JP4863494B2 - Preparation method for microstructure observation sample - Google Patents

Preparation method for microstructure observation sample Download PDF

Info

Publication number
JP4863494B2
JP4863494B2 JP2007109414A JP2007109414A JP4863494B2 JP 4863494 B2 JP4863494 B2 JP 4863494B2 JP 2007109414 A JP2007109414 A JP 2007109414A JP 2007109414 A JP2007109414 A JP 2007109414A JP 4863494 B2 JP4863494 B2 JP 4863494B2
Authority
JP
Japan
Prior art keywords
microstructure
sample
fib
substrate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007109414A
Other languages
Japanese (ja)
Other versions
JP2008267908A (en
Inventor
佳子 中山
行健 郭
一夫 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2007109414A priority Critical patent/JP4863494B2/en
Publication of JP2008267908A publication Critical patent/JP2008267908A/en
Application granted granted Critical
Publication of JP4863494B2 publication Critical patent/JP4863494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、 基材表面に微細構造を形成した試料からFIB法により微細構造を加工する微細構造観察用試料の作製方法に関する。   The present invention relates to a method for producing a microstructure observation sample in which a microstructure is processed by a FIB method from a sample having a microstructure formed on a substrate surface.

FIB加工技術は、細く集束させたガリウムイオンビームを観察対象の表面に照射し、スパッタリングにより微細加工ができるというものである。
この方法は、ねらった領域だけを加工するため、従来の切削や機械研磨といったプロセスを大幅に省くことができ、より速くより精密な加工を実現させた。反面、試料表面に集束イオンビームを照射することによって、欠陥層の形成や物性変化が起こるといった問題点が多数報告されている。
そこで現在ではカーボン蒸着やプラズマ重合によるコーティング保護膜やFIB−CVD法(FIB内で原料ガスを供給しながらガリウムイオンを照射し保護膜を形成する方法)を施すことによって、FIB加工時に生じる表面への悪影響の低減を図っている。しかし、それでも剥離しやすい積層多層膜や表面上に脆いナノ構造が形成した試料などに関しては、FIB加工以前に切断すら難しい場合も多々存在する。
Microscopy and Microanalysis(2006),12:504−505 M.Kaiser,M.A.Verheijen,A.L.Roest,E.P.A.M.Bakkers
In the FIB processing technique, a finely focused gallium ion beam is irradiated onto the surface of an observation target, and fine processing can be performed by sputtering.
Since this method only processes the target area, it can greatly eliminate the conventional processes such as cutting and mechanical polishing, and realizes faster and more precise processing. On the other hand, many problems have been reported that the formation of defect layers and changes in physical properties occur by irradiating the sample surface with a focused ion beam.
Therefore, at present, by applying a coating protective film by carbon vapor deposition or plasma polymerization or FIB-CVD method (a method of forming a protective film by irradiating gallium ions while supplying a raw material gas in the FIB), the surface generated during FIB processing is applied. To reduce the negative effects of However, there are many cases where it is difficult to cut even before the FIB processing with respect to a laminated multilayer film that easily peels off or a sample in which a brittle nanostructure is formed on the surface.
Microscopy and Microanalysis (2006), 12: 504-505. Kaiser, M .; A. Verheijen, A .; L. Roest, E .; P. A. M.M. Bakers

このように従来周知のFIB法では、集束イオンビーム照射面の微細構造に損傷を生じさせざるを得ないものであり、本発明は、このような損傷を生じさせないようにすることを目的とした。   As described above, in the well-known FIB method, the fine structure of the focused ion beam irradiation surface must be damaged, and the present invention aims to prevent such damage from occurring. .

本発明1の微細構造観察用試料の作製方法は、エネルギー硬化性樹脂にて微細構造面を包埋し、前記微細構造を有する面に対向してダミー基材を配置して真空脱泡し、前記試料と樹脂及びダミー基材間の間隙をなくし、次に前記樹脂にエネルギーを照射して硬化させた後に、前記試料の基材裏面(微細構造を設けていない面)から低角度でウェッジ型に鏡面研磨し、その後、研磨した面に対し集束イオンビームを照射して微細構造を加工することを特徴とする。   The method for producing a microstructure observation sample according to the first aspect of the present invention includes embedding a microstructure surface with an energy curable resin, disposing a dummy substrate facing the surface having the microstructure, and vacuum degassing, After removing the gap between the sample and the resin and the dummy base material, and then curing the resin by irradiating energy, the wedge type is formed at a low angle from the back surface of the base material of the sample (the surface not provided with the fine structure). The surface is mirror-polished, and then the fine structure is processed by irradiating the polished surface with a focused ion beam.

