JP2017187387A - Method for preparing thin film sample - Google Patents
Method for preparing thin film sample Download PDFInfo
- Publication number
- JP2017187387A JP2017187387A JP2016076538A JP2016076538A JP2017187387A JP 2017187387 A JP2017187387 A JP 2017187387A JP 2016076538 A JP2016076538 A JP 2016076538A JP 2016076538 A JP2016076538 A JP 2016076538A JP 2017187387 A JP2017187387 A JP 2017187387A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- thin film
- ion beam
- focused ion
- rubber composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 239000010409 thin film Substances 0.000 title claims abstract description 63
- 239000010408 film Substances 0.000 claims abstract description 85
- 229920001971 elastomer Polymers 0.000 claims abstract description 52
- 239000005060 rubber Substances 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 42
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 34
- 239000002184 metal Substances 0.000 claims abstract description 34
- 230000001681 protective effect Effects 0.000 claims abstract description 31
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 18
- 238000005520 cutting process Methods 0.000 claims abstract description 13
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 239000007779 soft material Substances 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 121
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 239000002131 composite material Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 230000002787 reinforcement Effects 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000013329 compounding Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 229920000459 Nitrile rubber Polymers 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 229920006235 chlorinated polyethylene elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012520 frozen sample Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920000636 poly(norbornene) polymer Polymers 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- -1 softeners Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229940052367 sulfur,colloidal Drugs 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
Abstract
Description
本発明は、ゴム組成物を含む薄膜試料を集束イオンビーム装置により調製する方法に関する。 The present invention relates to a method for preparing a thin film sample containing a rubber composition by a focused ion beam apparatus.
従来、ゴム組成物や熱可塑性エラストマーなどの軟質試料についてTEMによる観察を行う場合、薄膜試料の調製方法としては、凍結させた試料を切削するクライオミクロトーム法が一般的である。しかしながら、観察対象の試料がゴム組成物と金属などのクライオミクロトーム法では加工できない硬質材料との複合材料である場合、この方法により薄膜試料を調製することはできない。 Conventionally, when TEM observation is performed on a soft sample such as a rubber composition or a thermoplastic elastomer, a cryomicrotome method of cutting a frozen sample is generally used as a method for preparing a thin film sample. However, if the sample to be observed is a composite material of a rubber composition and a hard material that cannot be processed by a cryomicrotome method such as metal, a thin film sample cannot be prepared by this method.
一方、集積回路チップや半導体ウェハー、金属などの硬質材料の電子顕微鏡観察のための試料調製にマイクロサンプリング法が用いられている。マイクロサンプリング法は、任意の方向と形状に試料(マイクロサンプル)を切り出し、抽出することができる手法で、集束イオンビームを利用する集束イオンビーム(Focused Ion Beam(FIB))法が知られている。FIB法は、加速されたガリウム(Ga)イオンを試料表面に走査しながら照射し、そのスパッタリング効果により試料をエッチングする加工技術である(例えば、特許文献1および2)。 On the other hand, the microsampling method is used for sample preparation for observation of an electron microscope of hard materials such as integrated circuit chips, semiconductor wafers, and metals. The microsampling method is a technique that can cut out and extract a sample (microsample) in an arbitrary direction and shape, and a focused ion beam (FIB) method using a focused ion beam is known. . The FIB method is a processing technique in which accelerated gallium (Ga) ions are irradiated while scanning the sample surface, and the sample is etched by the sputtering effect (for example, Patent Documents 1 and 2).
透過型電子顕微鏡(TEM)観察用試料については、マイクロサンプリング法で得られた集積回路チップや半導体ウェハーのマイクロサンプルの一部を、さらにFIBにより薄膜化し、この薄膜化部分をTEM観察することが知られている。 For a transmission electron microscope (TEM) observation sample, a part of the microsample of the integrated circuit chip or semiconductor wafer obtained by the microsampling method can be further thinned by FIB, and this thinned portion can be observed by TEM. Are known.
FIB法による硬質材料のTEM観察用試料調製方法としては、例えば、試料表面に対し少なくとも2以上異なる角度方向からFIBを照射して観察部位を含むマイクロサンプルを切り出す工程、マイクロサンプルをTEM試料台に搬送する工程、TEM試料台上のマイクロサンプルの一部をFIBにより薄膜化する工程を含む方法がある。 As a sample preparation method for TEM observation of a hard material by the FIB method, for example, a step of cutting a microsample including an observation site by irradiating the FIB from at least two different angular directions with respect to the sample surface, the microsample on a TEM sample stage There is a method including a step of transporting and a step of thinning a part of a microsample on a TEM sample stage by FIB.
ゴム組成物と金属との複合材料を試料とする場合であっても薄膜試料を調製できる点、任意の位置、方向および形状に試料を切り出せる点から、ゴム組成物を含む試料についてもFIB装置を用いた薄膜試料の調製が試みられている。 Even when a composite material of a rubber composition and a metal is used as a sample, a FIB apparatus can be used for a sample containing a rubber composition because a thin film sample can be prepared and a sample can be cut into an arbitrary position, direction and shape. Attempts have been made to prepare a thin film sample using sapphire.
