JP2017187269A - Heat radiation device and light irradiation device including the same - Google Patents

Heat radiation device and light irradiation device including the same Download PDF

Info

Publication number
JP2017187269A
JP2017187269A JP2017025339A JP2017025339A JP2017187269A JP 2017187269 A JP2017187269 A JP 2017187269A JP 2017025339 A JP2017025339 A JP 2017025339A JP 2017025339 A JP2017025339 A JP 2017025339A JP 2017187269 A JP2017187269 A JP 2017187269A
Authority
JP
Japan
Prior art keywords
heat
main surface
straight portion
light irradiation
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017025339A
Other languages
Japanese (ja)
Other versions
JP2017187269A5 (en
JP6599379B2 (en
Inventor
渡邊 浩明
Hiroaki Watanabe
浩明 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Candeo Optronics Corp
Original Assignee
Hoya Candeo Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Candeo Optronics Corp filed Critical Hoya Candeo Optronics Corp
Priority to KR1020170033046A priority Critical patent/KR20170113127A/en
Priority to TW106109408A priority patent/TWI658235B/en
Priority to US15/464,771 priority patent/US10119759B2/en
Priority to CN201710190474.0A priority patent/CN107388213B/en
Priority to EP17163499.1A priority patent/EP3225946B1/en
Publication of JP2017187269A publication Critical patent/JP2017187269A/en
Publication of JP2017187269A5 publication Critical patent/JP2017187269A5/ja
Application granted granted Critical
Publication of JP6599379B2 publication Critical patent/JP6599379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/377Cooling or ventilating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • F21V29/717Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements using split or remote units thermally interconnected, e.g. by thermally conductive bars or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide heat radiation devices capable of being connected in a line while reliably cooling a supporting member as a whole by using a heat pipe.SOLUTION: Heat radiation devices radiating heat of a heat source into air, respectively include a supporting member disposed in a state in which a first main face side is closely kept into contact with the heat source, a heat pipe thermally connected to the supporting member and transporting heat from the heat source, and a plurality of heat radiation fins disposed in a space facing a second main face and radiating heat transported by the heat pipe. The heat pipe has a first straight portion thermally joined to the supporting member, a second straight portion thermally joined to the plurality of heat radiation fins, and a connecting portion connecting the first straight portion and the second straight portion. A length of the heat pipe in an extending direction of the first straight portion is the same as or slightly shorter than a length of the supporting member, the connecting portion has a curved portion thermally joined to the supporting member, near one end portion of the first straight portion, and the plurality of heat radiation devices are connectable in a manner that the first main faces are continued when they are arranged in the extending direction of the first straight portion.SELECTED DRAWING: Figure 3

Description

本発明は、光照射装置の光源等を冷却するための放熱装置に関し、特に、複数枚の放熱フィンを挿通するヒートパイプを備えたヒートパイプ式の放熱装置と、該放熱装置を備える光照射装置に関する。   The present invention relates to a heat radiating device for cooling a light source or the like of a light irradiating device, and in particular, a heat pipe type heat radiating device including a heat pipe through which a plurality of heat radiating fins are inserted, and a light radiating device including the heat radiating device. About.

従来、オフセット枚葉印刷用のインキとして、紫外光の照射により硬化する紫外線硬化型インキが用いられている。また、液晶パネルや有機EL(Electro Luminescence)パネル等、FPD(Flat Panel Display)回りの接着剤として、紫外線硬化樹脂が用いられている。このような紫外線硬化型インキや紫外線硬化樹脂の硬化には、一般に、紫外光を照射する紫外光照射装置が用いられる。   Conventionally, as an ink for offset sheet-fed printing, an ultraviolet curable ink that is cured by irradiation with ultraviolet light has been used. Further, an ultraviolet curable resin is used as an adhesive around an FPD (Flat Panel Display) such as a liquid crystal panel or an organic EL (Electro Luminescence) panel. In general, an ultraviolet light irradiation device for irradiating ultraviolet light is used for curing such ultraviolet curable ink and ultraviolet curable resin.

紫外光照射装置としては、従来から高圧水銀ランプや水銀キセノンランプ等を光源とするランプ型照射装置が知られているが、近年、消費電力の削減、長寿命化、装置サイズのコンパクト化の要請から、従来の放電ランプに替えて、LED(Light Emitting Diode)を光源として利用した紫外光照射装置が開発されている。   As an ultraviolet light irradiation device, a lamp type irradiation device using a high-pressure mercury lamp, a mercury xenon lamp, or the like as a light source has been conventionally known, but in recent years, there has been a demand for reduction in power consumption, longer life, and downsizing of the device size. Therefore, in place of the conventional discharge lamp, an ultraviolet light irradiation device using an LED (Light Emitting Diode) as a light source has been developed.

このようなLEDを光源として利用した紫外光照射装置は、例えば、特許文献1に記載されている。特許文献1に記載の紫外光照射装置は、複数の発光素子(LED)が搭載された光照射デバイス等を有する光照射モジュールを複数備えている。複数の光照射モジュールは、一列に並べて配置されており、複数の光照射モジュールに対向して配置された照射対象物の所定領域に対してライン状の紫外光が照射されるようになっている。   An ultraviolet light irradiation apparatus using such an LED as a light source is described in Patent Document 1, for example. The ultraviolet light irradiation apparatus described in Patent Document 1 includes a plurality of light irradiation modules including a light irradiation device on which a plurality of light emitting elements (LEDs) are mounted. The plurality of light irradiation modules are arranged in a line, and the line-shaped ultraviolet light is irradiated to a predetermined region of the irradiation object arranged to face the plurality of light irradiation modules. .

このように、光源としてLEDを用いると、投入した電力の大半が熱となるため、LED自身が発生する熱によって発光効率と寿命が低下するといった問題があり、熱の処理が問題となる。そこで、特許文献1に記載の紫外光照射装置においては、各光照射デバイスの裏面に放熱用部材を配置し、LEDで発生する熱を強制的に放熱する構成が採られている。   As described above, when an LED is used as a light source, most of the input electric power becomes heat, so that there is a problem that light emission efficiency and life are reduced by heat generated by the LED itself, and heat treatment becomes a problem. Therefore, the ultraviolet light irradiation apparatus described in Patent Document 1 employs a configuration in which a heat dissipation member is disposed on the back surface of each light irradiation device to forcibly dissipate heat generated by the LED.

特許文献1に記載の放熱用部材は、冷媒を流すことによって冷却する、いわゆる水冷方式のものであるが、冷媒用の配管等が必要になるため、装置自体が大きくなるといった問題や、漏水の対策を行う必要がある等の問題がある。そこで、空冷でありながらも、高い放熱効率を有する方式として、ヒートパイプを用いた構成も提案されている(例えば、特許文献2)。   The heat radiating member described in Patent Document 1 is a so-called water-cooling type that cools by flowing a refrigerant. However, since a refrigerant pipe or the like is required, there is a problem that the apparatus itself becomes large, or water leakage occurs. There are problems such as the need to take countermeasures. Then, the structure using a heat pipe is also proposed as a system which has high heat dissipation efficiency although it is air cooling (for example, patent document 2).

特許文献2に記載の光照射装置は、複数の発光素子(LED)が搭載された発光モジュールの裏面側に、ヒートパイプと、ヒートパイプに嵌挿接続されてなる複数の放熱フィンとを有しており、LEDで発生する熱をヒートパイプで輸送し、放熱フィンから空気中に放熱する構成を採っている。   The light irradiation apparatus described in Patent Document 2 has a heat pipe and a plurality of heat radiation fins that are fitted and connected to the heat pipe on the back side of the light emitting module on which a plurality of light emitting elements (LEDs) are mounted. The heat generated by the LED is transported by a heat pipe, and the heat is dissipated from the radiation fins into the air.

特開2015−153771号公報Japanese Patent Laid-Open No. 2015-153771 特開2014−038866号公報JP 2014-0388866 A

特許文献2に開示された光照射装置の放熱装置によれば、LEDによって発生した熱がヒートパイプによって速やかに輸送され、多数の放熱フィンから放熱されるため、LEDが効率よく冷却される。このため、LEDの性能の低下や損傷を防止することができると共に、高輝度の発光が可能となる。また、特許文献2に記載の放熱装置は、ヒートパイプをコの字状に折り曲げて、LEDの出射方向と相反する方向に熱を輸送する構成であるため、LEDの出射方向に対して垂直な方向の光照射装置のサイズをコンパクトなものにできる。   According to the heat radiating device of the light irradiation device disclosed in Patent Document 2, the heat generated by the LED is quickly transported by the heat pipe and radiated from a large number of heat radiating fins, so that the LED is efficiently cooled. For this reason, it is possible to prevent degradation and damage of the LED and to emit light with high brightness. Moreover, since the heat radiating device described in Patent Document 2 is configured to bend the heat pipe in a U shape and transport heat in a direction opposite to the LED emission direction, it is perpendicular to the LED emission direction. The size of the light irradiation device in the direction can be made compact.

しかしながら、特許文献2の放熱装置のように、ヒートパイプをコの字状に折り曲げる構成の場合、ヒートパイプの湾曲部が発光モジュールのベースプレート(支持部材)から浮いてしまうと、当該浮いた部分の冷却能力が著しく低下してしまうため、ベースプレート全体を確実に冷却しようとすれば、ヒートパイプの直線部をベースプレートの裏面全体に亘って密着するように配置しなければならず、ヒートパイプの湾曲部がベースプレートの外側(つまり、発光モジュールの外形よりも外側)に突出してしまうといった問題がある。そして、ヒートパイプの湾曲部がベースプレートの外側に突出してしまうと、LEDの並び方向(つまり、ヒートパイプの直線部が延びる方向)に近接して配置することができず、特許文献1に記載されている構成のように、光照射デバイスをライン状に連結配置することができない。   However, in the case of a configuration in which the heat pipe is bent in a U shape as in the heat dissipation device of Patent Document 2, if the curved portion of the heat pipe floats from the base plate (support member) of the light emitting module, the floating portion Since the cooling capacity will be significantly reduced, if the entire base plate is to be reliably cooled, the straight part of the heat pipe must be placed in close contact with the entire back surface of the base plate, and the curved part of the heat pipe Has a problem that it protrudes outside the base plate (that is, outside the outer shape of the light emitting module). If the curved portion of the heat pipe protrudes outside the base plate, it cannot be disposed close to the LED alignment direction (that is, the direction in which the straight portion of the heat pipe extends), and is described in Patent Document 1. As in the configuration, the light irradiation devices cannot be connected and arranged in a line.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、ヒートパイプを用いてベースプレート(支持部材)全体を確実に冷却しつつも、ライン状に連結配置可能な放熱装置を提供し、さらにはこの放熱装置を備えた光照射装置をすることである。   The present invention has been made in view of such circumstances, and an object of the present invention is to be able to connect and arrange in a line while reliably cooling the entire base plate (support member) using a heat pipe. A heat dissipating device is provided, and further a light irradiation device including the heat dissipating device is provided.

上記目的を達成するため、本発明の放熱装置は、熱源に密着して配置され、熱源の熱を空気中に放熱する放熱装置であって、板状の形状を呈し、第1主面側が熱源に密着するように配置される支持部材と、支持部材に支持されると共に、支持部材と熱的に接合し、熱源からの熱を輸送するヒートパイプと、第1主面と対向する第2主面に面する空間内に配置され、ヒートパイプと熱的に接合し、ヒートパイプによって輸送された熱を放熱する複数の放熱フィンと、を備え、ヒートパイプは、支持部材と熱的に接合される第1直線部と、複数の放熱フィンと熱的に接合される第2直線部と、第1直線部と第2直線部が連続するように、第1直線部の一端部と第2直線部の一端部とを接続する接続部と、を有し、第1直線部が延びる方向のヒートパイプの長さは、第1直線部が延びる方向の支持部材の長さと同一か、または僅かに短く、接続部は、第1直線部の一端部近傍に支持部材と熱的に接合される湾曲部を有し、複数の放熱装置を第1直線部が延びる方向に並べたときに、第1主面が連続するように連結可能であることを特徴とする。   In order to achieve the above object, the heat dissipating device of the present invention is a heat dissipating device that is disposed in close contact with the heat source and dissipates the heat of the heat source into the air, has a plate shape, and the first main surface side is the heat source. A support member disposed in close contact with the support member, a heat pipe supported by the support member, thermally bonded to the support member, and transporting heat from a heat source, and a second main surface facing the first main surface A plurality of heat dissipating fins that are disposed in a space facing the surface and thermally bonded to the heat pipe and dissipate heat transported by the heat pipe, and the heat pipe is thermally bonded to the support member The first straight line portion, the second straight line portion thermally bonded to the plurality of radiating fins, the one end portion of the first straight line portion and the second straight line so that the first straight line portion and the second straight line portion are continuous. A connecting portion that connects one end portion of the portion, and heat in a direction in which the first straight portion extends. The length of the ip is the same as or slightly shorter than the length of the support member in the direction in which the first straight portion extends, and the connecting portion is a curve that is thermally joined to the support member in the vicinity of one end of the first straight portion. And when the plurality of heat dissipating devices are arranged in the direction in which the first linear portion extends, the first main surface can be connected so as to be continuous.

このような構成によれば、第1直線部が延びる方向において、冷却能力のバラツキが少なく、基板を一様に(略均一に)冷却することができ、基板上に配置されたLED素子も略均一に冷却される。従って、各LED素子間における温度差も少なく、温度特性に起因する照射強度のバラツキも少なくなる。また、ヒートパイプ及び放熱フィンは、支持部材の第2主面に面する空間から逸脱しないように構成されているため、第1直線部が延びる方向においても複数の放熱装置を連結することができる。   According to such a configuration, there is little variation in the cooling capacity in the direction in which the first linear portion extends, the substrate can be cooled uniformly (substantially uniformly), and the LED elements disposed on the substrate are also substantially omitted. Cools uniformly. Therefore, the temperature difference between the LED elements is small, and the variation in irradiation intensity due to the temperature characteristics is also small. Moreover, since the heat pipe and the heat radiating fin are configured so as not to deviate from the space facing the second main surface of the support member, a plurality of heat radiating devices can be connected even in the direction in which the first straight line portion extends. .

また、ヒートパイプを複数備え、複数のヒートパイプの第1直線部は、第1直線部が延びる方向と略直交する方向に第1の所定の間隔をおいて配置されていることが望ましい。   In addition, it is desirable that a plurality of heat pipes be provided, and the first straight portions of the plurality of heat pipes be arranged at a first predetermined interval in a direction substantially orthogonal to the direction in which the first straight portions extend.

また、複数のヒートパイプの第2直線部は、第2主面に略平行で、かつ第1直線部が延びる方向と略直交する方向に第1の所定の間隔をおいて配置されていることが望ましい。   The second straight portions of the plurality of heat pipes are disposed substantially parallel to the second main surface and at a first predetermined interval in a direction substantially perpendicular to the direction in which the first straight portion extends. Is desirable.

また、複数のヒートパイプの第2直線部は、第2主面に略平行で、かつ第1直線部が延びる方向と略直交する方向に第1の所定の間隔よりも長い第2の所定の間隔をおいて配置されていることが望ましい。   The second straight portions of the plurality of heat pipes are substantially parallel to the second main surface and are longer than the first predetermined interval in a direction substantially perpendicular to the direction in which the first straight portions extend. It is desirable to arrange them at intervals.

また、第2主面に面する空間内に配置され、第2主面に対して略垂直な方向に気流を生成するファンを備える構成とすることもできる。   Moreover, it can also be set as the structure provided with the fan which is arrange | positioned in the space which faces a 2nd main surface, and produces an airflow in the direction substantially perpendicular | vertical with respect to a 2nd main surface.

また、第1直線部が延びる方向から見たときに、各ヒートパイプの第2直線部の位置が、第2主面に略垂直な方向及び略平行な方向において異なることが望ましい。また、この場合、第2主面に面する空間内に配置され、第2主面に対して略平行な方向に気流を生成するファンを備えることが望ましい。   In addition, when viewed from the direction in which the first straight line portion extends, it is desirable that the position of the second straight line portion of each heat pipe be different in a direction substantially perpendicular to the second main surface and a direction substantially parallel to the second main surface. In this case, it is desirable to include a fan that is disposed in a space facing the second main surface and generates an airflow in a direction substantially parallel to the second main surface.

また、複数の放熱フィンは、複数のヒートパイプの第1直線部と第2直線部とで囲まれた空間内に切欠部を有し、切欠部で形成された空間内に配置され、第2主面に対して斜め方向に気流を生成するファンを備える構成とすることもできる。   The plurality of radiating fins have a cutout portion in a space surrounded by the first straight portion and the second straight portion of the plurality of heat pipes, and are disposed in a space formed by the cutout portion. It can also be set as the structure provided with the fan which produces an airflow in the diagonal direction with respect to a main surface.

また、第2直線部が、第2主面に対して略平行であることが望ましい。   Further, it is desirable that the second straight line portion is substantially parallel to the second main surface.

また、支持部材は、第2主面側に、第1直線部と湾曲部に応じた形状の溝部を有しており、第1直線部と湾曲部が、溝部に嵌まり込むように配置されることが望ましい。   Further, the support member has a groove portion having a shape corresponding to the first linear portion and the curved portion on the second main surface side, and the first linear portion and the curved portion are disposed so as to fit into the groove portion. It is desirable.

また、別の観点からは、本発明の光照射装置は、上記のいずれかの放熱装置と、第1主面と密着するように配置される基板と、基板の表面上において、ヒートパイプの第1直線部と略平行に配置された複数のLED素子と、を備えることを特徴とする。   From another point of view, the light irradiation device according to the present invention includes any one of the above heat dissipation devices, a substrate disposed so as to be in close contact with the first main surface, and a first heat pipe on the surface of the substrate. And a plurality of LED elements arranged substantially in parallel with one straight line portion.

また、複数のLED素子は、第1直線部が延びる方向に所定のピッチで配置され、第1直線部が延びる方向において、第1直線部から支持部材の一端までの距離、及び接続部から支持部材の他端までの距離がピッチの1/2以下であることが望ましい。   The plurality of LED elements are arranged at a predetermined pitch in the direction in which the first straight line portion extends, and in the direction in which the first straight line portion extends, the distance from the first straight line portion to one end of the support member, and the support from the connection portion The distance to the other end of the member is desirably 1/2 or less of the pitch.

また、複数のLED素子が、第1直線部が延びる方向と略直交する方向に複数列に配置されることが望ましい。   Moreover, it is desirable that the plurality of LED elements are arranged in a plurality of rows in a direction substantially orthogonal to the direction in which the first straight line portion extends.

また、複数のLED素子が、基板を挟んで第1直線部と相対する位置に配置されていることが望ましい。   In addition, it is desirable that the plurality of LED elements are arranged at positions facing the first straight portion with the substrate interposed therebetween.

また、光照射装置が、第1主面が連続するように連結された複数の前記放熱装置を備えるように構成することができる。また、この場合、複数の放熱装置が、第1直線部が延びる方向に並べられて連結されていることが望ましい。   Moreover, a light irradiation apparatus can be comprised so that the said 1st main surface may be equipped with the said several thermal radiation apparatus connected so that it may continue. In this case, it is desirable that the plurality of heat dissipation devices are arranged and connected in the direction in which the first straight line portion extends.

また、LED素子が、紫外線硬化樹脂に作用する波長の光を発することが望ましい。   Further, it is desirable that the LED element emit light having a wavelength that acts on the ultraviolet curable resin.

以上のように、本発明によれば、ヒートパイプを用いてベースプレート(支持部材)全体を確実に冷却しつつも、ライン状に連結配置可能な放熱装置と、当該放熱装置を備えた光照射装置が実現される。   As described above, according to the present invention, a heat radiation device that can be connected and arranged in a line while reliably cooling the entire base plate (supporting member) using a heat pipe, and a light irradiation device including the heat radiation device Is realized.

図1は、本発明の第1の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する外観図である。FIG. 1 is an external view illustrating a schematic configuration of a light irradiation device including a heat dissipation device according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る放熱装置を備えた光照射装置に備わるLEDユニットの構成を説明する図である。FIG. 2 is a diagram illustrating the configuration of the LED unit provided in the light irradiation device including the heat dissipation device according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係る放熱装置の構成を説明する図である。FIG. 3 is a diagram illustrating the configuration of the heat dissipation device according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態に係る放熱装置を備えた光照射装置をX軸方向に連結した状態を示す図である。FIG. 4 is a diagram illustrating a state in which the light irradiation device including the heat dissipation device according to the first embodiment of the present invention is connected in the X-axis direction. 図5は、本発明の第1の実施形態に係る放熱装置を備えた光照射装置をX軸方向及びY軸方向に連結した状態を示す図である。FIG. 5 is a diagram illustrating a state in which the light irradiation device including the heat dissipation device according to the first embodiment of the present invention is connected in the X-axis direction and the Y-axis direction. 図6は、本発明の第1の実施形態に係る放熱装置の変形例の構成を示す図である。FIG. 6 is a diagram showing a configuration of a modification of the heat dissipation device according to the first embodiment of the present invention. 図7は、本発明の第2の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する外観図である。FIG. 7 is an external view illustrating a schematic configuration of a light irradiation device including a heat dissipation device according to the second embodiment of the present invention. 図8は、本発明の第2の実施形態に係る放熱装置を連結した状態を示す図である。FIG. 8 is a diagram illustrating a state in which the heat dissipating device according to the second embodiment of the present invention is connected. 図9は、本発明の第2の実施形態に係る放熱装置の変形例の構成を示す図である。FIG. 9 is a diagram showing a configuration of a modification of the heat dissipation device according to the second embodiment of the present invention. 図10は、本発明の第3の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する外観図である。FIG. 10 is an external view illustrating a schematic configuration of a light irradiation apparatus including a heat dissipation device according to the third embodiment of the present invention. 図11は、本発明の第3の実施形態に係る放熱装置を連結した状態を示す図である。FIG. 11 is a diagram illustrating a state in which a heat dissipation device according to the third embodiment of the present invention is connected. 図12は、本発明の第3の実施形態に係る放熱装置の変形例の構成を示す図である。FIG. 12 is a diagram showing a configuration of a modification of the heat dissipation device according to the third embodiment of the present invention. 図13は、本発明の第4の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する外観図である。FIG. 13: is an external view explaining schematic structure of the light irradiation apparatus provided with the thermal radiation apparatus which concerns on the 4th Embodiment of this invention. 図14は、本発明の第4の実施形態に係る放熱装置を連結した状態を示す図である。FIG. 14 is a diagram illustrating a state in which the heat dissipation device according to the fourth embodiment of the present invention is connected. 図15は、本発明の第4の実施形態に係る放熱装置の変形例の構成を示す図である。FIG. 15 is a diagram showing a configuration of a modification of the heat dissipation device according to the fourth embodiment of the present invention.

以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、図中同一又は相当部分には同一の符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent part in a figure, and the description is not repeated.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る放熱装置200を備えた光照射装置10の概略構成を説明する外観図である。本実施形態の光照射装置10は、オフセット枚葉印刷用のインキとして用いられる紫外線硬化型インキや、FPD(Flat Panel Display)等で接着剤として用いられる紫外線硬化樹脂を硬化させる光源装置に搭載される装置であり、照射対象物に対向して配置され、照射対象物の所定のエリアに紫外光を出射する。本明細書においては、放熱装置200のヒートパイプ203の第1直線部203aが延びる方向をX軸方向、ヒートパイプ203の第1直線部203aが並ぶ方向をY軸方向、X軸及びY軸と直交する方向をZ軸方向と定義して説明する。なお、光照射装置10が搭載される光源装置の用途や仕様によって、求められる照射エリアが異なるため、本実施形態の光照射装置10は、X軸方向及びY軸方向に連結可能に構成されている(詳細は後述)。
(First embodiment)
FIG. 1 is an external view illustrating a schematic configuration of a light irradiation device 10 including a heat dissipation device 200 according to the first embodiment of the present invention. The light irradiation device 10 of this embodiment is mounted on a light source device that cures an ultraviolet curable ink used as an ink for offset sheet-fed printing or an ultraviolet curable resin used as an adhesive in an FPD (Flat Panel Display) or the like. It is an apparatus that is arranged to face the irradiation object and emits ultraviolet light to a predetermined area of the irradiation object. In this specification, the direction in which the first straight portion 203a of the heat pipe 203 of the heat dissipation device 200 extends is the X-axis direction, and the direction in which the first straight portions 203a of the heat pipe 203 are aligned is the Y-axis direction, the X-axis, and the Y-axis. A description will be given by defining a direction orthogonal to the Z-axis direction. Since the required irradiation area varies depending on the application and specification of the light source device on which the light irradiation device 10 is mounted, the light irradiation device 10 of the present embodiment is configured to be connectable in the X-axis direction and the Y-axis direction. (Details will be described later).

(光照射装置10の構成)
図1に示すように、本実施形態の光照射装置10は、LEDユニット100と、放熱装置200と、を備えている。なお、図1(a)は、本実施形態の光照射装置10の正面図(Z軸方向下流側(正の方向側)から見た図)であり、図1(b)は、平面図(Y軸方向下流側(正の方向側)から見た図)であり、図1(c)は、右側面図(X軸方向下流側(正の方向側)から見た図)であり、図1(d)は、左側面図(X軸方向上流側(負の方向側)から見た図)であり、図1(e)は、背面図(Z軸方向上流側(負の方向側)から見た図)である。
(Configuration of the light irradiation device 10)
As shown in FIG. 1, the light irradiation device 10 of this embodiment includes an LED unit 100 and a heat dissipation device 200. FIG. 1A is a front view (viewed from the downstream side (positive direction side) in the Z-axis direction) of the light irradiation apparatus 10 of the present embodiment, and FIG. FIG. 1C is a right side view (viewed from the X-axis direction downstream side (positive direction side)). 1 (d) is a left side view (viewed from the upstream side in the X-axis direction (negative direction side)), and FIG. 1 (e) is a rear view (upstream side in the Z-axis direction (negative direction side)). Figure seen from).

(LEDユニット100の構成)
図2は、本実施形態のLEDユニット100の構成を説明する図であり、図1のB部拡大図である。図1(a)及び図2に示すように、LEDユニット100は、X軸方向及びY軸方向に略平行な矩形板状の基板105と、基板105上に配置された複数のLED素子110と、を備えている。
(Configuration of LED unit 100)
FIG. 2 is a diagram for explaining the configuration of the LED unit 100 of the present embodiment, and is an enlarged view of a portion B in FIG. As shown in FIG. 1A and FIG. 2, the LED unit 100 includes a rectangular plate-like substrate 105 substantially parallel to the X-axis direction and the Y-axis direction, and a plurality of LED elements 110 arranged on the substrate 105. It is equipped with.

基板105は、熱伝導率の高い材料(例えば、銅、アルミニウム、窒化アルミニウム)で形成された矩形状の配線基板であり、図1(a)に示すように、その表面には、X軸方向及びY軸方向に所定の間隔を空けて、20個(X軸方向)×10列(Y軸方向)の態様で、200個のLED素子110がCOB(Chip On Board)実装されている。基板105上には、各LED素子110に電力を供給するためのアノードパターン(不図示)及びカソードパターン(不図示)が形成されており、各LED素子110は、アノードパターン及びカソードパターンにそれぞれ電気的に接続されている。また、基板105は、不図示の配線ケーブルによってLED駆動回路(不図示)と電気的に接続されており、各LED素子110には、アノードパターン及びカソードパターンを介して、LED駆動回路からの駆動電流が供給されるようになっている。   The substrate 105 is a rectangular wiring substrate formed of a material having high thermal conductivity (for example, copper, aluminum, aluminum nitride). As shown in FIG. In addition, 200 LED elements 110 are mounted on a COB (Chip On Board) in a form of 20 (X-axis direction) × 10 columns (Y-axis direction) with a predetermined interval in the Y-axis direction. An anode pattern (not shown) and a cathode pattern (not shown) for supplying power to each LED element 110 are formed on the substrate 105, and each LED element 110 is electrically connected to the anode pattern and the cathode pattern, respectively. Connected. The substrate 105 is electrically connected to an LED drive circuit (not shown) via a wiring cable (not shown), and each LED element 110 is driven from the LED drive circuit via an anode pattern and a cathode pattern. A current is supplied.

LED素子110は、LED駆動回路から駆動電流の供給を受けて、紫外光(例えば、波長365nm、385nm、395nm、405nm)を出射する半導体素子である。本実施形態においては、20個のLED素子110がX軸方向に所定の行ピッチPXで配置され、これを一列としてY軸方向に10列のLED素子110が所定の列ピッチPYで配置されている(図2)。従って、各LED素子110に駆動電流が供給されると、LEDユニット100からはX軸方向に略平行な10本のライン状の紫外光が出射される。なお、本実施形態の各LED素子110は、略一様な光量の紫外光を出射するように各LED素子110に供給される駆動電流が調整されており、LEDユニット100から出射される紫外光は、X軸方向及びY軸方向において略均一な光量分布を有している。また、本実施形態の光照射装置10は、X軸方向及びY軸方向に連結可能することにより照射エリアを変更することができるように構成されており、光照射装置10が連結されたときに、隣接する光照射装置10との間でLED素子110の配置が連続するように、X軸方向の両端部に位置するLED素子110は、放熱装置200の支持部材201の縁から1/2PXの位置に配置され、Y軸方向の両端部に位置するLED素子110は、放熱装置200の支持部材201の縁から1/2PYの位置に配置されている(図2)。   The LED element 110 is a semiconductor element that emits ultraviolet light (for example, wavelengths 365 nm, 385 nm, 395 nm, and 405 nm) upon receiving a drive current from the LED drive circuit. In the present embodiment, 20 LED elements 110 are arranged at a predetermined row pitch PX in the X-axis direction, and 10 LED elements 110 are arranged at a predetermined column pitch PY in the Y-axis direction with this being one row. (Fig. 2). Therefore, when a drive current is supplied to each LED element 110, ten line-shaped ultraviolet lights substantially parallel to the X-axis direction are emitted from the LED unit 100. In addition, the drive current supplied to each LED element 110 is adjusted so that each LED element 110 of this embodiment emits ultraviolet light with a substantially uniform light amount, and the ultraviolet light emitted from the LED unit 100 is adjusted. Has a substantially uniform light amount distribution in the X-axis direction and the Y-axis direction. Moreover, the light irradiation apparatus 10 of this embodiment is comprised so that an irradiation area can be changed by being connectable in a X-axis direction and a Y-axis direction, and when the light irradiation apparatus 10 is connected. The LED elements 110 located at both ends in the X-axis direction are 1 / 2PX from the edge of the support member 201 of the heat dissipation device 200 so that the LED elements 110 are continuously arranged between the adjacent light irradiation devices 10. The LED elements 110 arranged at the positions and at both ends in the Y-axis direction are arranged at a position of 1/2 PY from the edge of the support member 201 of the heat dissipation device 200 (FIG. 2).

(放熱装置200の構成) (Configuration of heat dissipation device 200)

図3は、本実施形態の放熱装置200の構成を説明する図である。図3(a)は、図1(c)のA−A断面図であり、図3(b)は、図3(a)のC部拡大図であり、図3(c)は、図3(a)のD部拡大図である。放熱装置200は、LEDユニット100の基板105の裏面(LED素子110が搭載される面と反対側の面)に密着するように配置され、各LED素子110で発生した熱を放熱する装置であり、支持部材201と、複数のヒートパイプ203と、複数の放熱フィン205とで構成されている。各LED素子110に駆動電流が流れ、各LED素子110から紫外光が出射されると、LED素子110の自己発熱により温度が上昇し、発光効率が著しく低下するといった問題が発生する。このため、本実施形態においては、基板105の裏面に密着するように放熱装置200を設け、LED素子110で発生する熱を、基板105を介して放熱装置200に伝導し、強制的に放熱している。   FIG. 3 is a diagram illustrating the configuration of the heat dissipation device 200 of the present embodiment. 3A is a cross-sectional view taken along the line AA in FIG. 1C, FIG. 3B is an enlarged view of a portion C in FIG. 3A, and FIG. It is the D section enlarged view of (a). The heat dissipation device 200 is a device that is disposed so as to be in close contact with the back surface of the substrate 105 of the LED unit 100 (the surface opposite to the surface on which the LED elements 110 are mounted) and dissipates heat generated in each LED element 110. The support member 201, a plurality of heat pipes 203, and a plurality of heat radiation fins 205 are included. When a drive current flows through each LED element 110 and ultraviolet light is emitted from each LED element 110, the temperature rises due to self-heating of the LED element 110, and the light emission efficiency is significantly reduced. For this reason, in this embodiment, the heat dissipation device 200 is provided so as to be in close contact with the back surface of the substrate 105, and the heat generated in the LED element 110 is conducted to the heat dissipation device 200 via the substrate 105 to forcibly dissipate heat. ing.

支持部材201は、熱伝導率の高い金属(例えば、銅、アルミニウム)で形成された矩形板状の部材である。支持部材201は、第1主面201aがグリス等の熱伝導部材を介して基板105の裏面に密着するように取り付けられ、熱源となるLEDユニット100が発する熱を受熱する。本実施形態の支持部材201の第2主面201b(第1主面201aと対向する面)には、後述するヒートパイプ203の第1直線部203aと湾曲部203caの形状に応じた溝部201cが形成されており(図1(d)、図3)、支持部材201によってヒートパイプ203が支持されるようになっている。このように、本実施形態の支持部材201は、ヒートパイプ203を支持すると共に、LEDユニット100からの熱を受熱する受熱部として機能するようになっている。   The support member 201 is a rectangular plate-shaped member formed of a metal having a high thermal conductivity (for example, copper or aluminum). The support member 201 is attached such that the first main surface 201a is in close contact with the back surface of the substrate 105 via a heat conducting member such as grease, and receives heat generated by the LED unit 100 serving as a heat source. On the second main surface 201b (surface facing the first main surface 201a) of the support member 201 of the present embodiment, a groove portion 201c corresponding to the shapes of the first straight portion 203a and the curved portion 203ca of the heat pipe 203 described later is provided. The heat pipe 203 is supported by the support member 201 (FIGS. 1D and 3). As described above, the support member 201 of the present embodiment supports the heat pipe 203 and functions as a heat receiving unit that receives heat from the LED unit 100.

ヒートパイプ203は、作動液(例えば、水、アルコール、アンモニア等)が減圧封入された、断面略円形の中空の金属(例えば、銅、アルミニウム、鉄、マグネシウム等の金属やこれらを含む合金等)の密閉管である。図3に示すように、本実施形態の各ヒートパイプ203は、Y軸方向から見たときに、略逆コの字状の形状を有しており、X軸方向に延びる第1直線部203aと、第1直線部203aと略平行にX軸方向に延びる第2直線部203bと、第1直線部203aと第2直線部203bが連続するように第1直線部203aの一端(X軸方向下流側(正の方向側)の一端)と第2直線部203bの一端(X軸方向下流側(正の方向側)の一端)とを接続する接続部203cとから構成されている。なお、本実施形態のヒートパイプ203は、光照射装置10が連結したときに互いに干渉することがないように、支持部材201の第2主面201bに面する空間から逸脱しないように配置されている。   The heat pipe 203 is a hollow metal (for example, a metal such as copper, aluminum, iron, magnesium, or an alloy containing these) in which a hydraulic fluid (for example, water, alcohol, ammonia, etc.) is sealed under reduced pressure. This is a sealed tube. As shown in FIG. 3, each heat pipe 203 of the present embodiment has a substantially inverted U-shape when viewed from the Y-axis direction, and the first straight portion 203a extending in the X-axis direction. One end (X-axis direction) of the first straight line portion 203a so that the first straight line portion 203a and the second straight line portion 203b are continuous with each other. It is comprised from the connection part 203c which connects the downstream (one end of the positive direction side) and the one end (one end of the X-axis direction downstream side (positive direction side)) of the 2nd linear part 203b. The heat pipes 203 of the present embodiment are arranged so as not to deviate from the space facing the second main surface 201b of the support member 201 so that they do not interfere with each other when the light irradiation device 10 is connected. Yes.

各ヒートパイプ203の第1直線部203aは、支持部材201からの熱を受け取る部分であり、各ヒートパイプ203の第1直線部203aが支持部材201の溝部201cに嵌まり込んだ状態で不図示の固定具又は接着剤によって固定され、支持部材201と熱的に結合している(図3)。本実施形態においては、5個のヒートパイプ203の第1直線部203aが、Y軸方向に所定の間隔をおいて均等に配置されている(図1(c)、図1(d))。   The first straight portion 203a of each heat pipe 203 is a portion that receives heat from the support member 201, and is not shown in a state where the first straight portion 203a of each heat pipe 203 is fitted in the groove portion 201c of the support member 201. Are fixed by a fixing tool or an adhesive, and are thermally coupled to the support member 201 (FIG. 3). In the present embodiment, the first straight portions 203a of the five heat pipes 203 are evenly arranged at a predetermined interval in the Y-axis direction (FIGS. 1C and 1D).

各ヒートパイプ203の第2直線部203bは、第1直線部203aによって受け取った熱を放熱する部分であり、各ヒートパイプ203の第2直線部203bが放熱フィン205の貫通孔205aに挿通され、放熱フィン205と機械的及び熱的に結合している(図3)。本実施形態においては、5個のヒートパイプ203の第2直線部203bが、Y軸方向に所定の間隔をおいて並べて配置されている(図1(c)、図1(d))。なお、本実施形態の各ヒートパイプ203の第2直線部203bの長さは、第1直線部203aの長さと略等しい。   The second straight portion 203b of each heat pipe 203 is a portion that radiates heat received by the first straight portion 203a, and the second straight portion 203b of each heat pipe 203 is inserted into the through hole 205a of the heat radiating fin 205, The heat dissipating fins 205 are mechanically and thermally coupled (FIG. 3). In the present embodiment, the second straight portions 203b of the five heat pipes 203 are arranged side by side with a predetermined interval in the Y-axis direction (FIGS. 1C and 1D). In addition, the length of the 2nd linear part 203b of each heat pipe 203 of this embodiment is substantially equal to the length of the 1st linear part 203a.

各ヒートパイプ203の接続部203cは、支持部材201の第2主面201bから突出するように第1直線部203aの一端からZ軸方向上流側(負の方向側)に延び、第2直線部203bの一端に接続されている。つまり、接続部203cは、第2直線部203bが第1直線部203aと略平行となるように、第2直線部203bを折り返している。各ヒートパイプ203の接続部203cの第1直線部203aの近傍及び第2直線部203bの近傍には、接続部203cが座屈しないように、湾曲部203ca、203cbが形成されている。なお、本実施形態においては、湾曲部203caも溝部201cに嵌まり込んだ状態で固定され、支持部材201と熱的に結合するようになっている。   The connection portion 203c of each heat pipe 203 extends from one end of the first straight portion 203a to the upstream side in the Z-axis direction (negative direction side) so as to protrude from the second main surface 201b of the support member 201, and the second straight portion It is connected to one end of 203b. That is, the connecting portion 203c folds back the second straight portion 203b so that the second straight portion 203b is substantially parallel to the first straight portion 203a. Curved portions 203ca and 203cb are formed in the vicinity of the first straight portion 203a and the second straight portion 203b of the connection portion 203c of each heat pipe 203 so that the connection portion 203c does not buckle. In the present embodiment, the curved portion 203ca is also fixed in a state of being fitted into the groove portion 201c, and is thermally coupled to the support member 201.

放熱フィン205は、矩形板状の金属(例えば、銅、アルミニウム、鉄、マグネシウム等の金属やこれらを含む合金等)の部材である。図3に示すように、本実施形態の各放熱フィン205には、各ヒートパイプ203の第2直線部203bが挿入される貫通孔205aが形成されている。本実施形態においては、50枚の放熱フィン205が、各ヒートパイプ203の第2直線部203bに順に挿入され、X軸方向に所定の間隔を空けて並べて配置されている。なお、各放熱フィン205は、各貫通孔205aにおいて、各ヒートパイプ203の第2直線部203bと溶接やはんだ付け等によって機械的及び熱的に結合している。なお、本実施形態の放熱フィン205は、光照射装置10が連結したときに互いに干渉することがないように、支持部材201の第2主面201bに面する空間から逸脱しないように配置されている。   The heat radiation fin 205 is a member made of a rectangular plate-like metal (for example, a metal such as copper, aluminum, iron, magnesium, or an alloy containing these metals). As shown in FIG. 3, each radiating fin 205 of the present embodiment is formed with a through hole 205a into which the second straight portion 203b of each heat pipe 203 is inserted. In the present embodiment, 50 heat radiating fins 205 are sequentially inserted into the second straight portion 203b of each heat pipe 203, and are arranged side by side with a predetermined interval in the X-axis direction. Each radiating fin 205 is mechanically and thermally coupled to the second straight portion 203b of each heat pipe 203 by welding, soldering, or the like in each through hole 205a. The heat radiation fins 205 of the present embodiment are arranged so as not to deviate from the space facing the second main surface 201b of the support member 201 so that they do not interfere with each other when the light irradiation device 10 is connected. Yes.

各LED素子110に駆動電流が流れ、各LED素子110から紫外光が出射されると、LED素子110の自己発熱により温度が上昇するが、各LED素子110で発生した熱は、基板105、支持部材201を介して各ヒートパイプ203の第1直線部203aに速やかに伝導(移動)する。そして、各ヒートパイプ203の第1直線部203aに熱が移動すると、各ヒートパイプ203内の作動液が熱を吸収して蒸発し、作動液の蒸気が接続部203c、第2直線部203b内の空洞を通って移動するため、第1直線部203aの熱は第2直線部203bに移動する。そして、第2直線部203bに移動した熱は、さらに第2直線部203bに結合している複数の放熱フィン205に移動し、各放熱フィン205から空気中に放熱される。各放熱フィン205から放熱されると、第2直線部203bの温度も低下するため、第2直線部203b内の作動液の蒸気も冷却されて液体に戻り、第1直線部203aに移動する。そして、第1直線部203aに移動した作動液は、新たに基板105、支持部材201を介して伝導される熱を吸収するために用いられる。   When a drive current flows through each LED element 110 and ultraviolet light is emitted from each LED element 110, the temperature rises due to self-heating of the LED element 110, but the heat generated in each LED element 110 is supported by the substrate 105. It quickly conducts (moves) to the first straight portion 203a of each heat pipe 203 via the member 201. When the heat moves to the first straight portion 203a of each heat pipe 203, the working fluid in each heat pipe 203 absorbs the heat and evaporates, and the vapor of the working fluid is in the connection portion 203c and the second straight portion 203b. Therefore, the heat of the first straight part 203a moves to the second straight part 203b. And the heat which moved to the 2nd linear part 203b moves to the several radiation fin 205 couple | bonded with the 2nd linear part 203b further, and is thermally radiated from the each radiation fin 205 in the air. When heat is radiated from the heat radiation fins 205, the temperature of the second straight line portion 203b also decreases, so that the vapor of the working fluid in the second straight line portion 203b is cooled to return to the liquid and moves to the first straight line portion 203a. Then, the hydraulic fluid that has moved to the first linear portion 203 a is used to newly absorb heat conducted through the substrate 105 and the support member 201.

このように、本実施形態においては、各ヒートパイプ203内の作動液が第1直線部203aと第2直線部203bとの間を循環することにより、各LED素子110で発生した熱が速やかに放熱フィン205に移動し、放熱フィン205から空気中に効率よく放熱されるようになっている。このため、LED素子110の温度が過度に上昇することはなく、発光効率が著しく低下するといった問題も発生しない。   As described above, in the present embodiment, the heat generated in each LED element 110 is quickly generated by circulating the working fluid in each heat pipe 203 between the first straight portion 203a and the second straight portion 203b. It moves to the heat radiating fin 205 and efficiently radiates heat from the heat radiating fin 205 into the air. For this reason, the temperature of the LED element 110 does not rise excessively, and the problem that the light emission efficiency significantly decreases does not occur.

なお、放熱装置200の冷却能力は、ヒートパイプ203の熱輸送量と、放熱フィン205の放熱量によって決定される。また、基板105上に二次元に配置された各LED素子110間に温度差が発生すると、温度特性に起因する照射強度のバラツキが生じるため、照射強度の観点からは、基板105をX軸方向及びY軸方向に沿って均一に冷却することが求められるところ、特に本実施形態の光照射装置10においては、X軸方向及びY軸方向に連結可能に構成されており、支持部材201の端部周辺にまでLED素子110が配置されているため、支持部材201の端部周辺まで均一に冷却しなければならないといった問題がある。   The cooling capacity of the heat dissipation device 200 is determined by the heat transport amount of the heat pipe 203 and the heat dissipation amount of the heat dissipating fins 205. In addition, when a temperature difference occurs between the LED elements 110 arranged two-dimensionally on the substrate 105, variation in irradiation intensity due to temperature characteristics occurs. Therefore, from the viewpoint of irradiation intensity, the substrate 105 is arranged in the X-axis direction. In the light irradiation device 10 of this embodiment, it is configured to be connectable in the X-axis direction and the Y-axis direction, and the end of the support member 201 is required to be uniformly cooled along the Y-axis direction. Since the LED element 110 is disposed up to the periphery of the portion, there is a problem that the periphery of the end portion of the support member 201 must be uniformly cooled.

そこで、本実施形態の放熱装置200においては、各ヒートパイプ203のX軸方向の長さを、支持部材201のX軸方向の長さと同一か、または僅かに短くなるように構成すると共に、各ヒートパイプ203の第1直線部203aと湾曲部203caが支持部材201と熱的に接合するように構成することで、X軸方向に沿って均一に冷却している。つまり、各ヒートパイプ203の第1直線部203aと湾曲部203caを用いて支持部材201からの熱を受け取る構成とすることで、各ヒートパイプ203がX軸方向に突出することなく、かつ支持部材201のX軸方向の両端部に亘って均一に冷却されるようになっている。また、Y軸方向については、複数のヒートパイプ203をY軸方向に均等に配置することでY軸方向に沿っても均一に冷却している。なお、図3(b)に示すとおり、各ヒートパイプ203の第1直線部203aの先端から支持部材201の縁までの距離d1は、(図2に示す)LED素子110のX軸方向のサイズLxの1/2以下であることが好ましい。また同様に、図3(c)に示すとおり、各ヒートパイプ203の湾曲部203caから支持部材201の縁までの距離d2は、LED素子110のX軸方向のサイズLxの1/2以下であることが好ましい。   Therefore, in the heat dissipation device 200 of the present embodiment, the length of each heat pipe 203 in the X-axis direction is configured to be the same as or slightly shorter than the length of the support member 201 in the X-axis direction. The first straight portion 203a and the curved portion 203ca of the heat pipe 203 are configured to be thermally bonded to the support member 201, thereby cooling uniformly along the X-axis direction. In other words, by using the first straight portion 203a and the curved portion 203ca of each heat pipe 203 to receive heat from the support member 201, each heat pipe 203 does not protrude in the X-axis direction, and the support member. The cooling is uniformly performed on both ends in the X-axis direction of 201. Moreover, about the Y-axis direction, the several heat pipe 203 is arrange | positioned equally in the Y-axis direction, and it is cooling uniformly also along the Y-axis direction. As shown in FIG. 3B, the distance d1 from the tip of the first straight portion 203a of each heat pipe 203 to the edge of the support member 201 is the size of the LED element 110 in the X-axis direction (shown in FIG. 2). It is preferable that it is 1/2 or less of Lx. Similarly, as shown in FIG. 3C, the distance d2 from the curved portion 203ca of each heat pipe 203 to the edge of the support member 201 is ½ or less of the size Lx of the LED element 110 in the X-axis direction. It is preferable.

このように、本実施形態の構成によれば、Y軸方向及びX軸方向において、冷却能力のバラツキが少なく、基板105を一様に(略均一に)冷却することができ、基板105上に配置された200個のLED素子110も略均一に冷却される。従って、各LED素子110間における温度差も少なく、温度特性に起因する照射強度のバラツキも少ない。また、図1及び図3に示すように、本実施形態のヒートパイプ203及び放熱フィン205は、支持部材201の第2主面201bに面する空間から逸脱しないように構成されているため、光照射装置10を連結しても互いに干渉することがない。   As described above, according to the configuration of the present embodiment, there is little variation in the cooling capacity in the Y-axis direction and the X-axis direction, and the substrate 105 can be cooled uniformly (substantially uniformly). The 200 LED elements 110 arranged are also cooled substantially uniformly. Therefore, there is little temperature difference between the LED elements 110, and there is little variation in irradiation intensity due to temperature characteristics. As shown in FIGS. 1 and 3, the heat pipe 203 and the heat radiation fin 205 of the present embodiment are configured so as not to deviate from the space facing the second main surface 201 b of the support member 201. Even if the irradiation apparatus 10 is connected, it does not interfere with each other.

図4は、本実施形態の光照射装置10をX軸方向に連結した状態を示す図であり、図4(a)は、平面図(Y軸方向下流側(正の方向側)から見た図)であり、図4(b)は、正面図(Z軸方向下流側(正の方向側)から見た図)である。図4(a)に示すように、本実施形態の光照射装置10は、ヒートパイプ203及び放熱フィン205が、支持部材201の第2主面201bに面する空間から逸脱しないように構成されているため、支持部材201を接合して、支持部材201の第1主面201aが連続するように(つまり、隣接する光照射装置10との間でLED素子110の配置が連続するように)連結配置することが可能である。従って、仕様や用途に応じて、様々なサイズのライン状の照射エリアを形成することが可能となる。   FIG. 4 is a diagram showing a state in which the light irradiation device 10 of the present embodiment is connected in the X-axis direction, and FIG. 4A is a plan view (viewed from the Y-axis direction downstream side (positive direction side)). FIG. 4B is a front view (viewed from the downstream side (positive direction side) in the Z-axis direction). As shown in FIG. 4A, the light irradiation device 10 of the present embodiment is configured such that the heat pipe 203 and the heat radiation fin 205 do not deviate from the space facing the second main surface 201 b of the support member 201. Therefore, the support member 201 is joined so that the first main surface 201a of the support member 201 is continuous (that is, the arrangement of the LED elements 110 is continuous with the adjacent light irradiation device 10). It is possible to arrange. Therefore, it is possible to form a line-shaped irradiation area of various sizes according to the specifications and applications.

図5は、本実施形態の光照射装置10をX軸方向及びY軸方向に連結した状態を示す図であり、図5(a)は、平面図(Y軸方向下流側(正の方向側)から見た図)であり、図5(b)は、正面図(Z軸方向下流側(正の方向側)から見た図)である。図5に示すように、本実施形態の光照射装置10は、ヒートパイプ203及び放熱フィン205が、支持部材201の第2主面201bに面する空間から逸脱しないように構成されているため、支持部材201を接合して、支持部材201の第1主面201aが連続するように(つまり、隣接する光照射装置10との間でLED素子110の配置が連続するように)、マトリックス配置することが可能である。従って、仕様や用途に応じて、様々なサイズの照射エリアを形成することが可能となる。   FIG. 5 is a view showing a state in which the light irradiation device 10 of the present embodiment is connected in the X-axis direction and the Y-axis direction, and FIG. 5A is a plan view (a Y-axis direction downstream side (positive direction side). ) And FIG. 5B is a front view (viewed from the Z-axis direction downstream side (positive direction side)). As shown in FIG. 5, the light irradiation device 10 of the present embodiment is configured so that the heat pipe 203 and the heat radiation fin 205 do not deviate from the space facing the second main surface 201b of the support member 201. The support member 201 is joined and arranged in a matrix so that the first main surface 201a of the support member 201 is continuous (that is, the LED elements 110 are continuously disposed between adjacent light irradiation devices 10). It is possible. Therefore, it is possible to form irradiation areas of various sizes according to specifications and applications.

以上が本実施形態の説明であるが、本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲内において様々な変形が可能である。   The above is the description of the present embodiment, but the present invention is not limited to the above configuration, and various modifications can be made within the scope of the technical idea of the present invention.

例えば、本実施形態の放熱装置200においては、図1に示すように、Y軸方向に所定の間隔を空けて並ぶ5個のヒートパイプ203と、50枚の放熱フィン205を備える構成としたが、ヒートパイプ203及び放熱フィン205の数はこれに限定されるものではない。放熱フィン205の数は、LED素子110の発熱量や放熱フィン205の周囲の空気の温度等の関係で定まり、LED素子110で発生した熱を放熱することができる、いわゆるフィン面積に応じて、適宜選択される。また、ヒートパイプ203の数は、LED素子110の発熱量や各ヒートパイプ203の熱輸送量等との関係で定まり、LED素子110で発生した熱を十分に輸送することができるように適宜選択される。   For example, the heat dissipating device 200 of the present embodiment is configured to include five heat pipes 203 arranged at a predetermined interval in the Y-axis direction and 50 heat dissipating fins 205 as shown in FIG. The numbers of the heat pipes 203 and the heat radiating fins 205 are not limited to this. The number of radiating fins 205 is determined by the relationship between the amount of heat generated by the LED elements 110 and the temperature of the air around the radiating fins 205, and the heat generated by the LED elements 110 can be radiated according to the so-called fin area. It is selected appropriately. The number of heat pipes 203 is determined by the relationship between the amount of heat generated by the LED elements 110 and the amount of heat transported by each heat pipe 203, and is appropriately selected so that the heat generated by the LED elements 110 can be sufficiently transported. Is done.

また、本実施形態においては、基板105上に20個(X軸方向)×10列(Y軸方向)の態様で、LED素子110が配置され、基板105の裏面側に5個のヒートパイプ203を配置する構成としたが、冷却効率の観点からは、基板105上の各LED素子110が、各ヒートパイプ203の第1直線部203aと相対する位置に配置されることが望ましい。   Further, in the present embodiment, the LED elements 110 are arranged in a manner of 20 (X-axis direction) × 10 rows (Y-axis direction) on the substrate 105, and five heat pipes 203 are provided on the back side of the substrate 105. However, from the viewpoint of cooling efficiency, it is desirable that each LED element 110 on the substrate 105 is disposed at a position facing the first straight portion 203a of each heat pipe 203.

また、本実施形態においては、5個のヒートパイプ203の第1直線部203a及び第2直線部203bが、Y軸方向に所定の間隔をおいて均等に配置されているものとして説明したが(図1(c)、図1(d))、必ずしもこのような構成に限定されるものではない。第1直線部203a及び第2直線部203bの間隔は、LED素子110の配置に応じて、徐々に拡がる(又は狭まる)ように構成してもよい。   In the present embodiment, the first straight portion 203a and the second straight portion 203b of the five heat pipes 203 are described as being equally arranged at a predetermined interval in the Y-axis direction ( 1C and FIG. 1D are not necessarily limited to such a configuration. You may comprise so that the space | interval of the 1st linear part 203a and the 2nd linear part 203b may be gradually expanded (or narrowed) according to arrangement | positioning of the LED element 110. FIG.

また、本実施形態の放熱装置200は、自然空冷されるものとして説明したが、さらに放熱装置200に冷却風を供給するファンを設け、放熱装置200を強制空冷することも可能である。   Moreover, although the heat radiating device 200 of this embodiment was demonstrated as what is naturally air-cooled, the fan which supplies a cooling wind to the heat radiating device 200 can also be provided, and the heat radiating device 200 can also be forced air-cooled.

(変形例1)
図6は、本実施形態の放熱装置200の変形例に係る放熱装置200Mを備えた光照射装置10Mを示す図である。図6(a)は、本変形例の光照射装置10Mの平面図(Y軸方向下流側(正の方向側)から見た図)であり、図6(b)は、右側面図(X軸方向下流側(正の方向側)から見た図)である。図6に示すように、本変形例の光照射装置10Mは、放熱装置200Mが冷却ファン210を備えている点で、本実施形態の光照射装置10と異なる。
(Modification 1)
FIG. 6 is a diagram illustrating a light irradiation device 10M including a heat dissipation device 200M according to a modification of the heat dissipation device 200 of the present embodiment. 6A is a plan view of the light irradiation apparatus 10M according to the present modification (viewed from the Y axis direction downstream side (positive direction side)), and FIG. 6B is a right side view (X). It is the figure seen from the axial direction downstream side (positive direction side). As shown in FIG. 6, the light irradiation device 10 </ b> M of this modification is different from the light irradiation device 10 of the present embodiment in that the heat dissipation device 200 </ b> M includes a cooling fan 210.

冷却ファン210は、放熱装置200MのZ軸方向上流側(負の方向側)に配置され、放熱装置200Mに冷却風を供給する装置である。図6(b)に示すように、冷却ファン210は、支持部材201の第2主面201bに対して垂直な方向(つまり、Z軸方向又はZ軸方向と相反する方向)に気流Wを生成する。冷却ファン210によって生成された気流Wは、各放熱フィン205の間を流れ、各放熱フィン205を冷却すると共に、各放熱フィン205に挿通された各ヒートパイプ203の第2直線部203b、及び支持部材201の第2主面201bを冷却する。従って、本変形例の構成によれば、放熱装置200Mの冷却能力を格段に向上させることができる。なお、冷却ファン210は、図4及び図5に示すような、光照射装置10Mを連結した構成においても適用することができ、この場合、各放熱装置200Mに対して1つの冷却ファン210を設けてもよく、また複数の放熱装置200Mに対して1つの冷却ファン210を設けてもよい。   The cooling fan 210 is a device that is disposed on the upstream side (negative direction side) in the Z-axis direction of the heat dissipation device 200M and supplies cooling air to the heat dissipation device 200M. As shown in FIG. 6B, the cooling fan 210 generates an air flow W in a direction perpendicular to the second main surface 201b of the support member 201 (that is, a direction opposite to the Z-axis direction or the Z-axis direction). To do. The airflow W generated by the cooling fan 210 flows between the heat radiating fins 205 to cool the heat radiating fins 205, and to support and support the second straight portions 203 b of the heat pipes 203 inserted into the heat radiating fins 205. The second main surface 201b of the member 201 is cooled. Therefore, according to the configuration of this modification, the cooling capacity of the heat dissipation device 200M can be significantly improved. The cooling fan 210 can also be applied to a configuration in which the light irradiation device 10M is connected as shown in FIGS. 4 and 5, and in this case, one cooling fan 210 is provided for each heat dissipation device 200M. Alternatively, one cooling fan 210 may be provided for the plurality of heat dissipation devices 200M.

(第2の実施形態)
図7は、本発明の第2の実施形態に係る放熱装置200Aを備えた光照射装置20の概略構成を説明する外観図である。図7(a)は、本実施形態の光照射装置20の平面図(Y軸方向下流側(正の方向側)から見た図)であり、図7(b)は、背面図(Z軸方向上流側(負の方向側)から見た図)であり、図7(c)は、右側面図(X軸方向下流側(正の方向側)から見た図)であり、図7(d)は、左側面図(X軸方向上流側(負の方向側)から見た図)である。本実施形態の光照射装置20は、ヒートパイプ203Aの第1直線部203Aaの配置間隔が狭く、また第2直線部203Abの配置間隔が広くなっている点で、第1の実施形態の放熱装置200と異なる。つまり、本実施形態の放熱装置200Aにおいては、各ヒートパイプ203Aの第1直線部203Aaは、X軸方向から見たときに、支持部材201Aの中央部に近接してY軸方向に略平行に配置されており、各ヒートパイプ203Aの第2直線部203Abは、X軸方向から見たときに、第1直線部203Aaの間隔よりも広い間隔をおいてY軸方向に略平行に配置されている。このような構成によれば、支持部材201Aの中央部の冷却能力を高めることができるため、例えば、LEDユニット100のLED素子110が基板105のY軸方向略中央部に集中して配置されている場合に有効である。なお、本実施形態の光照射装置20も第1の実施形態の光照射装置10と同様、ヒートパイプ203A及び放熱フィン205Aが、支持部材201Aの第2主面201Abに面する空間から逸脱しないように構成されているため、図8に示すように、支持部材201Aを接合して、支持部材201Aの第1主面201Aaが連続するように連結配置することが可能である。
(Second Embodiment)
FIG. 7 is an external view illustrating a schematic configuration of the light irradiation device 20 including the heat dissipation device 200A according to the second embodiment of the present invention. Fig.7 (a) is a top view (figure seen from the Y-axis direction downstream side (positive direction side)) of the light irradiation apparatus 20 of this embodiment, FIG.7 (b) is a rear view (Z-axis). FIG. 7C is a right side view (viewed from the X-axis direction downstream side (positive direction side)), and FIG. d) is a left side view (a view seen from the upstream side (negative direction side) in the X-axis direction). The light irradiation device 20 of the present embodiment is a heat dissipation device of the first embodiment in that the arrangement interval of the first straight portions 203Aa of the heat pipe 203A is narrow and the arrangement interval of the second straight portions 203Ab is wide. Different from 200. That is, in the heat dissipation device 200A of the present embodiment, the first straight portion 203Aa of each heat pipe 203A is close to the central portion of the support member 201A and substantially parallel to the Y-axis direction when viewed from the X-axis direction. The second straight portions 203Ab of the heat pipes 203A are arranged substantially parallel to the Y-axis direction at a wider interval than the first straight portion 203Aa when viewed from the X-axis direction. Yes. According to such a configuration, the cooling capacity of the central portion of the support member 201A can be increased. For example, the LED elements 110 of the LED unit 100 are concentrated on the substantially central portion of the substrate 105 in the Y-axis direction. It is effective when Note that, similarly to the light irradiation device 10 of the first embodiment, the light irradiation device 20 of the present embodiment also prevents the heat pipe 203A and the heat radiation fin 205A from deviating from the space facing the second main surface 201Ab of the support member 201A. Therefore, as shown in FIG. 8, it is possible to connect and arrange the support member 201A so that the first main surface 201Aa of the support member 201A is continuous.

(変形例2)
図9は、本実施形態の放熱装置200Aの変形例に係る放熱装置200AMを備えた光照射装置20Mの右側面図(X軸方向下流側(正の方向側)から見た図)である。図9に示すように、本変形例の光照射装置20Mは、放熱装置200AMが冷却ファン210Aを備えている点で、本実施形態の光照射装置20と異なる。
(Modification 2)
FIG. 9 is a right side view (a view seen from the downstream side in the X-axis direction (positive direction side)) of the light irradiation device 20M including the heat dissipation device 200AM according to a modification of the heat dissipation device 200A of the present embodiment. As shown in FIG. 9, the light irradiation device 20M of the present modification is different from the light irradiation device 20 of the present embodiment in that the heat dissipation device 200AM includes a cooling fan 210A.

冷却ファン210Aは、変形例1の冷却ファン210と同様、放熱装置200AMのZ軸方向上流側(負の方向側)に配置され、放熱装置200AMに冷却風を供給する装置である。図7及び図9に示すように、本変形例においては、第2直線部203Ab(図9において不図示)のY軸方向の間隔が拡がっているため、変形例1と比較して、より多くの気流Wが支持部材201Aの第2主面201Abに到達する。従って、本変形例の構成によれば、放熱装置200AMの冷却能力をさらに向上させることができる。なお、冷却ファン210Aは、図8に示すような、光照射装置20Mを連結した構成においても適用することができ、この場合、各放熱装置200AMに対して1つの冷却ファン210Aを設けてもよく、また複数の放熱装置200AMに対して1つの冷却ファン210Aを設けてもよい。   The cooling fan 210A is a device that is arranged on the upstream side (negative direction side) in the Z-axis direction of the heat radiating device 200AM and supplies cooling air to the heat radiating device 200AM, similarly to the cooling fan 210 of the first modification. As shown in FIGS. 7 and 9, in the present modification, the distance between the second linear portions 203Ab (not shown in FIG. 9) in the Y-axis direction is widened, so that it is more than that in Modification 1. Airflow W reaches the second main surface 201Ab of the support member 201A. Therefore, according to the configuration of the present modification, the cooling capacity of the heat dissipation device 200AM can be further improved. The cooling fan 210A can also be applied to a configuration in which the light irradiation device 20M is connected as shown in FIG. 8, and in this case, one cooling fan 210A may be provided for each heat dissipation device 200AM. One cooling fan 210A may be provided for a plurality of heat dissipation devices 200AM.

(第3の実施形態)
図10は、本発明の第3の実施形態に係る放熱装置200Bを備えた光照射装置30の概略構成を説明する外観図である。図10(a)は、本実施形態の光照射装置30の平面図(Y軸方向下流側(正の方向側)から見た図)であり、図10(b)は、背面図(Z軸方向上流側(負の方向側)から見た図)であり、図10(c)は、右側面図(X軸方向下流側(正の方向側)から見た図)であり、図10(d)は、左側面図(X軸方向上流側(負の方向側)から見た図)である。本実施形態の光照射装置30は、X軸方向から見たときに、各ヒートパイプ203Bの第2直線部203Bbの位置がY軸方向及びZ軸方向において異なり(図10(d))、各ヒートパイプ203Bの接続部203Bc(図10(a)、図10(c))の長さがそれぞれ異なっている点、また放熱フィン205Bが、支持部材201Bの第2主面201BbのY軸方向上流側(負の方向側)に形成されており、支持部材201Bの第2主面201BbのY軸方向下流側(正の方向側)に空間P(図10(b)、図10(c)、図10(d))が形成されている点で第1の実施形態の放熱装置200と異なる。従って、このような構成によれば、空間Pに他の部品(例えば、冷却ファン、LED駆動回路等)を配置することができる。なお、本実施形態の各ヒートパイプ203Bの第1直線部203Baは、第2の実施形態の放熱装置200Aと同様、X軸方向から見たときに、支持部材201Bの中央部に近接してY軸方向に略平行に配置されている。従って、支持部材201Bの中央部の冷却能力を高めることができるため、例えば、LEDユニット100のLED素子110が基板105のY軸方向略中央部に集中して配置されている場合に有効である。また、本実施形態の光照射装置30も第1の実施形態の光照射装置10と同様、ヒートパイプ203B及び放熱フィン205Bが、支持部材201Bの第2主面201Bbに面する空間から逸脱しないように構成されているため、図11に示すように、支持部材201Bを接合して、支持部材201Bの第1主面201Baが連続するように連結配置することが可能である。
(Third embodiment)
FIG. 10 is an external view illustrating a schematic configuration of a light irradiation device 30 including a heat dissipation device 200B according to the third embodiment of the present invention. FIG. 10A is a plan view of the light irradiation device 30 of the present embodiment (viewed from the downstream side in the Y-axis direction (positive direction side)), and FIG. 10B is a rear view (Z-axis). FIG. 10C is a right side view (viewed from the downstream side in the X-axis direction (positive direction side)), and FIG. d) is a left side view (a view seen from the upstream side (negative direction side) in the X-axis direction). In the light irradiation device 30 of the present embodiment, when viewed from the X-axis direction, the position of the second straight portion 203Bb of each heat pipe 203B is different in the Y-axis direction and the Z-axis direction (FIG. 10 (d)). The lengths of the connecting portions 203Bc (FIGS. 10A and 10C) of the heat pipe 203B are different from each other, and the radiating fins 205B are upstream of the second main surface 201Bb of the support member 201B in the Y-axis direction. The space P (FIG. 10B, FIG. 10C) is formed on the Y axis direction downstream side (positive direction side) of the second main surface 201Bb of the support member 201B. FIG. 10D is different from the heat dissipation device 200 of the first embodiment in that FIG. Therefore, according to such a structure, other components (for example, a cooling fan, an LED drive circuit, etc.) can be arranged in the space P. In addition, the first straight portion 203Ba of each heat pipe 203B of this embodiment is close to the center portion of the support member 201B when viewed from the X-axis direction, similarly to the heat dissipation device 200A of the second embodiment. It is arranged substantially parallel to the axial direction. Therefore, since the cooling capacity of the central part of the support member 201B can be increased, it is effective when, for example, the LED elements 110 of the LED unit 100 are concentrated and arranged in the substantially central part of the substrate 105 in the Y-axis direction. . Further, similarly to the light irradiation apparatus 10 of the first embodiment, the light irradiation apparatus 30 of the present embodiment also prevents the heat pipe 203B and the heat radiation fin 205B from deviating from the space facing the second main surface 201Bb of the support member 201B. Therefore, as shown in FIG. 11, the support member 201B can be joined and connected and arranged so that the first main surface 201Ba of the support member 201B is continuous.

(変形例3)
図12は、本実施形態の放熱装置200Bの変形例に係る放熱装置200BMを備えた光照射装置30Mの右側面図(X軸方向下流側(正の方向側)から見た図)である。図12に示すように、本変形例の光照射装置30Mは、放熱装置200BMが冷却ファン210Bを備えている点で、本実施形態の光照射装置30と異なる。
(Modification 3)
FIG. 12 is a right side view of the light irradiation device 30M including the heat dissipation device 200BM according to a modification of the heat dissipation device 200B of the present embodiment (a view seen from the downstream side in the X axis direction (positive direction side)). As shown in FIG. 12, the light irradiation device 30M of this modification is different from the light irradiation device 30 of the present embodiment in that the heat dissipation device 200BM includes a cooling fan 210B.

冷却ファン210Bは、支持部材201Bの第2主面201Bb上の空間P内に配置され、放熱装置200BMに冷却風を供給する装置である。図12に示すように、本変形例の冷却ファン210Bは、支持部材201Bの第2主面201Bbに対して略平行な方向(つまり、Y軸方向又はY軸方向と相反する方向)に気流Wを生成する。冷却ファン210Bによって生成された気流Wは、各放熱フィン205Bの間を流れ、各放熱フィン205Bを冷却すると共に、各放熱フィン205Bに挿通された各ヒートパイプ203Bの第2直線部203Bb(図10)を冷却する。本変形においては、各ヒートパイプ203Bの第2直線部203Bb(図10)の位置がZ軸方向に異なっているため、冷却ファン210Bによって生成された気流Wが各第2直線部203Bb(図10)に確実にあたることとなる。従って、本変形例の構成によれば、放熱装置200BMの冷却能力を格段に向上させることができる。なお、冷却ファン210Bは、図11に示すような、光照射装置30Mを連結した構成においても適用することができ、この場合、各放熱装置200BMに対して1つの冷却ファン210Bを設けてもよく、また複数の放熱装置200BMに対して1つの冷却ファン210Bを設けてもよい。   The cooling fan 210B is a device that is disposed in the space P on the second main surface 201Bb of the support member 201B and supplies cooling air to the heat dissipation device 200BM. As shown in FIG. 12, the cooling fan 210B of the present modification has an airflow W in a direction substantially parallel to the second main surface 201Bb of the support member 201B (that is, the Y-axis direction or the direction opposite to the Y-axis direction). Is generated. The air flow W generated by the cooling fan 210B flows between the heat radiating fins 205B, cools the heat radiating fins 205B, and also includes the second straight portions 203Bb of the heat pipes 203B inserted into the heat radiating fins 205B (FIG. 10). ). In this modification, since the position of the second straight portion 203Bb (FIG. 10) of each heat pipe 203B is different in the Z-axis direction, the air flow W generated by the cooling fan 210B is changed to each second straight portion 203Bb (FIG. 10). ). Therefore, according to the configuration of this modification, the cooling capacity of the heat dissipation device 200BM can be significantly improved. The cooling fan 210B can also be applied to a configuration in which the light irradiation device 30M is connected as shown in FIG. 11, and in this case, one cooling fan 210B may be provided for each heat dissipation device 200BM. Further, one cooling fan 210B may be provided for the plurality of heat dissipation devices 200BM.

(第4の実施形態)
図13は、本発明の第4の実施形態に係る放熱装置200Cを備えた光照射装置40の概略構成を説明する外観図である。図13(a)は、本実施形態の光照射装置40の平面図(Y軸方向下流側(正の方向側)から見た図)であり、図13(b)は、背面図(Z軸方向上流側(負の方向側)から見た図)であり、図13(c)は、右側面図(X軸方向下流側(正の方向側)から見た図)であり、図13(d)は、左側面図(X軸方向上流側(負の方向側)から見た図)である。本実施形態の光照射装置40は、X軸方向から見たときに、各ヒートパイプ203Cの第2直線部203Cbの位置がY軸方向及びZ軸方向において異なっている(図13(d))。具体的には、Y軸方向下流側(正の方向側)に位置するヒートパイプ203Cの第2直線部203CbのZ軸方向の位置(つまり、第2主面201Cbからの高さ)が、Y軸方向上流側(負の方向側)に位置するヒートパイプ203Cの第2直線部203CbのZ軸方向の位置(つまり、第2主面201Cbからの高さ)よりも高くなるように構成されており、各ヒートパイプ203Cの接続部203Cc(図13(a)、図13(c))の長さがそれぞれ異なっている点、また放熱フィン205Cが、各第2直線部203Cbよりも下側の位置で切欠いた切欠部205Caを有しており、切欠部205Ca、各ヒートパイプ203C、第2主面201Cbで囲まれる空間Q(図13(c)、図13(d))が形成されている点、で第1の実施形態の放熱装置200と異なる。このような構成によれば、空間Qに他の部品(例えば、冷却ファン、LED駆動回路等)を配置することができる。なお、本実施形態の各ヒートパイプ203Cの第1直線部203Caは、第2の実施形態の放熱装置200Aと同様、X軸方向から見たときに、支持部材201Cの中央部に近接してY軸方向に略平行に配置されている。従って、支持部材201Cの中央部の冷却能力を高めることができるため、例えば、LEDユニット100のLED素子110が基板105のY軸方向略中央部に集中して配置されている場合に有効である。また、本実施形態の光照射装置40も第1の実施形態の光照射装置10と同様、ヒートパイプ203C及び放熱フィン205Cが、支持部材201Cの第2主面201Cbに面する空間から逸脱しないように構成されているため、図14に示すように、支持部材201Cを接合して、支持部材201Cの第1主面201Caが連続するように連結配置することが可能である。
(Fourth embodiment)
FIG. 13 is an external view illustrating a schematic configuration of a light irradiation device 40 including a heat dissipation device 200C according to the fourth embodiment of the present invention. Fig.13 (a) is a top view (figure seen from the Y-axis direction downstream side (positive direction side)) of the light irradiation apparatus 40 of this embodiment, FIG.13 (b) is a rear view (Z-axis). FIG. 13C is a right side view (viewed from the X-axis direction downstream side (positive direction side)), and FIG. d) is a left side view (a view seen from the upstream side (negative direction side) in the X-axis direction). In the light irradiation device 40 of the present embodiment, when viewed from the X-axis direction, the position of the second straight portion 203Cb of each heat pipe 203C is different in the Y-axis direction and the Z-axis direction (FIG. 13 (d)). . Specifically, the position in the Z-axis direction of the second linear portion 203Cb of the heat pipe 203C located on the downstream side (positive direction side) in the Y-axis direction (that is, the height from the second main surface 201Cb) is Y The second straight portion 203Cb of the heat pipe 203C located on the upstream side (negative direction side) in the axial direction is configured to be higher than the position in the Z-axis direction (that is, the height from the second main surface 201Cb). The connecting portions 203Cc (FIGS. 13 (a) and 13 (c)) of the heat pipes 203C are different in length, and the radiating fins 205C are lower than the second straight portions 203Cb. It has a cutout portion 205Ca cut out at a position, and a space Q (FIGS. 13C and 13D) surrounded by the cutout portion 205Ca, each heat pipe 203C, and the second main surface 201Cb is formed. Point, first fruit It differs from the heat dissipation device 200 forms. According to such a configuration, other components (for example, a cooling fan, an LED drive circuit, etc.) can be arranged in the space Q. Note that the first straight portion 203Ca of each heat pipe 203C of this embodiment is close to the center portion of the support member 201C when viewed from the X-axis direction, as in the heat dissipation device 200A of the second embodiment. It is arranged substantially parallel to the axial direction. Therefore, since the cooling capacity of the central part of the support member 201C can be increased, it is effective when, for example, the LED elements 110 of the LED unit 100 are concentrated and arranged at the substantially central part of the substrate 105 in the Y-axis direction. . Further, in the light irradiation device 40 of the present embodiment, similarly to the light irradiation device 10 of the first embodiment, the heat pipe 203C and the heat radiation fin 205C do not deviate from the space facing the second main surface 201Cb of the support member 201C. Therefore, as shown in FIG. 14, it is possible to connect and arrange the support member 201C so that the first main surface 201Ca of the support member 201C is continuous.

(変形例4)
図15は、本実施形態の放熱装置200Cの変形例に係る放熱装置200CMを備えた光照射装置40Mの左側面図(X軸方向上流側(負の方向側)から見た図)である。図15に示すように、本変形例の光照射装置40Mは、放熱装置200CMが冷却ファン210Cを備えている点で、本実施形態の光照射装置40と異なる。
(Modification 4)
FIG. 15 is a left side view (a diagram viewed from the upstream side in the X-axis direction (negative direction side)) of the light irradiation device 40M including the heat dissipation device 200CM according to the modification of the heat dissipation device 200C of the present embodiment. As illustrated in FIG. 15, the light irradiation device 40 </ b> M of the present modification is different from the light irradiation device 40 of the present embodiment in that the heat dissipation device 200 </ b> CM includes a cooling fan 210 </ b> C.

冷却ファン210Cは、切欠部205Ca、各ヒートパイプ203C、第2主面201Cbで囲まれる空間Q内に配置され、放熱装置200CMに冷却風を供給する装置である。図15に示すように、本変形例の冷却ファン210Cは、切欠部205Caに対向して配置され、Y軸方向及びZ軸方向に対して傾斜する方向に気流Wを生成する。冷却ファン210Cによって生成された気流Wは、各放熱フィン205Cの間を流れ、各放熱フィン205Cを冷却すると共に、各放熱フィン205Cに挿通された各ヒートパイプ203Cの第2直線部203Cbを冷却する。本変形においては、各ヒートパイプ203Cの第2直線部203Cbが切欠部205Caに沿うように(つまり、冷却ファン210Cと対向するように)配置されているため、冷却ファン210Cによって生成された気流Wが各第2直線部203Cbに確実にあたることとなる。従って、本変形例の構成によれば、放熱装置200CMの冷却能力を格段に向上させることができる。なお、冷却ファン210Cは、図14に示すような、光照射装置40Mを連結した構成においても適用することができ、この場合、各放熱装置200CMに対して1つの冷却ファン210Cを設けてもよく、また複数の放熱装置200CMに対して1つの冷却ファン210Cを設けてもよい。   The cooling fan 210C is a device that is arranged in a space Q surrounded by the notch 205Ca, each heat pipe 203C, and the second main surface 201Cb, and supplies cooling air to the heat dissipation device 200CM. As shown in FIG. 15, the cooling fan 210 </ b> C of the present modification is disposed to face the notch 205 </ b> Ca, and generates an airflow W in a direction inclined with respect to the Y-axis direction and the Z-axis direction. The airflow W generated by the cooling fan 210C flows between the heat radiating fins 205C, cools the heat radiating fins 205C, and cools the second straight portions 203Cb of the heat pipes 203C inserted through the heat radiating fins 205C. . In this modification, the second straight portion 203Cb of each heat pipe 203C is arranged along the notch 205Ca (that is, so as to face the cooling fan 210C), and thus the airflow W generated by the cooling fan 210C. Will surely hit each second straight line portion 203Cb. Therefore, according to the configuration of this modification, the cooling capacity of the heat dissipation device 200CM can be significantly improved. Note that the cooling fan 210C can also be applied to a configuration in which the light irradiation device 40M is connected as shown in FIG. 14, and in this case, one cooling fan 210C may be provided for each heat dissipation device 200CM. Further, one cooling fan 210C may be provided for the plurality of heat dissipation devices 200CM.

なお、今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10、10M、20、20M、30、30M、40、40M 光照射装置
100 LEDユニット
105 基板
110 LED素子
200、200M、200A、200AM、200B、200BM、200C、200CM 放熱装置
201、201A、201B、201C 支持部材
201a、201Aa、201Ba、201Ca 第1主面
201b、201Ab、201Bb、201Cb 第2主面
201c 溝部
203、203A、203B、203C ヒートパイプ
203a、203Aa、203Ba、203Ca 第1直線部
203b、203Ab、203Bb、203Cb 第2直線部
203c、203Bc、203Cc 接続部
203ca、203cb 湾曲部
205、205A、205B、205C 放熱フィン
205a 貫通孔
205Ca 切欠部
210、210A、210B、210C 冷却ファン

10, 10M, 20, 20M, 30, 30M, 40, 40M Light irradiation device 100 LED unit 105 Substrate 110 LED element 200, 200M, 200A, 200AM, 200B, 200BM, 200C, 200CM Heat dissipation device 201, 201A, 201B, 201C Support member 201a, 201Aa, 201Ba, 201Ca First main surface 201b, 201Ab, 201Bb, 201Cb Second main surface 201c Groove portion 203, 203A, 203B, 203C Heat pipe 203a, 203Aa, 203Ba, 203Ca First straight portion 203b, 203Ab, 203Bb, 203Cb Second straight part 203c, 203Bc, 203Cc Connection part 203ca, 203cb Bending part 205, 205A, 205B, 205C Radiation fin 205a Through hole 205Ca Cutting Part 210,210A, 210B, 210C cooling fan

Claims (17)

熱源に密着して配置され、前記熱源の熱を空気中に放熱する放熱装置であって、
板状の形状を呈し、第1主面側が前記熱源に密着するように配置される支持部材と、
前記支持部材に支持されると共に、前記支持部材と熱的に接合し、前記熱源からの熱を輸送するヒートパイプと、
前記第1主面と対向する第2主面に面する空間内に配置され、前記ヒートパイプと熱的に接合し、前記ヒートパイプによって輸送された熱を放熱する複数の放熱フィンと、
を備え、
前記ヒートパイプは、
前記支持部材と熱的に接合される第1直線部と、
前記複数の放熱フィンと熱的に接合される第2直線部と、
前記第1直線部と前記第2直線部が連続するように、前記第1直線部の一端部と前記第2直線部の一端部とを接続する接続部と、
を有し、
前記第1直線部が延びる方向の前記ヒートパイプの長さは、前記第1直線部が延びる方向の前記支持部材の長さと同一か、または僅かに短く、
前記接続部は、前記第1直線部の一端部近傍に前記支持部材と熱的に接合される湾曲部を有し、
複数の放熱装置を前記第1直線部が延びる方向に並べたときに、前記第1主面が連続するように連結可能であることを特徴とする放熱装置。
A heat dissipating device arranged in close contact with a heat source and dissipating heat of the heat source into the air,
A support member that has a plate-like shape and is arranged so that the first main surface side is in close contact with the heat source;
A heat pipe supported by the support member, thermally joined to the support member, and transporting heat from the heat source;
A plurality of radiating fins disposed in a space facing the second main surface facing the first main surface, thermally joined to the heat pipe, and radiating heat transported by the heat pipe;
With
The heat pipe is
A first straight portion thermally bonded to the support member;
A second straight portion thermally bonded to the plurality of heat dissipating fins;
A connecting portion connecting one end of the first straight portion and one end of the second straight portion so that the first straight portion and the second straight portion are continuous;
Have
The length of the heat pipe in the direction in which the first straight portion extends is the same as or slightly shorter than the length of the support member in the direction in which the first straight portion extends,
The connecting portion has a curved portion that is thermally joined to the support member in the vicinity of one end of the first straight portion,
When arranging a plurality of heat dissipation devices in a direction in which the first linear portion extends, the heat dissipation device can be connected so that the first main surface is continuous.
前記ヒートパイプを複数備え、
前記複数のヒートパイプの前記第1直線部は、前記第1直線部が延びる方向と略直交する方向に第1の所定の間隔をおいて配置されている
ことを特徴とする請求項1に記載の放熱装置。
A plurality of the heat pipes are provided,
2. The first straight portion of the plurality of heat pipes is arranged at a first predetermined interval in a direction substantially orthogonal to a direction in which the first straight portion extends. Heat dissipation device.
前記複数のヒートパイプの前記第2直線部は、前記第2主面に略平行で、かつ前記第1直線部が延びる方向と略直交する方向に前記第1の所定の間隔をおいて配置されていることを特徴とする請求項2に記載の放熱装置。   The second straight portions of the plurality of heat pipes are arranged at a first predetermined interval in a direction substantially parallel to the second main surface and substantially perpendicular to a direction in which the first straight portion extends. The heat dissipating device according to claim 2, wherein 前記複数のヒートパイプの前記第2直線部は、前記第2主面に略平行で、かつ前記第1直線部が延びる方向と略直交する方向に前記第1の所定の間隔よりも長い第2の所定の間隔をおいて配置されていることを特徴とする請求項2に記載の放熱装置。   The second straight portions of the plurality of heat pipes are second substantially longer than the first predetermined interval in a direction substantially parallel to the second main surface and substantially perpendicular to a direction in which the first straight portions extend. The heat dissipating device according to claim 2, wherein the heat dissipating device is disposed at a predetermined interval. 前記第2主面に面する空間内に配置され、前記第2主面に対して略垂直な方向に気流を生成するファンを備えることを特徴とする請求項1から請求項4のいずれか一項に記載の放熱装置。   5. The fan according to claim 1, further comprising a fan that is disposed in a space facing the second main surface and generates an airflow in a direction substantially perpendicular to the second main surface. The heat radiating device according to the item. 前記第1直線部が延びる方向から見たときに、前記各ヒートパイプの前記第2直線部の位置が、前記第2主面に略垂直な方向及び略平行な方向において異なることを特徴とする請求項2に記載の放熱装置。   When viewed from the direction in which the first straight portion extends, the position of the second straight portion of each heat pipe is different in a direction substantially perpendicular to the second main surface and a direction substantially parallel to the second main surface. The heat radiating device according to claim 2. 前記第2主面に面する空間内に配置され、前記第2主面に対して略平行な方向に気流を生成するファンを備えることを特徴とする請求項6に記載の放熱装置。   The heat dissipating device according to claim 6, further comprising a fan that is disposed in a space facing the second main surface and generates an air flow in a direction substantially parallel to the second main surface. 前記複数の放熱フィンは、前記複数のヒートパイプの前記第1直線部と前記第2直線部とで囲まれた空間内に切欠部を有し、
前記切欠部で形成された空間内に配置され、前記第2主面に対して斜め方向に気流を生成するファンを備えることを特徴とする請求項6に記載の放熱装置。
The plurality of heat radiating fins have a notch in a space surrounded by the first straight portion and the second straight portion of the plurality of heat pipes,
The heat radiating device according to claim 6, further comprising a fan that is disposed in a space formed by the cutout portion and generates an airflow in an oblique direction with respect to the second main surface.
前記第2直線部が、前記第2主面に対して略平行であることを特徴とする請求項1から請求項8のいずれか一項に記載の放熱装置。   The heat radiating device according to any one of claims 1 to 8, wherein the second straight portion is substantially parallel to the second main surface. 前記支持部材は、前記第2主面側に、前記第1直線部と前記湾曲部に応じた形状の溝部を有しており、
前記第1直線部と前記湾曲部が、前記溝部に嵌まり込むように配置される
ことを特徴とする請求項1から請求項9のいずれか一項に記載の放熱装置。
The support member has a groove portion having a shape corresponding to the first straight portion and the curved portion on the second main surface side,
The heat radiating device according to any one of claims 1 to 9, wherein the first straight portion and the curved portion are disposed so as to be fitted into the groove portion.
請求項1から請求項10のいずれか一項に記載の放熱装置と、
前記第1主面と密着するように配置される基板と、
前記基板の表面上において、前記ヒートパイプの前記第1直線部と略平行に配置された複数のLED素子と、
を備えることを特徴とする光照射装置。
A heat dissipating device according to any one of claims 1 to 10,
A substrate disposed so as to be in close contact with the first main surface;
On the surface of the substrate, a plurality of LED elements arranged substantially parallel to the first straight portion of the heat pipe,
A light irradiation apparatus comprising:
前記複数のLED素子は、前記第1直線部が延びる方向に所定のピッチで配置され、
前記第1直線部が延びる方向において、前記第1直線部から前記支持部材の一端までの距離、及び前記接続部から前記支持部材の他端までの距離が前記ピッチの1/2以下であることを特徴とする請求項11に記載の光照射装置。
The plurality of LED elements are arranged at a predetermined pitch in a direction in which the first linear portion extends,
In a direction in which the first straight line portion extends, a distance from the first straight line portion to one end of the support member and a distance from the connection portion to the other end of the support member are equal to or less than ½ of the pitch. The light irradiation apparatus according to claim 11.
前記複数のLED素子が、前記第1直線部が延びる方向と略直交する方向に複数列に配置されることを特徴とする請求項11又は請求項12に記載の光照射装置。   The light irradiation apparatus according to claim 11 or 12, wherein the plurality of LED elements are arranged in a plurality of rows in a direction substantially orthogonal to a direction in which the first straight line portion extends. 前記複数のLED素子が、前記基板を挟んで前記第1直線部と相対する位置に配置されていることを特徴とする請求項11から請求項13のいずれか一項に記載の光照射装置。   14. The light irradiation apparatus according to claim 11, wherein the plurality of LED elements are arranged at positions facing the first linear portion with the substrate interposed therebetween. 前記光照射装置が、前記第1主面が連続するように連結された複数の前記放熱装置を備えることを特徴とする請求項11から請求項14のいずれか一項に記載の光照射装置。   The light irradiation device according to any one of claims 11 to 14, wherein the light irradiation device includes a plurality of the heat dissipation devices connected so that the first main surface is continuous. 前記複数の放熱装置が、前記第1直線部が延びる方向に並べられて連結されていることを特徴とする請求項15に記載の光照射装置。   The light irradiation device according to claim 15, wherein the plurality of heat dissipation devices are arranged and connected in a direction in which the first straight line portion extends. 前記LED素子が、紫外線硬化樹脂に作用する波長の光を発することを特徴とする請求項11から請求項16のいずれか一項に記載の光照射装置。   The said LED element emits the light of the wavelength which acts on ultraviolet curable resin, The light irradiation apparatus as described in any one of Claims 11-16 characterized by the above-mentioned.
JP2017025339A 2016-03-31 2017-02-14 Heat dissipation device and light irradiation device including the same Active JP6599379B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020170033046A KR20170113127A (en) 2016-03-31 2017-03-16 Heat radiating apparatus and light illuminating apparatus with the same
TW106109408A TWI658235B (en) 2016-03-31 2017-03-21 Radiating device and light irradiation device having the same
US15/464,771 US10119759B2 (en) 2016-03-31 2017-03-21 Heat radiating apparatus and light illuminating apparatus with the same
CN201710190474.0A CN107388213B (en) 2016-03-31 2017-03-28 Heat dissipation device and light irradiation device with same
EP17163499.1A EP3225946B1 (en) 2016-03-31 2017-03-29 Light illuminating apparatus with heat radiating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016073749 2016-03-31
JP2016073749 2016-03-31

Publications (3)

Publication Number Publication Date
JP2017187269A true JP2017187269A (en) 2017-10-12
JP2017187269A5 JP2017187269A5 (en) 2018-02-22
JP6599379B2 JP6599379B2 (en) 2019-10-30

Family

ID=60046300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017025339A Active JP6599379B2 (en) 2016-03-31 2017-02-14 Heat dissipation device and light irradiation device including the same

Country Status (4)

Country Link
JP (1) JP6599379B2 (en)
KR (1) KR20170113127A (en)
CN (1) CN107388213B (en)
TW (1) TWI658235B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151291A1 (en) * 2018-01-31 2019-08-08 古河電気工業株式会社 Heat sink
JP2020118403A (en) * 2019-01-27 2020-08-06 Hoya株式会社 Heat radiation device and light radiation device including the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102590340B1 (en) * 2018-08-21 2023-10-17 주식회사 디오 ultraviolet irradiation apparatus for surface treatment of dental implant
US11618268B2 (en) * 2019-01-30 2023-04-04 Kyocera Corporation Light irradiator and printing device
JP6815562B1 (en) * 2019-12-02 2021-01-20 三菱電機株式会社 heatsink
KR102402027B1 (en) * 2021-12-09 2022-05-26 주식회사 유브이플러스 LED UV Curing Machine

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267572A (en) * 1997-03-19 1998-10-09 Fujikura Ltd Heat pipe retaining structure
JP2001127225A (en) * 1999-10-29 2001-05-11 Furukawa Electric Co Ltd:The Electronic equipment cooling device and cooling method
US20030230398A1 (en) * 2002-06-13 2003-12-18 Hsieh Kun Lee Heat dissipation device
US20050098304A1 (en) * 2003-11-12 2005-05-12 Kuo-Len Lin Heat dissipating device with uniform heat points
US20090084529A1 (en) * 2007-09-30 2009-04-02 Tsung-Hsien Huang Cooler module
JP2011094888A (en) * 2009-10-30 2011-05-12 Fujitsu Ltd Heat radiator and method of manufacturing the heat radiator
JP2011103384A (en) * 2009-11-11 2011-05-26 Fujitsu Ltd Heat sink
JP2011138974A (en) * 2009-12-29 2011-07-14 Fujitsu Ltd Heat sink
US20120098401A1 (en) * 2010-10-22 2012-04-26 Foxconn Technology Co., Ltd. Heat dissipation device and led lamp using the same
JP2013030736A (en) * 2011-06-21 2013-02-07 Furukawa Electric Co Ltd:The Cooling device
JP3182697U (en) * 2012-11-16 2013-04-04 崇賢 ▲黄▼ Heat dissipation device
JP2016026929A (en) * 2014-06-30 2016-02-18 Hoya Candeo Optronics株式会社 Light radiation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200928201A (en) * 2007-12-21 2009-07-01 Foxconn Tech Co Ltd LED lamp
CN201652263U (en) * 2009-11-23 2010-11-24 四川新力光源有限公司 Heat radiating device of light-emitting diode (LED) illuminating lamp
TWM392311U (en) * 2010-05-20 2010-11-11 Leader Trend Technology Corp LED lamp and heat dissipation structure thereof
CN103672471A (en) * 2012-09-19 2014-03-26 珍通能源技术股份有限公司 Active cooling LED (light emitting diode) lighting lamp

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267572A (en) * 1997-03-19 1998-10-09 Fujikura Ltd Heat pipe retaining structure
JP2001127225A (en) * 1999-10-29 2001-05-11 Furukawa Electric Co Ltd:The Electronic equipment cooling device and cooling method
US20030230398A1 (en) * 2002-06-13 2003-12-18 Hsieh Kun Lee Heat dissipation device
US20050098304A1 (en) * 2003-11-12 2005-05-12 Kuo-Len Lin Heat dissipating device with uniform heat points
US20090084529A1 (en) * 2007-09-30 2009-04-02 Tsung-Hsien Huang Cooler module
JP2011094888A (en) * 2009-10-30 2011-05-12 Fujitsu Ltd Heat radiator and method of manufacturing the heat radiator
JP2011103384A (en) * 2009-11-11 2011-05-26 Fujitsu Ltd Heat sink
JP2011138974A (en) * 2009-12-29 2011-07-14 Fujitsu Ltd Heat sink
US20120098401A1 (en) * 2010-10-22 2012-04-26 Foxconn Technology Co., Ltd. Heat dissipation device and led lamp using the same
JP2013030736A (en) * 2011-06-21 2013-02-07 Furukawa Electric Co Ltd:The Cooling device
JP3182697U (en) * 2012-11-16 2013-04-04 崇賢 ▲黄▼ Heat dissipation device
JP2016026929A (en) * 2014-06-30 2016-02-18 Hoya Candeo Optronics株式会社 Light radiation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151291A1 (en) * 2018-01-31 2019-08-08 古河電気工業株式会社 Heat sink
JPWO2019151291A1 (en) * 2018-01-31 2020-02-06 古河電気工業株式会社 heatsink
US11543189B2 (en) 2018-01-31 2023-01-03 Furukawa Electric Co., Ltd. Heat sink
US11725883B2 (en) 2018-01-31 2023-08-15 Furukawa Electric Co., Ltd. Heat sink
JP2020118403A (en) * 2019-01-27 2020-08-06 Hoya株式会社 Heat radiation device and light radiation device including the same
JP7012674B2 (en) 2019-01-27 2022-02-14 Hoya株式会社 Heat dissipation device and light irradiation device equipped with it
TWI827794B (en) * 2019-01-27 2024-01-01 日商Hoya股份有限公司 Heat dissipation device and light irradiation device having same

Also Published As

Publication number Publication date
KR20170113127A (en) 2017-10-12
TWI658235B (en) 2019-05-01
CN107388213A (en) 2017-11-24
CN107388213B (en) 2021-01-15
TW201736775A (en) 2017-10-16
JP6599379B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6599379B2 (en) Heat dissipation device and light irradiation device including the same
EP3225946B1 (en) Light illuminating apparatus with heat radiating apparatus
US9662906B2 (en) Illumination apparatus with heat radiation member
KR102653321B1 (en) Light irradiating device
EP3225945B1 (en) Heat radiating apparatus and light illuminating apparatus with the same
JP6254035B2 (en) Light irradiation device
JP6108565B2 (en) Light irradiation device
CN111486424B (en) Heat sink and light irradiation device provided with same
JP2016025165A (en) Light irradiation device
JP6423900B2 (en) Heat dissipation device and light irradiation device including the same
JP2008288456A (en) Light source device
JP2017159657A (en) Light irradiation device
JP2018043522A (en) Light irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180926

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191002

R150 Certificate of patent or registration of utility model

Ref document number: 6599379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250