本発明2は、本発明1の微細構造観察用試料の作製方法において、前記集束イオンビームを前記研磨面に対して垂直に照射して微細構造を加工することを特徴とする。   The present invention 2 is characterized in that in the method for producing a microstructure observation sample of the present invention 1, the microstructure is processed by irradiating the focused ion beam perpendicularly to the polished surface.

本発明1では、微細構造を持つ試料面の裏側から集束イオンビーム照射するため、微細構造を保護しながら広い領域で微細構造を加工することが出来る。
また、ウェッジ型に角度をつけてあることによって、FIB加工時に最適な保護基板の厚さを任意に選択できるといったメリットもある。
微細構造の観察のみならず、これまで困難とされていた基板と微細構造との界面においても、原子レベルでの評価が可能となった。
In the present invention 1, since the focused ion beam is irradiated from the back side of the sample surface having a fine structure, the fine structure can be processed in a wide region while protecting the fine structure.
In addition, since the wedge mold is angled, there is an advantage that the optimum thickness of the protective substrate can be arbitrarily selected during the FIB processing.
In addition to the observation of the fine structure, the evaluation at the atomic level has become possible even at the interface between the substrate and the fine structure, which has been considered difficult so far.

従来のFIB加工技術ではイオン照射面に凹凸がある試料は、その構造の形状とイオンスパッタリングとの相互作用により、カーテン・イフェクトとよばれる加工斑が生じ、任意の領域全てにおいて、斑なく均一な薄さを得ることは困難であったが、本発明2では、鏡面研磨されている面に対して垂直に集束イオンビームを照射するため、加工斑もなく、均一な薄さを得ることが出来た。   In the conventional FIB processing technology, a sample with irregularities on the ion-irradiated surface has a processing spot called curtain effect due to the interaction between the shape of the structure and ion sputtering, and it is uniform and uniform in all areas. Although it was difficult to obtain thinness, in the present invention 2, since the focused ion beam is irradiated perpendicularly to the mirror-polished surface, it is possible to obtain a uniform thickness without processing unevenness. It was.

実施例で示した通り、本発明は、極めて界面との密着性の弱い微細構造を持つ試料にとって有効なFIB前処理技術の手法を提供するものである。これまでもFIB前処理技術においては様々な前処理が試されているが、本手法では観察対象となる試料一枚と補強用一枚を微細構造が樹脂に埋まるよう互いに貼り合わせ、観察対象となる試料を裏面からウェッジ型に研磨し、その面からFIB加工することで微細構造に損傷を与えることなく、従来にはなかった断面微細加工が可能となったのである。
実施例では半導体材料を用いたが、今後、金属(磁性・非磁性)、セラミック、高分子など熱硬化に耐えられる材料であれば、あらゆる材種に対応できる。
また、粉末状の試料においても予め樹脂と混合し、板状に硬化させた後、最適な材料を補強に用いて接着することによって、それが磁性材料であっても、FIBによる微細加工が可能となる。
更に、集束イオンビームに対して弱い試料に関しては、最終加工がFIBでなくても、本技術によってウェッジ研磨された接合ブロックを側面から切断し、断面方向に更にウェッジ研磨仕上げをすることで、機械研磨によるアクセスも可能となることが予測される。
なお、実施例では熱硬化型のエポキシ樹脂を用いたが紫外線硬化型の樹脂なども同様に使用可能である。
As shown in the examples, the present invention provides a technique for the FIB pretreatment technique that is effective for a sample having a microstructure with extremely low adhesion to the interface. Until now, various pretreatments have been tried in the FIB pretreatment technology, but in this method, one specimen to be observed and one reinforcing sheet are bonded to each other so that the microstructure is embedded in the resin. By polishing the resulting sample into a wedge shape from the back surface and performing FIB processing from that surface, it became possible to perform cross-sectional microfabrication that has not existed before without damaging the fine structure.
In the examples, a semiconductor material is used, but in the future, any material can be used as long as it can withstand thermosetting, such as metal (magnetic / nonmagnetic), ceramic, and polymer.
In addition, powdered samples can be finely processed by FIB, even if they are magnetic materials, by mixing them with resin in advance and curing them in a plate shape, and then using an optimal material for reinforcement. It becomes.
Furthermore, for samples that are weak against the focused ion beam, even if the final processing is not FIB, the joint block that has been wedge-polished by this technique is cut from the side surface, and further polished by a wedge. Access by polishing is also expected to be possible.
In this embodiment, a thermosetting epoxy resin is used, but an ultraviolet curable resin can be used as well.

目的とする微細構造を保護するため観察対象となるシリコンウエハの上に、エポキシ樹脂を表面全体をカバーするように滴下する。
次に、補強用基材(ダミー)を更にその上に載せ、微細構造がエポキシ樹脂に埋まるよう互いに貼り合わせる。
貼り合わせた二枚のシリコンウエハは、微細構造と樹脂をより精密に密着させるため、真空デシケーター内で脱泡する。(図1)
脱泡させた後、樹脂を熱硬化させるため、貼り合わせた二枚のシリコンウエハをオーブンで焼く。
従来の手法では圧着させるのだが、この場合は微細構造に損傷を与えないよう圧力をかけずに硬化させることがポイントである。
In order to protect the target fine structure, an epoxy resin is dropped on the silicon wafer to be observed so as to cover the entire surface.
Next, a reinforcing base material (dummy) is further placed thereon and bonded together so that the fine structure is embedded in the epoxy resin.
The two bonded silicon wafers are defoamed in a vacuum desiccator in order to bring the fine structure and the resin into close contact with each other more precisely. (Figure 1)
After defoaming, the two bonded silicon wafers are baked in an oven in order to thermally cure the resin.
In the conventional method, pressure bonding is performed, but in this case, the point is to cure without applying pressure so as not to damage the microstructure.

次に、貼り合わせた二枚のシリコンウエハの内、観察対象となるシリコンウエハの裏面から低角度でウェッジ型に研磨する。
研磨方法はダイヤモンドシートによる段階に応じた精密研磨とCMPでの鏡面仕上げにより観察対象基材の先端が失われるまで行う。この時、観察対象側の基材先端の厚さはナノメートルオーダーとなっている。(図2)
Next, of the two bonded silicon wafers, the wafer is polished into a wedge shape at a low angle from the back surface of the silicon wafer to be observed.
The polishing method is performed until the tip of the base material to be observed is lost by precision polishing according to the stage using a diamond sheet and mirror finishing by CMP. At this time, the thickness of the tip of the substrate on the observation target side is on the order of nanometers. (Figure 2)

上記の前処理調整後、FIBを用いて断面試料作製を行う。(図3)
このような前処理技術を用いたことにより、観察対象となる表面組織に損傷を与えることなく、集束イオンビーム加工が可能となった。
After adjusting the above pretreatment, a cross-sectional sample is prepared using FIB. (Figure 3)
By using such a pretreatment technique, it has become possible to perform focused ion beam processing without damaging the surface tissue to be observed.

最上部のカーボン膜形成は、今回シリコン基板先端の厚さ計測のために行ったものである。(図6、7、8)
図6中、膜層:上からカーボン膜、シリコン基板、樹脂内の窒化ガリウムナノワイヤー(微細構造)、補強用シリコンウエハ(補強用基材)が確認できる。
本発明は、シリコン基板自体が保護膜の役割を果たす。従って、ウェッジ加工により制御された試料基板の厚さの違いによって、所望の厚さ条件で加工することが可能となる。
The formation of the uppermost carbon film was performed to measure the thickness of the tip of the silicon substrate this time. (Fig. 6, 7, 8)
In FIG. 6, a film layer: a carbon film, a silicon substrate, a gallium nitride nanowire (fine structure) in the resin, and a reinforcing silicon wafer (reinforcing base material) can be confirmed from above.
In the present invention, the silicon substrate itself serves as a protective film. Therefore, it is possible to process under a desired thickness condition due to the difference in thickness of the sample substrate controlled by the wedge processing.

