JP6423900B2 - Heat dissipation device and light irradiation device including the same - Google Patents

Heat dissipation device and light irradiation device including the same Download PDF

Info

Publication number
JP6423900B2
JP6423900B2 JP2017025338A JP2017025338A JP6423900B2 JP 6423900 B2 JP6423900 B2 JP 6423900B2 JP 2017025338 A JP2017025338 A JP 2017025338A JP 2017025338 A JP2017025338 A JP 2017025338A JP 6423900 B2 JP6423900 B2 JP 6423900B2
Authority
JP
Japan
Prior art keywords
heat
main surface
light irradiation
support member
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017025338A
Other languages
Japanese (ja)
Other versions
JP2017187268A (en
JP2017187268A5 (en
Inventor
渡邊 浩明
浩明 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Candeo Optronics Corp
Original Assignee
Hoya Candeo Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Candeo Optronics Corp filed Critical Hoya Candeo Optronics Corp
Priority to TW106109409A priority Critical patent/TWI659189B/en
Priority to KR1020170036035A priority patent/KR102097708B1/en
Priority to EP17162711.0A priority patent/EP3225945B1/en
Priority to CN201710190418.7A priority patent/CN107448916B/en
Priority to US15/474,616 priority patent/US10317067B2/en
Publication of JP2017187268A publication Critical patent/JP2017187268A/en
Publication of JP2017187268A5 publication Critical patent/JP2017187268A5/ja
Application granted granted Critical
Publication of JP6423900B2 publication Critical patent/JP6423900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/377Cooling or ventilating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/044Drying sheets, e.g. between two printing stations
    • B41F23/045Drying sheets, e.g. between two printing stations by radiation
    • B41F23/0453Drying sheets, e.g. between two printing stations by radiation by ultraviolet dryers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F23/00Devices for treating the surfaces of sheets, webs, or other articles in connection with printing
    • B41F23/04Devices for treating the surfaces of sheets, webs, or other articles in connection with printing by heat drying, by cooling, by applying powders
    • B41F23/0476Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/89Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Led Device Packages (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、光照射装置の光源等を冷却するための放熱装置に関し、特に、複数枚の放熱フィンを挿通するヒートパイプを備えたヒートパイプ式の放熱装置と、該放熱装置を備える光照射装置に関する。   The present invention relates to a heat radiating device for cooling a light source or the like of a light irradiating device, and in particular, a heat pipe type heat radiating device including a heat pipe through which a plurality of radiating fins are inserted, and a light radiating device including the heat radiating device About.

従来、オフセット枚葉印刷用のインキとして、紫外光の照射により硬化する紫外線硬化型インキが用いられている。また、液晶パネルや有機EL(Electro Luminescence)パネル等、FPD(Flat Panel Display)回りの接着剤として、紫外線硬化樹脂が用いられている。このような紫外線硬化型インキや紫外線硬化樹脂の硬化には、一般に、紫外光を照射する紫外光照射装置が用いられる。   Conventionally, as an ink for offset sheet-fed printing, an ultraviolet curable ink that is cured by irradiation with ultraviolet light has been used. Further, an ultraviolet curable resin is used as an adhesive around an FPD (Flat Panel Display) such as a liquid crystal panel or an organic EL (Electro Luminescence) panel. In general, an ultraviolet light irradiation device for irradiating ultraviolet light is used for curing such ultraviolet curable ink and ultraviolet curable resin.

紫外光照射装置としては、従来から高圧水銀ランプや水銀キセノンランプ等を光源とするランプ型照射装置が知られているが、近年、消費電力の削減、長寿命化、装置サイズのコンパクト化の要請から、従来の放電ランプに替えて、LED(Light Emitting Diode)を光源として利用した紫外光照射装置が開発されている。   As an ultraviolet light irradiation device, a lamp type irradiation device using a high-pressure mercury lamp, a mercury xenon lamp, or the like as a light source has been conventionally known, but in recent years, there has been a demand for reduction in power consumption, longer life, and downsizing of the device size. Therefore, in place of the conventional discharge lamp, an ultraviolet light irradiation device using an LED (Light Emitting Diode) as a light source has been developed.

このようなLEDを光源として利用した紫外光照射装置は、例えば、特許文献1に記載されている。特許文献1に記載の紫外光照射装置は、複数の発光素子(LED)が搭載された光照射デバイス等を有する光照射モジュールを複数備えている。複数の光照射モジュールは、一列に並べて配置されており、複数の光照射モジュールに対向して配置された照射対象物の所定領域に対してライン状の紫外光が照射されるようになっている。   An ultraviolet light irradiation apparatus using such an LED as a light source is described in Patent Document 1, for example. The ultraviolet light irradiation apparatus described in Patent Document 1 includes a plurality of light irradiation modules including a light irradiation device on which a plurality of light emitting elements (LEDs) are mounted. The plurality of light irradiation modules are arranged in a line, and the line-shaped ultraviolet light is irradiated to a predetermined region of the irradiation object arranged to face the plurality of light irradiation modules. .

このように、光源としてLEDを用いると、投入した電力の大半が熱となるため、LED自身が発生する熱によって発光効率と寿命が低下するといった問題があり、熱の処理が問題となる。そこで、特許文献1に記載の紫外光照射装置においては、各光照射デバイスの裏面に放熱用部材を配置し、LEDで発生する熱を強制的に放熱する構成が採られている。   As described above, when an LED is used as a light source, most of the input electric power becomes heat, so that there is a problem that light emission efficiency and life are reduced by heat generated by the LED itself, and heat treatment becomes a problem. Therefore, the ultraviolet light irradiation apparatus described in Patent Document 1 employs a configuration in which a heat dissipation member is disposed on the back surface of each light irradiation device to forcibly dissipate heat generated by the LED.

特許文献1に記載の放熱用部材は、冷媒を流すことによって冷却する、いわゆる水冷方式のものであるが、冷媒用の配管等が必要になるため、装置自体が大きくなるといった問題や、漏水の対策を行う必要がある等の問題がある。そこで、空冷でありながらも、高い放熱効率を有する方式として、ヒートパイプを用いた構成も提案されている(例えば、特許文献2)。   The heat radiating member described in Patent Document 1 is a so-called water-cooling type that cools by flowing a refrigerant. However, since a refrigerant pipe or the like is required, there is a problem that the apparatus itself becomes large, or water leakage occurs. There are problems such as the need to take countermeasures. Then, the structure using a heat pipe is also proposed as a system which has high heat dissipation efficiency although it is air cooling (for example, patent document 2).

特許文献2に記載の光照射装置は、複数の発光素子(LED)が搭載された発光モジュールの裏面側に、ヒートパイプと、ヒートパイプに嵌挿接続されてなる複数の放熱フィンとを有しており、LEDで発生する熱をヒートパイプで輸送し、放熱フィンから空気中に放熱する構成を採っている。   The light irradiation apparatus described in Patent Document 2 has a heat pipe and a plurality of heat radiation fins that are fitted and connected to the heat pipe on the back side of the light emitting module on which a plurality of light emitting elements (LEDs) are mounted. The heat generated by the LED is transported by a heat pipe, and the heat is dissipated from the radiation fins into the air.

特開2015−153771号公報Japanese Patent Laid-Open No. 2015-153771 特開2014−038866号公報JP 2014-0388866 A

特許文献2に開示された光照射装置の放熱装置によれば、LEDによって発生した熱がヒートパイプによって速やかに輸送され、多数の放熱フィンから放熱されるため、LEDが効率よく冷却される。このため、LEDの性能の低下や損傷を防止することができると共に、高輝度の発光が可能となる。また、特許文献2に記載の放熱装置は、ヒートパイプをコの字状に折り曲げて、LEDの出射方向と相反する方向に熱を輸送する構成であるため、LEDの出射方向に対して垂直な方向の光照射装置のサイズをコンパクトなものにできる。   According to the heat radiating device of the light irradiation device disclosed in Patent Document 2, the heat generated by the LED is quickly transported by the heat pipe and radiated from a large number of heat radiating fins, so that the LED is efficiently cooled. For this reason, it is possible to prevent degradation and damage of the LED and to emit light with high brightness. Moreover, since the heat radiating device described in Patent Document 2 is configured to bend the heat pipe in a U shape and transport heat in a direction opposite to the LED emission direction, it is perpendicular to the LED emission direction. The size of the light irradiation device in the direction can be made compact.

しかしながら、特許文献2の放熱装置のように、ヒートパイプをコの字状に折り曲げる構成の場合、ヒートパイプの湾曲部が発光モジュールのベースプレート(支持部材)から浮いてしまうと、当該浮いた部分の冷却能力が著しく低下してしまうため、ベースプレート全体を確実に冷却しようとすれば、ヒートパイプの直線部をベースプレートの裏面全体に亘って密着するように配置しなければならず、ヒートパイプの湾曲部がベースプレートの外側(つまり、発光モジュールの外形よりも外側)に突出してしまうといった問題がある。そして、ヒートパイプの湾曲部がベースプレートの外側に突出してしまうと、LEDの並び方向(つまり、ヒートパイプの直線部が延びる方向)に近接して配置することができず、特許文献1に記載されている構成のように、光照射デバイスをライン状に連結配置することができない。   However, in the case of a configuration in which the heat pipe is bent in a U shape as in the heat dissipation device of Patent Document 2, if the curved portion of the heat pipe floats from the base plate (support member) of the light emitting module, the floating portion Since the cooling capacity will be significantly reduced, if the entire base plate is to be reliably cooled, the straight part of the heat pipe must be placed in close contact with the entire back surface of the base plate, and the curved part of the heat pipe Has a problem that it protrudes outside the base plate (that is, outside the outer shape of the light emitting module). If the curved portion of the heat pipe protrudes outside the base plate, it cannot be disposed close to the LED alignment direction (that is, the direction in which the straight portion of the heat pipe extends), and is described in Patent Document 1. As in the configuration, the light irradiation devices cannot be connected and arranged in a line.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、ヒートパイプを用いてベースプレート(支持部材)全体を確実に冷却しつつも、ライン状に連結配置可能な放熱装置を提供し、さらにはこの放熱装置を備えた光照射装置をすることである。   The present invention has been made in view of such circumstances, and an object of the present invention is to be able to connect and arrange in a line while reliably cooling the entire base plate (support member) using a heat pipe. A heat dissipating device is provided, and further a light irradiation device including the heat dissipating device is provided.

上記目的を達成するため、本発明の放熱装置は、熱源に密着して配置され、熱源の熱を空気中に放熱する放熱装置であって、板状の形状を呈し、第1主面側が熱源に密着するように配置される支持部材と、支持部材に支持されると共に、支持部材と熱的に接合し、熱源からの熱を輸送するヒートパイプと、第1主面と対向する第2主面に面する空間内に配置され、ヒートパイプと熱的に接合し、ヒートパイプによって輸送された熱を放熱する複数の放熱フィンと、を備え、ヒートパイプは、支持部材と熱的に接合される第1直線部と、複数の放熱フィンと熱的に接合される第2直線部と、第1直線部と第2直線部が連続するように、第1直線部の一端部と第2直線部の一端部とを接続し、支持部材から第1直線部が延びる方向に突出する接続部と、を有し、複数の放熱装置を第1主面が連続するように連結可能であり、複数の放熱装置のそれぞれは、第1直線部が延びる方向に複数の放熱装置が連結されたときに、第2主面に面する空間内に、隣接する放熱装置の接続部を収容する収容部を備えていることを特徴とする。   In order to achieve the above object, the heat dissipating device of the present invention is a heat dissipating device that is disposed in close contact with the heat source and dissipates the heat of the heat source into the air, has a plate shape, and the first main surface side is the heat source. A support member disposed in close contact with the support member, a heat pipe supported by the support member, thermally bonded to the support member, and transporting heat from a heat source, and a second main surface facing the first main surface A plurality of heat dissipating fins that are disposed in a space facing the surface and thermally bonded to the heat pipe and dissipate heat transported by the heat pipe, and the heat pipe is thermally bonded to the support member The first straight line portion, the second straight line portion thermally bonded to the plurality of radiating fins, the one end portion of the first straight line portion and the second straight line so that the first straight line portion and the second straight line portion are continuous. Connecting to one end of the part and projecting in a direction in which the first straight part extends from the support member And the plurality of heat dissipation devices can be connected such that the first main surface is continuous, and each of the plurality of heat dissipation devices is connected to the plurality of heat dissipation devices in the direction in which the first straight line portion extends. In addition, in the space facing the second main surface, a housing portion for housing the connecting portion of the adjacent heat radiating device is provided.

このような構成によれば、第1直線部が延びる方向において、冷却能力のバラツキが少なく、基板を一様に(略均一に)冷却することができ、基板上に配置されたLED素子も略均一に冷却される。従って、各LED素子間における温度差も少なく、温度特性に起因する照射強度のバラツキも少なくなる。また、第1直線部が延びる方向に突出する接続部を収容する収容部を備えるため、第1直線部が延びる方向においても複数の放熱装置を連結することができる。   According to such a configuration, there is little variation in the cooling capacity in the direction in which the first linear portion extends, the substrate can be cooled uniformly (substantially uniformly), and the LED elements disposed on the substrate are also substantially omitted. Cools uniformly. Therefore, the temperature difference between the LED elements is small, and the variation in irradiation intensity due to the temperature characteristics is also small. Moreover, since the accommodating part which accommodates the connection part which protrudes in the direction where a 1st linear part extends is provided, a several thermal radiation apparatus can be connected also in the direction where a 1st linear part is extended.

また、ヒートパイプを複数備え、複数のヒートパイプの第1直線部は、第1直線部が延びる方向と略直交する方向に第1の所定の間隔をおいて配置されていることが望ましい。   In addition, it is desirable that a plurality of heat pipes be provided, and the first straight portions of the plurality of heat pipes be arranged at a first predetermined interval in a direction substantially orthogonal to the direction in which the first straight portions extend.

また、複数のヒートパイプの第2直線部は、第2主面に略平行で、かつ第1直線部が延びる方向と略直交する方向に第1の所定の間隔をおいて配置されていることが望ましい。   The second straight portions of the plurality of heat pipes are disposed substantially parallel to the second main surface and at a first predetermined interval in a direction substantially perpendicular to the direction in which the first straight portion extends. Is desirable.

また、収容部は、接続部が突出する側とは反対の側において、各ヒートパイプの間に形成されていることが望ましい。   Moreover, it is desirable that the accommodating portion is formed between the heat pipes on the side opposite to the side from which the connecting portion protrudes.

また、収容部は、接続部が突出する側と同じ側において、各ヒートパイプの間に形成されていることが望ましい。   Moreover, it is desirable that the accommodating portion is formed between the heat pipes on the same side as the side from which the connecting portion protrudes.

また、第2主面に面する空間内に配置され、第2主面に対して略垂直な方向に気流を生成するファンを備えることが望ましい。   In addition, it is desirable to include a fan that is arranged in a space facing the second main surface and generates an airflow in a direction substantially perpendicular to the second main surface.

また、第1直線部が延びる方向から見たときに、各ヒートパイプの第2直線部の位置が、第2主面に略垂直な方向及び略平行な方向において異なるように構成することができる。また、この場合、第2主面に面する空間内に配置され、第2主面に対して略平行な方向に気流を生成するファンを備えることが望ましい。   Further, when viewed from the direction in which the first straight line portion extends, the position of the second straight line portion of each heat pipe can be configured to be different in a direction substantially perpendicular to the second main surface and a direction substantially parallel to the second main surface. . In this case, it is desirable to include a fan that is disposed in a space facing the second main surface and generates an airflow in a direction substantially parallel to the second main surface.

また、第1直線部は、第2主面に対して傾斜しており、接続部は、第2主面から離れる方向に突出し、収容部は、接続部が突出する側とは反対の側に形成されていることが望ましい。また、この場合、複数のヒートパイプの第2直線部は、第1直線部が延びる方向と略直交する方向に第1の所定の間隔よりも長い第2の所定の間隔をおいて配置されていることが望ましい。   The first straight portion is inclined with respect to the second main surface, the connecting portion protrudes in a direction away from the second main surface, and the accommodating portion is on a side opposite to the side from which the connecting portion protrudes. It is desirable that it be formed. Further, in this case, the second straight portions of the plurality of heat pipes are arranged at a second predetermined interval longer than the first predetermined interval in a direction substantially orthogonal to the direction in which the first straight portions extend. It is desirable.

また、支持部材は、少なくとも一組の略平行な対辺を有し、第1直線部が、支持部材の対辺に沿って延びるように構成することができる。   The support member may have at least one pair of substantially parallel opposite sides, and the first straight portion may be configured to extend along the opposite side of the support member.

また、支持部材は、少なくとも一組の略平行な対辺を有し、第1直線部が、支持部材の対辺に対して所定の角度で傾斜して延びるように構成することができる。また、この場合、収容部は、接続部が突出する側とは反対の側に形成されていることが望ましい。また、第2主面に面する空間内に配置され、第2主面に対して略垂直な方向に気流を生成するファンを備えることが望ましい。   Further, the support member may have at least one pair of substantially parallel opposite sides, and the first straight part may be configured to extend at an angle with respect to the opposite side of the support member. In this case, it is desirable that the accommodating portion is formed on the side opposite to the side from which the connecting portion protrudes. In addition, it is desirable to include a fan that is arranged in a space facing the second main surface and generates an airflow in a direction substantially perpendicular to the second main surface.

また、第2直線部が、第2主面に対して略平行であることが望ましい。   Further, it is desirable that the second straight line portion is substantially parallel to the second main surface.

また、支持部材は、第2主面側に、第1直線部に応じた形状の溝部を有しており、第1直線部が、溝部に嵌まり込むように配置されることが望ましい。   Moreover, it is desirable that the support member has a groove portion having a shape corresponding to the first straight portion on the second main surface side, and the first straight portion is disposed so as to fit into the groove portion.

また、支持部材は、第1主面側に、第1直線部に応じた形状の溝部を有しており、第1直線部が、溝部に嵌まり込むように配置されることが望ましい。   Moreover, it is desirable that the support member has a groove portion having a shape corresponding to the first linear portion on the first main surface side, and the first linear portion is disposed so as to fit into the groove portion.

また、別の観点からは、本発明の光照射装置は、上記のいずれかの放熱装置と、第1主面と密着するように配置される基板と、基板の表面上において、ヒートパイプの第1直線部と略平行に配置された複数のLEDを備えることを特徴とする。   From another point of view, the light irradiation device according to the present invention includes any one of the above heat dissipation devices, a substrate disposed so as to be in close contact with the first main surface, and a first heat pipe on the surface of the substrate. It is characterized by comprising a plurality of LEDs arranged substantially in parallel with one straight line portion.

また、複数のLED素子は、第1直線部が延びる方向に所定のピッチで配置され、第1直線部が延びる方向において、第1直線部の他端から支持部材の一端までの距離がピッチの1/2以下であることが望ましい。   The plurality of LED elements are arranged at a predetermined pitch in the direction in which the first straight line portion extends, and the distance from the other end of the first straight line portion to one end of the support member is the pitch in the direction in which the first straight line portion extends. It is desirable that it is 1/2 or less.

また、複数のLED素子が、第1直線部が延びる方向と略直交する方向に複数列に配置されることが望ましい。   Moreover, it is desirable that the plurality of LED elements are arranged in a plurality of rows in a direction substantially orthogonal to the direction in which the first straight line portion extends.

また、複数のLED素子が、基板を挟んで第1直線部と相対する位置に配置されていることが望ましい。   In addition, it is desirable that the plurality of LED elements are arranged at positions facing the first straight portion with the substrate interposed therebetween.

また、光照射装置が、第1主面が連続するように連結された複数の放熱装置を備えることが望ましい。また、この場合、複数の放熱装置が、第1直線部が延びる方向に並べられて連結されていることが望ましい。   Moreover, it is desirable that the light irradiation device includes a plurality of heat dissipation devices connected so that the first main surface is continuous. In this case, it is desirable that the plurality of heat dissipation devices are arranged and connected in the direction in which the first straight line portion extends.

また、LED素子が、紫外線硬化樹脂に作用する波長の光を発することが望ましい。   Further, it is desirable that the LED element emit light having a wavelength that acts on the ultraviolet curable resin.

以上のように、本発明によれば、ヒートパイプを用いてベースプレート(支持部材)全体を確実に冷却しつつも、ライン状に連結配置可能な放熱装置と、当該放熱装置を備えた光照射装置が実現される。   As described above, according to the present invention, a heat radiation device that can be connected and arranged in a line while reliably cooling the entire base plate (supporting member) using a heat pipe, and a light irradiation device including the heat radiation device Is realized.

図1は、本発明の第1の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する外観図である。FIG. 1 is an external view illustrating a schematic configuration of a light irradiation device including a heat dissipation device according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する斜視図である。FIG. 2 is a perspective view illustrating a schematic configuration of the light irradiation device including the heat dissipation device according to the first embodiment of the present invention. 図3は、本発明の第1の実施形態に係る放熱装置を備えた光照射装置に備わるLEDユニットの構成を説明する図である。FIG. 3 is a diagram illustrating the configuration of the LED unit provided in the light irradiation device including the heat dissipation device according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態に係る放熱装置の構成を説明する図である。FIG. 4 is a diagram illustrating the configuration of the heat dissipation device according to the first embodiment of the present invention. 図5は、本発明の第1の実施形態に係る放熱装置を備えた光照射装置をX軸方向に連結した状態を示す図である。FIG. 5 is a diagram illustrating a state in which the light irradiation device including the heat dissipation device according to the first embodiment of the present invention is connected in the X-axis direction. 図6は、本発明の第1の実施形態に係る放熱装置の変形例の構成を示す図である。FIG. 6 is a diagram showing a configuration of a modification of the heat dissipation device according to the first embodiment of the present invention. 図7は、本発明の第2の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する外観図である。FIG. 7 is an external view illustrating a schematic configuration of a light irradiation device including a heat dissipation device according to the second embodiment of the present invention. 図8は、本発明の第2の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する斜視図である。FIG. 8 is a perspective view illustrating a schematic configuration of a light irradiation apparatus including a heat dissipation device according to the second embodiment of the present invention. 図9は、本発明の第2の実施形態に係る放熱装置を連結した状態を示す図である。FIG. 9 is a diagram illustrating a state in which the heat dissipation devices according to the second embodiment of the present invention are connected. 図10は、本発明の第2の実施形態に係る放熱装置の変形例の構成を示す図である。FIG. 10 is a diagram showing a configuration of a modified example of the heat dissipation device according to the second embodiment of the present invention. 図11は、本発明の第3の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する外観図である。FIG. 11 is an external view illustrating a schematic configuration of a light irradiation apparatus including a heat dissipation device according to the third embodiment of the present invention. 図12は、本発明の第3の実施形態に係る放熱装置を連結した状態を示す図である。FIG. 12 is a diagram illustrating a state where the heat dissipation device according to the third embodiment of the present invention is connected. 図12は、本発明の第3の実施形態に係る放熱装置の変形例の構成を示す図である。FIG. 12 is a diagram showing a configuration of a modification of the heat dissipation device according to the third embodiment of the present invention. 図14は、本発明の第4の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する外観図である。FIG. 14 is an external view illustrating a schematic configuration of a light irradiation device including a heat dissipation device according to the fourth embodiment of the present invention. 図15は、本発明の第4の実施形態に係る放熱装置を連結した状態を示す図である。FIG. 15 is a diagram illustrating a state in which a heat dissipation device according to the fourth embodiment of the present invention is connected. 図16は、本発明の第4の実施形態に係る放熱装置の変形例の構成を示す図である。FIG. 16 is a diagram illustrating a configuration of a modified example of the heat dissipation device according to the fourth embodiment of the present invention. 図17は、本発明の第5の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する外観図である。FIG. 17 is an external view illustrating a schematic configuration of a light irradiation device including a heat dissipation device according to the fifth embodiment of the present invention. 図18は、本発明の第5の実施形態に係る放熱装置の構成を説明する断面図である。FIG. 18: is sectional drawing explaining the structure of the thermal radiation apparatus which concerns on the 5th Embodiment of this invention. 図19は、本発明の第5の実施形態に係る放熱装置を連結した状態を示す図である。FIG. 19 is a diagram illustrating a state in which the heat dissipation device according to the fifth embodiment of the present invention is connected. 図20は、本発明の第5の実施形態に係る放熱装置の変形例の構成を示す図である。FIG. 20 is a diagram illustrating a configuration of a modification of the heat dissipation device according to the fifth embodiment of the present invention. 図21は、本発明の第6の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する外観図である。FIG. 21 is an external view illustrating a schematic configuration of a light irradiation device including a heat dissipation device according to a sixth embodiment of the present invention. 図22は、本発明の第6の実施形態に係る放熱装置を連結した状態を示す図である。FIG. 22 is a diagram illustrating a state in which the heat dissipation devices according to the sixth embodiment of the present invention are connected. 図23は、本発明の第6の実施形態に係る放熱装置の変形例の構成を示す図である。FIG. 23 is a diagram illustrating a configuration of a modification of the heat dissipation device according to the sixth embodiment of the present invention. 図24は、本発明の第7の実施形態に係る放熱装置を備えた光照射装置の概略構成を説明する外観図である。FIG. 24 is an external view illustrating a schematic configuration of a light irradiation device including a heat dissipation device according to a seventh embodiment of the present invention. 図25は、本発明の第7の実施形態に係る放熱装置の構成を説明する断面図である。FIG. 25 is a cross-sectional view illustrating a configuration of a heat dissipation device according to the seventh embodiment of the present invention.

以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、図中同一又は相当部分には同一の符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or an equivalent part in a figure, and the description is not repeated.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る放熱装置200を備えた光照射装置10の概略構成を説明する外観図である。また、図2は、光照射装置10の斜視図である。本実施形態の光照射装置10は、オフセット枚葉印刷用のインキとして用いられる紫外線硬化型インキや、FPD(Flat Panel Display)等で接着剤として用いられる紫外線硬化樹脂を硬化させる光源装置に搭載される装置であり、照射対象物に対向して配置され、照射対象物の所定のエリアに紫外光を出射する。本明細書においては、放熱装置200のヒートパイプ203の第1直線部203aが延びる方向をX軸方向、ヒートパイプ203の第1直線部203aが並ぶ方向をY軸方向、X軸及びY軸と直交する方向をZ軸方向と定義して説明する。なお、光照射装置10が搭載される光源装置の用途や仕様によって、求められる照射エリアが異なるため、本実施形態の光照射装置10は、X軸方向及びY軸方向に連結可能に構成されている(詳細は後述)。
(First embodiment)
FIG. 1 is an external view illustrating a schematic configuration of a light irradiation device 10 including a heat dissipation device 200 according to the first embodiment of the present invention. FIG. 2 is a perspective view of the light irradiation device 10. The light irradiation device 10 of this embodiment is mounted on a light source device that cures an ultraviolet curable ink used as an ink for offset sheet-fed printing or an ultraviolet curable resin used as an adhesive in an FPD (Flat Panel Display) or the like. It is an apparatus that is arranged to face the irradiation object and emits ultraviolet light to a predetermined area of the irradiation object. In this specification, the direction in which the first straight portion 203a of the heat pipe 203 of the heat dissipation device 200 extends is the X-axis direction, and the direction in which the first straight portions 203a of the heat pipe 203 are aligned is the Y-axis direction, the X-axis, and the Y-axis. A description will be given by defining a direction orthogonal to the Z-axis direction. Since the required irradiation area varies depending on the application and specification of the light source device on which the light irradiation device 10 is mounted, the light irradiation device 10 of the present embodiment is configured to be connectable in the X-axis direction and the Y-axis direction. (Details will be described later).

(光照射装置10の構成)
図1に示すように、本実施形態の光照射装置10は、LEDユニット100と、放熱装置200と、を備えている。なお、図1(a)は、本実施形態の光照射装置10の正面図(Z軸方向下流側(正の方向側)から見た図)であり、図1(b)は、平面図(Y軸方向下流側(正の方向側)から見た図)であり、図1(c)は、右側面図(X軸方向下流側(正の方向側)から見た図)であり、図1(d)は、左側面図(X軸方向上流側(負の方向側)から見た図)である。
(Configuration of the light irradiation device 10)
As shown in FIG. 1, the light irradiation device 10 of this embodiment includes an LED unit 100 and a heat dissipation device 200. FIG. 1A is a front view (viewed from the downstream side (positive direction side) in the Z-axis direction) of the light irradiation apparatus 10 of the present embodiment, and FIG. FIG. 1C is a right side view (viewed from the X-axis direction downstream side (positive direction side)). 1 (d) is a left side view (a view seen from the upstream side (negative direction side) in the X-axis direction).

(LEDユニット100の構成)
図3は、本実施形態のLEDユニット100の構成を説明する図であり、図1のB部拡大図である。図1(a)及び図3に示すように、LEDユニット100は、X軸方向及びY軸方向に略平行な矩形板状の基板105と、基板105上に配置された複数のLED素子110と、を備えている。
(Configuration of LED unit 100)
FIG. 3 is a diagram illustrating the configuration of the LED unit 100 according to the present embodiment, and is an enlarged view of a portion B in FIG. As shown in FIG. 1A and FIG. 3, the LED unit 100 includes a rectangular plate-like substrate 105 substantially parallel to the X-axis direction and the Y-axis direction, and a plurality of LED elements 110 arranged on the substrate 105. It is equipped with.

基板105は、熱伝導率の高い材料(例えば、銅、アルミニウム、窒化アルミニウム)で形成された矩形状の配線基板であり、図1(a)に示すように、その表面には、X軸方向及びY軸方向に所定の間隔を空けて、20個(X軸方向)×10列(Y軸方向)の態様で、200個のLED素子110がCOB(Chip On Board)実装されている。基板105上には、各LED素子110に電力を供給するためのアノードパターン(不図示)及びカソードパターン(不図示)が形成されており、各LED素子110は、アノードパターン及びカソードパターンにそれぞれ電気的に接続されている。また、基板105は、不図示の配線ケーブルによってLED駆動回路(不図示)と電気的に接続されており、各LED素子110には、アノードパターン及びカソードパターンを介して、LED駆動回路からの駆動電流が供給されるようになっている。   The substrate 105 is a rectangular wiring substrate formed of a material having high thermal conductivity (for example, copper, aluminum, aluminum nitride). As shown in FIG. In addition, 200 LED elements 110 are mounted on a COB (Chip On Board) in a form of 20 (X-axis direction) × 10 columns (Y-axis direction) with a predetermined interval in the Y-axis direction. An anode pattern (not shown) and a cathode pattern (not shown) for supplying power to each LED element 110 are formed on the substrate 105, and each LED element 110 is electrically connected to the anode pattern and the cathode pattern, respectively. Connected. The substrate 105 is electrically connected to an LED drive circuit (not shown) via a wiring cable (not shown), and each LED element 110 is driven from the LED drive circuit via an anode pattern and a cathode pattern. A current is supplied.

LED素子110は、LED駆動回路から駆動電流の供給を受けて、紫外光(例えば、波長365nm、385nm、395nm、405nm)を出射する半導体素子である。本実施形態においては、20個のLED素子110がX軸方向に所定の行ピッチPXで配置され、これを一列としてY軸方向に10列のLED素子110が所定の列ピッチPYで配置されている(図3)。従って、各LED素子110に駆動電流が供給されると、LEDユニット100からはX軸方向に略平行な10本のライン状の紫外光が出射される。なお、本実施形態の各LED素子110は、略一様な光量の紫外光を出射するように各LED素子110に供給される駆動電流が調整されており、LEDユニット100から出射される紫外光は、X軸方向及びY軸方向において略均一な光量分布を有している。また、本実施形態の光照射装置10は、X軸方向及びY軸方向に連結可能することにより照射エリアを変更することができるように構成されており、光照射装置10が連結されたときに、隣接する光照射装置10との間でLED素子110の配置が連続するように、X軸方向の両端部に位置するLED素子110は、放熱装置200の支持部材201の縁から1/2PXの位置に配置され、Y軸方向の両端部に位置するLED素子110は、放熱装置200の支持部材201の縁から1/2PYの位置に配置されている(図3)。   The LED element 110 is a semiconductor element that emits ultraviolet light (for example, wavelengths 365 nm, 385 nm, 395 nm, and 405 nm) upon receiving a drive current from the LED drive circuit. In the present embodiment, 20 LED elements 110 are arranged at a predetermined row pitch PX in the X-axis direction, and 10 LED elements 110 are arranged at a predetermined column pitch PY in the Y-axis direction with this being one row. (Fig. 3). Therefore, when a drive current is supplied to each LED element 110, ten line-shaped ultraviolet lights substantially parallel to the X-axis direction are emitted from the LED unit 100. In addition, the drive current supplied to each LED element 110 is adjusted so that each LED element 110 of this embodiment emits ultraviolet light with a substantially uniform light amount, and the ultraviolet light emitted from the LED unit 100 is adjusted. Has a substantially uniform light amount distribution in the X-axis direction and the Y-axis direction. Moreover, the light irradiation apparatus 10 of this embodiment is comprised so that an irradiation area can be changed by being connectable in a X-axis direction and a Y-axis direction, and when the light irradiation apparatus 10 is connected. The LED elements 110 located at both ends in the X-axis direction are 1 / 2PX from the edge of the support member 201 of the heat dissipation device 200 so that the LED elements 110 are continuously arranged between the adjacent light irradiation devices 10. The LED elements 110 that are disposed at both ends in the Y-axis direction are disposed at a position of 1/2 PY from the edge of the support member 201 of the heat dissipation device 200 (FIG. 3).

(放熱装置200の構成) (Configuration of heat dissipation device 200)

図4は、本実施形態の放熱装置200の構成を説明する図である。図4(a)は、図1(c)のA−A断面図であり、図4(b)は、図4(a)のC部拡大図である。放熱装置200は、基板105の裏面(LED素子110(図1(a))が搭載される面と反対側の面)に密着するように配置され、各LED素子110で発生した熱を放熱する装置であり、支持部材201と、複数のヒートパイプ203と、複数の放熱フィン205とで構成されている。各LED素子110(図3)に駆動電流が流れ、各LED素子110から紫外光が出射されると、LED素子110の自己発熱により温度が上昇し、発光効率が著しく低下するといった問題が発生する。このため、本実施形態においては、基板105の裏面に密着するように放熱装置200を設け、LED素子110で発生する熱を、基板105を介して放熱装置200に伝導し、強制的に放熱している。   FIG. 4 is a diagram illustrating the configuration of the heat dissipation device 200 of the present embodiment. 4A is a cross-sectional view taken along the line AA in FIG. 1C, and FIG. 4B is an enlarged view of a portion C in FIG. 4A. The heat dissipating device 200 is disposed so as to be in close contact with the back surface of the substrate 105 (the surface opposite to the surface on which the LED element 110 (FIG. 1A) is mounted), and dissipates heat generated in each LED element 110. It is a device, and includes a support member 201, a plurality of heat pipes 203, and a plurality of heat radiation fins 205. When a drive current flows through each LED element 110 (FIG. 3) and ultraviolet light is emitted from each LED element 110, the temperature rises due to the self-heating of the LED element 110, and the light emission efficiency is significantly reduced. . For this reason, in this embodiment, the heat dissipation device 200 is provided so as to be in close contact with the back surface of the substrate 105, and the heat generated in the LED element 110 is conducted to the heat dissipation device 200 via the substrate 105 to forcibly dissipate heat. ing.

支持部材201は、熱伝導率の高い金属(例えば、銅、アルミニウム)で形成された矩形板状の部材である。支持部材201は、第1主面201aがグリス等の熱伝導部材を介して基板105の裏面に密着するように取り付けられ、熱源となるLEDユニット100が発する熱を受熱する。本実施形態の支持部材201の第2主面201b(第1主面201aと対向する面)には、後述するヒートパイプ203の第1直線部203aの形状に応じた溝部201cがX軸方向に沿って形成されており(図1(d)、図4)、支持部材201によってヒートパイプ203が支持されるようになっている。このように、本実施形態の支持部材201は、ヒートパイプ203を支持すると共に、LEDユニット100からの熱を受熱する受熱部として機能するようになっている。また、図1(d)、図2に示すように各溝部201cのY軸方向両側には、光照射装置10が軸方向に連結されたときに、隣接する光照射装置10のヒートパイプ203の湾曲部203ca(図4)を収容するための溝部201dが形成されている。 The support member 201 is a rectangular plate-shaped member formed of a metal having a high thermal conductivity (for example, copper or aluminum). The support member 201 is attached such that the first main surface 201a is in close contact with the back surface of the substrate 105 via a heat conducting member such as grease, and receives heat generated by the LED unit 100 serving as a heat source. On the second main surface 201b (surface facing the first main surface 201a) of the support member 201 of the present embodiment, a groove portion 201c corresponding to the shape of the first straight portion 203a of the heat pipe 203 to be described later is formed in the X-axis direction. The heat pipe 203 is supported by the support member 201. FIG. As described above, the support member 201 of the present embodiment supports the heat pipe 203 and functions as a heat receiving unit that receives heat from the LED unit 100. Further, as shown in FIGS. 1D and 2, when the light irradiation device 10 is connected to the both sides in the Y axis direction of each groove portion 201 c in the X axis direction, the heat pipe 203 of the adjacent light irradiation device 10. A groove 201d for accommodating the curved portion 203ca (FIG. 4) is formed.

ヒートパイプ203は、作動液(例えば、水、アルコール、アンモニア等)が減圧封入された、断面略円形の中空の金属(例えば、銅、アルミニウム、鉄、マグネシウム等の金属やこれらを含む合金等)の密閉管である。図4に示すように、本実施形態の各ヒートパイプ203は、Y軸方向から見たときに、略逆コの字状の形状を有しており、X軸方向に延びる第1直線部203aと、第1直線部203aと略平行にX軸方向に延びる第2直線部203bと、第1直線部203aと第2直線部203bが連続するように第1直線部203aの一端(X軸方向下流側(正の方向側)の一端)と第2直線部203bの一端(X軸方向下流側(正の方向側)の一端)とを接続する接続部203cとから構成されている。   The heat pipe 203 is a hollow metal (for example, a metal such as copper, aluminum, iron, magnesium, or an alloy containing these) in which a hydraulic fluid (for example, water, alcohol, ammonia, etc.) is sealed under reduced pressure. This is a sealed tube. As shown in FIG. 4, each heat pipe 203 of the present embodiment has a substantially inverted U-shape when viewed from the Y-axis direction, and the first straight portion 203a extending in the X-axis direction. One end (X-axis direction) of the first straight line portion 203a so that the first straight line portion 203a and the second straight line portion 203b are continuous with each other. It is comprised from the connection part 203c which connects the downstream (one end of the positive direction side) and the one end (one end of the X-axis direction downstream side (positive direction side)) of the 2nd linear part 203b.

各ヒートパイプ203の第1直線部203aは、支持部材201からの熱を受け取る部分であり、各ヒートパイプ203の第1直線部203aが支持部材201の溝部201cに嵌まり込んだ状態で不図示の固定具又は接着剤によって固定され、支持部材201と熱的に結合している(図4)。本実施形態においては、5個のヒートパイプ203の第1直線部203aが、Y軸方向に所定の間隔をおいて均等に配置されている(図1(d)、図2)。なお、図4に示すように、本実施形態の各ヒートパイプ203の第1直線部203aの長さは、支持部材201のX軸方向の長さと略等しい。   The first straight portion 203a of each heat pipe 203 is a portion that receives heat from the support member 201, and is not shown in a state where the first straight portion 203a of each heat pipe 203 is fitted in the groove portion 201c of the support member 201. Are fixed by a fixing tool or an adhesive, and are thermally coupled to the support member 201 (FIG. 4). In the present embodiment, the first straight portions 203a of the five heat pipes 203 are equally arranged at a predetermined interval in the Y-axis direction (FIGS. 1D and 2). As shown in FIG. 4, the length of the first straight portion 203a of each heat pipe 203 of the present embodiment is substantially equal to the length of the support member 201 in the X-axis direction.

各ヒートパイプ203の第2直線部203bは、第1直線部203aによって受け取った熱を放熱する部分であり、各ヒートパイプ203の第2直線部203bが放熱フィン205の貫通孔205aに挿通され、放熱フィン205と機械的及び熱的に結合している(図4)。本実施形態においては、5個のヒートパイプ203の第2直線部203bが、Y軸方向に所定の間隔をおいて並べて配置されている(図1(d)、図2)。なお、本実施形態の各ヒートパイプ203の第2直線部203bの長さは、第1直線部203aの長さと略等しい。   The second straight portion 203b of each heat pipe 203 is a portion that radiates heat received by the first straight portion 203a, and the second straight portion 203b of each heat pipe 203 is inserted into the through hole 205a of the heat radiating fin 205, The heat dissipating fins 205 are mechanically and thermally coupled (FIG. 4). In the present embodiment, the second straight portions 203b of the five heat pipes 203 are arranged side by side at a predetermined interval in the Y-axis direction (FIGS. 1D and 2). In addition, the length of the 2nd linear part 203b of each heat pipe 203 of this embodiment is substantially equal to the length of the 1st linear part 203a.

図4に示すように、各ヒートパイプ203の接続部203cは、支持部材201からX軸方向に突出し、第1直線部203aの一端からZ軸方向上流側(負の方向側)に延び、第2直線部203bの一端に接続されている。つまり、接続部203cは、第2直線部203bが第1直線部203aと略平行となるように、第2直線部203bを折り返している。各ヒートパイプ203の接続部203cの第1直線部203aの近傍及び第2直線部203bの近傍には、接続部203cが座屈しないように、湾曲部203ca、203cbが形成されている。   As shown in FIG. 4, the connection portion 203c of each heat pipe 203 protrudes from the support member 201 in the X-axis direction, extends from one end of the first straight portion 203a to the upstream side in the Z-axis direction (negative direction side), It is connected to one end of the two straight line portions 203b. That is, the connecting portion 203c folds back the second straight portion 203b so that the second straight portion 203b is substantially parallel to the first straight portion 203a. Curved portions 203ca and 203cb are formed in the vicinity of the first straight portion 203a and the second straight portion 203b of the connection portion 203c of each heat pipe 203 so that the connection portion 203c does not buckle.

放熱フィン205は、矩形板状の金属(例えば、銅、アルミニウム、鉄、マグネシウム等の金属やこれらを含む合金等)の部材である。図4に示すように、本実施形態の各放熱フィン205には、各ヒートパイプ203の第2直線部203bが挿入される貫通孔205aが形成されている。本実施形態においては、50枚の放熱フィン205が、各ヒートパイプ203の第2直線部203bに順に挿入され、X軸方向に所定の間隔を空けて並べて配置されている。なお、各放熱フィン205は、各貫通孔205aにおいて、各ヒートパイプ203の第2直線部203bと溶接やはんだ付け等によって機械的及び熱的に結合している。なお、本実施形態の放熱フィン205は、光照射装置10が連結したときに互いに干渉することがないように、支持部材201の第2主面201bに面する空間から逸脱しないように配置されている。また、図1(d)及び図2に示すように、X軸方向上流側(負の方向側)に位置する10枚の放熱フィン205には、光照射装置10が軸方向に連結されたときに、隣接する光照射装置10のヒートパイプ203の接続部203cを収容するための収容部Sを形成するために、Z軸方向に延びる切欠205cが形成されている。切欠205cは、支持部材201の溝部201dに対応して、各放熱フィン205のY軸方向両端と、各ヒートパイプ203の間に配置されており、溝部201dと切欠205cによって囲まれる空間に収容部Sが形成されている。 The heat radiation fin 205 is a member made of a rectangular plate-like metal (for example, a metal such as copper, aluminum, iron, magnesium, or an alloy containing these metals). As shown in FIG. 4, each radiating fin 205 of the present embodiment is formed with a through hole 205a into which the second straight portion 203b of each heat pipe 203 is inserted. In the present embodiment, 50 heat radiating fins 205 are sequentially inserted into the second straight portion 203b of each heat pipe 203, and are arranged side by side with a predetermined interval in the X-axis direction. Each radiating fin 205 is mechanically and thermally coupled to the second straight portion 203b of each heat pipe 203 by welding, soldering, or the like in each through hole 205a. The heat radiation fins 205 of the present embodiment are arranged so as not to deviate from the space facing the second main surface 201b of the support member 201 so that they do not interfere with each other when the light irradiation device 10 is connected. Yes. Further, as shown in FIGS. 1D and 2, the light irradiation device 10 is connected in the X- axis direction to the 10 radiation fins 205 located on the upstream side (negative direction side) in the X- axis direction. Sometimes, a notch 205c extending in the Z-axis direction is formed in order to form the accommodating portion S for accommodating the connecting portion 203c of the heat pipe 203 of the adjacent light irradiation device 10. The notches 205c are arranged between the heat pipes 203 and both ends of the heat dissipating fins 205 in the Y-axis direction corresponding to the grooves 201d of the support member 201, and are accommodated in a space surrounded by the grooves 201d and the notches 205c. S is formed.

各LED素子110(図3)に駆動電流が流れ、各LED素子110から紫外光が出射されると、LED素子110の自己発熱により温度が上昇するが、各LED素子110で発生した熱は、基板105、支持部材201を介して各ヒートパイプ203の第1直線部203aに速やかに伝導(移動)する。そして、図4に示すように、各ヒートパイプ203の第1直線部203aに熱が移動すると、各ヒートパイプ203内の作動液が熱を吸収して蒸発し、作動液の蒸気が接続部203c、第2直線部203b内の空洞を通って移動するため、第1直線部203aの熱は第2直線部203bに移動する。そして、第2直線部203bに移動した熱は、さらに第2直線部203bに結合している複数の放熱フィン205に移動し、各放熱フィン205から空気中に放熱される。各放熱フィン205から放熱されると、第2直線部203bの温度も低下するため、第2直線部203b内の作動液の蒸気も冷却されて液体に戻り、第1直線部203aに移動する。そして、第1直線部203aに移動した作動液は、新たに基板105、支持部材201を介して伝導される熱を吸収するために用いられる。   When a drive current flows through each LED element 110 (FIG. 3) and ultraviolet light is emitted from each LED element 110, the temperature rises due to self-heating of the LED element 110, but the heat generated in each LED element 110 is It quickly conducts (moves) to the first straight portion 203a of each heat pipe 203 via the substrate 105 and the support member 201. Then, as shown in FIG. 4, when the heat moves to the first linear portion 203a of each heat pipe 203, the working fluid in each heat pipe 203 absorbs the heat and evaporates, and the vapor of the working fluid is connected to the connecting portion 203c. In order to move through the cavity in the 2nd straight part 203b, the heat of the 1st straight part 203a moves to the 2nd straight part 203b. And the heat which moved to the 2nd linear part 203b moves to the several radiation fin 205 couple | bonded with the 2nd linear part 203b further, and is thermally radiated from the each radiation fin 205 in the air. When heat is radiated from the heat radiation fins 205, the temperature of the second straight line portion 203b also decreases, so that the vapor of the working fluid in the second straight line portion 203b is cooled to return to the liquid and moves to the first straight line portion 203a. Then, the hydraulic fluid that has moved to the first linear portion 203 a is used to newly absorb heat conducted through the substrate 105 and the support member 201.

このように、本実施形態においては、各ヒートパイプ203内の作動液が第1直線部203aと第2直線部203bとの間を循環することにより、各LED素子110で発生した熱が速やかに放熱フィン205に移動し、放熱フィン205から空気中に効率よく放熱されるようになっている。このため、LED素子110の温度が過度に上昇することはなく、発光効率が著しく低下するといった問題も発生しない。   As described above, in the present embodiment, the heat generated in each LED element 110 is quickly generated by circulating the working fluid in each heat pipe 203 between the first straight portion 203a and the second straight portion 203b. It moves to the heat radiating fin 205 and efficiently radiates heat from the heat radiating fin 205 into the air. For this reason, the temperature of the LED element 110 does not rise excessively, and the problem that the light emission efficiency significantly decreases does not occur.

なお、放熱装置200の冷却能力は、ヒートパイプ203の熱輸送量と、放熱フィン205の放熱量によって決定される。また、基板105上に二次元に配置された各LED素子110間に温度差が発生すると、温度特性に起因する照射強度のバラツキが生じるため、照射強度の観点からは、基板105をX軸方向及びY軸方向に沿って均一に冷却することが求められるところ、特に本実施形態の光照射装置10においては、X軸方向及びY軸方向に連結可能に構成されており、支持部材201の端部周辺にまでLED素子110が配置されているため、支持部材201の端部周辺まで均一に冷却しなければならないといった問題がある。   The cooling capacity of the heat dissipation device 200 is determined by the heat transport amount of the heat pipe 203 and the heat dissipation amount of the heat dissipating fins 205. In addition, when a temperature difference occurs between the LED elements 110 arranged two-dimensionally on the substrate 105, variation in irradiation intensity due to temperature characteristics occurs. Therefore, from the viewpoint of irradiation intensity, the substrate 105 is arranged in the X-axis direction. In the light irradiation device 10 of this embodiment, it is configured to be connectable in the X-axis direction and the Y-axis direction, and the end of the support member 201 is required to be uniformly cooled along the Y-axis direction. Since the LED element 110 is disposed up to the periphery of the portion, there is a problem that the periphery of the end portion of the support member 201 must be uniformly cooled.

そこで、本実施形態の放熱装置200においては、各ヒートパイプ203の第1直線部203aの長さを、支持部材201のX軸方向の長さと同一か、または僅かに短くなるように構成することで、X軸方向に沿って均一に冷却している。つまり、各ヒートパイプ203の第1直線部203aが支持部材201からの熱をX軸方向の両端部に亘って確実に受け取る構成とすることで、支持部材201のX軸方向の両端部に亘って均一に冷却されるようになっている。また、Y軸方向については、複数のヒートパイプ203をY軸方向に均等に配置することでY軸方向に沿っても均一に冷却している。なお、図4(b)に示すとおり、各ヒートパイプ203の第1直線部203aの先端から支持部材201の縁までの距離d1は、(図3に示す)LED素子110のX軸方向のサイズLxの1/2以下であることが好ましい。   Therefore, in the heat dissipation device 200 of the present embodiment, the length of the first straight portion 203a of each heat pipe 203 is configured to be the same as or slightly shorter than the length of the support member 201 in the X-axis direction. Thus, cooling is performed uniformly along the X-axis direction. That is, the first linear portion 203a of each heat pipe 203 is configured to reliably receive heat from the support member 201 across both ends in the X-axis direction, so that it extends over both ends in the X-axis direction of the support member 201. To cool evenly. Moreover, about the Y-axis direction, the several heat pipe 203 is arrange | positioned equally in the Y-axis direction, and it is cooling uniformly also along the Y-axis direction. In addition, as shown in FIG.4 (b), the distance d1 from the front-end | tip of the 1st linear part 203a of each heat pipe 203 to the edge of the supporting member 201 is the size of the X-axis direction of LED element 110 (shown in FIG. 3). It is preferable that it is 1/2 or less of Lx.

このように、本実施形態の構成によれば、Y軸方向及びX軸方向において、冷却能力のバラツキが少なく、(図3に示す)基板105を一様に(略均一に)冷却することができ、基板105上に配置された200個のLED素子110も略均一に冷却される。従って、各LED素子110間における温度差も少なく、温度特性に起因する照射強度のバラツキも少ない。また、図4に示すように、本実施形態のヒートパイプ203の接続部203cは、X軸方向に突出するように構成されているが、接続部203cが突出する側とは反対の側に収容部Sが形成されているため(図2)、光照射装置10を連結しても互いに干渉することがないようになっている。   Thus, according to the configuration of the present embodiment, there is little variation in cooling capacity in the Y-axis direction and the X-axis direction, and the substrate 105 (shown in FIG. 3) can be cooled uniformly (substantially uniformly). The 200 LED elements 110 disposed on the substrate 105 are also cooled substantially uniformly. Therefore, there is little temperature difference between the LED elements 110, and there is little variation in irradiation intensity due to temperature characteristics. As shown in FIG. 4, the connection portion 203 c of the heat pipe 203 of the present embodiment is configured to protrude in the X-axis direction, but is accommodated on the side opposite to the side from which the connection portion 203 c protrudes. Since the part S is formed (FIG. 2), even if the light irradiation apparatus 10 is connected, it does not interfere with each other.

図5は、本実施形態の光照射装置10をX軸方向に連結した状態を示す図であり、図5(a)は、背面図(Z軸方向上流側(負の方向側)から見た図)であり、図5(b)は、平面図(Y軸方向下流側(正の方向側)から見た図)であり、図5(c)は、正面図(Z軸方向下流側(正の方向側)から見た図)である。図5に示すように、本実施形態の光照射装置10は、各光照射装置10からX軸方向に突出するヒートパイプ203の接続部203cが、隣接する光照射装置10の収容部Sに収容されるように配置することで、支持部材201の第1主面201aが連続するように連結配置することが可能になっている。従って、仕様や用途に応じて、様々なサイズのライン状の照射エリアを形成することが可能となる。なお、図2に示すように、本実施形態においては、各収容部Sが各ヒートパイプ203の間、及びY軸方向両端に形成されているため、隣接する光照射装置10は、Y軸方向にシフトした配置となるが(図5(a))、図5(c)に示すように、Y軸方向両端部に位置するLED素子110を除けば、隣接する光照射装置10との間でLED素子110の配置が連続するように配置することが可能である。   FIG. 5 is a view showing a state in which the light irradiation device 10 of the present embodiment is connected in the X-axis direction, and FIG. 5A is a rear view (viewed from the upstream side in the Z-axis direction (negative direction side)). 5 (b) is a plan view (viewed from the Y axis direction downstream side (positive direction side)), and FIG. 5 (c) is a front view (Z axis direction downstream side ( It is a view as seen from the positive direction side). As shown in FIG. 5, in the light irradiation device 10 of the present embodiment, the connection portion 203 c of the heat pipe 203 protruding in the X-axis direction from each light irradiation device 10 is accommodated in the accommodation portion S of the adjacent light irradiation device 10. By arranging in such a manner, the first main surface 201a of the support member 201 can be connected and arranged so as to be continuous. Therefore, it is possible to form a line-shaped irradiation area of various sizes according to the specifications and applications. As shown in FIG. 2, in the present embodiment, since each accommodating portion S is formed between each heat pipe 203 and at both ends in the Y-axis direction, the adjacent light irradiation devices 10 are arranged in the Y-axis direction. (FIG. 5 (a)), but as shown in FIG. 5 (c), except for the LED elements 110 located at both ends in the Y-axis direction, between adjacent light irradiation devices 10. The LED elements 110 can be arranged so as to be continuous.

以上が本実施形態の説明であるが、本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲内において様々な変形が可能である。   The above is the description of the present embodiment, but the present invention is not limited to the above configuration, and various modifications can be made within the scope of the technical idea of the present invention.

例えば、本実施形態の放熱装置200においては、図1に示すように、Y軸方向に所定の間隔を空けて並ぶ5個のヒートパイプ203と、50枚の放熱フィン205を備える構成としたが、ヒートパイプ203及び放熱フィン205の数はこれに限定されるものではない。放熱フィン205の数は、LED素子110の発熱量や放熱フィン205の周囲の空気の温度等の関係で定まり、LED素子110で発生した熱を放熱することができる、いわゆるフィン面積に応じて、適宜選択される。また、ヒートパイプ203の数は、LED素子110の発熱量や各ヒートパイプ203の熱輸送量等との関係で定まり、LED素子110で発生した熱を十分に輸送することができるように適宜選択される。   For example, the heat dissipating device 200 of the present embodiment is configured to include five heat pipes 203 arranged at a predetermined interval in the Y-axis direction and 50 heat dissipating fins 205 as shown in FIG. The numbers of the heat pipes 203 and the heat radiating fins 205 are not limited to this. The number of radiating fins 205 is determined by the relationship between the amount of heat generated by the LED elements 110 and the temperature of the air around the radiating fins 205, and the heat generated by the LED elements 110 can be radiated according to the so-called fin area. It is selected appropriately. The number of heat pipes 203 is determined by the relationship between the amount of heat generated by the LED elements 110 and the amount of heat transported by each heat pipe 203, and is appropriately selected so that the heat generated by the LED elements 110 can be sufficiently transported. Is done.

また、本実施形態においては、基板105上に20個(X軸方向)×10列(Y軸方向)の態様で、LED素子110が配置され、基板105の裏面側に5個のヒートパイプ203を配置する構成としたが、冷却効率の観点からは、基板105上の各LED素子110が、各ヒートパイプ203の第1直線部203aと相対する位置に配置されることが望ましい。   Further, in the present embodiment, the LED elements 110 are arranged in a manner of 20 (X-axis direction) × 10 rows (Y-axis direction) on the substrate 105, and five heat pipes 203 are provided on the back side of the substrate 105. However, from the viewpoint of cooling efficiency, it is desirable that each LED element 110 on the substrate 105 is disposed at a position facing the first straight portion 203a of each heat pipe 203.

また、本実施形態においては、5個のヒートパイプ203の第1直線部203a及び第2直線部203bが、Y軸方向に所定の間隔をおいて均等に配置されているものとして説明したが(図1(d)、図2)、必ずしもこのような構成に限定されるものではない。第1直線部203a及び第2直線部203bの間隔は、収容部Sを形成できる限度において(つまり、第1直線部203aの間隔及び第2直線部203bの間隔が、接続部203cの外径よりも広く、収容部Sに接続部203cを収容することができれば)、徐々に拡がる(又は狭まる)ように構成してもよい。   In the present embodiment, the first straight portion 203a and the second straight portion 203b of the five heat pipes 203 are described as being equally arranged at a predetermined interval in the Y-axis direction ( FIG. 1D and FIG. 2) are not necessarily limited to such a configuration. The distance between the first straight line portion 203a and the second straight line portion 203b is limited to the extent that the accommodating portion S can be formed (that is, the distance between the first straight line portion 203a and the second straight line portion 203b is larger than the outer diameter of the connecting portion 203c) If the connecting portion 203c can be accommodated in the accommodating portion S, it may be configured to gradually expand (or narrow).

また、本実施形態の放熱装置200は、自然空冷されるものとして説明したが、さらに放熱装置200に冷却風を供給するファンを設け、放熱装置200を強制空冷することも可能である。   Moreover, although the heat radiating device 200 of this embodiment was demonstrated as what is naturally air-cooled, the fan which supplies a cooling wind to the heat radiating device 200 can also be provided, and the heat radiating device 200 can also be forced air-cooled.

(変形例1)
図6は、本実施形態の放熱装置200の変形例に係る放熱装置200Mを備えた光照射装置10Mを示す図であり、本変形例の光照射装置10Mの右側面図(X軸方向下流側(正の方向側)から見た図)である。図6に示すように、本変形例の光照射装置10Mは、放熱装置200Mが冷却ファン210を備えている点で、本実施形態の光照射装置10と異なる。
(Modification 1)
FIG. 6 is a view showing a light irradiation device 10M including a heat dissipation device 200M according to a modification of the heat dissipation device 200 of the present embodiment, and is a right side view of the light irradiation device 10M of the present modification (downstream side in the X-axis direction). (Viewed from the positive direction side). As shown in FIG. 6, the light irradiation device 10 </ b> M of this modification is different from the light irradiation device 10 of the present embodiment in that the heat dissipation device 200 </ b> M includes a cooling fan 210.

冷却ファン210は、放熱装置200MのZ軸方向上流側(負の方向側)に配置され、放熱装置200Mに冷却風を供給する装置である。図6に示すように、冷却ファン210は、支持部材201の第2主面201bに対して垂直な方向(つまり、Z軸方向又はZ軸方向と相反する方向)に気流Wを生成する。冷却ファン210によって生成された気流Wは、各放熱フィン205の間を流れ、各放熱フィン205を冷却すると共に、各放熱フィン205に挿通された各ヒートパイプ203の第2直線部203b(図1(b))、及び支持部材201の第2主面201bを冷却する。従って、本変形例の構成によれば、放熱装置200Mの冷却能力を格段に向上させることができる。なお、冷却ファン210は、図5に示すような、光照射装置10を連結した構成においても適用することができ、この場合、各放熱装置200に対して1つの冷却ファン210を設けてもよく、また複数の放熱装置200に対して1つの冷却ファン210を設けてもよい。   The cooling fan 210 is a device that is disposed on the upstream side (negative direction side) in the Z-axis direction of the heat dissipation device 200M and supplies cooling air to the heat dissipation device 200M. As illustrated in FIG. 6, the cooling fan 210 generates an air flow W in a direction perpendicular to the second main surface 201 b of the support member 201 (that is, a direction opposite to the Z-axis direction or the Z-axis direction). The airflow W generated by the cooling fan 210 flows between the heat radiating fins 205 to cool the heat radiating fins 205, and the second straight portions 203 b of the heat pipes 203 inserted into the heat radiating fins 205 (FIG. 1). (B)) and the second main surface 201b of the support member 201 are cooled. Therefore, according to the configuration of this modification, the cooling capacity of the heat dissipation device 200M can be significantly improved. The cooling fan 210 can also be applied to a configuration in which the light irradiation device 10 is connected as shown in FIG. 5. In this case, one cooling fan 210 may be provided for each heat dissipation device 200. One cooling fan 210 may be provided for a plurality of heat dissipation devices 200.

(第2の実施形態)
図7は、本発明の第2の実施形態に係る放熱装置200Aを備えた光照射装置20の概略構成を説明する外観図である。図7(a)は、本実施形態の光照射装置20の平面図(Y軸方向下流側(正の方向側)から見た図)であり、図7(b)は、背面図(Z軸方向上流側(負の方向側)から見た図)であり、図7(c)は、右側面図(X軸方向下流側(正の方向側)から見た図)であり、図7(d)は、左側面図(X軸方向上流側(負の方向側)から見た図)である。また、図8は、本実施形態の光照射装置20の斜視図である。本実施形態の光照射装置20は、X軸方向下流側(正の方向側)に位置する10枚の放熱フィン205Aに切欠205Acが形成されており(図7(c)、図8)、また支持部材201AのX軸方向下流側(正の方向側)の端部に溝部201Adが形成されており、隣接する光照射装置10のヒートパイプ203Aの接続部203Acを収容するための収容部Sが、接続部203Acが突出する側(つまり、接続部203Acの間)に形成されている点で、第1の実施形態の放熱装置200と異なる。また、図7(d)に示すように、本実施形態においては、Y軸方向における各ヒートパイプ203Aの配置間隔をPとしたときに、各ヒートパイプ203Aの位置が、支持部材201A及び放熱フィン205Aの中心線CXに対して、P/4に相当する距離だけY軸方向下流側(正の方向側)にオフセットしている点で、第1の実施形態の放熱装置200と異なる。
(Second Embodiment)
FIG. 7 is an external view illustrating a schematic configuration of the light irradiation device 20 including the heat dissipation device 200A according to the second embodiment of the present invention. Fig.7 (a) is a top view (figure seen from the Y-axis direction downstream side (positive direction side)) of the light irradiation apparatus 20 of this embodiment, FIG.7 (b) is a rear view (Z-axis). FIG. 7C is a right side view (viewed from the X-axis direction downstream side (positive direction side)), and FIG. d) is a left side view (a view seen from the upstream side (negative direction side) in the X-axis direction). FIG. 8 is a perspective view of the light irradiation device 20 of the present embodiment. In the light irradiation device 20 according to the present embodiment, notches 205Ac are formed in 10 radiation fins 205A located on the downstream side (positive direction side) in the X-axis direction (FIGS. 7C and 8), A groove 201Ad is formed at the end of the support member 201A on the downstream side in the X-axis direction (positive direction side), and an accommodating portion S for accommodating the connecting portion 203Ac of the heat pipe 203A of the adjacent light irradiation device 10 is provided. This is different from the heat dissipating device 200 of the first embodiment in that the connecting portion 203Ac is formed on the protruding side (that is, between the connecting portions 203Ac). Further, as shown in FIG. 7D, in this embodiment, when the arrangement interval of the heat pipes 203A in the Y-axis direction is P, the positions of the heat pipes 203A are the support members 201A and the radiation fins. It differs from the heat dissipation device 200 of the first embodiment in that it is offset to the downstream side (positive direction side) in the Y-axis direction by a distance corresponding to P / 4 with respect to the center line CX of 205A.

図9は、本実施形態の光照射装置20をX軸方向に連結した状態を示す図であり、図9(a)は、背面図(Z軸方向上流側(負の方向側)から見た図)であり、図9(b)は、平面図(Y軸方向下流側(正の方向側)から見た図)であり、図9(c)は、正面図(Z軸方向下流側(正の方向側)から見た図)である。図8及び図9に示すように、本実施形態の光照射装置20においては、収容部Sが、接続部203Acが突出する側(つまり、接続部203Acの間)に形成されているため、接続部203AcをX軸方向下流側(正の方向側)に向けた光照射装置20(図9中、右側から2番目と4番目の光照射装置20)と接続部203AcをX軸方向上流側(負の方向側)に向けた光照射装置20(図9中、右側から1番目と3番目の光照射装置20)を一組として連結させることができる。つまり、接続部203AcをX軸方向下流側(正の方向側)に向けた光照射装置20と、接続部203AcをX軸方向下流側(正の方向側)に向けた光照射装置20とは、180°向きが異なるため、両者の各ヒートパイプ203Aの位置は、P/2に相当する距離だけ離間することとなり、一方の光照射装置20の収容部Sに他方の光照射装置20の各ヒートパイプ203Aが嵌まり、他方の光照射装置20の収容部Sに一方の光照射装置20の各ヒートパイプ203Aが嵌まり、両者はY軸方向にシフトすることなく接合される。従って、一組の光照射装置20の支持部材201Aを接合すると、支持部材201Aの第1主面201Aaが連続するように連結配置され、一組の光照射装置20の間でLED素子110の配置が連続するように配置される。そして、図9に示すように、接続部203AcをX軸方向下流側(正の方向側)に向けた光照射装置20と接続部203AcをX軸方向上流側(負の方向側)に向けた光照射装置20を一組として連結した状態においては、各ヒートパイプ203AはX軸方向に突出しないため、複数組の光照射装置20をX軸方向にさらに連結することもできる。   FIG. 9 is a diagram showing a state in which the light irradiation device 20 of the present embodiment is connected in the X-axis direction, and FIG. 9A is a rear view (viewed from the upstream side in the Z-axis direction (negative direction side)). FIG. 9B is a plan view (viewed from the downstream side in the Y-axis direction (positive direction side)), and FIG. 9C is a front view (downstream side in the Z-axis direction ( It is a view as seen from the positive direction side). As shown in FIG.8 and FIG.9, in the light irradiation apparatus 20 of this embodiment, since the accommodating part S is formed in the side (namely, between connection part 203Ac) where the connection part 203Ac protrudes, it is connected. The light irradiation device 20 (second and fourth light irradiation devices 20 from the right side in FIG. 9) and the connection portion 203Ac on the upstream side in the X-axis direction (in FIG. 9, the portion 203Ac is directed downstream in the X-axis direction (positive direction side)). The light irradiation device 20 (the first and third light irradiation devices 20 from the right side in FIG. 9) directed toward the negative direction side can be connected as a set. That is, the light irradiation device 20 with the connecting portion 203Ac directed downstream in the X axis direction (positive direction side) and the light irradiation device 20 with the connection portion 203Ac directed downstream in the X axis direction (positive direction side) Since the directions of 180 ° are different, the positions of the heat pipes 203A of both are separated by a distance corresponding to P / 2, and each of the light irradiation devices 20 of the other light irradiation device 20 is separated from the housing portion S of the one light irradiation device 20. The heat pipe 203A is fitted, and each heat pipe 203A of the one light irradiation device 20 is fitted in the housing portion S of the other light irradiation device 20, and both are joined without shifting in the Y-axis direction. Accordingly, when the support members 201A of the pair of light irradiation devices 20 are joined, the first main surface 201Aa of the support member 201A is connected and disposed so that the LED elements 110 are disposed between the pair of light irradiation devices 20. Are arranged to be continuous. And as shown in FIG. 9, the light irradiation apparatus 20 and the connection part 203Ac which orient | assigned the connection part 203Ac to the X-axis direction downstream (positive direction side) were faced to the X-axis direction upstream (negative direction side). In a state where the light irradiation devices 20 are connected as a set, each heat pipe 203A does not protrude in the X-axis direction, and therefore, a plurality of sets of light irradiation devices 20 can be further connected in the X-axis direction.

(変形例2)
図10は、本実施形態の放熱装置200Aの変形例に係る放熱装置200AMを備えた光照射装置20Mの左側面図(X軸方向上流側(負の方向側)から見た図)である。図10に示すように、本変形例の光照射装置20Mは、放熱装置200AMが冷却ファン210Aを備えている点で、本実施形態の光照射装置20と異なる。
(Modification 2)
FIG. 10 is a left side view of the light irradiation device 20M including the heat dissipation device 200AM according to the modification of the heat dissipation device 200A of the present embodiment (viewed from the upstream side in the X axis direction (negative direction side)). As shown in FIG. 10, the light irradiation device 20M of the present modification is different from the light irradiation device 20 of the present embodiment in that the heat dissipation device 200AM includes a cooling fan 210A.

冷却ファン210Aは、変形例1の冷却ファン210と同様、放熱装置200AMのZ軸方向上流側(負の方向側)に配置され、放熱装置200AMに冷却風を供給する装置である。冷却ファン210Aによって生成された気流Wは、各放熱フィン205Aの間を流れ、各放熱フィン205Aを冷却すると共に、各放熱フィン205Aに挿通された各ヒートパイプ203Aの第2直線部203Ab、及び支持部材201Aの第2主面201Abを冷却する。従って、本変形例の構成によれば、放熱装置200AMの冷却能力を格段に向上させることができる。なお、冷却ファン210Aは、図9に示すような、光照射装置20を連結した構成においても適用することができ、この場合、各放熱装置200Aに対して1つの冷却ファン210Aを設けてもよく、また複数の放熱装置200Aに対して1つの冷却ファン210Aを設けてもよい。   The cooling fan 210A is a device that is arranged on the upstream side (negative direction side) in the Z-axis direction of the heat radiating device 200AM and supplies cooling air to the heat radiating device 200AM, similarly to the cooling fan 210 of the first modification. The airflow W generated by the cooling fan 210A flows between the heat radiating fins 205A, cools the heat radiating fins 205A, and supports the second straight portions 203Ab of the heat pipes 203A inserted into the heat radiating fins 205A and the support. The second main surface 201Ab of the member 201A is cooled. Therefore, according to the configuration of this modification, the cooling capacity of the heat dissipation device 200AM can be significantly improved. The cooling fan 210A can also be applied to a configuration in which the light irradiation device 20 is connected as shown in FIG. 9, and in this case, one cooling fan 210A may be provided for each heat dissipation device 200A. One cooling fan 210A may be provided for a plurality of heat dissipation devices 200A.

(第3の実施形態)
図11は、本発明の第3の実施形態に係る放熱装置200Bを備えた光照射装置30の概略構成を説明する外観図である。図11(a)は、本実施形態の光照射装置30の平面図(Y軸方向下流側(正の方向側)から見た図)であり、図11(b)は、背面図(Z軸方向上流側(負の方向側)から見た図)であり、図11(c)は、右側面図(X軸方向下流側(正の方向側)から見た図)であり、図11(d)は、左側面図(X軸方向上流側(負の方向側)から見た図)である。本実施形態の光照射装置30は、X軸方向から見たときに、各ヒートパイプ203Bの第2直線部203Bbの位置がY軸方向及びZ軸方向において異なり(図11(d))、各ヒートパイプ203Bの接続部203Bc(図11(a)、図11(c))の長さがそれぞれ異なっている点、また放熱フィン205Bが、支持部材201Bの第2主面201BbのY軸方向上流側(負の方向側)に形成されており、支持部材201Bの第2主面201BbのY軸方向下流側(正の方向側)に空間Q(図11(b)、図11(c)、図11(d))が形成されている点、で第1の実施形態の放熱装置200と異なる。また、本実施形態においては、各ヒートパイプ203Bの第2直線部203Bbの長さが、第1直線部203Baよりも短くなっており、第2直線部203Bbの先端よりもX軸方向上流側(負の方向側)に、隣接する光照射装置30のヒートパイプ203Bの接続部203Bcを収容するための収容部Sが形成されている。また、支持部材201Bの第2主面201BbのX軸方向上流側(負の方向側)の端部には、光照射装置30がX軸方向に連結されたときに、隣接する光照射装置30のヒートパイプ203Bの湾曲部203Bcaを収容する溝部201Bdが各ヒートパイプ203Bの第1直線部203Baの先端部に隣接して形成されている。このような構成によれば、空間Qに他の部品(例えば、冷却ファン、LED駆動回路等)を配置することができる。また、本実施形態の光照射装置30にも第1の実施形態の光照射装置10と同様、隣接する光照射装置30のヒートパイプ203Bの接続部203Bcを収容するための収容部Sが形成されているため、図12に示すように、支持部材201Bを接合して、支持部材201Bの第1主面201Baが連続するように連結配置することが可能である。なお、本実施形態においては、溝部201Bdが各ヒートパイプ203Bの間に形成されているため、隣接する光照射装置30は、Y軸方向にシフトした配置となる(図12(a)、図12(c))。
(Third embodiment)
FIG. 11 is an external view illustrating a schematic configuration of a light irradiation device 30 including a heat dissipation device 200B according to the third embodiment of the present invention. Fig.11 (a) is a top view (figure seen from the Y-axis direction downstream side (positive direction side)) of the light irradiation apparatus 30 of this embodiment, FIG.11 (b) is a rear view (Z-axis). FIG. 11C is a right side view (viewed from the downstream side in the X-axis direction (positive direction side)), and FIG. d) is a left side view (a view seen from the upstream side (negative direction side) in the X-axis direction). In the light irradiation device 30 of the present embodiment, when viewed from the X-axis direction, the position of the second linear portion 203Bb of each heat pipe 203B is different in the Y-axis direction and the Z-axis direction (FIG. 11 (d)). The lengths of the connecting portions 203Bc (FIGS. 11A and 11C) of the heat pipe 203B are different from each other, and the radiating fins 205B are upstream of the second main surface 201Bb of the support member 201B in the Y-axis direction. Space Q (FIG. 11 (b), FIG. 11 (c), on the Y axis direction downstream side (positive direction side) of the second main surface 201Bb of the support member 201B. 11 (d)) is different from the heat dissipation device 200 of the first embodiment in that it is formed. In the present embodiment, the length of the second straight portion 203Bb of each heat pipe 203B is shorter than the first straight portion 203Ba, and is upstream in the X-axis direction from the tip of the second straight portion 203Bb ( A housing part S for housing the connection part 203Bc of the heat pipe 203B of the adjacent light irradiation device 30 is formed on the negative direction side. Further, when the light irradiation device 30 is connected in the X-axis direction to the end of the second main surface 201Bb of the support member 201B on the upstream side in the X-axis direction (negative direction side), the adjacent light irradiation device 30 is connected. A groove 201Bd for accommodating the curved portion 203Bca of the heat pipe 203B is formed adjacent to the tip of the first straight portion 203Ba of each heat pipe 203B. According to such a configuration, other components (for example, a cooling fan, an LED drive circuit, etc.) can be arranged in the space Q. Further, the light irradiation device 30 of the present embodiment is also provided with a housing portion S for housing the connection portion 203Bc of the heat pipe 203B of the adjacent light irradiation device 30 as in the light irradiation device 10 of the first embodiment. Therefore, as shown in FIG. 12, it is possible to join and arrange the support member 201B so that the first main surface 201Ba of the support member 201B is continuous. In addition, in this embodiment, since groove part 201Bd is formed between each heat pipe 203B, the adjacent light irradiation apparatus 30 becomes the arrangement | positioning shifted to the Y-axis direction (FIG. 12 (a), FIG. 12). (C)).

(変形例3)
図13は、本実施形態の放熱装置200Bの変形例に係る放熱装置200BMを備えた光照射装置30Mの右側面図(X軸方向下流側(正の方向側)から見た図)である。図に示すように、本変形例の光照射装置30Mは、放熱装置200BMが冷却ファン210Bを備えている点で、本実施形態の光照射装置30と異なる。
(Modification 3)
FIG. 13 is a right side view (a diagram seen from the downstream side in the X-axis direction (positive direction side)) of the light irradiation device 30M including the heat dissipation device 200BM according to a modification of the heat dissipation device 200B of the present embodiment. As shown in the drawing, the light irradiation device 30M of the present modification is different from the light irradiation device 30 of the present embodiment in that the heat dissipation device 200BM includes a cooling fan 210B.

冷却ファン210Bは、支持部材201Bの第2主面201Bb上の空間Q内に配置され、放熱装置200BMに冷却風を供給する装置である。図13に示すように、本変形例の冷却ファン210Bは、支持部材201Bの第2主面201Bbに対して略平行な方向(つまり、Y軸方向又はY軸方向と相反する方向)に気流Wを生成する。冷却ファン210Bによって生成された気流Wは、各放熱フィン205Bの間を流れ、各放熱フィン205Bを冷却すると共に、各放熱フィン205Bに挿通された各ヒートパイプ203Bの第2直線部203Bb(図11(a))を冷却する。本変形においては、各ヒートパイプ203Bの第2直線部203Bbの位置がZ軸方向に異なっているため、冷却ファン210Bによって生成された気流Wが各第2直線部203Bbに確実にあたることとなる。従って、本変形例の構成によれば、放熱装置200BMの冷却能力を格段に向上させることができる。なお、冷却ファン210Bは、図12に示すような、光照射装置30を連結した構成においても適用することができ、この場合、各放熱装置200Bに対して1つの冷却ファン210Bを設けてもよく、また複数の放熱装置200Bに対して1つの冷却ファン210Bを設けてもよい。   The cooling fan 210B is a device that is disposed in the space Q on the second main surface 201Bb of the support member 201B and supplies cooling air to the heat dissipation device 200BM. As shown in FIG. 13, the cooling fan 210B of the present modification has an air flow W in a direction substantially parallel to the second main surface 201Bb of the support member 201B (that is, the Y-axis direction or the direction opposite to the Y-axis direction). Is generated. The air flow W generated by the cooling fan 210B flows between the heat radiating fins 205B, cools the heat radiating fins 205B, and also includes second linear portions 203Bb (see FIG. 11) of the heat pipes 203B inserted through the heat radiating fins 205B. (A)) is cooled. In this modification, since the position of the second straight portion 203Bb of each heat pipe 203B is different in the Z-axis direction, the air flow W generated by the cooling fan 210B surely hits each second straight portion 203Bb. Therefore, according to the configuration of this modification, the cooling capacity of the heat dissipation device 200BM can be significantly improved. The cooling fan 210B can also be applied to a configuration in which the light irradiation device 30 is connected as shown in FIG. 12, and in this case, one cooling fan 210B may be provided for each heat dissipation device 200B. Further, one cooling fan 210B may be provided for the plurality of heat dissipation devices 200B.

(第4の実施形態)
図14は、本発明の第4の実施形態に係る放熱装置200Cを備えた光照射装置40の概略構成を説明する外観図である。図14(a)は、本実施形態の光照射装置40の平面図(Y軸方向下流側(正の方向側)から見た図)であり、図14(b)は、背面図(Z軸方向上流側(負の方向側)から見た図)であり、図14(c)は、右側面図(X軸方向下流側(正の方向側)から見た図)であり、図14(d)は、左側面図(X軸方向上流側(負の方向側)から見た図)である。図14(b)に示すように、本実施形態の光照射装置40は、各ヒートパイプ203Cの第1直線部203CaがX軸方向に対して傾斜しており、第1直線部203Caと第2直線部203Cbが捻れの位置にある点で第1の実施形態の放熱装置200と異なる。本実施形態においては、各ヒートパイプ203Cの第1直線部203CaをX軸方向に対して傾斜させることによって、隣接する光照射装置40のヒートパイプ203Cの湾曲部203Ccaを収容する溝部201Cdの位置をY軸方向にシフトさせている。つまり、溝部201Cdは、各ヒートパイプ203Cの第1直線部203Caの先端部に隣接して形成されるが、各ヒートパイプ203Cの第1直線部203CaをX軸方向に対して傾斜させることによって、溝部201CdのY軸方向の位置が各ヒートパイプ203Cの湾曲部203Ccaの位置と略一致するように構成している。具体的には、図14(b)に示すように、支持部材201CのX軸方向上流側(負の方向側)の端部において、各ヒートパイプ203Cの第1直線部203Caの先端が各ヒートパイプ203Cの配列ピッチPの1/2に相当する距離だけ傾斜するように構成されており、X軸方向に対する第1直線部203Caの傾斜角度θは、支持部材201CのX軸方向の長さをLとし、各ヒートパイプ203Cの配列ピッチをPとすると、以下の式(1)によって表すことができる。
θ=tan−1{(P/2)÷(L)} ・・・ (1)
(Fourth embodiment)
FIG. 14 is an external view illustrating a schematic configuration of a light irradiation device 40 including a heat dissipation device 200C according to the fourth embodiment of the present invention. FIG. 14A is a plan view (a view seen from the downstream side (positive direction side) in the Y-axis direction) of the light irradiation device 40 of the present embodiment, and FIG. 14B is a rear view (Z-axis). FIG. 14C is a right side view (viewed from the downstream side in the X-axis direction (positive direction side)), and FIG. d) is a left side view (a view seen from the upstream side (negative direction side) in the X-axis direction). As shown in FIG. 14B, in the light irradiation device 40 of the present embodiment, the first straight portion 203Ca of each heat pipe 203C is inclined with respect to the X-axis direction, and the first straight portion 203Ca and the second straight portion 203Ca. It differs from the heat dissipation device 200 of the first embodiment in that the straight line portion 203Cb is in a twisted position. In the present embodiment, the position of the groove 201Cd that houses the curved portion 203Cca of the heat pipe 203C of the adjacent light irradiation device 40 is inclined by inclining the first straight portion 203Ca of each heat pipe 203C with respect to the X-axis direction. Shifted in the Y-axis direction. That is, the groove 201Cd is formed adjacent to the tip of the first straight portion 203Ca of each heat pipe 203C, but by inclining the first straight portion 203Ca of each heat pipe 203C with respect to the X-axis direction, The position of the groove part 201Cd in the Y-axis direction is configured to substantially coincide with the position of the curved part 203Cca of each heat pipe 203C. Specifically, as shown in FIG. 14B, at the end of the support member 201C on the upstream side in the X-axis direction (negative direction side), the tip of the first straight portion 203Ca of each heat pipe 203C is connected to each heat. The pipe 203C is configured to be inclined by a distance corresponding to ½ of the arrangement pitch P of the pipe 203C, and the inclination angle θ of the first straight portion 203Ca with respect to the X-axis direction is the length of the support member 201C in the X-axis direction. When L is L and the arrangement pitch of the heat pipes 203C is P, it can be expressed by the following equation (1).
θ = tan −1 {(P / 2) ÷ (L)} (1)

なお、本実施形態においても、各ヒートパイプ203Cの第2直線部203Cbの長さが、第1直線部203Caよりも短くなっており、第2直線部203Cbの先端よりもX軸方向上流側(負の方向側)に、隣接する光照射装置40のヒートパイプ203Cの接続部203Ccを収容するための収容部Sが形成されている。従って、本実施形態の光照射装置40も第1の実施形態の光照射装置10と同様、図15に示すように、支持部材201Cを接合して、支持部材201Cの第1主面201Caが連続するように連結配置することが可能である。なお、本実施形態においては溝部201CdのY軸方向の位置が各ヒートパイプ203Cの湾曲部203Ccaの位置と略一致するように構成されているため、隣接する光照射装置40はY軸方向にシフトすることなく接合される。   Also in the present embodiment, the length of the second straight portion 203Cb of each heat pipe 203C is shorter than the first straight portion 203Ca, and is upstream in the X-axis direction from the tip of the second straight portion 203Cb ( A housing portion S for housing the connecting portion 203Cc of the heat pipe 203C of the adjacent light irradiation device 40 is formed on the negative direction side. Accordingly, as in the light irradiation device 10 of the first embodiment, the light irradiation device 40 of the present embodiment is joined to the support member 201C and the first main surface 201Ca of the support member 201C is continuous as shown in FIG. It is possible to connect and arrange so as to. In the present embodiment, the position of the groove 201Cd in the Y-axis direction is configured to substantially coincide with the position of the curved portion 203Cca of each heat pipe 203C, so that the adjacent light irradiation device 40 is shifted in the Y-axis direction. It is joined without doing.

(変形例4)
図16は、本実施形態の放熱装置200Cの変形例に係る放熱装置200CMを備えた光照射装置40Mの左側面図(X軸方向上流側(負の方向側)から見た図)である。図16に示すように、本変形例の光照射装置40Mは、放熱装置200CMが冷却ファン210Cを備えている点で、本実施形態の光照射装置40と異なる。
(Modification 4)
FIG. 16 is a left side view (a diagram viewed from the upstream side in the X-axis direction (negative direction side)) of the light irradiation device 40M including the heat dissipation device 200CM according to the modification of the heat dissipation device 200C of the present embodiment. As illustrated in FIG. 16, the light irradiation device 40 </ b> M of the present modification is different from the light irradiation device 40 of the present embodiment in that the heat dissipation device 200 </ b> CM includes a cooling fan 210 </ b> C.

冷却ファン210Cは、変形例1の冷却ファン210と同様、放熱装置200CMのZ軸方向上流側(負の方向側)に配置され、放熱装置200CMに冷却風を供給する装置である。冷却ファン210Cによって生成された気流Wは、各放熱フィン205Cの間を流れ、各放熱フィン205Cを冷却すると共に、各放熱フィン205Cに挿通された各ヒートパイプ203Cの第2直線部203Cb(図14(a))、及び支持部材201Cの第2主面201Cbを冷却する。従って、本変形例の構成によれば、放熱装置200CMの冷却能力を格段に向上させることができる。なお、冷却ファン210Cは、図15に示すような、光照射装置40を連結した構成においても適用することができ、この場合、各放熱装置200Cに対して1つの冷却ファン210Cを設けてもよく、また複数の放熱装置200Cに対して1つの冷却ファン210Cを設けてもよい。   Like the cooling fan 210 of the first modification, the cooling fan 210C is a device that is arranged on the upstream side (negative direction side) in the Z-axis direction of the heat dissipation device 200CM and supplies cooling air to the heat dissipation device 200CM. The airflow W generated by the cooling fan 210C flows between the heat radiating fins 205C to cool the heat radiating fins 205C, and at the same time, the second straight portions 203Cb (see FIG. 14) of the heat pipes 203C inserted through the heat radiating fins 205C. (A)) and the second main surface 201Cb of the support member 201C are cooled. Therefore, according to the configuration of this modification, the cooling capacity of the heat dissipation device 200CM can be significantly improved. Note that the cooling fan 210C can be applied to a configuration in which the light irradiation device 40 is connected as shown in FIG. 15, and in this case, one cooling fan 210C may be provided for each heat dissipation device 200C. Further, one cooling fan 210C may be provided for the plurality of heat dissipation devices 200C.

(第5の実施形態)
図17は、本発明の第5の実施形態に係る放熱装置200Dを備えた光照射装置50の概略構成を説明する外観図である。図17(a)は、本実施形態の光照射装置50の平面図(Y軸方向下流側(正の方向側)から見た図)であり、図17(b)は、背面図(Z軸方向上流側(負の方向側)から見た図)であり、図17(c)は、右側面図(X軸方向下流側(正の方向側)から見た図)であり、図17(d)は、左側面図(X軸方向上流側(負の方向側)から見た図)である。また、図18は、図17(c)のA−A断面図である。図18に示すように、本実施形態の光照射装置50は、Y軸方向から見たときに、各ヒートパイプ203Dの第1直線部203Daが第2主面201Db(つまり、X軸方向)に対して傾斜しており、各ヒートパイプ203Dの接続部203Dcが第2主面201Dbから離れる方向に突出している点で第1の実施形態の放熱装置200と異なる。また、図17に示すように、本実施形態においては、各ヒートパイプ203Dの第2直線部203Dbの長さが、第1直線部203Daよりも短くなっており、第2直線部203Dbの先端よりもX軸方向上流側(負の方向側)に、隣接する光照射装置50のヒートパイプ203Dの接続部203Dcを収容するための収容部Sが形成されている(図17(a)、図17(b))。つまり、本実施形態においては、各ヒートパイプ203Dの第1直線部203Daを第2主面201Dbに対して傾斜させることによって、各ヒートパイプ203Dの接続部203Dcが第2主面201DbよりもZ軸方向上流側(負の方向側)に位置するように構成し、具体的には、支持部材201DのX軸方向下流側(正の方向側)の端部において、各ヒートパイプ203Dの第1直線部203Daの基端が各ヒートパイプ203Dの外径に相当する距離だけ傾斜するように構成されており、X軸方向に対する第1直線部203Daの傾斜角度θは、支持部材201DのX軸方向の長さをLとし、各ヒートパイプ203Dの外径をDとすると、以下の式(2)によって表すことができる。
θ=tan−1{(D/2)÷(L)} ・・・ (2)
(Fifth embodiment)
FIG. 17 is an external view illustrating a schematic configuration of a light irradiation device 50 including a heat dissipation device 200D according to the fifth embodiment of the present invention. 17A is a plan view of the light irradiation device 50 of the present embodiment (viewed from the downstream side in the Y axis direction (positive direction side)), and FIG. 17B is a rear view (Z axis). FIG. 17C is a right side view (viewed from the X-axis direction downstream side (positive direction side)), and FIG. d) is a left side view (a view seen from the upstream side (negative direction side) in the X-axis direction). FIG. 18 is a cross-sectional view taken along the line AA in FIG. As shown in FIG. 18, in the light irradiation device 50 of the present embodiment, when viewed from the Y-axis direction, the first straight portion 203Da of each heat pipe 203D is in the second main surface 201Db (that is, the X-axis direction). It is inclined with respect to the heat radiation device 200 of the first embodiment in that the connection portion 203Dc of each heat pipe 203D protrudes in a direction away from the second main surface 201Db. In addition, as shown in FIG. 17, in the present embodiment, the length of the second straight line portion 203Db of each heat pipe 203D is shorter than the first straight line portion 203Da, and from the tip of the second straight line portion 203Db. Also, an accommodation portion S for accommodating the connection portion 203Dc of the heat pipe 203D of the adjacent light irradiation device 50 is formed on the upstream side (negative direction side) in the X-axis direction (FIGS. 17A and 17). (B)). That is, in the present embodiment, the first straight portion 203Da of each heat pipe 203D is inclined with respect to the second main surface 201Db, whereby the connection portion 203Dc of each heat pipe 203D is Z-axis more than the second main surface 201Db. The first straight line of each heat pipe 203D is configured to be positioned on the upstream side in the direction (negative direction side), specifically, at the end on the downstream side in the X-axis direction (positive direction side) of the support member 201D. The base end of the portion 203Da is configured to be inclined by a distance corresponding to the outer diameter of each heat pipe 203D, and the inclination angle θ of the first straight portion 203Da with respect to the X-axis direction is the X-axis direction of the support member 201D. If the length is L and the outer diameter of each heat pipe 203D is D, it can be expressed by the following equation (2).
θ = tan −1 {(D / 2) ÷ (L)} (2)

本実施形態の光照射装置50も第1の実施形態の光照射装置10と同様、隣接する光照射装置50のヒートパイプ203Dの接続部203Dcを収容するための収容部Sが形成されているため、図19に示すように、支持部材201Dを接合して、支持部材201Dの第1主面201Daが連続するように連結配置することが可能である。なお、本実施形態においては接続部203Dcが第2主面201DbよりもZ軸方向上流側(負の方向側)に位置するため、隣接する光照射装置50の支持部材201Dとの間で干渉することはなく、両者はY軸方向にシフトすることなく接合される。   Since the light irradiation device 50 of the present embodiment is also formed with an accommodating portion S for accommodating the connecting portion 203Dc of the heat pipe 203D of the adjacent light irradiation device 50, similarly to the light irradiation device 10 of the first embodiment. As shown in FIG. 19, it is possible to connect and arrange the support member 201D so that the first main surface 201Da of the support member 201D is continuous. In addition, in this embodiment, since connection part 203Dc is located in Z-axis direction upstream (negative direction side) rather than 2nd main surface 201Db, it interferes with support member 201D of the adjacent light irradiation apparatus 50. The two are joined without shifting in the Y-axis direction.

(変形例5)
図20は、本実施形態の放熱装置200Dの変形例に係る放熱装置200DMを備えた光照射装置50Mの右側面図(X軸方向下流側(正の方向側)から見た図)である。図20に示すように、本変形例の光照射装置50Mは、放熱装置200DMが冷却ファン210Dを備えている点で、本実施形態の光照射装置50と異なる。
(Modification 5)
FIG. 20 is a right side view (a view seen from the downstream side in the X-axis direction (positive direction side)) of the light irradiation device 50M including the heat dissipation device 200DM according to a modification of the heat dissipation device 200D of the present embodiment. As shown in FIG. 20, the light irradiation device 50M of the present modification is different from the light irradiation device 50 of the present embodiment in that the heat dissipation device 200DM includes a cooling fan 210D.

冷却ファン210Dは、変形例1の冷却ファン210と同様、放熱装置200DMのZ軸方向上流側(負の方向側)に配置され、放熱装置200DMに冷却風を供給する装置である。冷却ファン210Dによって生成された気流Wは、各放熱フィン205Dの間を流れ、各放熱フィン205Dを冷却すると共に、各放熱フィン205Dに挿通された各ヒートパイプ203Dの第2直線部203Db(図17(a))、及び支持部材201Dの第2主面201Dbを冷却する。従って、本変形例の構成によれば、放熱装置200DMの冷却能力を格段に向上させることができる。なお、冷却ファン210Dは、図19に示すような、光照射装置50を連結した構成においても適用することができ、この場合、各放熱装置200Dに対して1つの冷却ファン210Dを設けてもよく、また複数の放熱装置200Dに対して1つの冷却ファン210Dを設けてもよい。   The cooling fan 210D is a device that is arranged on the upstream side (negative direction side) in the Z-axis direction of the heat dissipation device 200DM and supplies cooling air to the heat dissipation device 200DM, like the cooling fan 210 of the first modification. The airflow W generated by the cooling fan 210D flows between the heat radiating fins 205D to cool the heat radiating fins 205D, and at the same time, the second straight portions 203Db (see FIG. 17) of the heat pipes 203D inserted through the heat radiating fins 205D. (A)) and the second main surface 201Db of the support member 201D are cooled. Therefore, according to the configuration of this modification, the cooling capacity of the heat dissipation device 200DM can be significantly improved. Note that the cooling fan 210D can also be applied to a configuration in which the light irradiation device 50 is connected as shown in FIG. 19, and in this case, one cooling fan 210D may be provided for each heat dissipation device 200D. Further, one cooling fan 210D may be provided for the plurality of heat dissipation devices 200D.

(第6の実施形態)
図21は、本発明の第6の実施形態に係る放熱装置200Eを備えた光照射装置60の概略構成を説明する外観図である。図21(a)は、本実施形態の光照射装置60の平面図(Y軸方向下流側(正の方向側)から見た図)であり、図21(b)は、背面図(Z軸方向上流側(負の方向側)から見た図)であり、図21(c)は、右側面図(X軸方向下流側(正の方向側)から見た図)であり、図21(d)は、左側面図(X軸方向上流側(負の方向側)から見た図)である。図21に示すように、本実施形態の光照射装置60は、ヒートパイプ203Eの第1直線部203Eaの配置間隔が第2直線部203Ebの配置間隔よりも狭くなっている点で、第5の実施形態の放熱装置200Dと異なる。つまり、本実施形態の放熱装置200Eにおいては、各ヒートパイプ203Eの第1直線部203Eaは、X軸方向から見たときに、支持部材201Eの中央部に近接してY軸方向に略平行に配置されており、各ヒートパイプ203Eの第2直線部203Ebは、X軸方向から見たときに、第1直線部203Eaの間隔よりも広い間隔をおいてY軸方向に略平行に配置されている。このような構成によれば、支持部材201Eの中央部の冷却能力を高めることができるため、例えば、図1(a)に示すLED素子110が基板105のY軸方向略中央部に集中して配置されている場合に有効である。なお、本実施形態の光照射装置60も第5の実施形態の光照射装置50と同様、隣接する光照射装置60のヒートパイプ203Eの接続部203Ecを収容するための収容部Sが形成されているため、図22に示すように、支持部材201Eを接合して、支持部材201Eの第1主面201Eaが連続するように連結配置することが可能である。
(Sixth embodiment)
FIG. 21 is an external view illustrating a schematic configuration of a light irradiation device 60 including a heat dissipation device 200E according to the sixth embodiment of the present invention. FIG. 21A is a plan view of the light irradiation device 60 of the present embodiment (viewed from the Y axis direction downstream side (positive direction side)), and FIG. 21B is a rear view (Z axis). FIG. 21C is a right side view (viewed from the downstream side in the X-axis direction (positive direction side)), and FIG. d) is a left side view (a view seen from the upstream side (negative direction side) in the X-axis direction). As shown in FIG. 21, the light irradiation device 60 of the present embodiment is the fifth in that the arrangement interval of the first straight portions 203Ea of the heat pipe 203E is narrower than the arrangement interval of the second straight portions 203Eb. Different from the heat dissipation device 200D of the embodiment. That is, in the heat dissipation device 200E of the present embodiment, the first straight portion 203Ea of each heat pipe 203E is close to the center portion of the support member 201E and substantially parallel to the Y-axis direction when viewed from the X-axis direction. The second straight portions 203Eb of the heat pipes 203E are arranged substantially parallel to the Y-axis direction with an interval wider than that of the first straight portions 203Ea when viewed from the X-axis direction. Yes. According to such a configuration, since the cooling capacity of the central portion of the support member 201E can be increased, for example, the LED elements 110 shown in FIG. 1A are concentrated in the substantially central portion of the substrate 105 in the Y-axis direction. It is effective when it is arranged. In addition, the light irradiation apparatus 60 of this embodiment is also provided with a housing portion S for housing the connection portion 203Ec of the heat pipe 203E of the adjacent light irradiation apparatus 60, similarly to the light irradiation apparatus 50 of the fifth embodiment. Therefore, as shown in FIG. 22, it is possible to connect and arrange the support member 201E so that the first main surface 201Ea of the support member 201E is continuous.

(変形例6)
図23は、本実施形態の放熱装置200Eの変形例に係る放熱装置200EMを備えた光照射装置60Mの右側面図(X軸方向下流側(正の方向側)から見た図)である。図23に示すように、本変形例の光照射装置60Mは、放熱装置200EMが冷却ファン210Eを備えている点で、本実施形態の光照射装置60と異なる。
(Modification 6)
FIG. 23 is a right side view (a diagram seen from the downstream side in the X-axis direction (positive direction side)) of the light irradiation device 60M including the heat dissipation device 200EM according to a modification of the heat dissipation device 200E of the present embodiment. As shown in FIG. 23, the light irradiation device 60M of the present modification is different from the light irradiation device 60 of the present embodiment in that the heat dissipation device 200EM includes a cooling fan 210E.

冷却ファン210Eは、変形例5の冷却ファン210Dと同様、放熱装置200EMのZ軸方向上流側(負の方向側)に配置され、放熱装置200EMに冷却風を供給する装置である。冷却ファン210Eによって生成された気流Wは、各放熱フィン205Eの間を流れ、各放熱フィン205Eを冷却すると共に、各放熱フィン205Eに挿通された各ヒートパイプ203Eの第2直線部203Eb(図21(a))、及び支持部材201Eの第2主面201Ebを冷却する。従って、本変形例の構成によれば、放熱装置200EMの冷却能力を格段に向上させることができる。なお、冷却ファン210Eは、図22に示すような、光照射装置60を連結した構成においても適用することができ、この場合、各放熱装置200Eに対して1つの冷却ファン210Eを設けてもよく、また複数の放熱装置200Eに対して1つの冷却ファン210Eを設けてもよい。   The cooling fan 210E is a device that is arranged on the upstream side (negative direction side) in the Z-axis direction of the heat radiating device 200EM and supplies cooling air to the heat radiating device 200EM, similarly to the cooling fan 210D of Modification 5. The airflow W generated by the cooling fan 210E flows between the heat radiating fins 205E, cools the heat radiating fins 205E, and at the same time the second straight portions 203Eb of the heat pipes 203E inserted into the heat radiating fins 205E (FIG. 21). (A)) and the second main surface 201Eb of the support member 201E are cooled. Therefore, according to the configuration of this modification, the cooling capacity of the heat dissipation device 200EM can be significantly improved. Note that the cooling fan 210E can also be applied to a configuration in which the light irradiation device 60 is connected as shown in FIG. 22, and in this case, one cooling fan 210E may be provided for each heat dissipation device 200E. Further, one cooling fan 210E may be provided for the plurality of heat dissipation devices 200E.

(第7の実施形態)
図24は、本発明の第7の実施形態に係る放熱装置200Fを備えた光照射装置70の概略構成を説明する外観図である。図24(a)は、本実施形態の光照射装置70の平面図(Y軸方向下流側(正の方向側)から見た図)であり、図24(b)は、右側面図(X軸方向下流側(正の方向側)から見た図)であり、図24(c)は、左側面図(X軸方向上流側(負の方向側)から見た図)である。また、図25は、図24(b)のA−A断面図である。図24(c)及び図25に示すように、本実施形態の光照射装置70は、支持部材201Fの第1主面201Fa側に、ヒートパイプ203Fの第1直線部203Faが嵌まる溝部201Fcが形成されており、ヒートパイプ203Fの第1直線部203Faの断面が略半円形状になっている点で第1の実施形態の放熱装置200と異なる。つまり、本実施形態においては、支持部材201Fの第1主面201Faのみならず、各ヒートパイプ203Fの第1直線部203FaもLEDユニット100の基板105に密着するように構成されている。従って、本実施形態においては、LEDユニット100と各ヒートパイプ203F間の熱抵抗が、第1の実施形態の場合と比較して非常に小さくなり、冷却能力が格段に向上する。このため、基板105に配置されるLED素子110(図1)が多い場合に、特に有効である。なお、本実施形態の光照射装置70においても、第1の実施形態の光照射装置10と同様、支持部材201Fを接合して、支持部材201Fの第1主面201Faが連続するように連結配置することが可能となるように、X軸方向上流側(負の方向側)に位置する10枚の放熱フィン205Fには、隣接する光照射装置70のヒートパイプ203Fの接続部203Fcを収容するための収容部Sを形成するために、Z軸方向に延びる切欠205Fcが形成されている。また、本実施形態の構成は、上記第2〜第6の実施形態、第1〜第6の変形例にも適用することが可能である。
(Seventh embodiment)
FIG. 24 is an external view illustrating a schematic configuration of a light irradiation device 70 including a heat dissipation device 200F according to the seventh embodiment of the present invention. FIG. 24A is a plan view of the light irradiation device 70 of the present embodiment (viewed from the Y axis direction downstream side (positive direction side)), and FIG. 24B is a right side view (X). FIG. 24C is a left side view (viewed from the upstream side in the X-axis direction (negative direction side)). FIG. 25 is a cross-sectional view taken along the line AA in FIG. As shown in FIGS. 24C and 25, in the light irradiation device 70 of the present embodiment, the groove portion 201F in which the first linear portion 203Fa of the heat pipe 203F fits is formed on the first main surface 201Fa side of the support member 201F. This is different from the heat dissipation device 200 of the first embodiment in that the first straight portion 203Fa of the heat pipe 203F has a substantially semicircular cross section. That is, in the present embodiment, not only the first main surface 201Fa of the support member 201F but also the first straight portion 203Fa of each heat pipe 203F is configured to be in close contact with the substrate 105 of the LED unit 100. Therefore, in this embodiment, the thermal resistance between the LED unit 100 and each heat pipe 203F becomes very small compared to the case of the first embodiment, and the cooling capacity is remarkably improved. Therefore, this is particularly effective when there are many LED elements 110 (FIG. 1) arranged on the substrate 105. In the light irradiation device 70 of the present embodiment, similarly to the light irradiation device 10 of the first embodiment, the support member 201F is joined and the first main surface 201Fa of the support member 201F is connected and arranged. In order to accommodate the connecting portions 203Fc of the heat pipes 203F of the adjacent light irradiation device 70, the ten heat dissipating fins 205F located on the upstream side (negative direction side) in the X-axis direction can be accommodated. In order to form the storage portion S, a notch 205Fc extending in the Z-axis direction is formed. The configuration of the present embodiment can also be applied to the second to sixth embodiments and the first to sixth modifications.

なお、今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10、10M、20、20M、30、30M、40、40M、50、50M、60、60M、70 光照射装置
100 LEDユニット
105 基板
110 LED素子
200、200M、200A、200AM、200B、200BM、200C、200CM、200D、200DM、200E、200EM、200F 放熱装置
201、201A、201B、201C、201D、201E、201F 支持部材
201a、201Aa、201Ba、201Ca、201Da、201Ea、201Fa 第1主面
201b、201Ab、201Bb、201Cb、201Db、201Eb 第2主面
201c、201Fc 溝部
201d、201Ad、201Bd、201Cd、201Dd、201Ed 溝部
203、203A、203B、203C、203D、203E、203F ヒートパイプ
203a、203Aa、203Ba、203Ca、203Da、203Ea、203Fa 第1直線部
203b、203Ab、203Bb、203Cb、203Db、203Eb 第2直線部
203c、203Ac、203Bc、203Cc、203Dc、203Ec、203Fc 接続部
203ca、203cb、203Bca、203Cca 湾曲部
205、205A、205B、205C、205D、205E、205F 放熱フィン
205a 貫通孔
205c、205Ac、205Fc 切欠
210、210A、210B、210C、210D、210E、210F 冷却ファン

10, 10M, 20, 20M, 30, 30M, 40, 40M, 50, 50M, 60, 60M, 70 Light irradiation device 100 LED unit 105 Substrate 110 LED element 200, 200M, 200A, 200AM, 200B, 200BM, 200C, 200CM, 200D, 200DM, 200E, 200EM, 200F Heat dissipation device 201, 201A, 201B, 201C, 201D, 201E, 201F Support member 201a, 201Aa, 201Ba, 201Ca, 201Da, 201Ea, 201Fa First main surface 201b, 201Ab, 201Bb , 201Cb, 201Db, 201Eb second main surface 201c, 201Fc groove portions 201d, 201Ad, 201Bd, 201Cd, 201Dd, 201Ed groove portions 203, 203A, 203B, 203C, 203D, 203E, 203F Heat pipes 203a, 203Aa, 203Ba, 203Ca, 203Da, 203Ea, 203Fa First straight part 203b, 203Ab, 203Bb, 203Cb, 203Db, 203Eb Second straight part 203c, 203Ac, 203Bc, 203Cc, 203Dc, 203Ec , 203Fc Connection portion 203ca, 203cb, 203Bca, 203Cca Bending portion 205, 205A, 205B, 205C, 205D, 205E, 205F Radiation fin 205a Through hole 205c, 205Ac, 205Fc Notch 210, 210A, 210B, 210C, 210D, 210E, 210F cooling fan

Claims (24)

熱源に密着して配置され、前記熱源の熱を空気中に放熱する放熱装置であって、
板状の形状を呈し、第1主面側が前記熱源に密着するように配置される支持部材と、
前記支持部材に支持されると共に、前記支持部材と熱的に接合し、前記熱源からの熱を輸送するヒートパイプと、
前記第1主面と対向する第2主面に面する空間内に配置され、前記ヒートパイプと熱的に接合し、前記ヒートパイプによって輸送された熱を放熱する複数の放熱フィンと、
を備え、
前記ヒートパイプは、
前記支持部材と熱的に接合される第1直線部と、
前記複数の放熱フィンと熱的に接合される第2直線部と、
前記第1直線部と前記第2直線部が連続するように、前記第1直線部の一端部と前記第2直線部の一端部とを接続し、前記支持部材から前記第1直線部が延びる方向に突出する接続部と、
を有し、
複数の放熱装置を前記第1主面が連続するように連結可能であり、
前記複数の放熱装置のそれぞれは、前記第1直線部が延びる方向に前記複数の放熱装置が連結されたときに、前記第2主面に面する空間内に、隣接する放熱装置の前記接続部を収容する収容部を備えている
ことを特徴とする放熱装置。
A heat dissipating device arranged in close contact with a heat source and dissipating heat of the heat source into the air,
A support member that has a plate-like shape and is arranged so that the first main surface side is in close contact with the heat source;
A heat pipe supported by the support member, thermally joined to the support member, and transporting heat from the heat source;
A plurality of radiating fins disposed in a space facing the second main surface facing the first main surface, thermally joined to the heat pipe, and radiating heat transported by the heat pipe;
With
The heat pipe is
A first straight portion thermally bonded to the support member;
A second straight portion thermally bonded to the plurality of heat dissipating fins;
One end portion of the first straight portion and one end portion of the second straight portion are connected so that the first straight portion and the second straight portion are continuous, and the first straight portion extends from the support member. A connecting part protruding in the direction,
Have
A plurality of heat dissipation devices can be connected so that the first main surface is continuous,
Each of the plurality of heat dissipating devices includes the connecting portion of the adjacent heat dissipating device in a space facing the second main surface when the plurality of heat dissipating devices are coupled in a direction in which the first linear portion extends. A heat dissipating device comprising a housing portion for housing the heat sink.
前記ヒートパイプを複数備え、
前記複数のヒートパイプの前記第1直線部は、前記第1直線部が延びる方向と略直交する方向に第1の所定の間隔をおいて配置されている
ことを特徴とする請求項1に記載の放熱装置。
A plurality of the heat pipes;
2. The first straight portion of the plurality of heat pipes is arranged at a first predetermined interval in a direction substantially orthogonal to a direction in which the first straight portion extends. Heat dissipation device.
前記複数のヒートパイプの前記第2直線部は、前記第2主面に略平行で、かつ前記第1直線部が延びる方向と略直交する方向に前記第1の所定の間隔をおいて配置されていることを特徴とする請求項2に記載の放熱装置。   The second straight portions of the plurality of heat pipes are arranged at a first predetermined interval in a direction substantially parallel to the second main surface and substantially perpendicular to a direction in which the first straight portion extends. The heat dissipating device according to claim 2, wherein 前記収容部は、前記接続部が突出する側とは反対の側において、前記各ヒートパイプの間に形成されていることを特徴とする請求項1から請求項3のいずれか一項に記載の放熱装置。   The said accommodating part is formed between each said heat pipe in the opposite side to the side from which the said connection part protrudes, The Claim 1 characterized by the above-mentioned. Heat dissipation device. 前記収容部は、前記接続部が突出する側と同じ側において、前記各ヒートパイプの間に形成されていることを特徴とする請求項1から請求項3のいずれか一項に記載の放熱装置。   The said accommodating part is formed between each said heat pipes in the same side as the side from which the said connection part protrudes, The thermal radiation apparatus as described in any one of Claims 1-3 characterized by the above-mentioned. . 前記第2主面に面する空間内に配置され、前記第2主面に対して略垂直な方向に気流を生成するファンを備えることを特徴とする請求項1から請求項5のいずれか一項に記載の放熱装置。   6. The fan according to claim 1, further comprising a fan that is disposed in a space facing the second main surface and generates an airflow in a direction substantially perpendicular to the second main surface. The heat radiating device according to the item. 前記第1直線部が延びる方向から見たときに、前記各ヒートパイプの前記第2直線部の位置が、前記第2主面に略垂直な方向及び略平行な方向において異なることを特徴とする請求項2に記載の放熱装置。   When viewed from the direction in which the first straight portion extends, the position of the second straight portion of each heat pipe is different in a direction substantially perpendicular to the second main surface and a direction substantially parallel to the second main surface. The heat radiating device according to claim 2. 前記第2主面に面する空間内に配置され、前記第2主面に対して略平行な方向に気流を生成するファンを備えることを特徴とする請求項7に記載の放熱装置。   The heat radiating device according to claim 7, further comprising a fan that is disposed in a space facing the second main surface and generates an airflow in a direction substantially parallel to the second main surface. 前記第1直線部は、前記第2主面に対して傾斜しており、
前記接続部は、前記第2主面から離れる方向に突出し、
前記収容部は、前記接続部が突出する側とは反対の側に形成されている
ことを特徴とする請求項2に記載の放熱装置。
The first linear portion is inclined with respect to the second main surface;
The connecting portion protrudes in a direction away from the second main surface;
The heat radiating device according to claim 2, wherein the housing portion is formed on a side opposite to a side from which the connection portion protrudes.
前記複数のヒートパイプの前記第2直線部は、前記第1直線部が延びる方向と略直交する方向に前記第1の所定の間隔よりも長い第2の所定の間隔をおいて配置されていることを特徴とする請求項9に記載の放熱装置。   The second straight portions of the plurality of heat pipes are arranged at a second predetermined interval longer than the first predetermined interval in a direction substantially orthogonal to a direction in which the first straight portion extends. The heat dissipating device according to claim 9. 前記支持部材は、少なくとも一組の略平行な対辺を有し、
前記第1直線部が、前記支持部材の前記対辺に沿って延びる
ことを特徴とする請求項1から請求項10のいずれか一項に記載の放熱装置。
The support member has at least one set of substantially parallel opposite sides,
11. The heat dissipation device according to claim 1, wherein the first straight portion extends along the opposite side of the support member.
前記支持部材は、少なくとも一組の略平行な対辺を有し、
前記第1直線部が、前記支持部材の前記対辺に対して所定の角度で傾斜して延びる
ことを特徴とする請求項1に記載の放熱装置。
The support member has at least one set of substantially parallel opposite sides,
The heat radiating device according to claim 1, wherein the first straight portion extends at an angle with respect to the opposite side of the support member.
前記収容部は、前記接続部が突出する側とは反対の側に形成されていることを特徴とする請求項12に記載の放熱装置。   The heat radiating device according to claim 12, wherein the housing portion is formed on a side opposite to a side from which the connection portion protrudes. 前記第2主面に面する空間内に配置され、前記第2主面に対して略垂直な方向に気流を生成するファンを備えることを特徴とする請求項12又は請求項13に記載の放熱装置。   14. The heat dissipation according to claim 12, further comprising a fan that is disposed in a space facing the second main surface and generates an airflow in a direction substantially perpendicular to the second main surface. apparatus. 前記第2直線部が、前記第2主面に対して略平行であることを特徴とする請求項1から請求項14のいずれか一項に記載の放熱装置。   The heat radiating device according to any one of claims 1 to 14, wherein the second straight portion is substantially parallel to the second main surface. 前記支持部材は、前記第2主面側に、前記第1直線部に応じた形状の溝部を有しており、
前記第1直線部が、前記溝部に嵌まり込むように配置される
ことを特徴とする請求項1から請求項15のいずれか一項に記載の放熱装置。
The support member has a groove portion having a shape corresponding to the first straight portion on the second main surface side,
The heat radiating device according to any one of claims 1 to 15, wherein the first straight portion is disposed so as to be fitted into the groove portion.
前記支持部材は、前記第1主面側に、前記第1直線部に応じた形状の溝部を有しており、
前記第1直線部が、前記溝部に嵌まり込むように配置される
ことを特徴とする請求項1から請求項15のいずれか一項に記載の放熱装置。
The support member has a groove portion having a shape corresponding to the first linear portion on the first main surface side,
The heat radiating device according to any one of claims 1 to 15, wherein the first straight portion is disposed so as to be fitted into the groove portion.
請求項1から請求項17のいずれか一項に記載の放熱装置と、
前記第1主面と密着するように配置される基板と、
前記基板の表面上において、前記ヒートパイプの前記第1直線部と略平行に配置された複数のLED素子と、
を備えることを特徴とする光照射装置。
A heat dissipation device according to any one of claims 1 to 17,
A substrate disposed so as to be in close contact with the first main surface;
On the surface of the substrate, a plurality of LED elements arranged substantially parallel to the first straight portion of the heat pipe,
A light irradiation apparatus comprising:
前記複数のLED素子は、前記第1直線部が延びる方向に所定のピッチで配置され、
前記第1直線部が延びる方向において、前記第1直線部の他端から前記支持部材の一端までの距離が前記ピッチの1/2以下であることを特徴とする請求項18に記載の光照射装置。
The plurality of LED elements are arranged at a predetermined pitch in a direction in which the first linear portion extends,
19. The light irradiation according to claim 18, wherein a distance from the other end of the first linear portion to one end of the support member is equal to or less than ½ of the pitch in a direction in which the first linear portion extends. apparatus.
前記複数のLED素子が、前記第1直線部が延びる方向と略直交する方向に複数列に配置されることを特徴とする請求項18又は請求項19に記載の光照射装置。   The light irradiation apparatus according to claim 18 or 19, wherein the plurality of LED elements are arranged in a plurality of rows in a direction substantially orthogonal to a direction in which the first straight line portion extends. 前記複数のLED素子が、前記基板を挟んで前記第1直線部と相対する位置に配置されていることを特徴とする請求項18から請求項20のいずれか一項に記載の光照射装置。   21. The light irradiation apparatus according to claim 18, wherein the plurality of LED elements are arranged at positions facing the first linear portion with the substrate interposed therebetween. 前記光照射装置が、前記第1主面が連続するように連結された複数の前記放熱装置を備えることを特徴とする請求項18から請求項21のいずれか一項に記載の光照射装置。   The light irradiation device according to any one of claims 18 to 21, wherein the light irradiation device includes a plurality of the heat dissipation devices connected so that the first main surface is continuous. 前記複数の放熱装置が、前記第1直線部が延びる方向に並べられて連結されていることを特徴とする請求項22に記載の光照射装置。   The light irradiation device according to claim 22, wherein the plurality of heat dissipation devices are arranged and connected in a direction in which the first straight line portion extends. 前記LED素子が、紫外線硬化樹脂に作用する波長の光を発することを特徴とする請求項18から請求項23のいずれか一項に記載の光照射装置。   The said LED element emits the light of the wavelength which acts on ultraviolet curable resin, The light irradiation apparatus as described in any one of Claims 18-23 characterized by the above-mentioned.
JP2017025338A 2016-03-31 2017-02-14 Heat dissipation device and light irradiation device including the same Active JP6423900B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW106109409A TWI659189B (en) 2016-03-31 2017-03-21 Radiating device and light irradiation device having the same
KR1020170036035A KR102097708B1 (en) 2016-03-31 2017-03-22 Heat radiating apparatus and light illuminating apparatus with the same
EP17162711.0A EP3225945B1 (en) 2016-03-31 2017-03-24 Heat radiating apparatus and light illuminating apparatus with the same
CN201710190418.7A CN107448916B (en) 2016-03-31 2017-03-28 Heat dissipation device and light irradiation device with same
US15/474,616 US10317067B2 (en) 2016-03-31 2017-03-30 Heat radiating apparatus and light illuminating apparatus with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016073750 2016-03-31
JP2016073750 2016-03-31

Publications (3)

Publication Number Publication Date
JP2017187268A JP2017187268A (en) 2017-10-12
JP2017187268A5 JP2017187268A5 (en) 2018-03-01
JP6423900B2 true JP6423900B2 (en) 2018-11-14

Family

ID=60044769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017025338A Active JP6423900B2 (en) 2016-03-31 2017-02-14 Heat dissipation device and light irradiation device including the same

Country Status (4)

Country Link
JP (1) JP6423900B2 (en)
KR (1) KR102097708B1 (en)
CN (1) CN107448916B (en)
TW (1) TWI659189B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012674B2 (en) * 2019-01-27 2022-02-14 Hoya株式会社 Heat dissipation device and light irradiation device equipped with it

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW520146U (en) * 2002-06-13 2003-02-01 Hon Hai Prec Ind Co Ltd Heat pipe assembly
US7175712B2 (en) * 2003-01-09 2007-02-13 Con-Trol-Cure, Inc. Light emitting apparatus and method for curing inks, coatings and adhesives
US6918429B2 (en) * 2003-11-05 2005-07-19 Cpumate Inc. Dual-layer heat dissipating structure
US7021368B2 (en) * 2003-11-12 2006-04-04 Cpumate Inc. Heat dissipating device with uniform heat points
CN1681113A (en) * 2004-04-08 2005-10-12 广达电脑股份有限公司 Hot-piping radiator
US7650929B2 (en) * 2007-09-30 2010-01-26 Tsung-Hsien Huang Cooler module
TWM334269U (en) * 2007-12-07 2008-06-11 Cooler Master Co Ltd Light-emitting diode (LED) lighting device and lighting module having device
JP2011094888A (en) 2009-10-30 2011-05-12 Fujitsu Ltd Heat radiator and method of manufacturing the heat radiator
CN201652263U (en) * 2009-11-23 2010-11-24 四川新力光源有限公司 Heat radiating device of light-emitting diode (LED) illuminating lamp
CN101737663B (en) * 2010-01-22 2012-05-16 深圳市世纪安耐光电科技有限公司 LED lamp
CN102454971A (en) * 2010-10-22 2012-05-16 富准精密工业(深圳)有限公司 Heat radiation device and LED lamp applying same
DE102011004493A1 (en) * 2011-02-22 2012-08-23 Osram Ag lighting device
JP5653950B2 (en) * 2011-06-21 2015-01-14 古河電気工業株式会社 Cooling system
CN102331832A (en) * 2011-09-06 2012-01-25 宁波菲仕电机技术有限公司 Forced air-cooled heat pipe radiating system for servo driver
CN104321589A (en) * 2012-05-23 2015-01-28 普司科Led股份有限公司 Optical semiconductor illumination device
JP6325271B2 (en) 2014-02-10 2018-05-16 京セラ株式会社 Light irradiation apparatus and printing apparatus
KR101985823B1 (en) * 2014-06-30 2019-06-04 호야 칸데오 옵트로닉스 가부시키가이샤 Light irradiation apparatus

Also Published As

Publication number Publication date
TWI659189B (en) 2019-05-11
CN107448916B (en) 2020-01-31
KR102097708B1 (en) 2020-04-06
JP2017187268A (en) 2017-10-12
KR20170113178A (en) 2017-10-12
TW201736796A (en) 2017-10-16
CN107448916A (en) 2017-12-08

Similar Documents

Publication Publication Date Title
JP6599379B2 (en) Heat dissipation device and light irradiation device including the same
EP3225945B1 (en) Heat radiating apparatus and light illuminating apparatus with the same
EP3225946B1 (en) Light illuminating apparatus with heat radiating apparatus
KR102058696B1 (en) Light illuminating apparatus
JP6108565B2 (en) Light irradiation device
KR102653321B1 (en) Light irradiating device
JP6126644B2 (en) Light irradiation device
TWI827794B (en) Heat dissipation device and light irradiation device having same
JP6423900B2 (en) Heat dissipation device and light irradiation device including the same
KR20160010352A (en) Light irradiation apparatus
WO2022211113A1 (en) Light irradiation device
JP6550116B2 (en) Light irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6423900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250