集積回路チップや半導体ウェハー、金属などの硬質材料の場合は、例えば100nm以下の薄膜試料をFIB装置により調製した場合であっても、薄膜部分が十分な硬度を有することから歪みが発生することはない。一方、ゴム組成物などの軟質材料の場合は、FIB装置により試料を薄膜化すると、試料が軟らかいために薄膜箇所に歪みが発生し、十分に薄膜であり、かつ真っ直ぐな薄膜試料を調製することが困難という問題がある。 In the case of a hard material such as an integrated circuit chip, a semiconductor wafer, or a metal, even when a thin film sample of 100 nm or less is prepared by an FIB apparatus, distortion occurs because the thin film portion has sufficient hardness. Absent. On the other hand, in the case of a soft material such as a rubber composition, when the sample is thinned by the FIB apparatus, the thin sample is distorted due to the softness of the sample, and a sufficiently thin and straight thin film sample is prepared. There is a problem that is difficult.
本発明は、試料がゴム組成物などの軟質試料を含む場合であっても、十分に薄膜であり、かつ歪みが少なく真っ直ぐな薄膜試料を調製することができる集束イオンビーム装置による薄膜試料の調製方法を提供することを目的とする。 The present invention prepares a thin film sample by a focused ion beam apparatus capable of preparing a thin film sample that is sufficiently thin and has a small amount of distortion even when the sample includes a soft sample such as a rubber composition. It aims to provide a method.
本発明は、ゴム組成物を含む薄膜試料を集束イオンビーム装置により調製する方法であり、目的部位上の試料表面に集束イオンビームにより炭素または金属の保護膜を設ける保護膜形成工程、集束イオンビームにより目的部位を含むマイクロサンプルを切り出す切り出し工程、マイクロサンプルを試料台に固定する固定工程、集束イオンビームによりマイクロサンプルの前面、上面および後面に連続した炭素または金属の補強膜を略平行に2以上設ける補強膜形成工程、および集束イオンビームにより目的部位を薄膜化する薄膜化工程を含む方法に関する。 The present invention is a method for preparing a thin film sample containing a rubber composition by a focused ion beam apparatus, a protective film forming step of providing a carbon or metal protective film on a sample surface on a target site by a focused ion beam, a focused ion beam Cutting out the microsample including the target site by the step, fixing step of fixing the microsample to the sample stage, two or more continuous carbon or metal reinforcing films on the front surface, top surface and rear surface of the microsample by the focused ion beam. The present invention relates to a method including a reinforcing film forming step to be provided and a thinning step of thinning a target portion with a focused ion beam.
前記薄膜試料が、透過型電子顕微鏡観察用薄膜試料であることが好ましい。 The thin film sample is preferably a thin film sample for observation with a transmission electron microscope.
ゴム組成物を含む試料が、ゴム組成物および金属からなる試料であることが好ましい。 The sample containing the rubber composition is preferably a sample composed of a rubber composition and a metal.
前記保護膜の膜厚が1.0μm以上であることが好ましい。 The thickness of the protective film is preferably 1.0 μm or more.
前記補強膜の膜厚が0.6μm以上であることが好ましい。 The thickness of the reinforcing film is preferably 0.6 μm or more.
本発明の薄膜試料を集束イオンビーム装置により調製する方法によれば、試料がゴム組成物などの軟質試料を含む場合であっても、十分に薄膜であり、かつ歪みが少なく真っ直ぐな薄膜試料を調製することができる。 According to the method for preparing a thin film sample of the present invention with a focused ion beam apparatus, even if the sample includes a soft sample such as a rubber composition, a thin film sample that is sufficiently thin and has a straight line with little distortion is obtained. Can be prepared.
本発明のゴム組成物を含む薄膜試料を集束イオンビーム(FIB)装置により調製する方法は、試料表面に保護膜を設ける保護膜形成工程、マイクロサンプルを切り出す切り出し工程、マイクロサンプルを試料台に固定する固定工程、所定の補強膜を設ける補強膜形成工程、および薄膜化する薄膜化工程を含む方法である。 The method of preparing a thin film sample containing the rubber composition of the present invention with a focused ion beam (FIB) apparatus includes a protective film forming step of providing a protective film on the surface of the sample, a cutting step of cutting out the microsample, and fixing the microsample to the sample stage. A fixing step, a reinforcing film forming step of providing a predetermined reinforcing film, and a thinning step of thinning.
試料
本発明にかかる薄膜試料は、ゴム組成物を含む試料の一部を切り出すことで調製される薄膜試料である。当該試料は、ゴム組成物と他の材料との複合試料であってもよいし、ゴム組成物のみからなるゴム組成物試料であってもよい。他の材料は、FIBにより加工可能な材料であれば特に限定されず、例えば、各種金属、木材、炭素繊維強化プラスチック、熱硬化性樹脂や熱可塑性樹脂などの合成樹脂、半導体、ガラス、セラミックス、ゴム組成物以外のエラストマーなどが挙げられる。なかでも、クライオミクロトームでは切削することができない金属や、半導体、ガラス、セラミックスを他の材料として含む試料であることが本発明の効果をより発揮できるという理由から好ましい。
Sample The thin film sample according to the present invention is a thin film sample prepared by cutting out a part of a sample containing a rubber composition. The sample may be a composite sample of a rubber composition and another material, or may be a rubber composition sample consisting only of a rubber composition. Other materials are not particularly limited as long as they can be processed by FIB. For example, various metals, wood, carbon fiber reinforced plastics, synthetic resins such as thermosetting resins and thermoplastic resins, semiconductors, glass, ceramics, Examples include elastomers other than rubber compositions. Especially, it is preferable from the reason that the effect of this invention can be exhibited more that it is a sample which contains the metal which cannot be cut with a cryomicrotome, a semiconductor, glass, and ceramics as another material.
具体的なゴム組成物と他の材料との複合試料としては、タイヤを構成するゴム組成物と金属コードまたはテキスタイルコードとの複合試料、防振ゴムやシール材ゴムと樹脂や金属製の自動車部品との複合材料などが挙げられる。特にゴム組成物中の金属との接着界面は金属による影響を受けることから、当該界面を透過型顕微鏡により観察することにより金属からの影響を分析することができる。 Specific examples of composite samples of rubber compositions and other materials include composite samples of rubber compositions and metal cords or textile cords constituting tires, vibration-proof rubbers and sealant rubbers, and resin and metal automobile parts. And composite materials. In particular, since the adhesion interface with the metal in the rubber composition is affected by the metal, the influence from the metal can be analyzed by observing the interface with a transmission microscope.
前記ゴム組成物は特に限定されず、ゴム成分、フィラー、加硫剤、その他の配合剤を適宜含有するゴム組成物とすることができる。なお、各種配合剤の含有量は本発明の効果が損なわれない限り特に限定されず、従来のゴム組成物における含有量とすることができる。 The rubber composition is not particularly limited, and can be a rubber composition appropriately containing a rubber component, a filler, a vulcanizing agent, and other compounding agents. In addition, content of various compounding agents is not specifically limited unless the effect of this invention is impaired, It can be set as content in the conventional rubber composition.
前記ゴム成分としては特に限定されず、ゴム工業で一般的に用いられるゴム成分、例えば、クロロプレンゴム(CR)、天然ゴム(NR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、イソプレンゴム(IR)、アクリロニトリル−ブタジエンゴム(NBR)、水素化ニトリルゴム(HNBR)、エチレンプロピレンジエンゴム(EPDM)、ブチルゴム(IIR)、エチレンプロピレンゴム、ポリノルボルネンゴム、シリコーンゴム、塩化ポリエチレンゴムなどが挙げられ、これらのゴム成分を1種または2種以上含有していてもよい。 The rubber component is not particularly limited, and rubber components generally used in the rubber industry, such as chloroprene rubber (CR), natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), isoprene rubber (IR), acrylonitrile-butadiene rubber (NBR), hydrogenated nitrile rubber (HNBR), ethylene propylene diene rubber (EPDM), butyl rubber (IIR), ethylene propylene rubber, polynorbornene rubber, silicone rubber, chlorinated polyethylene rubber, etc. These rubber components may be used alone or in combination of two or more.
前記フィラーとしては特に限定されず、ゴム工業で一般的に用いられるフィラー、例えば、カーボンブラックや、シリカなどの白色充填剤が挙げられ、これらのフィラーを1種または2種以上含有していてもよい。 Examples of the filler include, but are not limited to, fillers generally used in the rubber industry, such as carbon black and white fillers such as silica, and may contain one or more of these fillers. Good.
前記加硫剤としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄が挙げられる。また、前記その他の配合剤としてはゴム組成物の製造に一般に使用される配合剤、例えば、酸化亜鉛、老化防止剤、オイル、軟化剤、ワックスなどが挙げられるが特に限定されない。 Examples of the vulcanizing agent include sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, surface-treated sulfur, and insoluble sulfur. Examples of the other compounding agents include, but are not particularly limited to, compounding agents generally used in the production of rubber compositions, such as zinc oxide, anti-aging agents, oils, softeners, and waxes.
ゴム組成物を含む試料は、後述の保護膜形成工程を行う前に、観察する目的部位のマイクロサンプリングが容易となるように処理しておくことが好ましい。すなわち、目的部位が試料表面付近に存在する試料片を調製しておくことが好ましい。例えば、タイヤを構成するタイヤ用ゴム組成物とビードコードとを含む複合試料の場合、まずタイヤを解体してビード付近を切り出し、さらにナイフなどでビードコードにゴム組成物が薄く残った試料片を調製し、この試料片を以降の工程に用いることが好ましい。 The sample containing the rubber composition is preferably treated so that microsampling of the target site to be observed is facilitated before the protective film forming step described later is performed. That is, it is preferable to prepare a sample piece in which the target site exists near the sample surface. For example, in the case of a composite sample including a tire rubber composition constituting a tire and a bead cord, the tire is first disassembled and the vicinity of the bead is cut out, and further a sample piece in which the rubber composition remains thinly on the bead cord with a knife or the like. It is preferable to prepare and use this sample piece for the subsequent steps.
保護膜形成工程
保護膜形成工程は、目的部位上の試料表面にFIBにより炭素または金属の保護膜を形成させる工程である。この保護膜は、後述の薄膜化工程において薄膜として残す部分をFIBによるスパッタリングから保護する働きに加え、保護膜が薄膜試料の上端を構成する場合は補強効果により薄膜試料の歪みを抑制するという働きを有する。
Protective film forming step The protective film forming step is a step of forming a carbon or metal protective film on the surface of the sample on the target site by FIB. This protective film functions to protect the portion left as a thin film in the thinning process described later from sputtering by FIB, and to suppress distortion of the thin film sample by a reinforcing effect when the protective film forms the upper end of the thin film sample. Have
保護膜の形成方法は従来の集束イオンビームによる成膜機能を用いることができる。すなわちフェナントレン、プラチナ、カーボン、またはタングステンなどを含有した化合物ガスを、FIB装置に装着されたガス噴射ノズルから供給しながらFIBを局所的に照射することで形成させることができる。 As a method of forming the protective film, a conventional film forming function using a focused ion beam can be used. That is, it can be formed by locally irradiating the FIB while supplying a compound gas containing phenanthrene, platinum, carbon, tungsten or the like from a gas injection nozzle mounted on the FIB apparatus.
保護膜は、FIBにより炭素または金属を付着させることで設けられた膜である。金属としては白金やタングステンが好適に使用できる。薄膜試料を分析する際にゴム組成物と保護膜との区別を明確にするという理由から炭素以外の保護膜が好ましいが、使用するFIB装置に装着されたガス噴射ノズルの角度などに応じて適宜選択すればよい。 The protective film is a film provided by attaching carbon or metal by FIB. Platinum or tungsten can be suitably used as the metal. A protective film other than carbon is preferable for the purpose of clarifying the distinction between a rubber composition and a protective film when analyzing a thin film sample, but it is appropriate depending on the angle of the gas injection nozzle attached to the FIB apparatus to be used. Just choose.
保護膜の膜厚は、薄膜化工程において薄膜として残す部分をFIBによるスパッタリングから保護するという理由から、0.5μm以上が好ましく、1.0μm以上がより好ましく、2.0μm以上がさらに好ましい。 The thickness of the protective film is preferably 0.5 μm or more, more preferably 1.0 μm or more, and even more preferably 2.0 μm or more, because the part to be left as a thin film in the thinning step is protected from sputtering by FIB.
保護膜形成工程におけるFIB照射条件は特に限定されず、試料の材質などに応じた条件で行うことができる。例えば、加速電圧30kV、照射電流0.1〜1.0nAなどの条件で行うことができる。 The FIB irradiation conditions in the protective film formation step are not particularly limited, and can be performed under conditions according to the material of the sample. For example, it can be performed under conditions such as an acceleration voltage of 30 kV and an irradiation current of 0.1 to 1.0 nA.
切り出し工程
前記切り出し工程は、試料片からFIBにより目的部位を含むマイクロサンプルを切り出す工程である。当該切り出し工程にはFIB法によるマイクロサンプリング法などを適用することができる。すなわち、試料表面にFIBを照射し、FIBのスパッタリング効果により加工することで、目的部位を含み前記保護膜が上端面となるマイクロサンプルを切り出す工程である。
Cutting-out process The cutting-out process is a process of cutting out a microsample including a target site from a sample piece by FIB. A microsampling method or the like by the FIB method can be applied to the cutting process. That is, the sample surface is irradiated with FIB and processed by the sputtering effect of FIB to cut out a microsample including the target portion and having the protective film as the upper end surface.
切り出すマイクロサンプルの形状は特に限定されないが、後工程における取り扱いやすさなどから、略直方体形が好ましい。なお、FIB装置によっては、マイクロサンプルの底面、すなわち保護膜が形成された上面と反対側の面を、上面と平行に切り出すことは困難な場合があるが、底面の形状は後述の固定工程において試料台に固定できる限り特に限定されない。 The shape of the microsample to be cut out is not particularly limited, but a substantially rectangular parallelepiped shape is preferable from the viewpoint of ease of handling in a subsequent process. Depending on the FIB apparatus, it may be difficult to cut out the bottom surface of the microsample, that is, the surface opposite to the top surface on which the protective film is formed, in parallel with the top surface. It is not particularly limited as long as it can be fixed to the sample stage.
切り出し工程におけるFIB照射条件は特に限定されず、試料の材質などに応じた条件で行うことができる。例えば、大まかな加工を加速電圧30kV、照射電流7〜65nAなどの条件で行い、細かな加工を加速電圧30kV、照射電流0.5〜5nAなどの条件で行うことができる。 The FIB irradiation conditions in the cutting process are not particularly limited, and can be performed under conditions according to the material of the sample. For example, rough processing can be performed under conditions such as an acceleration voltage of 30 kV and an irradiation current of 7 to 65 nA, and fine processing can be performed under conditions of an acceleration voltage of 30 kV and an irradiation current of 0.5 to 5 nA.
切り出し工程により切り出されたマイクロサンプルは、プローブにより支持された状態とすることが、マイクロサンプルの観察用の試料台への移送が容易となることから好ましい。当該プローブはマイクロサンプリング法に用いられる一般的なプローブを用いることができる。なお、このプローブは、切り出し工程においてマイクロサンプルが試料片から切り離される前に接触させておくことが好ましい。 It is preferable that the microsample cut out in the cutting step is supported by the probe because the microsample can be easily transferred to the sample stage for observation. As the probe, a general probe used in a microsampling method can be used. In addition, it is preferable to make this probe contact before a micro sample is cut | disconnected from a sample piece in a cutting-out process.
固定工程、補強膜形成工程および薄膜化工程について、添付の図面を参照して説明するが、これらの形態に限定されるものではない。 The fixing process, the reinforcing film forming process, and the thinning process will be described with reference to the accompanying drawings, but are not limited to these forms.
固定工程
固定工程は、切り出し工程で得たマイクロサンプルを観察用の試料台に載せた後、固定する工程である。当該固定工程は、マイクロサンプルを試料台に設置した後、マイクロサンプルと試料台との接触箇所や隙間、もしくはマイクロサンプル側面下部に、FIBにより炭素または金属を付着させることで固定する工程とすることが好ましい。
Fixing process The fixing process is a process of fixing the microsample obtained in the cutting process after placing it on the sample stage for observation. The fixing step is a step of fixing the microsample by attaching the carbon or metal to the contact portion or gap between the microsample and the sample table or the lower part of the side surface of the microsample by FIB after the microsample is set on the sample table. Is preferred.
図1に、ゴム組成物11および金属コード12からなる複合試料1の上面に保護膜2が形成された試料から切り出されたマイクロサンプルAを、マイクロサンプルAの上面に接続されたプローブBを操作して試料台Cに載せた状態を概略的に示す。そして図2に、フェナントレン、プラチナ、カーボン、またはタングステンなどを含有した化合物ガスを、FIB装置に装着されたガス噴射ノズルから供給しながら、FIBをマイクロサンプルAと試料台Cとの隙間やマイクロサンプルAの側面下部に照射して、炭素または金属を付着してなる固定層3を設けることにより、試料台Bに固定したマイクロサンプルAを概略的に示す。 In FIG. 1, a microsample A cut out from a sample in which a protective film 2 is formed on the upper surface of a composite sample 1 composed of a rubber composition 11 and a metal cord 12 is operated, and a probe B connected to the upper surface of the microsample A is operated. Then, the state of being placed on the sample stage C is schematically shown. FIG. 2 shows the gap between the microsample A and the sample stage C and the microsample while supplying a compound gas containing phenanthrene, platinum, carbon, tungsten, or the like from a gas injection nozzle attached to the FIB apparatus. The micro sample A fixed to the sample stage B is schematically shown by irradiating the lower part of the side surface of A and providing the fixed layer 3 formed by adhering carbon or metal.
固定工程において付着させる炭素または金属の量は、本発明の後工程や観察を実施する際に支障がない程度にマイクロサンプルが試料台に固定される限り特に限定されず、使用する試料や固定台に応じて適宜調整すればよい。 The amount of carbon or metal deposited in the fixing step is not particularly limited as long as the microsample is fixed to the sample stage to the extent that there is no problem when performing the post-process or observation of the present invention. It may be adjusted as appropriate according to the conditions.
固定工程において炭素または金属を付着する際のFIB照射条件は特に限定されず、試料の材質などに応じた条件で行うことができる。例えば、加速電圧30kV、照射電流0.1〜1.0nAなどの条件で行うことができる。 The FIB irradiation conditions for attaching carbon or metal in the fixing step are not particularly limited, and can be performed under conditions according to the material of the sample. For example, it can be performed under conditions such as an acceleration voltage of 30 kV and an irradiation current of 0.1 to 1.0 nA.
補強膜形成工程
補強膜形成工程は、集束イオンビームによりマイクロサンプルの前面、上面および後面に連続した炭素または金属の補強膜を略平行に2以上設ける工程である。本発明は、当該補強膜を設けた後、補強膜に挟まれた領域を薄膜化することを特徴とする。補強膜を設けることにより、試料がゴム組成物などの軟質試料を含む場合であっても、薄膜化により歪みが発生することなく、十分に薄膜かつ真っ直ぐな薄膜試料を調製することに成功した発明である。図3に補強膜4を両端に設けたマイクロサンプルAを概略的に示す。
Reinforcing film forming process The reinforcing film forming process is a process in which two or more continuous carbon or metal reinforcing films are provided substantially in parallel on the front surface, upper surface, and rear surface of the microsample by a focused ion beam. The present invention is characterized in that after the reinforcement film is provided, the region sandwiched between the reinforcement films is thinned. Invention that succeeded in preparing a sufficiently thin and straight thin film sample without distortion caused by thinning, even if the sample includes a soft sample such as a rubber composition by providing a reinforcing film It is. FIG. 3 schematically shows a micro sample A provided with reinforcing films 4 at both ends.
前記マイクロサンプルの上面とは保護膜が設けられた面を指す。また、マイクロサンプルが略立方体である場合の前面および後面とは、上面および底面以外の4つの側面の内、隣り合っておらず対になる2面を指す。 The upper surface of the microsample refers to a surface provided with a protective film. In addition, the front surface and the rear surface when the microsample is substantially a cube indicate two surfaces that are not adjacent to each other and are paired out of the four side surfaces other than the top surface and the bottom surface.
補強膜を略平行に3以上設けることが、補強膜に挟まれた領域、すなわち薄膜化できる領域が2以上できることから好ましい。薄膜化できる領域を2以上設けることにより、同一試料に膜厚などの条件が異なる薄膜領域を作成することができるため、観察や分析作業を効率化できる。図4に補強膜4を両端および中央の3箇所に設けたマイクロサンプルAを概略的に示す。 It is preferable to provide three or more reinforcing films substantially in parallel because two or more regions sandwiched between the reinforcing films, that is, regions that can be thinned are formed. By providing two or more regions that can be thinned, it is possible to create thin film regions with different conditions such as film thickness on the same sample, so that observation and analysis work can be made more efficient. FIG. 4 schematically shows a microsample A in which reinforcing films 4 are provided at both ends and in the center.
補強膜を略平行に2以上設ける場合の補強膜と補強膜との距離は、十分な観察または分析が可能であるという理由、本発明の効果がより発揮できるという理由から、10μm以上が好ましく、15μm以上がより好ましく、20μm以上がより好ましい。また、補強膜と補強膜との距離は、薄膜化しても歪みが少ないという本発明の効果がより発揮されるという理由から、100μm以下が好ましく、50μm以下がより好ましい。 The distance between the reinforcing membrane and the reinforcing membrane when two or more reinforcing membranes are provided substantially in parallel is preferably 10 μm or more for the reason that sufficient observation or analysis is possible and the effect of the present invention can be more exerted. 15 μm or more is more preferable, and 20 μm or more is more preferable. Further, the distance between the reinforcing film and the reinforcing film is preferably 100 μm or less, more preferably 50 μm or less, because the effect of the present invention that the distortion is small even when the film is thinned is more exhibited.
前記補強膜は、FIBにより炭素または金属を付着させることで設けられた膜であり、マイクロサンプルの前面、上面および後面に連続して設けられていることを特徴とする。る。金属としては白金やタングステンが好適に使用でき、使用するFIB装置に装着されたガス噴射ノズルの角度などに応じて適宜選択すればよい。なお、図3および図4に示すように補強膜4は試料台Cの表面にまで延長されていることが、より強固な補強効果が得られるという理由から好ましい。 The reinforcing film is a film provided by attaching carbon or metal by FIB, and is provided continuously on the front surface, the upper surface, and the rear surface of the microsample. The Platinum or tungsten can be suitably used as the metal, and may be appropriately selected depending on the angle of the gas injection nozzle mounted on the FIB apparatus to be used. As shown in FIGS. 3 and 4, it is preferable that the reinforcing film 4 is extended to the surface of the sample table C because a stronger reinforcing effect can be obtained.
補強膜の膜厚は、薄膜化しても歪みが少ないという本発明の効果がより発揮されるという理由から、0.6μm以上が好ましく、1.0μm以上がより好ましく、2.0μm以上がさらに好ましい。また、補強膜の膜厚の上限は特に限定されない。 The thickness of the reinforcing film is preferably 0.6 μm or more, more preferably 1.0 μm or more, and even more preferably 2.0 μm or more, because the effect of the present invention that the distortion is small even when the thickness is reduced is more exhibited. . Moreover, the upper limit of the film thickness of a reinforcement film is not specifically limited.
補強膜形成工程におけるFIB照射条件は特に限定されず、試料の材質などに応じた条件で行うことができる。例えば、加速電圧30kV、照射電流0.1〜1.0nAなどの条件で行うことができる。 The FIB irradiation conditions in the reinforcing film forming step are not particularly limited, and can be performed under conditions according to the material of the sample. For example, it can be performed under conditions such as an acceleration voltage of 30 kV and an irradiation current of 0.1 to 1.0 nA.
薄膜化工程
薄膜化工程は集束イオンビームにより目的部位を薄膜化する工程である。当該薄膜化工程は、FIBのスパッタリング効果により、前記補強膜に挟まれた領域を、観察または分析の目的部位を含み補強膜から補強膜に延びる薄膜部に加工する工程である。図5に補強膜4を両端に設けたマイクロサンプルA(図3参照)に膜厚Xnmの薄膜部を設けた薄膜試料を概略的に示す。また、図6には補強膜4を両端および中央に設けたマイクロサンプルA(図4参照)に膜厚Ynmの薄膜部および膜厚Znmの薄膜部を設けた薄膜試料を概略的に示す。
Thinning process The thinning process is a process for thinning a target portion with a focused ion beam. The thinning step is a step of processing a region sandwiched between the reinforcing films into a thin film portion including a target site for observation or analysis and extending from the reinforcing film to the reinforcing film by the sputtering effect of FIB. FIG. 5 schematically shows a thin film sample in which a thin film portion having a thickness of X nm is provided on a micro sample A (see FIG. 3) provided with reinforcing films 4 at both ends. FIG. 6 schematically shows a thin film sample in which a thin film portion having a thickness of Ynm and a thin film portion having a thickness of Znm are provided on a microsample A (see FIG. 4) provided with reinforcing films 4 at both ends and in the center.
薄膜部の膜厚は、透過型電子顕微鏡観察用薄膜試料に適するという理由、薄膜化しても歪みが発生しないという本発明の効果がより発揮されるという理由から、200nm以下が好ましく、150nm以下がより好ましく、100nm以下がさらに好ましい。また、薄膜部の膜厚の下限は特に限定されず、薄膜試料に対して行う観察および分析に応じた膜厚の下限とすればよい。 The film thickness of the thin film portion is preferably 200 nm or less, preferably 150 nm or less, because it is suitable for a thin film sample for observation with a transmission electron microscope, and because the effect of the present invention that distortion does not occur even when the film is thinned is more exhibited. More preferred is 100 nm or less. Moreover, the lower limit of the film thickness of the thin film portion is not particularly limited, and may be a lower limit of the film thickness according to observation and analysis performed on the thin film sample.
薄膜化工程におけるFIB照射条件は特に限定されず、試料の材質などに応じた条件で行うことができる。例えば、加速電圧30kV、照射電流0.05〜5nAなどの条件で行うことができる。 The FIB irradiation conditions in the thinning process are not particularly limited, and can be performed under conditions according to the material of the sample. For example, it can be performed under conditions such as an acceleration voltage of 30 kV and an irradiation current of 0.05 to 5 nA.
薄膜試料
本発明の方法により調製される薄膜試料は、試料がゴム組成物などの軟質試料を含む場合であっても、十分に薄膜であり、かつ歪みが少なく真っ直ぐな薄膜試料であることから、透過型電子顕微鏡観察用薄膜試料などとすることが好ましい。
Thin film sample The thin film sample prepared by the method of the present invention is a thin film sample that is sufficiently thin and straight with little distortion even when the sample includes a soft sample such as a rubber composition. It is preferable to use a thin film sample for observation with a transmission electron microscope.
薄膜試料の薄膜部の高さ(底面から上面までの距離)は、調製が困難であるという理由から、最も高い箇所が50μm以下が好ましい。また、薄膜部中のゴム組成物などの軟質試料の高さは、観察領域または分析領域確保の観点から最も広い箇所で2μm以上が好ましく、10μm以上がより好ましい。 The height of the thin film portion of the thin film sample (distance from the bottom surface to the top surface) is preferably 50 μm or less at the highest point because preparation is difficult. The height of the soft sample such as the rubber composition in the thin film portion is preferably 2 μm or more at the widest point from the viewpoint of securing the observation region or the analysis region, and more preferably 10 μm or more.
本発明を実施例に基づいて説明するが、本発明は実施例のみに限定されるものではない。 The present invention will be described based on examples, but the present invention is not limited to the examples.
実施例
空気入りタイヤを解体し、ゴム組成物と金属コードと接着部分からゴム組成物と金属コードとの複合試料を切り出し、さらにゴム組成物をナイフで切り落とすことで金属コードの表面にゴム組成物が薄く残った試料片を作成した。この試料片をFIB装置(FEI社製のScios)にセットし、目的部位上の試料片表面に膜厚1.0μmの白金の保護膜をFIB(30kV、0.5nA)により形成させた。白金の保護膜が上面となるマイクロサンプル(幅:約30μm)をFIB法によるマイクロサンプリング法により切り出し、TEM観察用の試料台に載せ、FIBにより白金をマイクロサンプルの側面下部に付着させることで固定した。固定したマイクロサンプルの両端に膜厚1.0μm、幅2.5μmの炭素の補強膜をFIB(30kV、0.5nA)により形成させた(図3参照)。そして、両端の補強膜に挟まれた領域(幅:約25μm)FIB(30kV、0.1〜3nA)によりスパッタリングすることで、薄膜部を形成することで薄膜試料を調製した(図5参照)。調製した薄膜試料の、保護膜を形成した上面上方からの走査電子顕微鏡(SEM)観察像を図7に示す。
Example A pneumatic tire is disassembled, a composite sample of the rubber composition and the metal cord is cut out from the rubber composition, the metal cord, and the bonded portion, and further the rubber composition is cut off with a knife to form a rubber composition on the surface of the metal cord. A thin sample piece was prepared. This sample piece was set in an FIB apparatus (SCIOS manufactured by FEI), and a platinum protective film having a film thickness of 1.0 μm was formed on the surface of the sample piece on the target site by FIB (30 kV, 0.5 nA). A microsample (width: approx. 30 μm) with the platinum protective film on the top is cut out by the microsampling method using the FIB method, placed on a specimen table for TEM observation, and fixed by attaching platinum to the lower part of the side surface of the microsample using the FIB. did. A carbon reinforcing film having a thickness of 1.0 μm and a width of 2.5 μm was formed on both ends of the fixed microsample by FIB (30 kV, 0.5 nA) (see FIG. 3). And the thin film sample was prepared by forming a thin film part by sputtering by the area | region (width: about 25 micrometers) FIB (30 kV, 0.1-3 nA) pinched | interposed into the reinforcement film of both ends (refer FIG. 5). . FIG. 7 shows a scanning electron microscope (SEM) observation image of the prepared thin film sample from above the upper surface on which the protective film is formed.
比較例
マイクロサンプルの幅を約15μmとしたこと、補強膜を形成させなかったこと以外は、実施例と同様に薄膜試料を調製した。調製した薄膜試料の、保護膜を形成した上面上方からのSEM観察像を図8に示す。
Comparative Example A thin film sample was prepared in the same manner as in Example except that the width of the micro sample was about 15 μm and the reinforcing film was not formed. FIG. 8 shows an SEM observation image of the prepared thin film sample from above the upper surface on which the protective film is formed.
補強膜を形成後、薄膜化工程を行った実施例の薄膜試料は、膜厚100nm以下に薄膜化されており、歪みが小さく真っ直ぐな薄膜試料であることが分かる。一方、補強膜を形成せずに薄膜化工程を行った比較例では、膜厚100nmまで薄膜化する前に大きな歪みが発生し、真っ直ぐな薄膜試料を調製することが困難であることがわかる。 It can be seen that the thin film sample of the example in which the thinning process was performed after the formation of the reinforcing film is a thin film sample having a film thickness of 100 nm or less and having a small distortion. On the other hand, in the comparative example in which the thinning process was performed without forming the reinforcing film, it was found that a large strain was generated before thinning to a film thickness of 100 nm and it was difficult to prepare a straight thin film sample.
A マイクロサンプル
B プローブ
C 試料台
1 複合試料
11 ゴム組成物
12 金属コード
2 保護膜
3 固定層
4 補強膜
A Micro sample B Probe C Sample stage 1 Composite sample 11 Rubber composition 12 Metal cord 2 Protective film 3 Fixed layer 4 Reinforcing film
Claims (5)
目的部位上の試料表面に集束イオンビームにより炭素または金属の保護膜を設ける保護膜形成工程、
集束イオンビームにより目的部位を含むマイクロサンプルを切り出す切り出し工程、
マイクロサンプルを試料台に固定する固定工程、
集束イオンビームによりマイクロサンプルの前面、上面および後面に連続した炭素または金属の補強膜を略平行に2以上設ける補強膜形成工程、および
集束イオンビームにより目的部位を薄膜化する薄膜化工程を含む方法。 A thin film sample containing a rubber composition is prepared by a focused ion beam device,
A protective film forming process in which a carbon or metal protective film is formed on the sample surface on the target site by a focused ion beam;
A cutting-out process of cutting out a microsample including a target portion with a focused ion beam;
Fixing process for fixing the micro sample to the sample stage
A method comprising a reinforcing film forming step in which two or more continuous carbon or metal reinforcing films are provided substantially in parallel on the front surface, top surface, and rear surface of a microsample by a focused ion beam, and a thinning step in which a target site is thinned by a focused ion beam .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016076538A JP6711092B2 (en) | 2016-04-06 | 2016-04-06 | Thin film sample preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016076538A JP6711092B2 (en) | 2016-04-06 | 2016-04-06 | Thin film sample preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017187387A true JP2017187387A (en) | 2017-10-12 |
JP6711092B2 JP6711092B2 (en) | 2020-06-17 |
Family
ID=60046360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016076538A Active JP6711092B2 (en) | 2016-04-06 | 2016-04-06 | Thin film sample preparation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6711092B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021148491A (en) * | 2020-03-17 | 2021-09-27 | ポリプラスチックス株式会社 | Composite material evaluation method |
JP7512849B2 (en) | 2019-11-22 | 2024-07-09 | 住友金属鉱山株式会社 | Transmission electron microscope observation samples and their preparation methods |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06129962A (en) * | 1992-10-16 | 1994-05-13 | Mitsubishi Electric Corp | Sample for transmission electron microscope |
JP2004111097A (en) * | 2002-09-13 | 2004-04-08 | Sharp Corp | Sample stage for focused ion beam device and method for forming lamina sample |
JP3547143B2 (en) * | 1997-07-22 | 2004-07-28 | 株式会社日立製作所 | Sample preparation method |
JP2005100995A (en) * | 2004-11-10 | 2005-04-14 | Hitachi Ltd | Sample preparation device and sample preparation method |
JP2009162666A (en) * | 2008-01-08 | 2009-07-23 | Hitachi High-Technologies Corp | Sample processing method and apparatus using focused ion beam |
JP2009198412A (en) * | 2008-02-25 | 2009-09-03 | Sii Nanotechnology Inc | Preparation method of sample for transmission electron microscope, and sample for transmission electron microscope |
-
2016
- 2016-04-06 JP JP2016076538A patent/JP6711092B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06129962A (en) * | 1992-10-16 | 1994-05-13 | Mitsubishi Electric Corp | Sample for transmission electron microscope |
JP3547143B2 (en) * | 1997-07-22 | 2004-07-28 | 株式会社日立製作所 | Sample preparation method |
JP2004111097A (en) * | 2002-09-13 | 2004-04-08 | Sharp Corp | Sample stage for focused ion beam device and method for forming lamina sample |
JP2005100995A (en) * | 2004-11-10 | 2005-04-14 | Hitachi Ltd | Sample preparation device and sample preparation method |
JP2009162666A (en) * | 2008-01-08 | 2009-07-23 | Hitachi High-Technologies Corp | Sample processing method and apparatus using focused ion beam |
JP2009198412A (en) * | 2008-02-25 | 2009-09-03 | Sii Nanotechnology Inc | Preparation method of sample for transmission electron microscope, and sample for transmission electron microscope |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7512849B2 (en) | 2019-11-22 | 2024-07-09 | 住友金属鉱山株式会社 | Transmission electron microscope observation samples and their preparation methods |
JP2021148491A (en) * | 2020-03-17 | 2021-09-27 | ポリプラスチックス株式会社 | Composite material evaluation method |
JP7440309B2 (en) | 2020-03-17 | 2024-02-28 | ポリプラスチックス株式会社 | Composite material evaluation method |
Also Published As
Publication number | Publication date |
---|---|
JP6711092B2 (en) | 2020-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6711092B2 (en) | Thin film sample preparation method | |
US8859393B2 (en) | Methods for in-situ passivation of silicon-on-insulator wafers | |
JP6629596B2 (en) | Ion implantation to change etching rate | |
US20060017016A1 (en) | Method for the removal of a microscopic sample from a substrate | |
US20100025577A1 (en) | Method for the production of a sample for electron microscopy | |
JP2009198412A (en) | Preparation method of sample for transmission electron microscope, and sample for transmission electron microscope | |
DE102012223093B4 (en) | Method for producing a semiconductor device | |
US20080042057A1 (en) | Electron Spectroscopy Analysis Method and Analytical Apparatus | |
JP2015038477A (en) | Detaching probe from tem sample during sample preparation | |
JP2009244240A (en) | Method for manufacturing sample for cross-sectional observation by scanning electron microscope | |
JP6285743B2 (en) | How to observe rubber materials | |
Yoshitake et al. | Annealing effects on Ge/SiO2 interface structure in wafer-bonded germanium-on-insulator substrates | |
US6362474B1 (en) | Semiconductor sample for transmission electron microscope and method of manufacturing the same | |
US9245942B2 (en) | Composite substrate, electronic component, and method of manufacturing composite substrate and electronic component | |
EP1612836B1 (en) | Method for the removal of a microscopic sample from a substrate | |
JP4952474B2 (en) | Method for preparing cross-section observation sample | |
JP4863494B2 (en) | Preparation method for microstructure observation sample | |
JP6392622B2 (en) | Sample preparation method for observing particles with an electron microscope, and method for observing particles with an electron microscope | |
KR102531691B1 (en) | Method of fabricating TEM test sample using focused ion beam | |
KR20180054287A (en) | method for manufacturing specimen for internal structure analysis of film comprising inorganic layers | |
JP2018189455A (en) | Adhesion state evaluation method of rubber wire complex, and rubber wire complex and pneumatic tire | |
JP7258292B2 (en) | Analysis method for polymer composites | |
EP3422391B1 (en) | Method of conditioning an etch chamber for contaminant free etching of a semiconductor device | |
JP5861333B2 (en) | Evaluation method of bonded surface of bonded substrate | |
Masters et al. | Cross-sectioning photovoltaic polymer blends with advanced gas-ion microscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200428 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200511 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6711092 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |