JP2017188421A - Positive electrode active material particle for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material particle for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2017188421A
JP2017188421A JP2016223847A JP2016223847A JP2017188421A JP 2017188421 A JP2017188421 A JP 2017188421A JP 2016223847 A JP2016223847 A JP 2016223847A JP 2016223847 A JP2016223847 A JP 2016223847A JP 2017188421 A JP2017188421 A JP 2017188421A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material particles
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016223847A
Other languages
Japanese (ja)
Other versions
JP6109399B1 (en
Inventor
大輔 森田
Daisuke Morita
大輔 森田
大誠 井上
Hiromasa Inoue
大誠 井上
貴幸 山村
Takayuki Yamamura
貴幸 山村
竜太 正木
Ryuta Masaki
竜太 正木
和順 松本
Kazunobu Matsumoto
和順 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF TODA Battery Materials LLC
Original Assignee
BASF TODA Battery Materials LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58666443&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017188421(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF TODA Battery Materials LLC filed Critical BASF TODA Battery Materials LLC
Priority to PCT/JP2017/012628 priority Critical patent/WO2017170543A1/en
Priority to TW106111136A priority patent/TW201807873A/en
Application granted granted Critical
Publication of JP6109399B1 publication Critical patent/JP6109399B1/en
Publication of JP2017188421A publication Critical patent/JP2017188421A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a highly stable positive electrode active material particle for a nonaqueous electrolyte secondary battery.SOLUTION: A positive electrode active material particle has a hexagonal layered rock-salt structure, of which the composition formula is given by Li(NiCoMn)O(where 1.00≤x≤1.07, 0.10≤y≤0.40, 0.10≤z≤0.40, and 0.3≤y+z≤0.7). In a case in which such positive electrode active material particles are used for a positive electrode, and Li is used as a negative electrode to assemble a nonaqueous electrolyte secondary battery, and the battery is initially charged at a rate of 0.2 C (a current density of 16 mA/g) to 4.6 V under a 60°C-environment to prepare a graph (a dQ/dV curve) of which the horizontal axis shows a voltage, and the vertical axis shows dQ/dV as a result of differentiation of an initial charge capacity with respect to a voltage, the area in a voltage range of 4.3-4.52 V in the graph is 35 mAh/g or less.SELECTED DRAWING: None

Description

本発明は、高い安定性を示す六方晶層状岩塩構造を有する非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池に関する。   The present invention relates to a positive electrode active material particle for a nonaqueous electrolyte secondary battery having a hexagonal layered rock salt structure exhibiting high stability, a method for producing the same, and a nonaqueous electrolyte secondary battery.

近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。このような状況下において、充放電電圧が高く、充放電容量も大きいという長所を有するリチウムイオン二次電池が注目されている。   In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Under such circumstances, a lithium ion secondary battery having advantages such as a high charge / discharge voltage and a large charge / discharge capacity has attracted attention.

従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、並びに六方晶層状岩塩型構造のLiCoO、LiCo1−XNi、及びLiNiO等が一般的に知られている。なかでもLiCoOは、高電圧と高容量とを有する点で優れているが、コバルト原料の供給量が少ないことによる製造コスト高の問題や廃棄電池の環境安全上の問題を含んでいる。そこで、汎用性に優れたNi、Co及びMnの固溶体である六方晶層状岩塩構造を有した三元系正極活物質粒子(基本組成:Li(NiCoMn)O−以下、同じ−)の研究が盛んに行われている。 Conventionally, as a positive electrode active material useful for a high energy type lithium ion secondary battery having a voltage of 4 V class, spinel type structure LiMn 2 O 4 , hexagonal layered rock salt type structure LiCoO 2 , LiCo 1-X Ni X O 2 , LiNiO 2 and the like are generally known. Among them, LiCoO 2 is excellent in that it has a high voltage and a high capacity, but includes a problem of high manufacturing cost due to a small supply amount of cobalt raw material and a problem of environmental safety of a discarded battery. Therefore, Versatile Ni, ternary had hexagonal layered rock-salt structure is a solid solution of Co and Mn positive electrode active material particles (basic composition: Li (Ni x Co y Mn z) O 2 - or less, the same -) Is actively researched.

周知の通り、六方晶層状岩塩構造である該三元系正極活物質粒子は、Ni化合物、Co化合物、Mn化合物及びLi化合物を所定の割合で混合し、例えば約700℃〜1000℃の温度範囲で焼成することによって得ることができる。   As is well known, the ternary positive electrode active material particles having a hexagonal layered rock salt structure are prepared by mixing Ni compound, Co compound, Mn compound and Li compound at a predetermined ratio, for example, a temperature range of about 700 ° C. to 1000 ° C. Can be obtained by baking.

三元系正極活物質粒子を用いたリチウムイオン二次電池にあっては、充放電の繰り返しによる充放電容量の劣化を抑制し、且つ電池の安定性を向上できる材料が現在最も要求されている。特に、充電状態で保存しても電池特性の劣化なしに安定であることが最も求められている。   In lithium ion secondary batteries using ternary positive electrode active material particles, a material that can suppress deterioration of charge / discharge capacity due to repeated charge / discharge and improve battery stability is currently most demanded. . In particular, it is most required to be stable without deterioration of battery characteristics even when stored in a charged state.

電池が高安定性であることを達成するためには、該三元系正極活物質粒子において、特に結晶構造の不安定化の抑制をすることが重要と考えられてきた。その手段としては、三元系正極活物質粒子に用いるLi、Ni、Co、Mn化合物の組成バランス、結晶子サイズ及び粒度分布を制御する方法、焼成温度を制御して粉末を得る方法、異種元素を添加して結晶の結合力を強化する方法、並びに表面処理を行うことで該目標を達成する方法等が行われている。   In order to achieve high stability of the battery, it has been considered important to particularly suppress the destabilization of the crystal structure in the ternary positive electrode active material particles. As the means, a method of controlling the composition balance, crystallite size and particle size distribution of Li, Ni, Co, and Mn compounds used in the ternary positive electrode active material particles, a method of obtaining powder by controlling the firing temperature, a different element A method for strengthening the bonding strength of crystals by adding selenium, a method for achieving the target by surface treatment, and the like are performed.

これまで、電池の安全性を向上するための正極活物質粒子としては、LiNi0.33Co0.33Mn0.33である材料が知られている(特許文献1)。また、サイクルによる格子体積の変化が小さいことによる安全性の高い材料についても知られている(特許文献2)。さらに、Caを添加することで適度なガス発生をさせることにより電池の安全弁を働かせることを目的としている材料についても知られている(特許文献3)。 So far, a material that is LiNi 0.33 Co 0.33 Mn 0.33 O 2 has been known as positive electrode active material particles for improving battery safety (Patent Document 1). Further, a highly safe material due to a small change in the lattice volume due to the cycle is also known (Patent Document 2). Furthermore, a material that is intended to activate a safety valve of a battery by generating an appropriate gas by adding Ca is also known (Patent Document 3).

特開2003−059490号公報JP 2003-059490 A 特許4900888号公報Japanese Patent No. 4900888 特開2014−143108号公報JP 2014-143108 A

上述の通り、非水電解質二次電池用の正極活物質として高安定性であり、電池の安定性を向上できる材料が現在最も要求されているところであるが、未だ必要十分な要求を満たす材料やその製造方法が得られていない。   As described above, a material that is highly stable as a positive electrode active material for a non-aqueous electrolyte secondary battery and that can improve the stability of the battery is currently most demanded. The manufacturing method has not been obtained.

即ち、前記特許文献1には、高結晶であるLiNi0.33Co0.33Mn0.33の開示があり、その説明はあるものの、実用的に考えれば安定性がまだ不十分であり、十分に電池の安定性を向上することができない。また、前記特許文献2では、サイクルによる格子体積の変化が小さいことによる安全性を謳っているが、電池の安定性について特に記載されておらず、十分に電池の安定性を向上できるか疑わしい。また、前記特許文献3では、意図的にガス発生をさせることにより電池の安全性を担保する手法をとっているが、正極活物質自体としては安定性に欠け、実用的にまだ不十分である。 That is, Patent Document 1 discloses a highly crystalline LiNi 0.33 Co 0.33 Mn 0.33 O 2 , and although there is an explanation thereof, the stability is still insufficient from a practical point of view. And the stability of the battery cannot be improved sufficiently. Moreover, in the said patent document 2, although the safety | security by small change of the lattice volume by a cycle is called for, stability of a battery is not described in particular, and it is doubtful whether stability of a battery can fully be improved. Moreover, in the said patent document 3, although the method of ensuring the safety | security of a battery by taking out gas intentionally is taken, it lacks stability as positive electrode active material itself, and is still insufficient practically. .

本発明は、前記の問題に鑑みてなされたものであり、その目的は、安定性が高い非水電解質二次電池用の正極活物質粒子を得ることであり、また、そのような正極活物質粒子を用いて安定性の高い非水電解質二次電池を得ることにある。   The present invention has been made in view of the above problems, and an object of the present invention is to obtain positive electrode active material particles for a non-aqueous electrolyte secondary battery having high stability, and such a positive electrode active material. The object is to obtain a highly stable non-aqueous electrolyte secondary battery using particles.

前記の目的を達成するために、本発明では、正極活物質粒子を、少なくともLi、Ni、Co及びMnを主成分とし、Li/(Ni+Co+Mn)のモル比率が1.00以上1.07以下であるリチウム複合酸化物により構成した。   In order to achieve the above object, in the present invention, the positive electrode active material particles are mainly composed of at least Li, Ni, Co and Mn, and the molar ratio of Li / (Ni + Co + Mn) is 1.00 or more and 1.07 or less. The lithium composite oxide was used.

具体的に、本発明に係る非水電解質二次電池用の正極活物質粒子は、六方晶層状岩塩構造を有する正極活物質粒子であって、組成式がLi(Ni1−y−zCoMn)O2−δ(1.00≦x≦1.07、0.10≦y≦0.40、0.10≦z≦0.40、0.3≦y+z≦0.7)であり、当該正極活物質粒子を正極に用い、負極としてLiを用いて非水電解質二次電池を組んで、60℃環境下で4.6Vまで0.2Cレート(電流密度16mA/g)で初期充電を行い、横軸に電圧を示し、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)を作成したとき、該グラフ内で電圧が4.3V以上4.52V以下の範囲における面積の大きさが35mAh/g以下であることを特徴とする。 Specifically, the positive electrode active material particles for a non-aqueous electrolyte secondary battery according to the present invention are positive electrode active material particles having a hexagonal layered rock salt structure, and the composition formula is Li x (Ni 1-yz Co). in y Mn z) O 2-δ (1.00 ≦ x ≦ 1.07,0.10 ≦ y ≦ 0.40,0.10 ≦ z ≦ 0.40,0.3 ≦ y + z ≦ 0.7) Yes, using the positive electrode active material particles as the positive electrode and using Li as the negative electrode, a non-aqueous electrolyte secondary battery was assembled, and initially at a 0.2 C rate (current density 16 mA / g) up to 4.6 V in an environment of 60 ° C. When charging was performed and a graph (dQ / dV curve) showing dQ / dV, which is a value obtained by differentiating the initial charge capacity by voltage on the horizontal axis and voltage on the horizontal axis, the voltage is 4 in the graph. . The size of the area in the range of 3 V or more and 4.52 V or less is 35 mAh / g or less. That.

本発明に係る正極活物質粒子は、上記のような構成を有することにより高い安定性を有する電池を製造するために用いることができる。   The positive electrode active material particles according to the present invention can be used for producing a battery having high stability by having the above-described configuration.

一般に、NiとCoとMnとによる三元系複合酸化物の結晶格子の安定性には、LiMnOのドメインが重要であると考えられており、Li含有量が上記範囲(1.00≦x≦1.07)よりも少ないと、LiMnOのドメイン量が小さくなり安定性が低くなる。その一方で、Li複合酸化物中にLiMnOが多く存在すると、充電状態で高温保存中にLiMnOの一部が活性化し、その結果、該正極活物質の六方晶層状岩塩構造中のトータルのLi量が増えることになり、電位が卑であるLiが六方晶層状岩塩構造内に保存前より多く存在することになるために、開回路電圧が低下する虞がある。 In general, it is considered that the domain of Li 2 MnO 3 is important for the stability of the crystal lattice of the ternary composite oxide composed of Ni, Co, and Mn, and the Li content is within the above range (1.00 When less than ≦ x ≦ 1.07), the domain amount of Li 2 MnO 3 becomes small and the stability becomes low. On the other hand, when a large amount of Li 2 MnO 3 is present in the Li composite oxide, a part of Li 2 MnO 3 is activated during high-temperature storage in a charged state, and as a result, the hexagonal layered rock salt structure of the positive electrode active material The total amount of Li in the inside increases, and Li having a low potential is present in the hexagonal layered rock salt structure more than before storage, which may reduce the open circuit voltage.

しかし、今般、本発明者らは、上記構成を有するLi複合酸化物を活物質として正極に用い、負極をLiとしたコインセルを組んで、60℃環境下で4.6Vまで0.2Cレート(電流密度16mA/g)で初期充電を行った際に、上記モル比率のLiを含有しながらも、dQ/dV曲線において、正極活物質中に存在する活性可能なLiMnOの量に相当すると考えられるピーク値が極めて低く現れるということを見出した。すなわち、本発明に係る正極活物質粒子によると、高結晶性であるLiMnOドメインが、充電状態においても活性化することが無く、結果として種々の問題を誘発する虞のある開回路電圧の低下が生じ難い安定性の高い電池を得ることが出来る。 However, the present inventors have recently assembled a coin cell in which the Li composite oxide having the above-described structure is used as the active material for the positive electrode and the negative electrode is Li, and the 0.2C rate up to 4.6 V in a 60 ° C. environment ( When the initial charge is performed at a current density of 16 mA / g), it corresponds to the amount of active Li 2 MnO 3 present in the positive electrode active material in the dQ / dV curve while containing Li in the above molar ratio. Then, it was found that the peak value considered to appear extremely low. That is, according to the positive electrode active material particles according to the present invention, the highly crystalline Li 2 MnO 3 domain is not activated even in a charged state, and as a result, an open circuit voltage that may induce various problems. It is possible to obtain a highly stable battery in which a decrease in the resistance is difficult to occur.

また、本発明に係る正極活物質では、Niの組成比が0.30〜0.70であることから、電池を高安定でありながらも高容量にすることが可能な正極活物質を得ることができる。   In addition, in the positive electrode active material according to the present invention, since the composition ratio of Ni is 0.30 to 0.70, a positive electrode active material capable of increasing the capacity of the battery while being highly stable is obtained. Can do.

本発明に係る正極活物質粒子は、結晶子サイズが200nm以上900nm以下であり、且つ平均二次粒子径(D50)が3μm以上20μm以下であることが好ましい。   The positive electrode active material particles according to the present invention preferably have a crystallite size of 200 nm to 900 nm and an average secondary particle diameter (D50) of 3 μm to 20 μm.

結晶子サイズは200nmより小さいときは正極活物質粒子自体が不安定となってしまう。900nmより大きいときは電池に用いた際に電池特性が悪化してしまう。より好ましい範囲は200〜600nmである。また、平均二次粒子径(D50)は3μmより小さいときは電池に用いる場合に密度が小さくなりすぎて実用的ではない。20μmより大きいときは電池特性が不安定となってしまう。従って、上記範囲内であることが好ましい。ここで、粒度分布はバイモーダルであってもよい。その際における平均二次粒子径(D50)も3〜20μmとなる。好ましい平均二次粒子径(D50)は5〜18μmである。   When the crystallite size is smaller than 200 nm, the positive electrode active material particles themselves become unstable. When it is larger than 900 nm, battery characteristics deteriorate when used in a battery. A more preferable range is 200 to 600 nm. Further, when the average secondary particle diameter (D50) is smaller than 3 μm, the density becomes too small when used in a battery, which is not practical. When it is larger than 20 μm, the battery characteristics become unstable. Therefore, it is preferable to be within the above range. Here, the particle size distribution may be bimodal. The average secondary particle diameter (D50) at that time is also 3 to 20 μm. A preferable average secondary particle diameter (D50) is 5 to 18 μm.

本発明に係る非水電解質二次電池用の正極活物質粒子の製造方法は、(Ni1−y−zCoMn)(OH)(0.10≦y≦0.40、0.10≦z≦0.40、0.3≦y+z≦0.7)を前駆体とし、該前駆体にリチウム化合物をLi/(Ni+Co+Mn)のモル比率が1.00以上1.07以下の範囲となるように混合した後に、酸化性雰囲気において870℃以上970℃以下で焼成して、Li、Ni、Co及びMnを含有する複合酸化物を得ることを特徴とする。 The manufacturing method of the positive electrode active material particles for a non-aqueous electrolyte secondary battery according to the present invention is (Ni 1-yz Co y Mn z ) (OH) 2 (0.10 ≦ y ≦ 0.40,. 10 ≦ z ≦ 0.40, 0.3 ≦ y + z ≦ 0.7) as a precursor, and a lithium compound in the precursor has a molar ratio of Li / (Ni + Co + Mn) in the range of 1.00 to 1.07. After being mixed, the composite oxide containing Li, Ni, Co and Mn is obtained by firing at 870 ° C. or higher and 970 ° C. or lower in an oxidizing atmosphere.

本発明に係る非水電解質二次電池用の正極活物質粒子の製造方法では、dQ/dV曲線の面積が35mAh/g以下になるように、Li/(Ni+Co+Mn)比と、それに適した焼成温度を選択している。すなわち、Li/(Ni+Co+Mn)のモル比率を1.00以上1.07以下の範囲とし、焼成については酸化性雰囲気において870℃以上970℃以下で焼成している。このようにすることで、上述した本発明に係る正極活物質粒子を得ることができる。特に、870℃より低い温度で焼成すると、安定性が損なわれる。また970℃より高い温度で焼成すると粒子が成長しすぎてクラックが発生するなど不安定となってしまう。従って、本発明に係る正極活物質粒子の製造方法によると、上述したような高い安定性を有する正極活物質粒子を得ることができる。   In the method for producing positive electrode active material particles for a non-aqueous electrolyte secondary battery according to the present invention, a Li / (Ni + Co + Mn) ratio and a firing temperature suitable for the area so that the area of the dQ / dV curve is 35 mAh / g or less. Is selected. That is, the molar ratio of Li / (Ni + Co + Mn) is in the range of 1.00 to 1.07, and the firing is performed at 870 ° C. or higher and 970 ° C. or lower in an oxidizing atmosphere. By doing in this way, the positive electrode active material particle which concerns on this invention mentioned above can be obtained. In particular, if the baking is performed at a temperature lower than 870 ° C., the stability is impaired. Moreover, if it is fired at a temperature higher than 970 ° C., the particles grow too much and cracks are generated, resulting in instability. Therefore, according to the method for producing positive electrode active material particles according to the present invention, positive electrode active material particles having high stability as described above can be obtained.

本発明に係る非水電解質二次電池は、上記の非水電解質二次電池用の正極活物質粒子を使用したことを特徴とする。   The non-aqueous electrolyte secondary battery according to the present invention is characterized by using the positive electrode active material particles for the non-aqueous electrolyte secondary battery.

本発明に係る非水電解質二次電池によると、上記のような正極活物質が用いられるため、上述の通り、安定性を向上させることができる。   According to the nonaqueous electrolyte secondary battery according to the present invention, since the positive electrode active material as described above is used, the stability can be improved as described above.

本発明に係る非水電解質二次電池用正極活物質粒子によると、高安定性を示すため、非水電解質二次電池用の正極活物質として好適である。   The positive electrode active material particles for a non-aqueous electrolyte secondary battery according to the present invention are suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery because they exhibit high stability.

本発明において、横軸に電圧を示し、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)を作成したとき、該グラフ内で電圧が4.3V以上4.52V以下の範囲における面積の大きさについて説明するためのグラフである。In the present invention, when a graph (dQ / dV curve) showing the voltage on the horizontal axis and dQ / dV which is a value obtained by differentiating the initial charge capacity by the voltage on the vertical axis is 4 in the graph. It is a graph for demonstrating the magnitude | size of the area in the range of 0.3V or more and 4.52V or less. 横軸に電圧を示し、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)である。It is a graph (dQ / dV curve) in which the horizontal axis represents voltage and the vertical axis represents dQ / dV which is a value obtained by differentiating the initial charge capacity by voltage. 実施例1と比較例1の開回路電圧の変化を示したグラフである。6 is a graph showing changes in open circuit voltage of Example 1 and Comparative Example 1.

以下、本発明を実施するための形態を説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用方法或いはその用途を制限することを意図するものではない。   Hereinafter, modes for carrying out the present invention will be described. The following description of the preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its method of application, or its application.

先ず、本発明の一実施形態に係る非水電解質二次電池用の正極活物質粒子について説明する。   First, positive electrode active material particles for a nonaqueous electrolyte secondary battery according to an embodiment of the present invention will be described.

本実施形態に係る正極活物質粒子は、六方晶層状岩塩構造を有し、少なくともLi、Ni、Co及びMnを含有する複合酸化物により構成される。   The positive electrode active material particles according to the present embodiment have a hexagonal layered rock salt structure and are composed of a composite oxide containing at least Li, Ni, Co, and Mn.

本実施形態に係る正極活物質粒子のLi含有量の範囲は、Li/(Ni+Co+Mn)で示されるモル比率が1.00〜1.07である。加えて焼成を行う際の温度は870〜970℃である。本発明の正極活物質粒子は、これらモル比率と焼成温度との条件内で最適な条件が選択されることで得られる。その材料の特徴について記載する。Li複合酸化物の結晶格子の安定性には、LiMnOのドメインの存在が重要であると考えられているので、Li含有量が前記範囲よりも少ない場合、該Li複合酸化物内にランダムに存在するLiMnO量が少なくなる。その結果、Li複合酸化物の安定性が低くなるため、正極活物質粒子の特性が悪化すると考えられる。一方、Li含有量が前記範囲よりも多い場合、LiMnOのドメインが多くなり過ぎ、電池容量の低下や安全性の低下が懸念される。その結果、電池の安定性が低下することとなる。より好ましくは、Li/(Ni+Co+Mn)で示されるモル比率が1.01〜1.06である。 The range of the Li content of the positive electrode active material particles according to this embodiment is such that the molar ratio represented by Li / (Ni + Co + Mn) is 1.00 to 1.07. In addition, the temperature for firing is 870 to 970 ° C. The positive electrode active material particles of the present invention can be obtained by selecting optimum conditions within the conditions of the molar ratio and the firing temperature. The characteristics of the material are described. Since the presence of the Li 2 MnO 3 domain is considered to be important for the stability of the crystal lattice of the Li composite oxide, when the Li content is less than the above range, The amount of Li 2 MnO 3 present at random is reduced. As a result, since the stability of the Li composite oxide is lowered, it is considered that the characteristics of the positive electrode active material particles are deteriorated. On the other hand, when the Li content is larger than the above range, the Li 2 MnO 3 domain becomes excessive, and there is a concern that the battery capacity and the safety are lowered. As a result, the stability of the battery is reduced. More preferably, the molar ratio represented by Li / (Ni + Co + Mn) is 1.01-1.06.

また、本実施形態に係る正極活物質粒子において、該正極活物質粒子を正極に用い、負極としてLiを用いて非水電解質二次電池を組んで、60℃環境下で4.6Vまで0.2Cレート(電流密度16mA/g)で初期充電を行い、横軸に電圧を示し、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)を作成したとき、該グラフ内で電圧が4.3V以上4.52V以下の範囲における面積が35mAh/g以下である。ここで、電圧が4.3V以上4.52V以下の範囲における面積とは、図1に示すように、グラフの横軸と、該横軸の4.3Vの点及び4.52Vの点からそれぞれ延びる垂線と、初期充電容量を電圧で微分した値であるdQ/dV値を示す線(図1では破線で示される)で囲まれた領域の面積をいう。すなわち、図1において斜線で示された領域の面積をいう。   In addition, in the positive electrode active material particles according to the present embodiment, the positive electrode active material particles are used as a positive electrode, Li is used as a negative electrode, and a non-aqueous electrolyte secondary battery is assembled. A graph (dQ / dV curve) showing initial charge at a 2C rate (current density 16 mA / g), voltage on the horizontal axis, and dQ / dV which is a value obtained by differentiating the initial charge capacity with voltage on the vertical axis. When prepared, the area in the graph where the voltage is 4.3 V or more and 4.52 V or less is 35 mAh / g or less. Here, the area in the voltage range of 4.3V to 4.52V is as shown in FIG. 1 from the horizontal axis of the graph, the 4.3V point and the 4.52V point on the horizontal axis. It refers to the area of a region surrounded by an extending vertical line and a line (indicated by a broken line in FIG. 1) indicating a dQ / dV value that is a value obtained by differentiating the initial charge capacity with voltage. That is, it refers to the area of the region indicated by hatching in FIG.

上記dQ/dV曲線を作成したとき、該グラフの見方はピークが存在する電圧幅において電池容量が発現することを意味する。今回、本発明者らは、種々の実験において前述のコインセルのdQ/dV曲線において、4.3V〜4.52Vの間にピークが存在するということは、正極活物質中の結晶格子に4.3V〜4.52Vの間において活性化したLiMnOが存在していることが示唆されるということを見出した。すなわち、dQ/dV曲線によって活性化したLiMnO量を定量することができることを見出した。 When the dQ / dV curve is created, the way of viewing the graph means that the battery capacity appears in the voltage range where the peak exists. In this experiment, the present inventors have found that a peak exists between 4.3 V and 4.52 V in the dQ / dV curve of the aforementioned coin cell in various experiments. It was found that it is suggested that the activated Li 2 MnO 3 is present between the 3V~4.52V. That is, it was found that the amount of Li 2 MnO 3 activated by the dQ / dV curve can be quantified.

LiMnOが該Li複合酸化物中に多く存在すると、充電状態で保存中にLiMnOの一部が活性化し、その結果、該正極活物質の六方晶層状岩塩構造中のトータルのLi量が増えることになり、電位が卑であるLiが六方晶層状岩塩構造内に保存前より多く存在することになるため、結果として開回路電圧が低下することとなり、電池の安定性を損ねてしまう。 When a large amount of Li 2 MnO 3 is present in the Li composite oxide, a part of Li 2 MnO 3 is activated during storage in the charged state, and as a result, the total amount in the hexagonal layered rock salt structure of the positive electrode active material is increased. The amount of Li will increase, and Li, which has a low potential, will be present in the hexagonal layered rock salt structure more than before storage. As a result, the open circuit voltage will decrease, impairing the stability of the battery. End up.

本発明で重要なことは、LiMnOが存在しているにもかかわらず、4.3V〜4.52Vの範囲におけるdQ/dVのピークを小さくすることができる、すなわち、上記電圧が4.3V以上4.52V以下の範囲における面積を小さくすることができるということである。それは、ランダムに存在する状態で、且つ通常は積層欠陥や結晶歪を含んだ結晶性の低いLiMnOの結晶性を高くすることで不活性化する為であると考えられる。LiMnOの活動を不活性化させることによって、充電状態としたときもLiMnOの活性化を抑えることができ、結果として電池としたときに電池の安定性や安全性が向上すると考えられる。 What is important in the present invention is that the peak of dQ / dV in the range of 4.3 V to 4.52 V can be reduced despite the presence of Li 2 MnO 3 , that is, the voltage is 4 This means that the area in the range of 3V to 4.52V can be reduced. This is considered to be inactive by increasing the crystallinity of Li 2 MnO 3 having a low crystallinity, which is present in a random state and usually includes stacking faults and crystal distortion. By inactivating the activity of Li 2 MnO 3, also it is possible to suppress the activation of Li 2 MnO 3 when the charging state, the stability and safety of the battery when the battery as a result is improved Conceivable.

また、本発明者らの考えでは、本発明の方法で得られた該正極活物質には不活性化したLiMnOが本発明による六方晶層状岩塩構造の結晶中にランダムに存在していることでピラー効果をもたらし、高安定性をも示すことができる正極活物質となると考えている。 Further, in the inventors' view, the cathode active material obtained by the method of the present invention has Li 2 MnO 3 deactivated at random in the crystal of the hexagonal layered rock salt structure according to the present invention. It is considered that it becomes a positive electrode active material that brings about a pillar effect and can also exhibit high stability.

以上に基づき、本発明者らが検討した結果、本発明に係る正極活物質粒子では、dQ/dV曲線において、グラフ内における4.3V〜4.52Vの間の面積は35mAh/g以下であり、好ましくは34.5mAh/g以下であり、より好ましくは34mAh/g以下である。   Based on the above, as a result of examination by the present inventors, in the positive electrode active material particles according to the present invention, the area between 4.3 V and 4.52 V in the graph is 35 mAh / g or less in the dQ / dV curve. , Preferably 34.5 mAh / g or less, more preferably 34 mAh / g or less.

また、本実施形態における正極活物質粒子は、Niの組成比が0.30〜0.70であるため、電池に用いた際に該電池を高安定でありながらも高容量にすることができる。   Further, since the positive electrode active material particles in the present embodiment have a Ni composition ratio of 0.30 to 0.70, the battery can be made to have a high capacity while being highly stable when used in the battery. .

また、本実施形態における正極活物質粒子は、Mg、Al、Ti、V、Fe、Ga、Sr、Y、Zr、Nb、Mo、Ru、In、Sn、Ta、W及びBiなどといった金属元素を含有していてもよい。正極活物質粒子にこれらの金属元素を含有させることで、電池としたときにサイクル特性やレート特性や安定性を向上させることができる。ここで、「含有」とは、上記金属元素が正極活物質粒子にドープされていることや、該粒子の表面に存在することを含む。   Further, the positive electrode active material particles in the present embodiment include metal elements such as Mg, Al, Ti, V, Fe, Ga, Sr, Y, Zr, Nb, Mo, Ru, In, Sn, Ta, W, and Bi. You may contain. By including these metal elements in the positive electrode active material particles, cycle characteristics, rate characteristics, and stability can be improved when a battery is formed. Here, “containing” includes the fact that the metal element is doped in the positive electrode active material particles and the presence of the metal elements on the surface of the particles.

また、本実施形態に係る正極活物質粒子では、結晶子サイズは200〜900nmで、且つ平均二次粒子径は3μm〜20μmである。結晶子サイズは200nmより小さいときは不安定となってしまう。900nmより大きいときは電池特性が悪化してしまう。より好ましい範囲は200〜600nmであり、更により好ましくは200〜400nmである。   In the positive electrode active material particles according to the present embodiment, the crystallite size is 200 to 900 nm, and the average secondary particle diameter is 3 to 20 μm. When the crystallite size is smaller than 200 nm, the crystallite size becomes unstable. When it is larger than 900 nm, battery characteristics are deteriorated. A more preferred range is 200 to 600 nm, and even more preferred is 200 to 400 nm.

平均二次粒子径(D50)は3μmより小さいときは密度が小さくなりすぎて実用的ではない。20μmより大きいときは不安定となってしまう。より好ましい範囲は4〜19μmである。   When the average secondary particle diameter (D50) is smaller than 3 μm, the density becomes too small to be practical. When it is larger than 20 μm, it becomes unstable. A more preferable range is 4 to 19 μm.

次に、本発明の一実施形態に係る非水電解質二次電池用の正極活物質粒子の製造方法について述べる。   Next, a method for producing positive electrode active material particles for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described.

本実施形態に係る非水電解質二次電池用の正極活物質粒子を製造するために、まず、Ni、Co及びMnを主成分とする複合化合物である前駆体と、リチウム化合物とをLi/(Ni+Co+Mn)で示されるモル比率が1.00〜1.07の範囲となるように混合する。その後、混合物を酸化性雰囲気において870℃〜970℃で焼成することにより、Li、Ni、Co及びMnを含有するLi複合酸化物を得ることができる。   In order to produce positive electrode active material particles for a non-aqueous electrolyte secondary battery according to this embodiment, first, a precursor, which is a composite compound mainly composed of Ni, Co, and Mn, and a lithium compound are mixed with Li / ( Mix so that the molar ratio represented by (Ni + Co + Mn) is in the range of 1.00 to 1.07. Thereafter, the mixture is fired at 870 ° C. to 970 ° C. in an oxidizing atmosphere, whereby a Li composite oxide containing Li, Ni, Co, and Mn can be obtained.

中でも本発明で重要なことは、dQ/dVの値が上述した範囲になるように、上記のように設定されたモル比率と焼成温度との条件内でモル比率と焼成温度を適宜選択することが出来ることにある。   Among them, what is important in the present invention is to appropriately select the molar ratio and the firing temperature within the conditions of the molar ratio and the firing temperature set as described above so that the value of dQ / dV is in the above-described range. There is something that can be done.