近年、ますます微細化が進む次世代の材料開発において、デバイスを構成する微細構造の膜厚、組成などのナノレベルの制御が不可欠となることが予想される。これに伴い、微細構造のナノレベルでの分析評価技術の開発も急務となり、高速かつ大容量の高度情報処理システムを構築していくことが要請されている。これを実現するためには、現在の情報処理システムに用いられている各デバイスの性能を飛躍的に高度化する必要がある。本発明は、このようなデバイスの研究分野において、TEM観察試料作製技術を更に進歩させ、ナノ構造の創製法や微細構造の精密評価を基礎とする次世代デバイスへの応用に大いに貢献できるものと期待される。また、これによって、次世代の社会経済を先導するIT、環境、バイオなどの広範囲な産業分野においての技術革新を支える基礎技術となり、非常に大きな経済効果を持つものと期待される。   In recent years, it is expected that nano-level control of the film thickness, composition, etc. of microstructures constituting devices will be indispensable in the development of next-generation materials that are increasingly miniaturized. Along with this, development of analysis and evaluation technology at the nano level of fine structure has become an urgent task, and it is requested to construct a high-speed and large-capacity advanced information processing system. In order to realize this, it is necessary to dramatically improve the performance of each device used in the current information processing system. In the field of device research, the present invention can further contribute to the application of next-generation devices based on the creation of nanostructures and precise evaluation of microstructures by further advancing TEM observation sample preparation technology. Be expected. In addition, this will become a basic technology that supports technological innovation in a wide range of industrial fields such as IT, environment, and biotechnology, which will lead the next-generation social economy, and is expected to have a very large economic effect.

表面に窒化ガリウムナノワイヤーが成長したシリコン基板と補強用試料(ダミー)一枚をエポキシ樹脂によって貼り合わせた状態を示す模式図。The schematic diagram which shows the state which bonded together the silicon substrate with which the gallium nitride nanowire grew on the surface, and the sample for reinforcement (dummy) with the epoxy resin. 図1に示す貼り合わせた接合ブロックの研磨方向を示した模式図。The schematic diagram which showed the grinding | polishing direction of the bonded bonding block shown in FIG. 観察対象となる微細構造を有する基材の裏面から低角度でウェッジ型に研磨した状態を示す模式図。この時、観察対象試料の先端の厚さはナノメートルオーダーとなっている。The schematic diagram which shows the state grind | polished to the wedge type | mold at the low angle from the back surface of the base material which has the fine structure used as observation object. At this time, the thickness of the tip of the sample to be observed is on the order of nanometers. 観察対象となる微細構造を有する基材側の研磨面(微細構造の裏面)からFIB加工している様子を示す模式図。The schematic diagram which shows a mode that FIB processing is carried out from the grinding | polishing surface (back surface of a fine structure) by the side of the base material which has the fine structure used as observation object. FIB加工により作製された薄片の断面図を示す模式図。The schematic diagram which shows sectional drawing of the thin piece produced by FIB process. FIB加工により作製された薄片の透過型電子顕微鏡率写真。Transmission electron micrograph of a thin piece produced by FIB processing. 図6で確認できる試料基板であるシリコンと窒化ガリウムナノワイヤーとの界面を拡大した断面観察写真A cross-sectional observation photograph showing an enlarged interface between silicon and gallium nitride nanowire, which is a sample substrate that can be confirmed in FIG. 図7を更に拡大した写真A further enlarged view of FIG.

Claims (2)

基材表面に微細構造を形成してなる試料からFIB法により前記微細構造を加工する微細構造観察用試料の作製方法であって、エネルギー硬化性樹脂にて前記微細構造を包埋し、前記微細構造を有する面に対向して補強用基材を配置して真空脱泡し、前記試料と樹脂及び補強用基材間の間隙をなくし、次に前記樹脂に硬化エネルギーを付与して硬化させた後に、前記試料の基材裏面(微細構造を設けていない面)から低角度でウェッジ型に鏡面研磨し、その後、研磨した面に対し集束イオンビームを照射して微細構造を加工することを特徴とする微細構造観察用試料の作製方法。   A method for producing a microstructure observation sample in which a microstructure is processed by a FIB method from a sample formed with a microstructure on a substrate surface, wherein the microstructure is embedded with an energy curable resin, A reinforcing substrate is placed opposite the surface having the structure, and vacuum deaeration is performed to eliminate a gap between the sample and the resin and the reinforcing substrate, and then the resin is cured by applying curing energy. Later, the sample is mirror-polished into a wedge shape at a low angle from the back surface of the substrate (the surface where no microstructure is provided), and then the focused surface is irradiated with a focused ion beam to process the microstructure. A method for producing a sample for microstructural observation. 請求項1に記載の微細構造観察用試料の作製方法において、集束イオンビームを前記研磨面に対して垂直に照射して微細構造を加工することを特徴とする微細構造観察用試料の作製方法。
2. The method for producing a microstructure observation sample according to claim 1, wherein the microstructure is processed by irradiating a focused ion beam perpendicularly to the polished surface.
JP2007109414A 2007-04-18 2007-04-18 Preparation method for microstructure observation sample Expired - Fee Related JP4863494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007109414A JP4863494B2 (en) 2007-04-18 2007-04-18 Preparation method for microstructure observation sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007109414A JP4863494B2 (en) 2007-04-18 2007-04-18 Preparation method for microstructure observation sample

Publications (2)

Publication Number Publication Date
JP2008267908A JP2008267908A (en) 2008-11-06
JP4863494B2 true JP4863494B2 (en) 2012-01-25

Family

ID=40047617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007109414A Expired - Fee Related JP4863494B2 (en) 2007-04-18 2007-04-18 Preparation method for microstructure observation sample

Country Status (1)

Country Link
JP (1) JP4863494B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582435B2 (en) * 2010-03-10 2014-09-03 独立行政法人日本原子力研究開発機構 Method for forming microstructure of polymer material, microstructure
CN112730006B (en) * 2021-02-05 2022-11-29 上海市计量测试技术研究院 Preparation method of pore surface ion channel contrast sample

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639834A (en) * 1986-06-30 1988-01-16 Fujitsu Ltd Preparation of specimen for electron microscope
JPH04351937A (en) * 1991-05-30 1992-12-07 Hitachi Ltd Electron microscope
JP2500772B2 (en) * 1993-07-26 1996-05-29 日本電気株式会社 Sample preparation method for transmission electron microscope
JPH08327514A (en) * 1995-06-05 1996-12-13 Nippondenso Co Ltd Preparation of sample for transmission electron microscope and device therefor
JP2005331251A (en) * 2004-05-18 2005-12-02 Tdk Corp Preparation method of sample for observation, observation method of sample, baking method of molding, sample for observation, and observation device

Also Published As

Publication number Publication date
JP2008267908A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP3161362B2 (en) Microstructure, its manufacturing method, its manufacturing apparatus, substrate and molding die
CN105922083B (en) The surface polishing method of potassium dihydrogen phosphate crystalloid
JP4695014B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE
WO2005083148A1 (en) Sputtering target with few surface defects and method for processing surface thereof
US9962908B2 (en) Method for bonding polymer film and polymer film, method for bonding polymer film and inorganic material substrate, polymer film laminate, and laminate of polymer film and inorganic material substrate
CN108780775B (en) Adsorption member
Cao et al. Effect of process gas flow on the coating microstructure and mechanical properties of vacuum kinetic-sprayed TiN layers
Erdman et al. Precise SEM cross section polishing via argon beam milling
JP6814633B2 (en) Thin substrate, its manufacturing method, and substrate transport method
TWI673177B (en) Composite substrate, nano carbon film manufacturing method and nano carbon film
JP4863494B2 (en) Preparation method for microstructure observation sample
CN108581057B (en) Surface alloying weakening treatment auxiliary processing method for efficient cutting of difficult-to-process material
JP3820409B2 (en) JOINING METHOD, DEVICE PRODUCED BY THIS METHOD, AND JOINING DEVICE
CN109437582A (en) A kind of production method of the 3D glass with anti-glare
JP2009098088A (en) Sample preparing method
CN109175658A (en) A kind of accurate connection method of aluminium film and dissimilar metal film
Rebhan et al. Low-temperature aluminum-aluminum wafer bonding
JP6361665B2 (en) Structure and film forming method
KR101982998B1 (en) Rare earth thin film magnet and manufacturing method thereof
Utsumi et al. Cu-Cu direct bonding achieved by surface method at room temperature
Mu et al. Low temperature deposited titanium boride thin films and their application to surface engineering of microscale mold inserts
Mizobuchi et al. Miniature drilling of chemically strengthened glass plate using electroplated diamond tool
Matsumae et al. Room temperate bonding of Al2O3 layers by atomic layer deposition on polyimide substrates
CN111474200B (en) Method for preparing microstructure sample of electronic element
KR20130117354A (en) Method for patterning a thin film by controlled cracking and thin film patterning structure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees