熱延鋼は、Feの選択酸化によって生じるCu、Sn融液の組成比の影響により発生する表面疵の防止に限定されているという点である。また、この特許文献2には、Niが共存する場合の効果や、C量が0.09〜0.20質量%のような縦割れ感受性の高まるC領域における鋳造割れ防止手段についての言及はないという点である。   Further, the Cu and Sn-containing hot rolled steel disclosed in Patent Document 2 is limited to the prevention of surface flaws generated due to the influence of the composition ratio of Cu and Sn melt caused by selective oxidation of Fe. . Further, this Patent Document 2 does not mention the effect when Ni coexists or the means for preventing casting cracks in the C region where the sensitivity to vertical cracks such as the C content is 0.09 to 0.20% by mass. That is the point.

また、非特許文献1では、0.3質量%程度のCu含有鋼の脆化に及ぼすSn、Niの影響と、Sn単独鋼は脆化しないことが明らかにされているだけであるという点である。   In addition, Non-Patent Document 1 only shows that Sn and Ni affect the embrittlement of about 0.3% by mass of Cu-containing steel, and that Sn alone steel does not embrittle. is there.

本発明の耐食性厚板用低合金鋼の連続鋳造方法は、
Cを0.09〜0.20質量%、Snを0.05〜0.50質量%添加した耐食性厚板用低合金鋼の連続鋳造時における表面疵の発生を防止するために、
質量%で、C:0.09〜0.20%、Si:0.05〜1.00%、Mn:0.20〜2.50%、P:0.05%以下、S:0.02%以下、Al:0.003〜0.1%、Sn:0.05〜0.50%、Cu:0.01〜0.20%、Ni:0.01〜0.20%を含有し、残部がFeおよび不純物からなる耐食性厚板用の低合金鋼を、
質量%の成分比、Cu/Snの値を0.02以上、0.5以下、および、(Cu+Ni)/Snの値を0.04以上、0.7以下として鋳造することを主要な特徴としている。
The continuous casting method of the low alloy steel for corrosion resistant thick plate of the present invention is as follows:
In order to prevent the occurrence of surface flaws during continuous casting of the corrosion-resistant low-alloy steel for thick plates to which C is added by 0.09 to 0.20 mass% and Sn is added to 0.05 to 0.50 mass%,
In mass%, C: 0.09 to 0.20%, Si: 0.05 to 1.00%, Mn: 0.20 to 2.50%, P: 0.05% or less, S: 0.02 %: Al: 0.003 to 0.1%, Sn: 0.05 to 0.50%, Cu: 0.01 to 0.20%, Ni: 0.01 to 0.20%, Low alloy steel for corrosion resistant thick plates with the balance being Fe and impurities,
Casting with a mass% component ratio, Cu / Sn values of 0.02 or more and 0.5 or less, and (Cu + Ni) / Sn values of 0.04 or more and 0.7 or less. Yes.

そして、本発明の連続鋳造方法による連続鋳造中または連続鋳造直後の高温状態での大気による酸化によって生成された、鋳片表層部のSn、CuおよびNiが濃化する、母相であるFeと異相の組成が、少なくとも30質量%以上のFeを含有したものが本発明の連続鋳造鋳片である。   And produced by atmospheric oxidation in the high temperature state immediately after continuous casting by the continuous casting method of the present invention, Sn, Cu and Ni in the slab surface layer portion is concentrated, Fe as the parent phase The continuously cast slab of the present invention has a composition of a different phase containing at least 30% by mass or more of Fe.

本発明は、Cを0.09〜0.20質量%、Snを0.05〜0.50質量%添加した耐食性厚板用低合金鋼を、表面疵の発生を防止して連続鋳造することができる。また、後工程の熱間圧延時にも、割れ感受性の低い連続鋳造鋳片を提供することができ、品質の良好な鋼材を製造することができる。   The present invention continuously casts a corrosion-resistant low alloy steel for thick plates to which C is added in an amount of 0.09 to 0.20% by mass and Sn is added in an amount of 0.05 to 0.50% by mass while preventing surface flaws Can do. In addition, a continuous cast slab with low cracking sensitivity can be provided even during the subsequent hot rolling, and a steel material with good quality can be manufactured.

Cu−Ni−Sn三元系組成図において、0.02≦Cu/Sn≦0.5で、かつ0.04≦(Cu+Ni)/Sn≦0.7を示す範囲を示した図である。In the Cu-Ni-Sn ternary composition diagram, 0.02 ≦ Cu / Sn ≦ 0.5 and a range showing 0.04 ≦ (Cu + Ni) /Sn≦0.7. 1127℃のCu−Ni−Sn三元系状態図上に、母相表面に析出した鋳片表面の(Cu、Sn、Ni)濃化相の三元系換算組成を示した図である。It is the figure which showed the ternary system conversion composition of the (Cu, Sn, Ni) concentrated phase of the slab surface deposited on the surface of a parent phase on a 1127 degreeC Cu-Ni-Sn ternary phase diagram. Fe−(Cu+Ni)−Sn組成図上に、(Cu、Sn、Ni)濃化挙動の組成変化を矢印で示し、鋳片表面に形成される(Cu、Ni、Sn)濃化相のFeを含めた四元系換算組成をSEM/EDS分析によって調査した結果を示した図である。On the Fe- (Cu + Ni) -Sn composition diagram, the composition change of (Cu, Sn, Ni) concentration behavior is indicated by arrows, and the (Cu, Ni, Sn) enriched phase Fe formed on the slab surface It is the figure which showed the result of having investigated the included quaternary system conversion composition by SEM / EDS analysis. 解析ソフトを用い、付属データベースと文献の熱力学データを加えて作成した1250℃における、Fe−(Cu+Ni)−Sn系状態図の高Fe側を示した図である。It is the figure which showed the high Fe side of the Fe- (Cu + Ni) -Sn system phase diagram in 1250 degreeC created by adding an attached database and the thermodynamic data of literature using analysis software. 連続鋳造鋳片の表面に形成される(Cu、Ni、Sn)濃化相について、Feを含めた四元系換算組成をSEM/EDS分析によって調査した結果を、1250℃のFe−(Cu+Ni)−Sn組成図上に示した図である。Regarding the (Cu, Ni, Sn) concentrated phase formed on the surface of the continuous cast slab, the results of investigation of the quaternary equivalent composition including Fe by SEM / EDS analysis are Fe- (Cu + Ni) at 1250 ° C. It is the figure shown on the -Sn composition chart.

本発明では、Cを0.09〜0.20質量%、Snを0.05〜0.50質量%添加した耐食性厚板用低合金鋼を連続鋳造する際の表面疵の発生を防止するという目的を、CuとNiが共存する鋼の脆化抑制条件を検討することによって実現した。   According to the present invention, the occurrence of surface flaws is prevented when continuously casting a low alloy steel for corrosion-resistant thick plates to which C is added in an amount of 0.09 to 0.20 mass% and Sn is added in an amount of 0.05 to 0.50 mass%. The purpose was achieved by studying the embrittlement suppression conditions of steel in which Cu and Ni coexist.

以下、本発明の着想から課題解決に至るまでの過程と共に、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described together with the process from the idea of the present invention to the solution of the problem.

発明者等は、Feの選択酸化に伴って生じるCu脆化現象について、Snの影響を見直した。特に、Feの選択酸化時に形成されるCu、Ni、Snの濃化によって生じる低融点合金組成と割れ感受性の関係に着目し、脆化を抑制する組成系を検討した。   The inventors reviewed the influence of Sn on the Cu embrittlement phenomenon caused by the selective oxidation of Fe. In particular, we focused on the relationship between the low-melting-point alloy composition and cracking susceptibility produced by the enrichment of Cu, Ni, and Sn formed during the selective oxidation of Fe, and studied a composition system that suppresses embrittlement.

元来、Cu脆化は、Feが選択酸化する際、Feより貴なCuが濃化し、Cu濃度がオーステナイトFe相の固溶限を超えて低融点のCu液相が析出することにより、液相のCuが母相であるFeのオーステナイト結晶粒界へ浸透し、粒界を脆弱化するものと考えられている。   Originally, Cu embrittlement is caused by the fact that when Fe is selectively oxidized, Cu that is nobler than Fe is concentrated, and the Cu concentration exceeds the solid solubility limit of the austenite Fe phase and a low melting point Cu liquid phase is precipitated. It is believed that the phase Cu penetrates into the austenite grain boundaries of Fe, the parent phase, and weakens the grain boundaries.

また、NiとSnは、Cuと同様にFeより貴な元素である。Niは、Cuの固溶限を高めてCu液相の融点を上昇させるので、Cu脆化を抑制する元素である。これに対し、Snは、Cuの固溶限を低めてCu液相の融点を降下させるので、Cu脆化を助長する元素である。   Ni and Sn are more noble elements than Fe, like Cu. Ni is an element that suppresses Cu embrittlement because it raises the solid solubility limit of Cu and raises the melting point of the Cu liquid phase. On the other hand, Sn is an element that promotes Cu embrittlement because it lowers the solid solubility limit of Cu and lowers the melting point of the Cu liquid phase.

このため、従来は、Niを脆化抑制元素として添加し、Snの添加量を制限する対策、すなわち、低融点液相の形成を防止する対策がとられることが多かった。   For this reason, conventionally, Ni has been added as an embrittlement suppression element, and measures to limit the amount of Sn added, that is, measures to prevent the formation of a low melting point liquid phase have often been taken.

これに対して、Feより貴なCu、Ni、Snの三合金元素中で、特にSnを主要な添加元素とする鋼を対象とする場合は、従来の対策をとることができない。その理由は、SnはCuと比べて遙かに低融点であり、Niを添加しても液相形成の抑制効果が小さいためである。   On the other hand, the conventional measures cannot be taken in the case of steel, in which Sn is the main additive element among the three alloy elements of Cu, Ni, and Sn, which are nobler than Fe. The reason is that Sn has a much lower melting point than Cu, and even if Ni is added, the effect of suppressing liquid phase formation is small.

そこで、発明者等は、Feの選択酸化によって形成する液相組成に注目し、基礎実験と熱力学解析による検討を行った。その結果、母相のFeから、母相に溶解しない異相成分として析出する(Cu、Sn)液相ではなく、母相のFeにSnが濃化して低融点化した(Fe、Sn)液相を優先して生じさせることで脆化を抑制することが可能であることを見出した。   Therefore, the inventors focused on the liquid phase composition formed by selective oxidation of Fe, and examined it by basic experiments and thermodynamic analysis. As a result, it is not the (Cu, Sn) liquid phase that precipitates from the parent phase Fe as a heterogeneous component that does not dissolve in the parent phase, but the Sn melting in the parent phase Fe to lower the melting point (Fe, Sn) liquid phase It was found that embrittlement can be suppressed by giving priority to the generation of.

すなわち、(Cu、Sn)液相は、スケール/母相界面に膜状に集積し、母相であるFeのオーステナイト結晶粒界に浸透して粒界脆化をもたらす。これに対し、(Fe、Sn)液相の挙動は、脆化の原因となる(Cu、Sn)液相の性質とは大きく異なっている。(Fe、Sn)液相は、母相のFe成分を多く含み、酸化速度の速い比較的高温で液相化するため、Snを効果的に母相表面に生じたスケール中に排斥できるからである。よって、(Cu、Sn)液相を形成させずに(Fe、Sn)液相を優先して生じさせれば、表面疵の問題を解消することができる。   That is, the (Cu, Sn) liquid phase accumulates in the form of a film at the scale / matrix interface and penetrates into the austenite crystal grain boundary of Fe, which is the matrix phase, to cause grain boundary embrittlement. On the other hand, the behavior of the (Fe, Sn) liquid phase is significantly different from the properties of the (Cu, Sn) liquid phase that cause embrittlement. Because the (Fe, Sn) liquid phase contains a large amount of the Fe component of the matrix and is converted to a liquid phase at a relatively high temperature with a high oxidation rate, Sn can be effectively eliminated into the scale formed on the surface of the matrix. is there. Therefore, if the (Fe, Sn) liquid phase is generated preferentially without forming the (Cu, Sn) liquid phase, the problem of surface defects can be solved.

図1は、本発明にて提示する、耐食性厚板の表面割れを防止することができるCu、Ni、Snの組成比の範囲、すなわち0.02≦Cu/Sn≦0.5で、かつ0.04≦(Cu+Ni)/Sn≦0.7を示した図である。   FIG. 1 shows the range of the composition ratio of Cu, Ni, and Sn that can prevent surface cracking of the corrosion-resistant thick plate presented in the present invention, that is, 0.02 ≦ Cu / Sn ≦ 0.5 and 0 .04 ≦ (Cu + Ni) /Sn≦0.7.

まず、種々のCu、Ni、Snを含有する鋼を試験的に連続鋳造した鋳片について、表面割れの有無を確認し、鋳片表層部の断面試料を採取して走査型電子顕微鏡(以下、SEMと称す。)による観察を行った。   First, for slabs that were experimentally continuously cast steel containing various Cu, Ni, Sn, check the presence or absence of surface cracks, collected a cross-sectional sample of the slab surface layer portion, scanning electron microscope (hereinafter, Observation by SEM).

鋳片試料の断面観察では、反射電子像を用いる。反射電子像では原子量が大きいほど像が明るい色となるため、材料の組成差によって像コントラストに濃淡が生じる。従って、母相であるFeとFeに比べて原子量の大きなCu、Ni、Snが濃化した部分の判別が可能となる。   A reflected electron image is used for cross-sectional observation of the slab sample. In the backscattered electron image, the larger the atomic weight, the brighter the image. Therefore, the contrast of the image is shaded by the compositional difference of the material. Therefore, it is possible to discriminate a portion where Cu, Ni, and Sn having a larger atomic weight than Fe and Fe as the parent phase are concentrated.

Feの選択酸化により生じた鋳片表面の(Cu、Ni、Sn)濃化相の三元系換算組成をエネルギー分散型X線分光分析法(以下、EDSと称す。)によって調査した。   The ternary equivalent composition of the (Cu, Ni, Sn) concentrated phase on the slab surface produced by selective oxidation of Fe was investigated by energy dispersive X-ray spectroscopy (hereinafter referred to as EDS).

図2は、1127℃のCu−Ni−Sn三元系状態図上に、母相表面に析出した鋳片表面の(Cu、Sn、Ni)濃化相の三元系換算組成を示した図である。計算状態図計算は、解析ソフトThermo−Calc(Thermo−Calc Sotware AB社の製品)を用い、付属データベースと文献に記載された一般的な熱力学データを加えて作成した。   FIG. 2 shows the ternary equivalent composition of the (Cu, Sn, Ni) concentrated phase on the surface of the cast slab deposited on the surface of the parent phase on the Cu-Ni-Sn ternary phase diagram at 1127 ° C. It is. The calculation phase diagram calculation was created by adding analysis data Thermo-Calc (product of Thermo-Calc Sotware AB) and adding general thermodynamic data described in the attached database and literature.

鋳片表面における濃化相の三元組成は、概ね図2の(a)〜(d)に示す4グループに分類され、1127℃において、(a)〜(c)は液相領域に、(d)は固相領域にある。   The ternary composition of the concentrated phase on the slab surface is roughly classified into four groups shown in FIGS. 2A to 2D. At 1127 ° C., (a) to (c) are in the liquid phase region, ( d) is in the solid phase region.

このうち、液相領域の(b)では軽微な鋳片表面割れが発生し、(c)では鋳片表面割れが多発した。一方、(d)はCu−Ni軸上の固相領域にあるので、鋳片表面割れが皆無であるのは当然であるが、高Sn側液相領域の(a)も鋳片表面割れは皆無であった。   Of these, minor slab surface cracks occurred in (b) of the liquid phase region, and slab surface cracks occurred frequently in (c). On the other hand, since (d) is in the solid phase region on the Cu-Ni axis, it is natural that there is no slab surface cracking, but (a) in the high Sn side liquid phase region is also slab surface cracking. There was nothing.

すなわち、Cu−Ni−Sn三元状態図上で液相が生じる組成系であっても、鋳片表面割れを抑制することが可能な組成範囲が高Sn側にあることが分かった。しかしながら、これは三元組成上の検討であるため、実際はFe選択酸化過程のFe母相中での濃化が主要な機構であると考えられる。そこで、発明者等は、Feを加えた四元系の挙動について検討を加えた。   That is, it was found that even in a composition system in which a liquid phase is generated on the Cu-Ni-Sn ternary phase diagram, a composition range capable of suppressing slab surface cracking is on the high Sn side. However, since this is a ternary compositional study, it is thought that the main mechanism is actually the enrichment in the Fe matrix during the Fe selective oxidation process. Therefore, the inventors examined the behavior of the quaternary system to which Fe was added.

図3は、Fe−(Cu+Ni)−Sn組成図上に、(Cu、Sn、Ni)濃化挙動の組成変化を矢印で示し、鋳片表面に形成される(Cu、Ni、Sn)濃化相のFeを含めた四元系換算組成をSEM/EDS分析によって調査した結果を示した図である。   Fig. 3 shows the composition change of (Cu, Sn, Ni) concentration behavior on the Fe- (Cu + Ni) -Sn composition diagram by arrows, and (Cu, Ni, Sn) concentration formed on the slab surface. It is the figure which showed the result of having investigated the quaternary system conversion composition containing Fe of a phase by SEM / EDS analysis.

(Cu+Ni)/Sn比を0.25(=20/80)とすると、Fe選択酸化過程で生じる濃化相の組成はFeを比較的多く含み、Feが完全に酸化消失する前のFe≧30質量%で生じており、この場合には鋳片の表面割れは発生しない(図3でドットを付した領域)。   When the (Cu + Ni) / Sn ratio is 0.25 (= 20/80), the composition of the concentrated phase generated in the Fe selective oxidation process contains a relatively large amount of Fe, and Fe ≧ 30 before Fe is completely oxidized and lost. In this case, the surface crack of the slab does not occur (the region marked with dots in FIG. 3).

一方、(Cu+Ni)/Sn比を1.5(=60/40)とすると、Fe選択酸化過程で生じる濃化相の組成にはFeが比較的少なく、ほぼFeが酸化消失した後のFe<30質量%で生じるCu−Sn系の低融点液相であり、この場合には鋳片の表面割れを伴っている(図3でドットを付さない領域)。   On the other hand, when the (Cu + Ni) / Sn ratio is 1.5 (= 60/40), the composition of the concentrated phase generated in the Fe selective oxidation process is relatively small in Fe, and Fe < This is a Cu-Sn low melting point liquid phase produced at 30% by mass, and in this case, it is accompanied by surface cracks in the slab (regions without dots in FIG. 3).

さらに種々の組成の鋼を調査した結果、鋳片表面割れは(Cu+Ni)/Sn比と密接な関係があり、(Cu+Ni)/Sn比を0.7以下とすることで表面割れを抑制できることが分かった。   Furthermore, as a result of investigating steels with various compositions, slab surface cracking has a close relationship with the (Cu + Ni) / Sn ratio, and surface cracking can be suppressed by setting the (Cu + Ni) / Sn ratio to 0.7 or less. I understood.

図4は、前記解析ソフトThermo−Calcを用い、付属データベースと文献に記載された一般的な熱力学データを加えて作成した1250℃における、Fe−(Cu+Ni)−Sn系状態図の高Fe側を示した図である。   FIG. 4 shows the high Fe side of the Fe— (Cu + Ni) —Sn phase diagram at 1250 ° C. created using the analysis software Thermo-Calc and adding the general thermodynamic data described in the attached database and literature. FIG.

図4の状態図から、液相は二相分離することが分かる。Fe−Sn軸近くの高Fe側ではL1(Fe、Sn)液相領域が、低Feかつ高(Cu+Ni)側では、L2(Cu、Sn)液相領域がそれぞれ存在している。 It can be seen from the state diagram of FIG. 4 that the liquid phase is separated into two phases. Fe-Sn in the shaft near the high Fe side L1 (Fe, Sn) liquid phase region, at a low Fe and height (Cu + Ni) side, L 2 (Cu, Sn) liquid phase region exists, respectively.

表面割れのない図3中の(a)に示した濃化相組成は、図4の1250℃状態図において(Fe、Sn)液相が生じる領域である。このFe側液相は、Feの選択酸化によってSnが濃化し、30質量%以上のSnを含有することによって母相であるFe相自身が低融点化し、溶融したものである。   The concentrated phase composition shown in (a) of FIG. 3 without surface cracks is a region where the (Fe, Sn) liquid phase is generated in the 1250 ° C. phase diagram of FIG. This Fe-side liquid phase is one in which Sn is concentrated by selective oxidation of Fe, and the Fe phase itself, which is the parent phase, contains 30% by mass or more of Sn, thereby melting and melting.

母相が溶解したFe側液相は、粒界浸透性に乏しく、粒界割れに対しては無害である。すなわち、比較的高温の1250℃付近で、Feを多く含有したL1(Fe、Sn)液相が生じた場合は、表面割れを抑制することができる。 The Fe side liquid phase in which the matrix phase is dissolved has poor grain boundary permeability and is harmless to grain boundary cracking. That is, when an L 1 (Fe, Sn) liquid phase containing a large amount of Fe is generated near a relatively high temperature of 1250 ° C., surface cracking can be suppressed.

他方、表面割れが生じた図3中の(b)に示した濃化相組成は、図4の1250℃状態図においてL1液相が生じることがなく、粒界に湿潤しやすいL2(Cu、Sn)液相が形成する。 On the other hand, the concentrated phase composition shown in (b) of FIG. 3 in which surface cracks occurred has no L 1 liquid phase in the 1250 ° C. state diagram of FIG. 4 and L 2 ( Cu, Sn) liquid phase is formed.

このように鋳片表面割れが生じるか否かは、Feの選択酸化過程で生じる濃化相の組成に依存し、高Feを含有するL1(Fe、Sn)液相を生じさせることにより、表面割れを防止できることが分かる。 Whether or not the slab surface cracks occur in this way depends on the composition of the concentrated phase generated in the selective oxidation process of Fe, and by generating a L 1 (Fe, Sn) liquid phase containing high Fe, It can be seen that surface cracks can be prevented.

図5は、連続鋳造鋳片の表面に形成される(Cu、Ni、Sn)濃化相について、Feを含めた四元系換算組成をSEM/EDS分析によって調査した結果を1250℃のFe−(Cu+Ni)−Sn組成図上に示した図である。   FIG. 5 shows the results of investigating the quaternary equivalent composition including Fe on the (Cu, Ni, Sn) concentrated phase formed on the surface of the continuous cast slab by SEM / EDS analysis. It is the figure shown on the (Cu + Ni) -Sn composition diagram.

(Cu+Ni)/Sn比を0.7以下とした鋳片表面の濃化相組成(○印)は、比較的Feを多く含む組成で、状態図上のL1(Fe、Sn)液相形成領域とよく一致している。この場合、鋳片の表面割れは発生しない。 The concentrated phase composition on the surface of the slab with a (Cu + Ni) / Sn ratio of 0.7 or less (circle mark) is a composition containing a relatively large amount of Fe, and the L 1 (Fe, Sn) liquid phase formation on the phase diagram It is in good agreement with the area. In this case, the surface crack of the slab does not occur.

一方、Snを含有し、(Cu+Ni)/Sn比が0.7を超える鋳片表面の濃化相組成(□印)は、状態図上のL1(Fe、Sn)液相形成から外れ、L2(Cu、Sn)液相のみが形成される。 On the other hand, the concentrated phase composition (□) on the surface of the slab containing Sn and having a (Cu + Ni) / Sn ratio exceeding 0.7 deviates from the L 1 (Fe, Sn) liquid phase formation on the phase diagram, Only the L 2 (Cu, Sn) liquid phase is formed.

図5は、高Fe濃度側(Fe:60質量%以上、Cu+Ni+Sn:40質量%以下)領域のみを表しているが、図5中に『→□』で示すように、この範囲外の濃化相(Cu+Ni+Sn:40質量%超)が多く検出されている。この場合は、鋳片に表面割れが多発する。   FIG. 5 shows only the high Fe concentration side (Fe: 60 mass% or more, Cu + Ni + Sn: 40 mass% or less) region, but as shown by “→ □” in FIG. 5, the concentration outside this range is shown. Many phases (Cu + Ni + Sn: more than 40% by mass) are detected. In this case, surface cracks frequently occur in the slab.

本発明が対象とする鋼におけるCu、Ni、Sn以外の合金組成は、質量%で、C:0.09〜0.20%、Si:0.05〜1.0%、Mn:0.2〜2.5%、P:0.05%以下、S:0.02%以下、Al:0.003〜0.1%である。   The alloy composition other than Cu, Ni, and Sn in the steel targeted by the present invention is mass%, C: 0.09 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.2. -2.5%, P: 0.05% or less, S: 0.02% or less, Al: 0.003-0.1%.

これは汎用の構造用材料に用いられる一般的な組成系である。しかしながら、本発明が対象とする組成系の鋼は、特にC量が0.09〜0.20質量%であり、後述するように、凝固過程に包晶反応(L+δ→γ)を伴うため、連続鋳造時における縦割れ感受性が極めて高い。従って、本発明が対象とする鋼は、鋳造時の縦割れを抑制すると同時に、Cu、Snによる粒界割れを防止することが重要となる。   This is a general composition system used for general structural materials. However, the steel of the composition system targeted by the present invention has a C amount of 0.09 to 0.20% by mass, and, as will be described later, a peritectic reaction (L + δ → γ) is involved in the solidification process. Extremely high sensitivity to vertical cracks during continuous casting. Therefore, it is important for the steel targeted by the present invention to suppress longitudinal cracks during casting and to prevent intergranular cracking due to Cu and Sn.

以下、本発明が対象とする鋼における各合金組成の配合量の限定理由について説明する。なお、以下、合金組成の配合量の「%」は「質量%」を意味している。   Hereinafter, the reasons for limiting the amount of each alloy composition in the steel targeted by the present invention will be described. In the following, “%” in the blending amount of the alloy composition means “mass%”.

C:0.09〜0.20%
Cは材料としての強度を確保するために必要な元素である。本発明が対象とする0.09〜0.20%の範囲は、構造材料として適した組成である。しかしながら、このC範囲は連続鋳造の割れ感受性の高まる領域である。なぜなら、このC範囲では液相〜固相にかけて凝固過程に包晶反応(L+δ→γ)を伴い、凝固(L→δ)と変態(δ→γ)の各収縮が重畳するため、初期凝固殻の不均一成長、粒界割れが生じやすく、特に縦割れが生じやすいからである。
C: 0.09 to 0.20%
C is an element necessary for ensuring strength as a material. The range of 0.09 to 0.20% targeted by the present invention is a composition suitable as a structural material. However, this C range is an area where the cracking sensitivity of continuous casting increases. This is because in this C range, the solidification process from the liquid phase to the solid phase is accompanied by a peritectic reaction (L + δ → γ), and each shrinkage of solidification (L → δ) and transformation (δ → γ) overlaps, so the initial solidification shell This is because non-uniform growth and grain boundary cracking are likely to occur, and vertical cracks are particularly likely to occur.

Si:0.05〜1.00%
Siは脱酸に必要な元素であり、十分な脱酸効果を得るためには0.05%以上含有させることが必要である。しかしながら1.00%を超えて含有させると、母材の靱性が損なわれる。従って、本発明では0.05〜1.00%としている。好ましい範囲は0.10〜0.50%である。
Si: 0.05-1.00%
Si is an element necessary for deoxidation, and in order to obtain a sufficient deoxidation effect, it is necessary to contain 0.05% or more. However, if the content exceeds 1.00%, the toughness of the base material is impaired. Therefore, in the present invention, it is 0.05 to 1.00%. A preferable range is 0.10 to 0.50%.

Mn:0.20〜2.50%
Mnは、鋼強度を高めるのに必要な元素であり、この効果を得るためには0.20%以上の含有量が必要である。しかしながら、2.50%を超えて含有させると靱性が低下する。従って、本発明では0.20〜2.50%としている。好ましい範囲は0.40〜1.5%である。
Mn: 0.20 to 2.50%
Mn is an element necessary for increasing the steel strength, and a content of 0.20% or more is necessary to obtain this effect. However, if the content exceeds 2.50%, the toughness decreases. Therefore, in the present invention, it is 0.20 to 2.50%. A preferred range is 0.40 to 1.5%.

P:0.05%以下
Pは、鋼中に含まれる不純物元素であり、少ない方が良い。その含有量が0.05%を超えると、溶接性を著しく低下させる。従って、本発明では0.05%以下としているが、できるだけ少ない方が良い。
P: 0.05% or less
P is an impurity element contained in the steel, and it is better that it is less. When the content exceeds 0.05%, weldability is remarkably lowered. Therefore, in the present invention, it is set to 0.05% or less, but it is preferable that the content be as small as possible.

S:0.02%以下
Sは、鋼中に含まれる不純物元素であり、少ない方が良い。その含有量が0.02%を超えると、腐食起点となるMnS介在物量が多くなり、耐食性を低下させる。従って、本発明では0.02%以下としているが、できるだけ少ない方が良い。
S: 0.02% or less
S is an impurity element contained in the steel, and it is better that it is less. When the content exceeds 0.02%, the amount of MnS inclusions that become the starting point of corrosion increases, and the corrosion resistance is lowered. Therefore, in the present invention, it is set to 0.02% or less, but it is preferable that the content be as small as possible.

Al:0.003〜0.1%
Alは、脱酸に必要な元素であり、鋼中に不可避に存在している。その含有量が0.003%以上であると耐候性が向上するが、0.1%を超えると鋼が脆化し易くなる。従って、本発明では0.003〜0.1%としている。好ましい範囲は0.005〜0.06%である。
Al: 0.003-0.1%
Al is an element necessary for deoxidation and is unavoidably present in steel. If the content is 0.003% or more, the weather resistance is improved, but if it exceeds 0.1%, the steel tends to become brittle. Therefore, in the present invention, it is made 0.003 to 0.1%. A preferred range is 0.005 to 0.06%.

Sn、Cu、Niは、Feより酸化されにくい“貴な”金属であり、耐食性を向上させるために添加する元素である。また、これらの3元素は、鋼の製造過程の高温酸化雰囲気で、母相となるFeの選択酸化に伴って濃化してゆき、表層濃化組成から低融点液相が析出すると赤熱脆化の原因となる。従って、これらの組成比は、鋼の耐食性や高温脆化等の鋼特性を決定する上で極めて重要であり、本発明では、以下のように規定している。本発明が対象とする鋼では、Snを主要な添加元素としている。   Sn, Cu, and Ni are “noble” metals that are less susceptible to oxidation than Fe, and are elements added to improve corrosion resistance. In addition, these three elements are concentrated in the high-temperature oxidizing atmosphere of the steel manufacturing process with the selective oxidation of Fe as the parent phase, and when the low melting point liquid phase is precipitated from the surface concentrated composition, red hot embrittlement occurs. Cause. Therefore, these composition ratios are extremely important in determining steel characteristics such as corrosion resistance and high temperature embrittlement of steel, and are defined as follows in the present invention. In the steel targeted by the present invention, Sn is a main additive element.

Sn:0.05〜0.50%
Snは、耐食性を決定する主要元素であり、その含有量が0.05%未満では所望する耐食性が得られない。本発明では、耐食性能を得るためにSnを主要な添加元素とするので、0.05%以上のSnを添加する。しかしながら、0.50%を超えても耐食性は飽和し、また、過剰な添加は鋼の靱性を低下させる。従って、本発明では0.05〜0.50%としている。好ましい範囲は0.08〜0.30%である。
Sn: 0.05 to 0.50%
Sn is a main element that determines the corrosion resistance. If its content is less than 0.05%, the desired corrosion resistance cannot be obtained. In the present invention, since Sn is a main additive element for obtaining corrosion resistance, 0.05% or more of Sn is added. However, even if it exceeds 0.50%, the corrosion resistance is saturated, and excessive addition reduces the toughness of the steel. Therefore, in the present invention, it is 0.05 to 0.50%. A preferable range is 0.08 to 0.30%.

Cu:0.01〜0.20%
Cuは、耐食性を向上させる成分であるが、鉄鋼原料のスクラップ鉄に限らず、高炉溶銑中にも少なくとも0.01%のCuが不純物として不可避に含まれ、通常の精錬では除去することが困難である。一方、耐食性の向上のみを考えると、Cuの含有量は多いほど良いことになるが、鋼中にCuが過剰に存在すると、鋼材の製造過程すなわち連続鋳造や熱間圧延の際に、いわゆるCu赤熱脆化によって表面疵が発生して問題となる。また、Snを主要な耐食性向上添加元素とする場合は、Cuの添加によって耐食性をさらに向上させる効果は小さい。そこで、本発明では、上限を0.20%とした。
Cu: 0.01-0.20%
Although Cu is a component that improves corrosion resistance, it is not limited to scrap iron, which is a raw material for steel, but at least 0.01% of Cu is unavoidably contained in the blast furnace hot metal and is difficult to remove by ordinary refining. It is. On the other hand, considering only the improvement in corrosion resistance, the higher the Cu content, the better.However, if Cu is excessively present in the steel, the so-called Cu is produced during the steel production process, that is, during continuous casting and hot rolling. Surface flaws occur due to red heat embrittlement and become a problem. Moreover, when Sn is used as a main additive element for improving corrosion resistance, the effect of further improving the corrosion resistance by adding Cu is small. Therefore, in the present invention, the upper limit is set to 0.20%.

また、Cu,Sn共存下では、赤熱脆化が助長される。高Cuに対し、少量のSnの場合は著しい脆化を示す。従って、Feの選択酸化時の濃化相をL1(Fe,Sn)液相組成に制御して脆化を抑制するために、本発明では、Cu/Sn比を0.5以下とする。Cu/Snの下限値は、Cuを下限値(0.01%)、Snを上限値(0.50%)とすればよいので、0.02になる。 Moreover, red heat embrittlement is promoted in the presence of Cu and Sn. In contrast to high Cu, a small amount of Sn shows significant embrittlement. Therefore, in order to control embrittlement by controlling the concentrated phase during selective oxidation of Fe to the L 1 (Fe, Sn) liquid phase composition, the Cu / Sn ratio is set to 0.5 or less in the present invention. The lower limit of Cu / Sn is 0.02 because Cu may be the lower limit (0.01%) and Sn may be the upper limit (0.50%).

Ni:0.01〜0.20%
Niは、耐食性を向上させる効果を有し、不可避的に鋼中に0.01%以上含有される。一方、耐食性の向上のみを考えると、Niの含有量は多いほど良いことになるが、Snを主要な耐食性向上添加元素とする本発明の場合は、耐食性をさらに向上させる効果は小さい。また、Niは、赤熱脆化を抑制する効果を有しているが、Sn、Cu共存下ではNiによる脆化抑制効果は小さくなる。さらに、Niは高価な合金元素であり、多量のNi添加はコスト増大を招く。そこで、本発明では、Ni含有量の上限を0.20%とした。
Ni: 0.01-0.20%
Ni has an effect of improving the corrosion resistance, and is inevitably contained in the steel by 0.01% or more. On the other hand, considering only the improvement in corrosion resistance, the higher the Ni content, the better. However, in the case of the present invention in which Sn is a main additive for improving corrosion resistance, the effect of further improving the corrosion resistance is small. In addition, Ni has an effect of suppressing red heat embrittlement, but the effect of suppressing embrittlement by Ni becomes small in the presence of Sn and Cu. Furthermore, Ni is an expensive alloy element, and the addition of a large amount of Ni causes an increase in cost. Therefore, in the present invention, the upper limit of the Ni content is set to 0.20%.

また、Ni、Snが共存するとき、Ni量が多くなると図2に示すように1100℃付近で脆化の起点となる金属間化合物Ni3Sn2が析出して好ましくない。従って、本発明では、Ni−Snの金属間化合物の析出防止のため、(Cu+Ni)/Sn比を0.7以下としている。(Cu+Ni)/Snの下限値は、CuとNiを下限値(共に0.01%)、Snを上限値(0.50%)とすればよいので、0.04になる。   Further, when Ni and Sn coexist, if the amount of Ni increases, as shown in FIG. 2, the intermetallic compound Ni3Sn2, which becomes the starting point of embrittlement, is not preferable as shown in FIG. Therefore, in the present invention, the (Cu + Ni) / Sn ratio is set to 0.7 or less in order to prevent precipitation of Ni—Sn intermetallic compounds. The lower limit of (Cu + Ni) / Sn is 0.04 because Cu and Ni may be the lower limit (both 0.01%) and Sn may be the upper limit (0.50%).

この組成系において縦割れを防止するには、たとえば、以下の条件で連続鋳造すれば良い。   In order to prevent vertical cracks in this composition system, for example, continuous casting may be performed under the following conditions.

(鋳造条件)
・溶鋼の過熱度:50℃以下
・鋳造速度:0.7〜1.2m/min
・二次冷却の鋳片重量1kg当りの比水量:2.4リットル以下
・使用するモールドフラックスの主な物性値:凝固温度1210〜1270℃、1300℃における粘度0.3〜1.0poise、塩基度(CaO/SiO2)1.5〜2.0
(Casting conditions)
・ Superheat degree of molten steel: 50 ° C. or less ・ Casting speed: 0.7 to 1.2 m / min
-Specific water content per kg of slab weight for secondary cooling: 2.4 liters or less-Main physical properties of mold flux used: Viscosity 0.3-1.0 poise at solidification temperature 1210-1270 ° C, 1300 ° C, base Degree (CaO / SiO 2 ) 1.5-2.0

以下、本発明の効果を確認するために行った、実施結果について説明する。
(実施例1)
2.5tonの溶鋼を用いた垂直型連続鋳造機による試験を行った。下記表1の組成条件の溶鋼を溶解炉にて溶製し、取鍋を介してタンディッシュに注入した過熱度40〜60℃の溶鋼を、浸漬ノズルから振動する内部水冷の銅板鋳型に給湯し、0.8m/minの鋳造速度にて連続鋳造を行った。使用したモールドフラックスは、凝固温度が1235℃、1300℃における粘度は0.04Pa・s、塩基度(CaO/SiO2)は1.8である。鋳型下方では、鋳片重量1kgあたり比水量2.0リットルでスプレー冷却を行い、厚さ100mm×幅800mm×長さ3500mmのスラブ鋳片を得た。
Hereafter, the implementation result performed in order to confirm the effect of this invention is demonstrated.
Example 1
The test was conducted by a vertical continuous casting machine using 2.5 ton molten steel. Molten steel having the composition conditions shown in Table 1 below is melted in a melting furnace, and molten steel having a superheat of 40 to 60 ° C. poured into a tundish through a ladle is supplied to an internal water-cooled copper plate mold that vibrates from an immersion nozzle. Continuous casting was performed at a casting speed of 0.8 m / min. The mold flux used has a solidification temperature of 1235 ° C., a viscosity at 1300 ° C. of 0.04 Pa · s, and a basicity (CaO / SiO 2 ) of 1.8. Below the mold, spray cooling was performed at a specific water volume of 2.0 liters per kg of slab weight to obtain a slab slab having a thickness of 100 mm × width of 800 mm × length of 3500 mm.

鋳片を室温まで冷却した後、鋳片の一部を切り出して、鋳片表面割れの有無の調査と鋳片表面の濃化層の組成調査を行うとともに、熱間圧延試験用の試料を採取した。熱間圧延試験は、1100℃に加熱した後、圧下率75%の条件で行い、鋼材表面割れ発生の有無を調査し、熱間加工性を評価した。   After cooling the slab to room temperature, a part of the slab is cut out to investigate the presence of cracks on the slab surface and to investigate the composition of the concentrated layer on the slab surface, and to collect a sample for the hot rolling test did. The hot rolling test was performed at 1100 ° C. and then under the condition of a rolling reduction of 75%, and the presence or absence of occurrence of steel surface cracks was investigated to evaluate the hot workability.

なお、表面割れの確認方法は、鋳片縦割れの有無は肉眼による観察、鋳片および熱間圧延後の鋼片の粒界割れの有無はダイチェック(染色浸透探傷検査)により行った。結果は表2に記載した。   In addition, the confirmation method of the surface crack was performed by die-check (dye penetrant inspection) for the presence or absence of grain boundary cracks in the cast slab and the steel slab after hot rolling for the presence or absence of slab vertical cracks. The results are shown in Table 2.

Figure 2011042859
Figure 2011042859

Figure 2011042859
Figure 2011042859

表1に示した本発明例のNo.1〜6は、表2に示すように、鋳片の縦割れ・粒界割れは全くなく、熱間圧延試験時の割れも全くなかった。また、本発明例のNo.1〜6の組成では、目標とする耐食性も十分得られた。   No. of the example of the present invention shown in Table 1. In Tables 1 to 6, as shown in Table 2, there were no vertical cracks and intergranular cracks in the slab, and there were no cracks during the hot rolling test. In addition, No. of the present invention example. In the compositions of 1 to 6, the target corrosion resistance was sufficiently obtained.

一方、表1に示した比較例のNo.7〜10では、表2に示すように、いずれも鋳片粒界割れが発生した。特に、No.7では、亜包晶鋼特有の縦割れも発生し、0.3%以上の高Cu含有鋼にSnが共存したときに割れ感受性が助長されていた。これら比較例では疵を手入れした後、熱間圧延試験を行ってもやはり表面疵が発生した。   On the other hand, No. of the comparative example shown in Table 1. In 7-10, as shown in Table 2, all the slab grain boundary cracks occurred. In particular, no. In No. 7, longitudinal cracks peculiar to hypoperitectic steel also occurred, and the crack sensitivity was promoted when Sn coexisted in a high Cu content steel of 0.3% or more. In these comparative examples, surface flaws were also generated even after the hot rolling test was conducted after cleaning the wrinkles.

また、比較例のNo.11、12では、鋳造時の縦割れや粒界割れはないものの、No.11ではSn量が過大のため鋼材の靱性が劣化を招き、No.12ではSnを含まないため、十分な耐食性が得られなかった。   Moreover, No. of the comparative example. In Nos. 11 and 12, although there were no vertical cracks and grain boundary cracks during casting, no. In No. 11, since the Sn amount is excessive, the toughness of the steel material deteriorates. No. 12 did not contain Sn, so sufficient corrosion resistance could not be obtained.

(実施例2)
転炉にて脱炭精練した溶鋼250tonを取鍋に出鋼した後、真空精練を行い、その末期にSnを525kg添加し、下記表3のような溶鋼組成とした。
(Example 2)
After 250 tons of molten steel decarburized and scoured in a converter was taken out into a ladle, vacuum scouring was performed, and 525 kg of Sn was added at the end of the ladle to obtain a molten steel composition as shown in Table 3 below.

Figure 2011042859
Figure 2011042859

取鍋溶鋼をタンディッシュに供給し、溶鋼温度を1540〜1550℃の範囲で保持しつつ、垂直曲げ型連続鋳造機にて、0.9m/minの鋳造速度で、厚さ250mm×幅2300mmの矩形断面のスラブ形状に鋳造した。   The ladle molten steel is supplied to the tundish, and the molten steel temperature is maintained in the range of 1540 to 1550 ° C., and at a casting speed of 0.9 m / min with a vertical bending type continuous casting machine, the thickness is 250 mm × width is 2300 mm. Cast into a slab shape with a rectangular cross section.

二次冷却は、鋳片重量1kgあたり比水量1.2リットルとした。このとき鋳片表面割れは皆無であり、無手入れで熱間圧延母材とした。1100℃に再加熱した後、熱間圧延を行い厚さ20mmの製品としたが、その際も表面疵の発生はなく、全く問題がなかった。   Secondary cooling was performed with a specific water amount of 1.2 liters per kg of slab weight. At this time, there was no slab surface cracking, and the hot-rolled base metal was made without maintenance. After reheating to 1100 ° C., hot rolling was performed to obtain a product with a thickness of 20 mm. However, there was no surface flaw and no problem at all.

(実施例3)
転炉にて脱炭精練した溶鋼300tonを取鍋に出鋼した後、真空精練を行い、その末期にSnを330kg添加し、下記表4のような溶鋼組成とした。
(Example 3)
After removing 300 tons of molten steel decarburized and smelted in a converter into a ladle, vacuum scouring was performed, and 330 kg of Sn was added at the final stage to obtain a molten steel composition as shown in Table 4 below.

Figure 2011042859
Figure 2011042859

取鍋溶鋼をタンディッシュに供給し、溶鋼温度を1540〜1550℃の範囲の過熱度35℃以下で保持しつつ、垂直曲げ型連続鋳造機にて、1.0m/minの鋳造速度で、厚さ250mm×幅2300mmの矩形断面のスラブ形状に鋳造した。   The ladle molten steel is supplied to the tundish, and the molten steel temperature is maintained at a superheat degree of 35 ° C. or less in the range of 1540 to 1550 ° C. It was cast into a slab shape having a rectangular cross section of 250 mm in width and 2300 mm in width.

二次冷却は、鋳片重量1kgあたり比水量を1.3リットルとした。このとき鋳片表面割れは皆無であり、無手入れで熱間圧延母材とした。1100℃に再加熱した後、熱間圧延を行ったが、その際も表面疵の発生はなく、全く問題なかった。   Secondary cooling was performed with a specific water volume of 1.3 liters per kg of slab weight. At this time, there was no slab surface cracking, and the hot-rolled base metal was made without maintenance. After reheating to 1100 ° C., hot rolling was performed, but there was no surface flaws and no problem at all.

なお、前記実施例2および実施例3において使用したモールドフラックスは、凝固温度が1250℃、1300℃における粘度は0.07Pa・s、塩基度(CaO/SiO2)は1.7であった。 The mold flux used in Example 2 and Example 3 had a solidification temperature of 1250 ° C., a viscosity at 1300 ° C. of 0.07 Pa · s, and a basicity (CaO / SiO 2 ) of 1.7.

本発明は上記した例に限らないことは勿論であり、請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   Needless to say, the present invention is not limited to the above-described examples, and the embodiments may be appropriately changed within the scope of the technical idea described in the claims.

Claims (2)

質量%で、C:0.09〜0.20%、Si:0.05〜1.00%、Mn:0.20〜2.50%、P:0.05%以下、S:0.02%以下、Al:0.003〜0.1%、Sn:0.05〜0.50%、Cu:0.01〜0.20%、Ni:0.01〜0.20%を含有し、残部がFeおよび不純物からなる耐食性厚板用の低合金鋼を、
質量%の成分比、Cu/Snの値を0.02以上、0.5以下、および、(Cu+Ni)/Snの値を0.04以上、0.7以下として鋳造することを特徴とする耐食性厚板用低合金鋼の連続鋳造方法。
In mass%, C: 0.09 to 0.20%, Si: 0.05 to 1.00%, Mn: 0.20 to 2.50%, P: 0.05% or less, S: 0.02 %: Al: 0.003 to 0.1%, Sn: 0.05 to 0.50%, Cu: 0.01 to 0.20%, Ni: 0.01 to 0.20%, Low alloy steel for corrosion resistant thick plates with the balance being Fe and impurities,
Corrosion resistance characterized by casting at a component ratio of mass%, Cu / Sn values of 0.02 or more and 0.5 or less, and (Cu + Ni) / Sn values of 0.04 or more and 0.7 or less. Continuous casting method of low alloy steel for thick plates.
連続鋳造中または連続鋳造直後の高温状態での大気による酸化によって生成した、鋳片表層部のSn、CuおよびNiが濃化する、母相であるFeと異相の組成が、少なくとも30質量%以上のFeを含有することを特徴とする請求項1に記載の連続鋳造方法を用いて鋳造された連続鋳造鋳片。   At least 30% by mass or more of the composition different from Fe, which is the parent phase, in which Sn, Cu, and Ni in the surface part of the slab are concentrated, formed by oxidation in the air at high temperatures during or immediately after continuous casting. The continuous cast slab cast by using the continuous casting method according to claim 1, wherein Fe is contained.
JP2009193516A 2009-08-24 2009-08-24 Continuous casting method and continuous cast slab of low alloy steel for corrosion resistant thick plate Active JP5299169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193516A JP5299169B2 (en) 2009-08-24 2009-08-24 Continuous casting method and continuous cast slab of low alloy steel for corrosion resistant thick plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193516A JP5299169B2 (en) 2009-08-24 2009-08-24 Continuous casting method and continuous cast slab of low alloy steel for corrosion resistant thick plate

Publications (2)

Publication Number Publication Date
JP2011042859A true JP2011042859A (en) 2011-03-03
JP5299169B2 JP5299169B2 (en) 2013-09-25

Family

ID=43830482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193516A Active JP5299169B2 (en) 2009-08-24 2009-08-24 Continuous casting method and continuous cast slab of low alloy steel for corrosion resistant thick plate

Country Status (1)

Country Link
JP (1) JP5299169B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104113A1 (en) * 2012-12-28 2014-07-03 新日鐵住金株式会社 Steel for carburizing
WO2015029994A1 (en) 2013-08-29 2015-03-05 新日鐵住金株式会社 STEEL IN WHICH Cu-Sn COEXIST, AND METHOD FOR MANUFACTURING SAME
JP2016047944A (en) * 2014-08-27 2016-04-07 新日鐵住金株式会社 Cu-Sn COEXISTENCE STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
JP2017190522A (en) * 2016-04-11 2017-10-19 Jfeスチール株式会社 Steel material
CN114309507A (en) * 2021-12-24 2022-04-12 湖南华菱涟源钢铁有限公司 Crystallizer casting powder and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264022A (en) * 1998-03-17 1999-09-28 Nippon Steel Corp Production of steel sheet excellent in surface property
JP2005029883A (en) * 2002-09-27 2005-02-03 Nippon Steel Corp Cu-CONTAINING STEEL MATERIAL HAVING SUPERIOR SURFACE QUALITY, AND MANUFACTURING METHOD THEREFOR
JP2008274367A (en) * 2007-05-01 2008-11-13 Sumitomo Metal Ind Ltd Bolt steel, and bridge using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11264022A (en) * 1998-03-17 1999-09-28 Nippon Steel Corp Production of steel sheet excellent in surface property
JP2005029883A (en) * 2002-09-27 2005-02-03 Nippon Steel Corp Cu-CONTAINING STEEL MATERIAL HAVING SUPERIOR SURFACE QUALITY, AND MANUFACTURING METHOD THEREFOR
JP2008274367A (en) * 2007-05-01 2008-11-13 Sumitomo Metal Ind Ltd Bolt steel, and bridge using it

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104113A1 (en) * 2012-12-28 2014-07-03 新日鐵住金株式会社 Steel for carburizing
CN104884660A (en) * 2012-12-28 2015-09-02 新日铁住金株式会社 Steel for carburizing
CN104884660B (en) * 2012-12-28 2017-03-15 新日铁住金株式会社 Carburizing steel
WO2015029994A1 (en) 2013-08-29 2015-03-05 新日鐵住金株式会社 STEEL IN WHICH Cu-Sn COEXIST, AND METHOD FOR MANUFACTURING SAME
KR20160003728A (en) 2013-08-29 2016-01-11 신닛테츠스미킨 카부시키카이샤 STEEL IN WHICH Cu-Sn COEXIST, AND METHOD FOR MANUFACTURING SAME
CN105283260A (en) * 2013-08-29 2016-01-27 新日铁住金株式会社 Steel in which Cu-Sn coexist, and method for manufacturing same
EP3006137A4 (en) * 2013-08-29 2017-03-08 Nippon Steel & Sumitomo Metal Corporation STEEL IN WHICH Cu-Sn COEXIST, AND METHOD FOR MANUFACTURING SAME
KR101764993B1 (en) 2013-08-29 2017-08-03 신닛테츠스미킨 카부시키카이샤 STEEL IN WHICH Cu-Sn COEXIST, AND METHOD FOR MANUFACTURING SAME
US10046383B2 (en) 2013-08-29 2018-08-14 Nippon Steel & Sumitomo Metal Corporation Cu—Sn coexisting steel and method for manufacturing the same
JP2016047944A (en) * 2014-08-27 2016-04-07 新日鐵住金株式会社 Cu-Sn COEXISTENCE STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
JP2017190522A (en) * 2016-04-11 2017-10-19 Jfeスチール株式会社 Steel material
CN114309507A (en) * 2021-12-24 2022-04-12 湖南华菱涟源钢铁有限公司 Crystallizer casting powder and application thereof

Also Published As

Publication number Publication date
JP5299169B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP4725437B2 (en) Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate
JP6058439B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after processing
JP4363403B2 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
JP6245417B1 (en) Steel
JP5299169B2 (en) Continuous casting method and continuous cast slab of low alloy steel for corrosion resistant thick plate
JP4041511B2 (en) Low-carbon sulfur free-cutting steel with excellent machinability
JP2019178363A (en) AUSTENITIC STAINLESS STEEL WITH HIGH CONTENT OF Si, HAVING EXCELLENT MANUFACTURABILITY
JP6809243B2 (en) Continuously cast steel slabs and their manufacturing methods
JP6331881B2 (en) Cu-Sn coexisting steel and method for producing the same
JP4160103B1 (en) Steel ingot for forging
JP5089267B2 (en) Integrated crankshaft
JP5720867B1 (en) Cu-Sn coexisting steel and method for producing the same
JP5213517B2 (en) Steel with excellent weld heat affected zone toughness
JP6662174B2 (en) Steel plate
JP2016003385A (en) CONTINUOUS CASTING SLAB OF Ni-CONTAINING STEEL
JP6191783B2 (en) Stainless steel
JP7187606B2 (en) High-Ni alloy with excellent weld hot cracking resistance
JP6341053B2 (en) High Si austenitic stainless steel containing composite non-metallic inclusions
JP2006200032A (en) Low-carbon sulfur free-cutting steel
JP7124631B2 (en) Method for preventing cast slab placement cracks
JP6941003B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
WO2023286338A1 (en) Ni-cr-mo-based alloy for welded pipe having excellent workability and corrosion resistance
JP2018034178A (en) STRUCTURAL Al-Zr ADDED STEEL AND MANUFACTURING METHOD THEREOF
JP2017193756A (en) Thick steel sheet
JP6086036B2 (en) Steel plate with excellent weld heat-affected zone toughness and its melting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R151 Written notification of patent or utility model registration

Ref document number: 5299169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350