本発明における少なくともNiとCoとMnとを含有する前駆体となる複合化合物は、湿式反応の共沈等により得ることができ、具体的に、硫酸Ni、硫酸Co、硫酸Mnが1.5mol%になるように溶解した溶液と、苛性ソーダを0.3mol%とした溶液と、アンモニア溶液0.1molを同時に滴下させることで共沈反応させ、オーバーフローさせることにより反応物を得、その後水洗・乾燥して得られた。   The composite compound as a precursor containing at least Ni, Co, and Mn in the present invention can be obtained by coprecipitation of a wet reaction or the like. Specifically, Ni sulfate, Co sulfate, and Mn sulfate are 1.5 mol%. The solution was dissolved so as to become 0.3 mol% of caustic soda, and 0.1 mol of ammonia solution was added dropwise at the same time to cause coprecipitation reaction, and the reaction product was obtained by overflowing, and then washed with water and dried. Obtained.

湿式反応後の乾燥工程において、XRD回折で前駆体中にNi、Co又はMnの水酸化物若しくはオキシ水酸化物やスピネル相が存在するように乾燥させることが好ましい。   In the drying step after the wet reaction, drying is preferably performed so that a hydroxide, oxyhydroxide or spinel phase of Ni, Co or Mn exists in the precursor by XRD diffraction.

また、湿式反応の過程において他の金属元素も添加することができる。添加した金属元素は水酸化物粒子内に存在しても、水酸化物粒子の外縁に存在してもよい。添加できる金属元素の種類としては、Mg、Al、Ti、V、Fe、Ga、Sr、Y、Zr、Nb、Mo、Ru、In、Sn、Ta、W及びBiなどが挙げられる。   Also, other metal elements can be added in the course of the wet reaction. The added metal element may be present in the hydroxide particles or may be present at the outer edge of the hydroxide particles. Examples of the metal element that can be added include Mg, Al, Ti, V, Fe, Ga, Sr, Y, Zr, Nb, Mo, Ru, In, Sn, Ta, W, and Bi.

湿式工程により得られた前駆体は、平均二次粒子径(D50)が3μm〜20μmの範囲であることが好ましい。平均二次粒子径が上記範囲に入ることで、Li化合物との焼成工程でLiMnOの高結晶ドメインをランダムに存在させることができる。 The precursor obtained by the wet process preferably has an average secondary particle diameter (D50) in the range of 3 μm to 20 μm. When the average secondary particle diameter is in the above range, a high crystal domain of Li 2 MnO 3 can be present at random in the firing step with the Li compound.

本発明に用いるリチウム化合物としては特に限定されることなく各種のリチウム塩を用いることができるが、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、及び酸化リチウムなどが挙げられ、中でも炭酸リチウム又は水酸化リチウム・一水和物が好ましい。   The lithium compound used in the present invention is not particularly limited, and various lithium salts can be used. For example, lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide, chloride Examples include lithium, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, and lithium oxide. Among them, lithium carbonate or lithium hydroxide / monohydric acid Japanese products are preferred.

次に、本発明の一実施形態に係る非水電解質二次電池用の正極活物質粒子からなる正極活物質を用いた正極について述べる。   Next, a positive electrode using a positive electrode active material composed of positive electrode active material particles for a non-aqueous electrolyte secondary battery according to an embodiment of the present invention will be described.

本実施形態に係る正極活物質粒子を含有する正極を用いて製造される二次電池は、前記正極、負極及び電解質から構成される。   The secondary battery manufactured using the positive electrode containing the positive electrode active material particle which concerns on this embodiment is comprised from the said positive electrode, a negative electrode, and electrolyte.

本実施形態に係る正極活物質粒子を含有する正極を製造する場合には、定法に従って、正極活物質粒子に導電剤と結着剤とを添加混合する。導電剤としてはアセチレンブラック、カーボンブラック、及び黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、及びポリフッ化ビニリデン等が好ましい。   When manufacturing the positive electrode containing the positive electrode active material particles according to the present embodiment, a conductive agent and a binder are added to and mixed with the positive electrode active material particles according to a conventional method. As the conductive agent, acetylene black, carbon black, graphite, and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride, and the like are preferable.

本発明において負極活物質としては、リチウム金属、リチウム/アルミニウム合金、リチウム/スズ合金、グラファイトや黒鉛等を用いることができる。   In the present invention, as the negative electrode active material, lithium metal, lithium / aluminum alloy, lithium / tin alloy, graphite, graphite or the like can be used.

また、電解液の溶媒としては、炭酸エチレン(EC)と炭酸ジエチル(DEC)の組み合わせ以外に、炭酸プロピレン(PC)、炭酸ジメチル(DMC)等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate (EC) and diethyl carbonate (DEC), the solvent of the electrolytic solution includes at least carbonates such as propylene carbonate (PC) and dimethyl carbonate (DMC), and ethers such as dimethoxyethane. One kind of organic solvent can be used.

さらに、電解質としては、六フッ化リン酸リチウム(LiPF)以外に、過塩素酸リチウム(LiClO)、四フッ化ホウ酸リチウム(LiBF)等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。 Further, as the electrolyte, in addition to lithium hexafluorophosphate (LiPF 6 ), at least one lithium salt such as lithium perchlorate (LiClO) or lithium tetrafluoroborate (LiBF 4 ) is dissolved in the above solvent. Can be used.

本実施形態に係る正極活物質粒子を含有する正極を用いて、負極としてLiを用いて製造された非水電解質二次電池は、後述する評価法で過充電試験を行った場合、dQ/dV曲線のグラフ内における電圧が4.3V以上4.52V以下の範囲における面積が35mAh/g以下である。   When the non-aqueous electrolyte secondary battery manufactured using the positive electrode containing the positive electrode active material particles according to the present embodiment and using Li as the negative electrode is subjected to an overcharge test by an evaluation method described later, dQ / dV The area in the range where the voltage in the curve graph is 4.3 V or more and 4.52 V or less is 35 mAh / g or less.

本発明に係る正極活物質粒子を用いたとき、上記面積に入っていることで、LiMnOの高結晶のドメインが正極活物質の結晶格子中にランダムに存在し、六方晶層状岩塩構造の化合物の安定化を図ることができる上に、LiMnOの不活化により充電した後に開回路電圧が低下するような問題を解決させることが出来る。 When the positive electrode active material particles according to the present invention are used, the high crystal domains of Li 2 MnO 3 are randomly present in the crystal lattice of the positive electrode active material due to being in the above area, and a hexagonal layered rock salt structure In addition, it is possible to solve the problem that the open circuit voltage decreases after charging by inactivation of Li 2 MnO 3 .

本発明の代表的な実施例は次の通りである。   Representative examples of the present invention are as follows.

正極活物質粒子の組成は、1.0gの試料を25mlの20%塩酸溶液中で加熱溶解させ、冷却後100mlメスフラスコに移し、純水を入れ調整液を作製し、測定にはICAP[Optima8300 (株)パーキンエルマー製]を用いて各元素を定量して決定した。   The composition of the positive electrode active material particles was prepared by dissolving 1.0 g of a sample in 25 ml of a 20% hydrochloric acid solution by heating, transferring to a 100 ml volumetric flask after cooling, preparing pure water by adding pure water, and measuring the ICAP [Optima 8300. Each element was quantified and determined using Perkin Elmer Co., Ltd.].

正極活物質粒子の化合物の相の同定は、X線回折装置[SmartLab (株)リガク製]にて、2θ/θが10°〜90°の範囲を、0.02°刻みで1.2°/minステップスキャンで行った。   Identification of the phase of the compound of the positive electrode active material particles is performed using an X-ray diffractometer [SmartLab Co., Ltd., Rigaku] in the range of 2θ / θ of 10 ° to 90 ° in 1.2 ° increments of 0.02 °. / min step scan.

平均二次粒子径(D50)の値は、レーザー式粒度分布測定装置マイクロトラックHRA[日機装(株)製]を用いて、湿式レーザー法で測定した体積基準の平均粒子径である。   The value of the average secondary particle diameter (D50) is a volume-based average particle diameter measured by a wet laser method using a laser type particle size distribution measuring apparatus Microtrac HRA [manufactured by Nikkiso Co., Ltd.].

正極活物質粒子の結晶子サイズの算出には、X線回折装置[SmartLab (株)リガク製]にて、スリットは2/3度として、2θ/θが10°〜90°の範囲を、0.02°刻みで1.2°/minステップスキャンで行った。その後、テキストデータを用いてRietvelt解析を行うことにより結晶子サイズを算出した。   For calculating the crystallite size of the positive electrode active material particles, an X-ray diffractometer [manufactured by SmartLab Co., Ltd., Rigaku] uses a slit of 2/3 degrees, and 2θ / θ ranges from 10 ° to 90 °, Performed at a step of 1.2 ° / min in increments of .02 °. Thereafter, the crystallite size was calculated by performing Rietveld analysis using text data.

尚、Rietvelt解析では、Rwpが13〜20で、S値が1.3以下のときの値を使用し、解析方法には、例えば、「R.A.Young,ed.,“The Rietvelt Method”,Oxford University Press(1992)」を参考にした。   In the Rietveld analysis, a value when Rwp is 13 to 20 and the S value is 1.3 or less is used. For the analysis method, for example, “RA. Young, ed.,“ The Rietveld Method ” , Oxford University Press (1992) ”.

以下に、本発明に係る正極活物質粒子について、2032型コインセルを用いて電池評価を行った方法及び結果について説明する。   Below, the positive electrode active material particle which concerns on this invention and the method and result which performed battery evaluation using a 2032 type coin cell are demonstrated.

電池評価に係るコインセルについては、以下のように作製した。まず、後に説明する各実施例及び比較例に係る正極活物質粒子粉末としての複合酸化物を90重量%、導電材としてアセチレンブラックを3重量%、グラファイトを3重量%、バインダーとしてN−メチルピロリドンに溶解したポリフッ化ビニリデン4重量%とを混合した後、Al金属箔に塗布し120℃にて乾燥した。このシートを14mmΦに打ち抜いた後、1.5t/cmで圧着したものを正極に用いた。負極は16mmΦに打ち抜いた厚さが500μmの金属リチウムとし、電解液は1mol/LのLiPFを溶解したECとDMCを体積比1:2で混合した溶液を用いて2032型コインセルを作製した。 About the coin cell concerning battery evaluation, it produced as follows. First, 90% by weight of a composite oxide as a positive electrode active material particle powder according to each Example and Comparative Example described later, 3% by weight of acetylene black as a conductive material, 3% by weight of graphite, and N-methylpyrrolidone as a binder After being mixed with 4% by weight of polyvinylidene fluoride dissolved in, it was applied to an Al metal foil and dried at 120 ° C. This sheet was punched out to 14 mmΦ, and then pressure-bonded at 1.5 t / cm 2 was used as the positive electrode. A 2032 type coin cell was manufactured using a solution in which EC and DMC mixed with 1 mol / L LiPF 6 dissolved in a volume ratio of 1: 2 were used as the negative electrode made of metallic lithium having a thickness of 500 μm punched to 16 mmΦ.

横軸に電圧を、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)は、前記に記載のコインセル組み、60℃の環境下で4.6Vまで0.2Cレート(電流密度16mA/g)の充電密度で初期充電を行い、そのときの電圧を横軸に、初期充電容量を電圧で微分した値であるdQ/dVを縦軸に用いて電圧が4.2V〜4.6Vの範囲のグラフを作成した。   A graph (dQ / dV curve) showing the dQ / dV which is a value obtained by differentiating the voltage on the horizontal axis and the initial charge capacity on the vertical axis is 4. Initial charge is performed at a charge density of 0.2 C rate (current density 16 mA / g) up to 6 V, and the voltage at that time is plotted on the horizontal axis and dQ / dV which is a value obtained by differentiating the initial charge capacity by voltage is used on the vertical axis Thus, a graph with a voltage in the range of 4.2 V to 4.6 V was created.

また、開回路電圧の測定について、上述の通りに2032型コインセルを組立後、25℃にて0.1Cレートで4.3VまでCC−CV充電し3.0VまでCC放電した後、4.3VまでCC−CV充電を行い、その後コインセルを60℃の環境に置き、開回路の状態で電圧推移を測定した。   As for the measurement of the open circuit voltage, after assembling the 2032 type coin cell as described above, CC-CV charge to 4.3 V at 0.1 C rate at 25 ° C., CC discharge to 3.0 V, and then 4.3 V CC-CV charge was performed until then, the coin cell was placed in an environment of 60 ° C., and the voltage transition was measured in an open circuit state.

次に、各実施例及び比較例に係る正極活物質粒子の製造方法について説明する。   Next, the manufacturing method of the positive electrode active material particle which concerns on each Example and a comparative example is demonstrated.

実施例1
硫酸Niと硫酸Coと硫酸Mnとを各元素のモル比でNi:Co:Mn=5:2:3の比になるように秤量し、上述した湿式反応により共沈させた。水洗を行い、乾燥することで(Ni0.5Co0.2Mn0.3)複合水酸化物(前駆体)を得た。
Example 1
Ni sulfate, Co sulfate, and Mn sulfate were weighed so that each element had a molar ratio of Ni: Co: Mn = 5: 2: 3 and co-precipitated by the wet reaction described above. The composite hydroxide (precursor) was obtained by washing with water and drying (Ni 0.5 Co 0.2 Mn 0.3 ).

該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.035の比になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、酸化性雰囲気で930℃、5時間保持することでLi1.035(Ni0.5Co0.2Mn0.3)Oとなる正極活物質粒子を得た。 The precursor and lithium carbonate were mixed in a mortar for 1 hour so that the molar ratio of Li / (Ni + Co + Mn) was 1.035 to obtain a uniform mixture. Positive electrode active material particles in which 50 g of the obtained mixture is put in an alumina crucible and kept at 930 ° C. for 5 hours in an oxidizing atmosphere to become Li 1.035 (Ni 0.5 Co 0.2 Mn 0.3 ) O 2. Got.

実施例2
上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.065になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で960℃、5時間保持することでLi1.065(Ni0.5Co0.2Mn0.3)Oとなる正極活物質粒子を得た。
Example 2
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.065. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible and held at 960 ° C. in an air atmosphere for 5 hours to obtain positive electrode active material particles that became Li 1.065 (Ni 0.5 Co 0.2 Mn 0.3 ) O 2. Obtained.

実施例3
上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.020になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で910℃、5時間保持することでLi1.020(Ni0.5Co0.2Mn0.3)Oとなる正極活物質粒子を得た。
Example 3
Using the composite compound precursor synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.020. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible, and positive electrode active material particles that became Li 1.020 (Ni 0.5 Co 0.2 Mn 0.3 ) O 2 by holding at 910 ° C. for 5 hours in an air atmosphere were obtained. Obtained.

実施例4
硫酸Niと硫酸Coと硫酸Mnとを各元素のモル比でNi:Co:Mn=1:1:1の比になるように秤量し、上述した湿式反応により共沈させた。水洗を行い、乾燥することで(Ni0.33Co0.33Mn0.33)複合酸化物粒子(前駆体)を得た。
Example 4
Ni sulfate, Co sulfate, and Mn sulfate were weighed so that each element had a molar ratio of Ni: Co: Mn = 1: 1: 1 and coprecipitated by the wet reaction described above. The composite oxide particles (precursor) were obtained by washing with water and drying (Ni 0.33 Co 0.33 Mn 0.33 ).

該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.040の比になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、酸化性雰囲気で940℃、5時間保持することでLi1.040(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。 The precursor and lithium carbonate were mixed in a mortar for 1 hour so that the molar ratio of Li / (Ni + Co + Mn) was 1.040 to obtain a uniform mixture. Positive electrode active material particles which are put into Li 1.040 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 by putting 50 g of the obtained mixture in an alumina crucible and holding at 940 ° C. for 5 hours in an oxidizing atmosphere. Got.

実施例5
硫酸Niと硫酸Coと硫酸Mnとを各元素のモル比でNi:Co:Mn=6:2:2の比になるように秤量し、上述した湿式反応により共沈させた。水洗を行い、乾燥することで(Ni0.6Co0.2Mn0.2)複合酸化物粒子(前駆体)を得た。
Example 5
Ni sulfate, Co sulfate, and Mn sulfate were weighed so that each element had a molar ratio of Ni: Co: Mn = 6: 2: 2 and coprecipitated by the wet reaction described above. Washing with water and drying were performed to obtain (Ni 0.6 Co 0.2 Mn 0.2 ) composite oxide particles (precursor).

該前駆体と水酸化リチウム・一水和物とをLi/(Ni+Co+Mn)がモル比で1.015の比になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、酸化性雰囲気で880℃、5時間保持することでLi1.015(Ni0.6Co0.2Mn0.2)Oとなる正極活物質粒子を得た。 The precursor and lithium hydroxide monohydrate were mixed in a mortar for 1 hour so that the molar ratio of Li / (Ni + Co + Mn) was 1.015 to obtain a uniform mixture. Positive electrode active material particles in which 50 g of the obtained mixture is put in an alumina crucible and kept at 880 ° C. for 5 hours in an oxidizing atmosphere to become Li 1.015 (Ni 0.6 Co 0.2 Mn 0.2 ) O 2. Got.

比較例1
上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.080になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で890℃、5時間保持することでLi1.080(Ni0.5Co0.2Mn0.3)Oとなる正極活物質粒子を得た。
Comparative Example 1
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.080. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible, and positive electrode active material particles that became Li 1.080 (Ni 0.5 Co 0.2 Mn 0.3 ) O 2 by holding in an air atmosphere at 890 ° C. for 5 hours were obtained. Obtained.

比較例2
上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で0.980になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で880℃、5時間保持することでLi0.980(Ni0.5Co0.2Mn0.3)Oとなる正極活物質粒子を得た。
Comparative Example 2
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 0.980. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible, and positive electrode active material particles that became Li 0.980 (Ni 0.5 Co 0.2 Mn 0.3 ) O 2 by holding in an air atmosphere at 880 ° C. for 5 hours were obtained. Obtained.

比較例3
上記実施例4で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.080になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で920℃、5時間保持することでLi1.080(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Comparative Example 3
Using the precursor of the composite compound synthesized in Example 4 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.080. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible and kept at 920 ° C. for 5 hours in an air atmosphere to obtain positive electrode active material particles that became Li 1.080 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2. Obtained.

比較例4
上記実施例1で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.030になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で850℃、5時間保持することでLi1.030(Ni0.5Co0.2Mn0.3)Oとなる正極活物質粒子を得た。
Comparative Example 4
Using the precursor of the composite compound synthesized in Example 1 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.030. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible and held at 850 ° C. in an air atmosphere for 5 hours to obtain positive electrode active material particles that became Li 1.030 (Ni 0.5 Co 0.2 Mn 0.3 ) O 2. Obtained.

比較例5
上記実施例4で合成した複合化合物の前駆体を使用し、該前駆体と炭酸リチウムとをLi/(Ni+Co+Mn)がモル比で1.100になるように乳鉢にて1時間混合し、均一な混合物を得た。得られた混合物50gをアルミナるつぼに入れ、空気雰囲気で960℃、5時間保持することでLi1.080(Ni0.33Co0.33Mn0.33)Oとなる正極活物質粒子を得た。
Comparative Example 5
Using the precursor of the composite compound synthesized in Example 4 above, the precursor and lithium carbonate were mixed for 1 hour in a mortar so that the Li / (Ni + Co + Mn) molar ratio was 1.100. A mixture was obtained. 50 g of the obtained mixture was put in an alumina crucible and held at 960 ° C. in an air atmosphere for 5 hours to obtain positive electrode active material particles that became Li 1.080 (Ni 0.33 Co 0.33 Mn 0.33 ) O 2. Obtained.

上記のようにして得られた各実施例及び比較例の正極活物質粒子について、上記の方法に従って、結晶子サイズ、平均二次粒子径(D50)を測定し、さらに上記の方法に従って各実施例及び比較例の正極活物質粒子を用いてコインセルを作製し、上記と同様にdQ/dV曲線を作成し、そのグラフ内における4.3V〜4.52Vの範囲の面積を決定した。それらの結果を以下の表1に示し、また、図2に実施例1、比較例1のdQ/dV曲線を示す。さらに、図3に、上述の方法で測定した実施例1と比較例1における正極活物質で作製した電池を60℃で保存したときの開回路電圧の時間依存性の結果を示す。   With respect to the positive electrode active material particles of each Example and Comparative Example obtained as described above, the crystallite size and the average secondary particle diameter (D50) were measured according to the above methods, and each Example according to the above methods. And the coin cell was produced using the positive electrode active material particle of a comparative example, the dQ / dV curve was created similarly to the above, and the area of the range of 4.3V-4.52V in the graph was determined. The results are shown in Table 1 below, and the dQ / dV curves of Example 1 and Comparative Example 1 are shown in FIG. Further, FIG. 3 shows the results of the time dependence of the open circuit voltage when the batteries prepared with the positive electrode active material in Example 1 and Comparative Example 1 measured by the above method are stored at 60 ° C.

表1及び図2に示すとおり、実施例1の正極活物質粒子を用いたコイン型電池は前述したdQ/dV曲線で、グラフ内における4.3V〜4.52Vの範囲で面積は35mAh/gの範囲にあり、低い値を示した。これに対して、比較例1では、dQ/dV曲線で、4.3V〜4.52Vの範囲で面積が35mAh/gを超えることがわかる。   As shown in Table 1 and FIG. 2, the coin-type battery using the positive electrode active material particles of Example 1 is the dQ / dV curve described above, and the area is 35 mAh / g in the range of 4.3 V to 4.52 V in the graph. It was in the range of and showed a low value. On the other hand, in Comparative Example 1, it can be seen that the area exceeds 35 mAh / g in the range of 4.3 V to 4.52 V in the dQ / dV curve.

また、表1に示すとおり、実施例1以外においても、Li/(Ni+Co+Mn)のモル比率が1.01以上1.07以下であり、且つ、焼成温度が870℃〜970℃である実施例2〜5は、dQ/dV曲線において、4.3V以上4.52V以下の範囲における面積が35mAh/g以下である。すなわち、実施例1〜5の正極活物質粒子を用いることにより安全性が高い電池を得ることができる。   Further, as shown in Table 1, in addition to Example 1, the molar ratio of Li / (Ni + Co + Mn) is 1.01 or more and 1.07 or less, and the firing temperature is 870 ° C. to 970 ° C. -5 is 35 mAh / g or less in the range of 4.3V or more and 4.52V or less in a dQ / dV curve. That is, a battery with high safety can be obtained by using the positive electrode active material particles of Examples 1 to 5.

また、図3に示すように、実施例1に示した開回路電圧は比較例1に示した開回路電圧に対して低下の速度が遅いことが分かる。   In addition, as shown in FIG. 3, it can be seen that the open circuit voltage shown in Example 1 is slower to decrease than the open circuit voltage shown in Comparative Example 1.

以上から、本発明に係る正極活物質を用いることにより、安定性が高い電池を得ることができることがわかる。   From the above, it can be seen that a battery having high stability can be obtained by using the positive electrode active material according to the present invention.

本発明に係る非水電解質二次電池用の正極活物質粒子は、電池としたときに高安定性にすることができるため、非水電解質二次電池用の正極活物質として好適である。   Since the positive electrode active material particles for a non-aqueous electrolyte secondary battery according to the present invention can be made highly stable when used as a battery, they are suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery.

参考例1
硫酸Niと硫酸Coと硫酸Mnとを各元素のモル比でNi:Co:Mn=6:2:2の
比になるように秤量し、上述した湿式反応により共沈させた。水洗を行い、乾燥することで(Ni0.6Co0.2Mn0.2)複合酸化物粒子(前駆体)を得た。
Reference example 1
Ni sulfate, Co sulfate, and Mn sulfate were weighed so that each element had a molar ratio of Ni: Co: Mn = 6: 2: 2 and coprecipitated by the wet reaction described above. Washing with water and drying were performed to obtain (Ni 0.6 Co 0.2 Mn 0.2 ) composite oxide particles (precursor).

また、表1に示すとおり、実施例1以外においても、Li/(Ni+Co+Mn)のモル比率が1.02以上1.07以下であり、且つ、焼成温度が910℃〜970℃である実施例2〜は、dQ/dV曲線において、4.3V以上4.52V以下の範囲における面積が35mAh/g以下である。すなわち、実施例1〜の正極活物質粒子を用いることにより安全性が高い電池を得ることができる。 Further, as shown in Table 1, in Example 2 other than Example 1, the molar ratio of Li / (Ni + Co + Mn) is 1.02 or more and 1.07 or less, and the firing temperature is 910 ° C. to 970 ° C. 1-4, in the dQ / dV curve, the area at 4.52V below the range of 4.3V or less 35 mAh / g. That is, a battery with high safety can be obtained by using the positive electrode active material particles of Examples 1 to 4 .

Claims (4)

六方晶層状岩塩構造を有する正極活物質粒子であって、組成式が、
Li(Ni1−y−zCoMn)O2−δ
(1.00≦x≦1.07、0.10≦y≦0.40、0.10≦z≦0.40、0.3≦y+z≦0.7)
であり、
前記正極活物質粒子を正極に用い、負極としてLiを用いて非水電解質二次電池を組んで、60℃環境下で4.6Vまで0.2Cレート(16mA/g)で初期充電を行い、横軸に電圧を示し、縦軸に初期充電容量を電圧で微分した値であるdQ/dVを示したグラフ(dQ/dV曲線)を作成したとき、該グラフ内で電圧が4.3V以上4.52V以下の範囲における面積の大きさが35mAh/g以下であることを特徴とする非水電解質二次電池用の正極活物質粒子。
Cathode active material particles having a hexagonal layered rock salt structure, the composition formula is
Li x (Ni 1-yz Co y Mn z ) O 2-δ
(1.00 ≦ x ≦ 1.07, 0.10 ≦ y ≦ 0.40, 0.10 ≦ z ≦ 0.40, 0.3 ≦ y + z ≦ 0.7)
And
Using the positive electrode active material particles as a positive electrode and using Li as a negative electrode, a non-aqueous electrolyte secondary battery is assembled, and an initial charge is performed at a 0.2 C rate (16 mA / g) up to 4.6 V in a 60 ° C. environment. When a graph (dQ / dV curve) showing the voltage on the horizontal axis and dQ / dV which is a value obtained by differentiating the initial charge capacity by the voltage on the vertical axis is 4.3 V or more in the graph. Positive electrode active material particles for a non-aqueous electrolyte secondary battery, wherein the size of the area in a range of 0.5 V or less is 35 mAh / g or less.
結晶子サイズが200nm以上900nm以下であり、且つ平均二次粒子径(D50)が3μm以上20μm以下である請求項1に記載の正極活物質粒子。   The positive electrode active material particle according to claim 1, wherein the crystallite size is 200 nm or more and 900 nm or less, and the average secondary particle diameter (D50) is 3 μm or more and 20 μm or less. 請求項1又は2に記載の正極活物質粒子を製造する方法であって、
下記組成式で示される前駆体を用い、
(Ni1−y−zCoMn)OH
(0.10≦y≦0.40、0.10≦z≦0.40、0.3≦y+z≦0.7)
該前駆体にリチウム化合物をLi/(Ni+Co+Mn)のモル比率が1.00以上1.07以下の範囲となるように混合した後に、酸化性雰囲気において870℃以上970℃以下で焼成して、Li、Ni、Co及びMnを含有する複合酸化物を得ることを特徴とする正極活物質粒子の製造方法。
A method for producing positive electrode active material particles according to claim 1 or 2,
Using a precursor represented by the following composition formula,
(Ni 1-yz Co y Mn z ) OH 2
(0.10 ≦ y ≦ 0.40, 0.10 ≦ z ≦ 0.40, 0.3 ≦ y + z ≦ 0.7)
The lithium compound was mixed with the precursor so that the molar ratio of Li / (Ni + Co + Mn) was in the range of 1.00 to 1.07, and then fired at 870 ° C. to 970 ° C. in an oxidizing atmosphere. A method for producing positive electrode active material particles, comprising obtaining a composite oxide containing Ni, Co and Mn.
請求項1又は2に記載の正極活物質粒子を使用した非水電解質二次電池。   A nonaqueous electrolyte secondary battery using the positive electrode active material particles according to claim 1.
JP2016223847A 2016-03-31 2016-11-17 Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery Active JP6109399B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/012628 WO2017170543A1 (en) 2016-03-31 2017-03-28 Positive-electrode active material particles for nonaqueous-electrolyte secondary cell, method for manufacturing said particles, and nonaqueous-electrolyte secondary cell
TW106111136A TW201807873A (en) 2016-03-31 2017-03-31 Positive-electrode active material particles for nonaqueous-electrolyte secondary cell, method for manufacturing said particles, and nonaqueous-electrolyte secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016071930 2016-03-31
JP2016071930 2016-03-31

Publications (2)

Publication Number Publication Date
JP6109399B1 JP6109399B1 (en) 2017-04-05
JP2017188421A true JP2017188421A (en) 2017-10-12

Family

ID=58666443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016223847A Active JP6109399B1 (en) 2016-03-31 2016-11-17 Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery

Country Status (3)

Country Link
JP (1) JP6109399B1 (en)
TW (1) TW201807873A (en)
WO (1) WO2017170543A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111010887B (en) * 2018-08-06 2022-07-08 中天新兴材料有限公司 Preparation method of anode material, anode material and lithium ion battery
CN110931738B (en) * 2019-11-20 2021-08-03 广东邦普循环科技有限公司 Complex-phase high-voltage cathode material and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512668A (en) * 2003-11-26 2007-05-17 ハンヤン ハク ウォン カンパニー,リミテッド Method for producing positive electrode active material for lithium secondary battery, reactive group used in the method, and positive electrode active material for lithium secondary battery produced by the method
US20090121179A1 (en) * 2006-05-12 2009-05-14 Jay Jie Shi Positive Electrode Material for Secondary Battery and the Preparation Method Thereof
CN103050683A (en) * 2012-12-28 2013-04-17 深圳市贝特瑞新能源材料股份有限公司 Polyphase manganese base solid solution composite cathode material and preparation method thereof
JP2013222612A (en) * 2012-04-17 2013-10-28 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2014529868A (en) * 2011-08-31 2014-11-13 スリーエム イノベイティブプロパティズカンパニー Large capacity positive electrode used in lithium ion electrochemical cell and method for producing the positive electrode
JP2015099767A (en) * 2013-10-17 2015-05-28 日亜化学工業株式会社 Positive electrode composition for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing positive electrode composition for nonaqueous electrolyte secondary battery
JP2015225741A (en) * 2014-05-27 2015-12-14 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2016011227A (en) * 2014-06-27 2016-01-21 住友金属鉱山株式会社 Nickel complex hydroxide and production method of the same, positive electrode active substance and production method of the same, and non-aqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512668A (en) * 2003-11-26 2007-05-17 ハンヤン ハク ウォン カンパニー,リミテッド Method for producing positive electrode active material for lithium secondary battery, reactive group used in the method, and positive electrode active material for lithium secondary battery produced by the method
US20090121179A1 (en) * 2006-05-12 2009-05-14 Jay Jie Shi Positive Electrode Material for Secondary Battery and the Preparation Method Thereof
JP2014529868A (en) * 2011-08-31 2014-11-13 スリーエム イノベイティブプロパティズカンパニー Large capacity positive electrode used in lithium ion electrochemical cell and method for producing the positive electrode
JP2013222612A (en) * 2012-04-17 2013-10-28 Hitachi Maxell Ltd Nonaqueous secondary battery
CN103050683A (en) * 2012-12-28 2013-04-17 深圳市贝特瑞新能源材料股份有限公司 Polyphase manganese base solid solution composite cathode material and preparation method thereof
JP2015099767A (en) * 2013-10-17 2015-05-28 日亜化学工業株式会社 Positive electrode composition for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing positive electrode composition for nonaqueous electrolyte secondary battery
JP2015225741A (en) * 2014-05-27 2015-12-14 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2016011227A (en) * 2014-06-27 2016-01-21 住友金属鉱山株式会社 Nickel complex hydroxide and production method of the same, positive electrode active substance and production method of the same, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6109399B1 (en) 2017-04-05
TW201807873A (en) 2018-03-01
WO2017170543A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
KR101587293B1 (en) Li-Ni-BASED COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP5229472B2 (en) Lithium manganate particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5344111B2 (en) Method for producing lithium manganate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
TWI515168B (en) Production method of lithium manganate particles and nonaqueous electrolyte battery
TWI526397B (en) A lithium manganate powder for a nonaqueous electrolyte storage battery and a method for producing the same, and a nonaqueous electrolyte battery
JP5716923B2 (en) Nonaqueous electrolyte secondary battery active material powder and nonaqueous electrolyte secondary battery
JP2016197611A (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5720899B2 (en) Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6053982B1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5720900B2 (en) Active material powder for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6417888B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US20200411861A1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary batteries and method for producing same, and non-aqueous electrolyte secondary battery
JP2018014322A (en) Positive electrode active material particle powder for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP6369126B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6341095B2 (en) Non-aqueous electrolyte secondary battery lithium manganate particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
JP6142868B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6109399B1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6826447B2 (en) Method for reducing the amount of residual lithium in the positive electrode active material particles
WO2019177017A1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery and production method therefor, and non-aqueous electrolyte secondary battery
JP6428192B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5594500B2 (en) Lithium manganate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R150 Certificate of patent or registration of utility model

Ref document number: 6109399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02