JP2017183111A - Separator and method of manufacturing the same - Google Patents

Separator and method of manufacturing the same Download PDF

Info

Publication number
JP2017183111A
JP2017183111A JP2016069390A JP2016069390A JP2017183111A JP 2017183111 A JP2017183111 A JP 2017183111A JP 2016069390 A JP2016069390 A JP 2016069390A JP 2016069390 A JP2016069390 A JP 2016069390A JP 2017183111 A JP2017183111 A JP 2017183111A
Authority
JP
Japan
Prior art keywords
particles
separator
solid electrolyte
nonwoven fabric
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016069390A
Other languages
Japanese (ja)
Inventor
藤井 雄一
Yuichi Fujii
雄一 藤井
松岡 直樹
Naoki Matsuoka
直樹 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2016069390A priority Critical patent/JP2017183111A/en
Publication of JP2017183111A publication Critical patent/JP2017183111A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator using a crystalline oxide based inorganic solid electrolyte excellent in processability for use in a lithium ion battery and a method of manufacturing the same.SOLUTION: A separator 100 is so configured that crystalline oxide-based inorganic solid electrolyte particles 110 having an average particle diameter of 5 to 100 μm are supported on a base material 120 in a single layer. Also provided is a method of producing the separator including, after crystalline oxide-based inorganic solid electrolyte particles having an average particle size of 5 to 100 μm are arranged in one layer on a support, laminating a substrate on the solid electrolyte particles, and integrating the solid electrolyte particles with the substrate.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン電池用セパレータおよびその製造方法に関する。   The present invention relates to a separator for a lithium ion battery and a method for producing the same.

リチウムイオン二次電池は、軽量、高エネルギー及び長寿命であることが大きな特徴であり、例えばノートブックコンピューター、携帯電話、デジタルカメラ、ビデオカメラ等の携帯用電子機器の電源として広範囲に用いられている。また、低環境負荷社会への移行に伴い、ハイブリッド型電気自動車(Hybrid Electric Vehicle:HEV)及びプラグインHEV(Plug−in Hybrid Electric Vehicle:PHEV)の電源、更には住宅用蓄電システム等の電力貯蔵分野においても注目されている。   Lithium ion secondary batteries are characterized by their light weight, high energy, and long life, and are widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and video cameras. Yes. In addition, with the transition to a low environmental impact society, power sources for hybrid electric vehicles (HEVs) and plug-in HEVs (Plug-in Hybrid Electric Vehicles: PHEVs), as well as power storage for residential power storage systems, etc. It is also attracting attention in the field.

ところで、従来、リチウムイオン二次電池の電解質には、リチウム塩を有機溶媒に溶解した有機電解液が用いられており、漏液に伴う安全性の懸念があった。
電解液の代わりに固体電解質を用いることで、正極材、電解質および負極材をすべて固体とした全固体電池は、可燃性の電解液が不要になり安全性が飛躍的に向上した技術として提案されている。
Conventionally, an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent has been used as an electrolyte of a lithium ion secondary battery, and there has been a concern about safety associated with leakage.
By using a solid electrolyte instead of an electrolyte, all-solid-state batteries in which the positive electrode material, electrolyte, and negative electrode material are all solid have been proposed as a technology that dramatically improves safety by eliminating the need for flammable electrolytes. ing.

全固体電池に用いる固体電解質としては例えば、高いリチウムイオン伝導性を有していることから、硫化物系材料を用いた技術の開示がある。しかしながら、硫化物系材料は化学的安定性に乏しく、大気暴露において硫化水素が発生する懸念がある。また、硫化物系固体電解質と正極材とを直接接触させた場合、境界面に、リチウムの存在しない、厚さ数ナノメートルの「欠乏層」が出現し、出力特性が著しく低下するなどの課題がある。
一方で、化学的に安定な結晶性酸化物系固体電解質は、大気暴露においても有害な物質の発生は無く安定な物質であるが、脆性材料であり加工性に乏しく、固体電解質だけからなる単一層の薄膜シートの形成は困難であった。固体電解質層の膜厚を薄くすることはリチウムイオン伝導性が高まり、多くの電極活物質を電池内に収納できるようになることから、電池特性、電気容量の観点から固体電解質層の薄膜化が求められていた。
As a solid electrolyte used for an all solid state battery, for example, since it has high lithium ion conductivity, there is a disclosure of a technique using a sulfide-based material. However, sulfide-based materials have poor chemical stability, and there is a concern that hydrogen sulfide is generated when exposed to the atmosphere. In addition, when a sulfide-based solid electrolyte and a positive electrode material are in direct contact, there are problems such as the presence of lithium at the interface and a “depletion layer” with a thickness of a few nanometers, resulting in a significant decrease in output characteristics. There is.
On the other hand, a chemically stable crystalline oxide-based solid electrolyte is a stable substance that does not generate harmful substances even when exposed to air, but is a brittle material that has poor workability and is composed of only a solid electrolyte. Formation of a single thin film sheet was difficult. Reducing the thickness of the solid electrolyte layer increases the lithium ion conductivity and allows many electrode active materials to be stored in the battery. Therefore, it is possible to reduce the thickness of the solid electrolyte layer from the viewpoint of battery characteristics and electric capacity. It was sought after.

これらの問題に対して、特許文献1では、硫化物系固体電解質と熱可塑高分子樹脂とを乾式で混合し加熱プレスすることにより、柔軟性を有する固体電解質シートを得ている。しかしながら、絶縁性の樹脂を混合してシートを成形しているため、導電パスが分断され問題があった。また、特許文献2では、硫化物系固体電解質を用いて絶縁性の樹脂等を混合させずガラス製の不織布を支持体として自立したシートを作製しているが、シート厚みが300μm程度と厚く、薄膜化の観点から問題があった。   With respect to these problems, in Patent Document 1, a solid electrolyte sheet having flexibility is obtained by mixing a sulfide-based solid electrolyte and a thermoplastic polymer resin in a dry manner and performing heat pressing. However, since the insulating resin is mixed to form the sheet, there is a problem that the conductive path is divided. In Patent Document 2, a sulfide-based solid electrolyte is used to produce a self-supporting sheet using a glass nonwoven fabric as a support without mixing insulating resin or the like, but the sheet thickness is as thick as about 300 μm, There was a problem from the viewpoint of thinning.

特開平4−133209号公報JP-A-4-133209 特開2008−103258号公報JP 2008-103258 A

前記したように、化学的安定性の高い結晶性酸化物系無機固体電解質の層が柔軟性を有した薄い膜を得る技術が望まれていた。
本発明はこのような従来の実情に鑑みて考案されたものであり、本発明の目的は、リチウムイオン電池に用いる加工性の優れた結晶性酸化物系無機固体電解質を用いたセパレータを提供することにある。
As described above, a technique for obtaining a thin film in which a layer of a crystalline oxide-based inorganic solid electrolyte having high chemical stability has flexibility has been desired.
The present invention has been devised in view of such a conventional situation, and an object of the present invention is to provide a separator using a crystalline oxide inorganic solid electrolyte having excellent processability and used for a lithium ion battery. There is.

本発明者は、上記課題を解決すべく鋭意研究し、実験を重ねた。その結果、セパレータに平均粒径が5〜100μmの結晶性酸化物系固体電解質粒子を一層に担持させることで、加工性にれ、高いイオン伝導性が得られるセパレータが得られることを見出し、本発明を成すに至ったものである。
すなわち、本発明は以下のとおりのものである。
[1]
平均粒径が5〜100μmの結晶性酸化物系無機固体電解質粒子が、基材上に一層に担持されてなることを特徴とするセパレータ。
[2]
前記基材がポリオレフィン微多孔膜または不織布である、[1]に記載のセパレータ。
[3]
前記基材が不織布である、[1]に記載のセパレータ。
[4]
平均粒径が5〜100μmの結晶性酸化物系無機固体電解質粒子を支持体上に一層に配列させた後、該固体電解質粒子上に基材を積層し、該固体電解質粒子と該基材とを一体化させることを特徴とするセパレータの製造方法。
The present inventor has conducted intensive research and experiments to solve the above problems. As a result, it was found that a separator capable of obtaining high ion conductivity can be obtained by further supporting crystalline oxide solid electrolyte particles having an average particle size of 5 to 100 μm on the separator. It came to make invention.
That is, the present invention is as follows.
[1]
A separator characterized in that crystalline oxide-based inorganic solid electrolyte particles having an average particle diameter of 5 to 100 μm are supported on a substrate in a single layer.
[2]
The separator according to [1], wherein the substrate is a polyolefin microporous membrane or a nonwoven fabric.
[3]
The separator according to [1], wherein the substrate is a nonwoven fabric.
[4]
After the crystalline oxide inorganic solid electrolyte particles having an average particle size of 5 to 100 μm are arranged in a layer on a support, a substrate is laminated on the solid electrolyte particles, and the solid electrolyte particles, the substrate, A method for manufacturing a separator, characterized in that the separator is integrated.

本発明に係る形態を有するセパレータを用いることで、薄い膜による高いイオン伝導性から電池特性を向上させることができ、セパレータの柔軟性により電池としての加工性が高まり、電池作製時、作動時に短絡を防ぐことができる不織布セパレータを提供することができる。   By using the separator having the form according to the present invention, the battery characteristics can be improved due to the high ion conductivity due to the thin film, and the workability as a battery is enhanced by the flexibility of the separator, and the battery is short-circuited at the time of manufacturing and operating. The nonwoven fabric separator which can prevent is provided.

本実施形態におけるセパレータの概略的に示す断面図である。It is sectional drawing which shows schematically the separator in this embodiment. 本発明のセパレータを用いたリチウムイオン二次電池の一例を概略的に示す断面図である。It is sectional drawing which shows roughly an example of the lithium ion secondary battery using the separator of this invention.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。尚、本明細書において「〜」を用いて記載される範囲は、その前後に記載される数値を含むものである。
なお、以下の説明では、「結晶性酸化物系無機固体電解質粒子」を「固体電解質粒子」あるいは単に「粒子」等と記す場合もある。
図1は、本実施形態におけるセパレータの概略的に示す断面図である。
本発明のセパレータ100は、平均粒径が5〜100μmの結晶性酸化物系無機固体電解質粒子110が、基材120に一層に担持されてなることを特徴とする。
基材としては、電子伝導性が無く電池用のセパレータとして用いられている公知の材料がいずれも使用できるが、多孔質膜であることが好ましい。例えば不織布やポリオレフィン多孔質膜が挙げられる。
Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the invention. In addition, the range described using "-" in this specification includes the numerical value described before and behind that.
In the following description, “crystalline oxide inorganic solid electrolyte particles” may be referred to as “solid electrolyte particles” or simply “particles”.
FIG. 1 is a cross-sectional view schematically showing a separator in the present embodiment.
The separator 100 of the present invention is characterized in that crystalline oxide-based inorganic solid electrolyte particles 110 having an average particle diameter of 5 to 100 μm are supported on a base material 120 in one layer.
As the substrate, any known material that has no electronic conductivity and is used as a battery separator can be used, but a porous film is preferred. For example, a nonwoven fabric and a polyolefin porous membrane are mentioned.

不織布は、繊維状物質が3次元状に絡まった構造を有する。本実施形態のセパレータに用いられる不織布は、「粒子が一層に担持されてなる」状態を保つことができれば、綿、レーヨン、アセテート、ナイロン、ポリエステル、PP、PEなどのポリオレフィン、ポリイミド、アラミドなどの樹脂繊維不織布、ガラス繊維不織布などの従来公知のものが、単独または混合して用いられる。好ましくは熱可塑性樹脂を用いた不織布が用いられる。
繊維の径としては0.1μm〜5.0μmのものが用いられ、好ましくは繊維径が0.2〜3.0μmのものが用いられ、最も好ましくは0.25〜2.5μmのものが用いられる。繊維径0.1μm以上とすることで強度を保つことができ、加工時の電池の短絡を防ぐことができる。繊維径を5.0μm以下とすることで膜の両面の粒子の露出を高く確保できるようになり、セパレータのリチウムイオン伝導性を十分確保できるようになる。繊維径0.1μm〜5.0μmの不織布が用いられていれば、膜の性状を維持するために繊維径5.0μm〜30μmの不織布と組み合わせることもできる。5.0〜30μmの組み合わせ比率は繊維径0.1〜5.0μmの不織布に対して重量比で0〜80%の比率で用いることができる。
The nonwoven fabric has a structure in which fibrous substances are entangled in a three-dimensional manner. If the nonwoven fabric used for the separator of this embodiment can maintain the state that “particles are supported on one layer”, polyolefin such as cotton, rayon, acetate, nylon, polyester, PP, PE, polyimide, aramid, etc. Conventionally known materials such as a resin fiber nonwoven fabric and a glass fiber nonwoven fabric may be used alone or in combination. Preferably, a nonwoven fabric using a thermoplastic resin is used.
The fiber diameter is 0.1 μm to 5.0 μm, preferably the fiber diameter is 0.2 to 3.0 μm, and most preferably 0.25 to 2.5 μm. It is done. By setting the fiber diameter to 0.1 μm or more, the strength can be maintained, and a short circuit of the battery during processing can be prevented. By setting the fiber diameter to 5.0 μm or less, it becomes possible to ensure high exposure of particles on both sides of the membrane, and to sufficiently ensure lithium ion conductivity of the separator. If a nonwoven fabric having a fiber diameter of 0.1 μm to 5.0 μm is used, it can be combined with a nonwoven fabric having a fiber diameter of 5.0 μm to 30 μm in order to maintain the properties of the membrane. The combination ratio of 5.0 to 30 μm can be used at a ratio of 0 to 80% by weight with respect to the nonwoven fabric having a fiber diameter of 0.1 to 5.0 μm.

不織布の厚みは、粒子と一体化する前の状態で5μm〜100μmの厚みで用いることができ、好ましくは10〜80μmの厚みで用いることができる。不織布の厚みを5μm以上とすることで、セパレータとしての強度が得られ、電池作製時、作動時の短絡を防ぐことができる。100μm以下とすることで、粒子の表面露出の比率が増え高いイオン伝導性が確保できるようになる。
不織布の目付は2〜30g/mで用いられ、好ましくは4〜20/mで用いられ、最も好ましくは5〜15/mで用いられる。不織布の目付を2g/m以上とすることで膜の十分な強度が得られ、電池作製時、作動時の短絡を防ぐことができる。目付を30g/m以下とすることで粒子の表面露出が増え、高いイオン伝導性を確保できるようになる。
不織布の製造方法としては一般的な不織布成膜装置を用いることができ、メルトブローン成膜装置、スパンデックス成膜装置を用いることができる。
The thickness of the nonwoven fabric can be used at a thickness of 5 to 100 μm, preferably 10 to 80 μm, before being integrated with the particles. By setting the thickness of the nonwoven fabric to 5 μm or more, strength as a separator can be obtained, and a short circuit during battery operation and operation can be prevented. By setting it to 100 μm or less, the ratio of particle surface exposure increases and high ion conductivity can be secured.
The basis weight of the nonwoven fabric is 2 to 30 g / m 2 , preferably 4 to 20 / m 2 , and most preferably 5 to 15 / m 2 . By setting the basis weight of the nonwoven fabric to 2 g / m 2 or more, sufficient strength of the film can be obtained, and a short circuit during operation can be prevented during battery production. By setting the basis weight to 30 g / m 2 or less, the surface exposure of the particles increases, and high ion conductivity can be secured.
As a method for producing the nonwoven fabric, a general nonwoven fabric film forming apparatus can be used, and a melt blown film forming apparatus or a spandex film forming apparatus can be used.

ポリオレフィン微多孔膜としては、ポリオレフィン系の樹脂を主成分として含むことが好ましく、50質量%以上でポリオレフィン系樹脂を含むことが好ましく、好ましくは75質量%以上含むことが好ましく、さらに好ましくは90質量%以上含むことが好ましく、最も好ましくは95%以上含むことが好ましい。
ポリオレフィン微多孔膜の一体化する前の厚さは好ましくは0.5〜50μmであり、より好ましくは1〜30μmであり、さらに好ましくは1〜10μmである。
基材の気孔率は好ましくは0.1〜99.9%の範囲で用いられる。電池内部に電解液およびゲル電解質を満たして用いる場合には、高いイオン伝導性が得られるため、より高い気孔率が好ましく、30〜99.9%の範囲で用いられ、50〜99.9%がより好ましく用いられ、さらに好ましくは70〜99.9%が用いられる。正極および負極の間に固体電解質を介在させて用いる場合には、粒子の表面が正極側および負極側の両面に露出していれば用いることができ、デンドライト成長などの問題が生じる場合は低い気孔率が好ましく0.1〜70%の範囲で用いられる。さらに好ましくは0.1〜50%の範囲で用いられ、最も好ましくは0.1〜30%の範囲で用いることができる。気孔率の値は、一定の大きさの基材試料を切り出し、その体積(cm)と質量(g)および基材の膜密度(g/cm)から下記式を用いて算出された値である。
気孔率(%)=(1−質量/体積/膜密度)×100
以下の説明では、基材として不織布を用いた場合を例に挙げて説明する。
The polyolefin microporous membrane preferably contains a polyolefin-based resin as a main component, preferably contains 50 mass% or more of a polyolefin-based resin, preferably 75 mass% or more, more preferably 90 mass%. % Or more, and most preferably 95% or more.
The thickness of the polyolefin microporous membrane before being integrated is preferably 0.5 to 50 μm, more preferably 1 to 30 μm, and further preferably 1 to 10 μm.
The porosity of the substrate is preferably used in the range of 0.1 to 99.9%. When the battery is filled with an electrolyte solution and a gel electrolyte, high ionic conductivity is obtained, so a higher porosity is preferable, and it is used in a range of 30 to 99.9%, and 50 to 99.9%. Is more preferably used, and 70 to 99.9% is more preferably used. When a solid electrolyte is used between the positive electrode and the negative electrode, it can be used if the surface of the particle is exposed on both the positive electrode side and the negative electrode side, and low pores when problems such as dendrite growth occur. The rate is preferably 0.1 to 70%. More preferably, it is used in the range of 0.1 to 50%, and most preferably in the range of 0.1 to 30%. The value of the porosity is a value calculated using the following formula from a base material sample of a certain size cut out from the volume (cm 3 ) and mass (g) and the film density (g / cm 3 ) of the base material. It is.
Porosity (%) = (1−mass / volume / membrane density) × 100
In the following description, the case where a nonwoven fabric is used as a base material will be described as an example.

本発明のセパレータは、結晶性酸化物系無機固体電解質粒子と不織布が一体化した膜の厚みで10〜110μmで用いることができる。セパレータの厚みを10μm以上とすることで、セパレータとしての強度を保つことができ電池の短絡を防ぐことができる。100μm以下とすることで、電池の活物質を多く充填することができるようになり、電池としての電気容量を増やすことができる。   The separator of this invention can be used by 10-110 micrometers by the thickness of the film | membrane which the crystalline oxide type inorganic solid electrolyte particle and the nonwoven fabric integrated. By setting the thickness of the separator to 10 μm or more, the strength as the separator can be maintained and a short circuit of the battery can be prevented. By setting the thickness to 100 μm or less, the battery can be filled with a large amount of active material, and the electric capacity of the battery can be increased.

本発明では、平均粒径が5〜100μmの結晶性酸化物系無機固体電解質粒子を用いる。好ましくは平均粒径10〜80μmの粒子が用いられ、最も好ましくは、平均粒子径20〜50μmの粒子が用いられる。平均粒子径を5μm以上とすることで、セパレータの強度が保たれ、柔軟性が得られ電池の短絡を防止することができる。平均粒子径を100μm以下とすることで、セパレータの高いイオン伝導性が保たれるようになる。
なお、セパレータの両面で粒子が露出していることが好ましい。すなわち、結晶性酸化物系無機固体電解質粒子の径は、基材の厚みよりも大きいことが好ましい。
In the present invention, crystalline oxide inorganic solid electrolyte particles having an average particle diameter of 5 to 100 μm are used. Preferably, particles having an average particle size of 10 to 80 μm are used, and most preferably, particles having an average particle size of 20 to 50 μm are used. By setting the average particle diameter to 5 μm or more, the strength of the separator can be maintained, flexibility can be obtained, and a short circuit of the battery can be prevented. By setting the average particle diameter to 100 μm or less, the high ion conductivity of the separator is maintained.
In addition, it is preferable that particle | grains are exposed on both surfaces of a separator. That is, the diameter of the crystalline oxide inorganic solid electrolyte particles is preferably larger than the thickness of the substrate.

結晶性酸化物系無機固体電解質粒子の形状としては球形、不定形いずれも用いることができる。結晶性酸化物系無機固体電解質粒子は、高いイオン伝導性を確保するために高い密度が好ましく、各結晶性酸化物系無機固体電解質の相対密度が80〜100%のものが用いられる。好ましくは相対密度90〜100%のものが用いられ、最も好ましくは相対密度95〜100%のものが用いられる。ここで相対密度とは、液体置換法、ガス置換法等の一般的な測定法で求めた試料の「真密度」を実測密度としてXRD測定法等から求めた格子定数値から得られた理論密度から、
相対密度(%)=(試料実測密度/理論密度)×100
により求められる。相対密度を80%以上とすることで、結晶粒子中の粒界に由来する抵抗やボイドに由来する抵抗が低減して、粒子自身のリチウムイオン伝導性が向上する。100%以下とすることで、粒子の粒界やボイドを低減させるための高い温度での加熱、高い圧力での圧縮になどの煩雑な操作の負荷を減らすことができる。
As the shape of the crystalline oxide-based inorganic solid electrolyte particles, either spherical or irregular shapes can be used. The crystalline oxide inorganic solid electrolyte particles preferably have a high density in order to ensure high ion conductivity, and those having a relative density of 80 to 100% of each crystalline oxide inorganic solid electrolyte are used. Those having a relative density of 90 to 100% are preferably used, and those having a relative density of 95 to 100% are most preferably used. Here, the relative density is a theoretical density obtained from a lattice constant value obtained from an XRD measurement method or the like using the “true density” of the sample obtained by a general measurement method such as a liquid substitution method or a gas substitution method as an actual measurement density. From
Relative density (%) = (sample actual density / theoretical density) × 100
Is required. By setting the relative density to 80% or more, the resistance derived from the grain boundaries in the crystal grains and the resistance derived from the voids are reduced, and the lithium ion conductivity of the grains themselves is improved. By setting it to 100% or less, it is possible to reduce the burden of complicated operations such as heating at a high temperature for reducing grain boundaries and voids of particles and compression at a high pressure.

本発明に用いる結晶性酸化物固体電解質粒子は、リチウムイオン伝導性を有する結晶性酸化物系無機無機固体電解質であればいずれのものも用いることができる。例えばγ−LiPO型酸化物、逆蛍石型酸化物、NASICON型酸化物、ペロブスカイト型酸化物、ガーネット型酸化物が用いられ、NASICON型酸化物であるLi1.3Ti1.7(PO、ペロブスカイト型酸化物であるLa2/3−xLi3xTiO、ガーネット型酸化物であるLiLaZr12が好ましく用いられる。イオン伝導を高める目的、化学的な安定性を高める目的、加工性を高める目的で、上記基本結晶構造に対して置換、ドープにより元素を置換した酸化物系無機固体電解質も用いることができる。 As the crystalline oxide solid electrolyte particles used in the present invention, any crystalline oxide inorganic inorganic solid electrolyte having lithium ion conductivity can be used. For example, γ-LiPO 4 type oxide, reverse fluorite type oxide, NASICON type oxide, perovskite type oxide and garnet type oxide are used, and the NASICON type oxide Li 1.3 Ti 1.7 (PO 4 ) 3 , La 2 / 3-x Li 3x TiO 3 which is a perovskite oxide, and Li 3 La 7 Zr 2 O 12 which is a garnet oxide are preferably used. An oxide-based inorganic solid electrolyte in which an element is substituted by substitution or doping with respect to the basic crystal structure can be used for the purpose of enhancing ionic conduction, enhancing chemical stability, and enhancing workability.

「粒子が一層に担持した」とは、その単一の粒子が層の厚み方向に1つ、層内方向に多数が担持された状態を意味するが、粒子は割れて複数の粒子となって存在する、比較的扁平な粒子が重なる等、膜厚方向の粒子が1つでない場合も膜内方向の全粒子数に対して最大で15%以下存在してもよく、5%以下存在することが好ましい。 粒子を一層に配列させる方法としては、例えば粘着層のような支持体の上に粒子を載せ、粘着層に固定していない粒子を除去することで一層に配列させることができる。粘着層としては粘着テープ、後述するような支持体の上に除去が容易なグリース等を塗布したものも用いられる。さらには静電気等を利用して電気的に基板に粒子を一層分で配列させることもできる。粘着層等に固定されていない粒子の除去方法としては、粒子の載った粘着層ごと反転させ、固定されていない粒子を落下させて除去する方法、気体の噴射等により粘着層に固定されていない粒子を吹き飛ばして除去する方法などを用いることができる。以上のような方法で粒子を一層に並べ、不織布を上に載せ圧着、加熱圧着の方法により一体化することができる。圧着は不織布の軟化温度より高い温度で軟化させて圧着させる方法、不織布の溶融温度以上に加熱して粒子と一体化させる方法などを用いることができる。
また、結晶性酸化物系無機固体電解質粒子を支持体上に一層に配列させた後、支持体上に溶融状態の不織布原料を供給することにより、不織布と粒子とを一体化することもできる。
“Particles supported in one layer” means a state in which a single particle is supported in the thickness direction of the layer and a large number of particles are supported in the direction of the layer. Even when there is not one particle in the film thickness direction, such as the presence of relatively flat particles that are present, the maximum number of particles may be 15% or less relative to the total number of particles in the film direction, and 5% or less. Is preferred. As a method of arranging the particles in a single layer, the particles can be arranged in a single layer by placing the particles on a support such as an adhesive layer and removing the particles not fixed to the adhesive layer. As the pressure-sensitive adhesive layer, a pressure-sensitive adhesive tape, or a material coated with a grease that can be easily removed on a support as described later, is also used. Furthermore, it is also possible to arrange particles on the substrate electrically by using static electricity or the like. As a method for removing particles that are not fixed to the adhesive layer or the like, the entire adhesive layer on which the particles are placed is reversed, the particles that are not fixed are dropped and removed, and the particles are not fixed to the adhesive layer by gas injection or the like A method of removing particles by blowing off can be used. The particles can be arranged in a single layer by the method as described above, and the nonwoven fabric can be put on top and integrated by the method of pressure bonding and thermocompression bonding. For the pressure bonding, a method of softening and pressing at a temperature higher than the softening temperature of the nonwoven fabric, a method of heating to a temperature higher than the melting temperature of the nonwoven fabric and integrating with the particles, or the like can be used.
In addition, after the crystalline oxide inorganic solid electrolyte particles are arranged in a layer on the support, the nonwoven fabric and the particles can be integrated by supplying a molten nonwoven fabric raw material onto the support.

支持体としては酸化物系無機固体電解質粒子を一層に配列させることができればいずれも用いることができる。支持体は平滑な板状のものが好ましく、金属板、セラミック板、ガラス板、樹脂板を用いることができる。好ましくはステンレス板、アルミニウム板、銅板、ガラス板、樹脂板が用いられる。支持体の表面は一時的に粒子を一層に配列させるために粘着性の物質を薄く塗布したり、粘着性テープを張り付けたりして用いることもできる。また、静電気的に粒子を一層に配列固定させて用いることもできる。   Any support can be used as long as the oxide-based inorganic solid electrolyte particles can be arranged in a single layer. The support is preferably a smooth plate, and a metal plate, a ceramic plate, a glass plate, or a resin plate can be used. Preferably, a stainless plate, an aluminum plate, a copper plate, a glass plate, or a resin plate is used. The surface of the support can be used by thinly applying an adhesive substance or attaching an adhesive tape to temporarily arrange the particles in one layer. Alternatively, the particles can be electrostatically arranged and fixed in one layer.

粒子の露出率は、粒子が露出している割合を示し、膜の厚み方向から見たときに、単位面積当たりの粒子が露出している面積を、粒子が占める面積で割ることにより求められる。露出率は両面それぞれ10〜100%で用いられる。露出率を10%以上とすることにより、セパレータのリチウムイオン伝導性が高まり、電池の充放電特性を高めることができる。露出率を100%以下とすることにより、セパレータの強度が高まり、電池の加工時、作動時の短絡を防ぐことができる。   The exposure rate of the particles indicates the rate at which the particles are exposed, and is obtained by dividing the area where the particles per unit area are exposed when viewed from the thickness direction of the film by the area occupied by the particles. The exposure rate is 10 to 100% on both sides. By setting the exposure rate to 10% or more, the lithium ion conductivity of the separator is increased, and the charge / discharge characteristics of the battery can be improved. By setting the exposure rate to 100% or less, the strength of the separator is increased, and short-circuiting during battery processing and operation can be prevented.

<リチウムイオン伝導性の評価方法>
上記、リチウムイオン伝導度は一般的な交流インピーダンス法で測定することができる。
<Evaluation method of lithium ion conductivity>
The lithium ion conductivity can be measured by a general AC impedance method.

このようなセパレータは、各種電池におけるセパレータとして用いることができるが、例えば、図2に示すようなリチウムイオン二次電池200におけるセパレータとして用いることができる。
図2は、本実施形態のセパレータが適用されるリチウムイオン電池の一例を示す概略断面図である。図2に示されるリチウムイオン二次電池200は、セパレータ100を両側から挟む正極210と負極220と、さらにそれらの積層体を挟む正極集電体230(正極の外側に配置)と、負極集電体240(負極の外側に配置)と、それらを収容する電池外装250とを備える。電池外装250の内部は電解液で満たされている、あるいは、セパレータ100と正極210および負極220との間に固体電解質が介在されている。可燃性の高い電解液が満たされず固体電解質のみが介在する形態が好ましく用いられる。
以上、本発明を実施するための形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
Such a separator can be used as a separator in various batteries. For example, it can be used as a separator in a lithium ion secondary battery 200 as shown in FIG.
FIG. 2 is a schematic cross-sectional view showing an example of a lithium ion battery to which the separator of this embodiment is applied. A lithium ion secondary battery 200 shown in FIG. 2 includes a positive electrode 210 and a negative electrode 220 sandwiching the separator 100 from both sides, a positive electrode current collector 230 (positioned outside the positive electrode), and a negative electrode current collector. A body 240 (arranged on the outside of the negative electrode) and a battery exterior 250 for housing them are provided. The inside of the battery exterior 250 is filled with an electrolytic solution, or a solid electrolyte is interposed between the separator 100 and the positive electrode 210 and the negative electrode 220. A form in which only a solid electrolyte is interposed without being filled with highly flammable electrolyte is preferably used.
As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said embodiment. The present invention can be variously modified without departing from the gist thereof.

以下、本発明の効果を確認するために行った実施例および比較例について説明する。
[実施例1]
<不織布の製作>
不織布はメルトブローン法により製作した。
目付:10g/m
繊維径:0.29μm
材質:ポリプロピレン
<粒子の配列>
結晶性酸化物系無機粒子として豊島製作所製NASICON型酸化物であるLi1.3Ti1.7(PO(LATP)を用い、成膜した。6cm×6cm×0.2mm厚みのステンレス基板の表面に、耐熱グリースを中心部2cm×2cmの領域に薄く塗布した。この基板上に、あらかじめ38〜45μmの目開きでふるい分けにより分級したLATP粒子を載せ、ステンレス基板ごと反転させることで、基板上に固定化されていない余剰粒子を除去した。さらに、グリースを塗布した基板上にLATP粒子を載せ、反転させることで余剰粒子を除去する操作を数回繰り返し、単粒子が配列した状態とした。
Examples and comparative examples performed for confirming the effects of the present invention will be described below.
[Example 1]
<Production of non-woven fabric>
The nonwoven fabric was manufactured by the melt blown method.
Per unit weight: 10 g / m 2
Fiber diameter: 0.29 μm
Material: Polypropylene <Particle arrangement>
A film was formed using Li 1.3 Ti 1.7 (PO 4 ) 3 (LATP), which is a NASICON type oxide manufactured by Toshima Seisakusho, as crystalline oxide-based inorganic particles. A heat resistant grease was thinly applied to the surface of a 6 cm × 6 cm × 0.2 mm thick stainless steel substrate in an area of 2 cm × 2 cm in the center. On this substrate, LATP particles classified by sieving with 38 to 45 μm openings were placed in advance, and the entire stainless steel substrate was inverted to remove excess particles not immobilized on the substrate. Furthermore, the operation of removing the surplus particles by placing LATP particles on a substrate coated with grease and inverting it was repeated several times to obtain a state where single particles were arranged.

<不織布と粒子の一体化>
粒子が一層で配列した基板上に、上記3cm×3cmの不織布を、粒子が配列した部分を覆うように載せ、その上に6cm×6cm×0.2mm厚みのステンレス板を載せ100g/cmの加圧条件で加圧し、ホットプレート上で190℃、30分加熱した。不織布の一部が溶融して粒子と一体化した膜状となった。膜のグリースの付着した面はヘキサンで洗浄し、グリースを除去した。
<Integration of nonwoven fabric and particles>
The 3 cm × 3 cm non-woven fabric is placed on a substrate on which particles are arranged in a single layer so as to cover the portion where the particles are arranged, and a stainless steel plate having a thickness of 6 cm × 6 cm × 0.2 mm is placed thereon and 100 g / cm 2 . Pressurization was performed under pressure, and heating was performed at 190 ° C. for 30 minutes on a hot plate. A part of the non-woven fabric was melted to form a film integrated with the particles. The grease-attached surface of the membrane was washed with hexane to remove the grease.

<粒子の被覆率>
得られた膜のSEM観察
SEM観察
装置:KEYENCE社製 VE−9800
加速電圧:1.2KV
スポット径:6(装置の設定値)
真空度:3Pa
検出器:二次電子検出器
不織布と粒子の一体化した膜の一部を切り出し試料とした。導電性両面テープを用いて試料を試料台に固定し、非蒸着の条件下、200倍の倍率にて粒子を配列させた面および不織布を載せた面を観察した。
装置付属のソフトウエアで粒子が占める面積を算出し、全体の面積で割ることで単粒子膜の粒子の占める割合を算出し、粒子の被覆率とした。視野を変えて同様の計算を3回繰り返し、平均を算出した。
粒子配列面 粒子面被覆率 75% 粒子表面露出率 100%
不織布一体化面 粒子面被覆率 75% 粒子表面露出率 35%
膜厚をMitutoyo 457−401型厚み計で測定したところ、48μmであった。
<Particle coverage>
SEM observation of the obtained film SEM observation apparatus: VE-9800 manufactured by KEYENCE Corporation
Acceleration voltage: 1.2KV
Spot diameter: 6 (set value of the device)
Degree of vacuum: 3Pa
Detector: Secondary electron detector A part of the membrane in which the nonwoven fabric and the particles were integrated was cut out and used as a sample. The sample was fixed to the sample stage using a conductive double-sided tape, and the surface on which the particles were arranged at a magnification of 200 times and the surface on which the nonwoven fabric was placed were observed under non-deposition conditions.
The area occupied by the particles was calculated with the software attached to the apparatus, and the ratio of the particles in the single particle film was calculated by dividing the area by the total area to obtain the particle coverage. The same calculation was repeated three times while changing the field of view, and the average was calculated.
Particle array surface Particle surface coverage 75% Particle surface exposure rate 100%
Non-woven fabric integrated surface Particle surface coverage 75% Particle surface exposure rate 35%
When the film thickness was measured with a Mitutoyo 457-401 type thickness meter, it was 48 μm.

<イオン伝導度の測定>
得られた粒子と不織布の一体化膜のイオン伝導度の測定を行った。一体化膜の両面に下記条件で金を蒸着した。
装置:マグネトロンスパッタ装置
放電電流:15mA
放電時間:3分
コート範囲:5mmφ
電気抵抗率の測定は下記装置、下記測定条件で実施した。
装置:LCRメーター
測定周波数:120MHz〜100Hz
電気抵抗率は2.0kΩ・cmであった。
<Measurement of ionic conductivity>
The ionic conductivity of the obtained particle / nonwoven fabric integrated film was measured. Gold was vapor-deposited on both surfaces of the integrated film under the following conditions.
Equipment: Magnetron sputtering equipment Discharge current: 15 mA
Discharge time: 3 minutes Coat range: 5mmφ
The electrical resistivity was measured using the following apparatus and the following measurement conditions.
Apparatus: LCR meter Measurement frequency: 120 MHz to 100 Hz
The electrical resistivity was 2.0 kΩ · cm.

[実施例2]
下記の不織布を使用したこと以外は同じ操作を行い、電気抵抗率を測定したところ、20kΩ・cmであった。
総目付:7.5g/m
繊維径:0.6μm 46wt% 1.2μm 54wt%
材質:ポリプロピレン
[Example 2]
The same operation was performed except that the following nonwoven fabric was used, and the electrical resistivity was measured and found to be 20 kΩ · cm.
Total weight: 7.5 g / m 2
Fiber diameter: 0.6 μm 46 wt% 1.2 μm 54 wt%
Material: Polypropylene

[実施例3]
結晶性酸化物系無機固体電解質として、豊島製作所製Li6.25Al0.25LaZr12(LLZO)のプレートを粉砕し、38〜45μmの目開きでふるい分けにより分級した粒子を用いたこと以外は、実施例1と同様の方法で電気抵抗率を測定したところ、2.5kΩ・cmであった。
[Example 3]
As a crystalline oxide-based inorganic solid electrolyte, particles of Li 6.25 Al 0.25 La 3 Zr 2 O 12 (LLZO) manufactured by Toshima Seisakusho were pulverized and classified by sieving with an opening of 38 to 45 μm. The electrical resistivity was measured by the same method as in Example 1 except that it was 2.5 kΩ · cm.

[比較例1]
実施例1において余剰粒子を除去せず不織布を載せ、加熱操作を行ったところ、粒子が複数層形成された状態となり、膜厚は90μmとなった。実施例1と同様の評価を行ったところ短絡が生じた。
[Comparative Example 1]
In Example 1, a nonwoven fabric was placed without removing excess particles and a heating operation was performed. As a result, a plurality of particles were formed, and the film thickness was 90 μm. When the same evaluation as in Example 1 was performed, a short circuit occurred.

[比較例2]
4cm×4cm不織布を6cm×6cmの基板の上に載せ、実施例1と同様の方法で加熱し不織布が溶融した状態で、実施例1と同様の粒子を上に載せて余剰分を除去し粒子と不織布が一体化した膜を得た。実施例1と同様な評価を実施したところ、3000kΩ・cmであった。
[Comparative Example 2]
A 4 cm × 4 cm non-woven fabric is placed on a 6 cm × 6 cm substrate, heated in the same manner as in Example 1 and the non-woven fabric is melted, and the same particles as in Example 1 are placed on top to remove excess particles. And a nonwoven fabric were obtained. When the same evaluation as in Example 1 was performed, the result was 3000 kΩ · cm.

[比較例3]
実施例1において目開き5μm以下の粒子を分級して用いたこと以外は同様の操作を行い、電気抵抗率を測定したところ、短絡が生じた。
各実施例および比較例の評価結果を表1にまとめて示す。
[Comparative Example 3]
A similar operation was performed except that particles having an opening of 5 μm or less were classified and used in Example 1, and the electrical resistivity was measured. As a result, a short circuit occurred.
The evaluation results of each example and comparative example are summarized in Table 1.

Figure 2017183111
Figure 2017183111

表1から明らかなように、粒子が複数層となった比較例1、不織布基材上に粒子を載せて一体化させた比較例2、平均粒子径の小さい比較例3のセパレータでは、短絡が発生、あるいは電気抵抗率が高かった。これに対し、配列した粒子上に不織布基材を載せることにより、平均粒径が5〜100μmの結晶性酸化物系無機固体電解質粒子を、基材上に一層に担持させた実施例のセパレータでは、いずれも短絡は発生せず、また電気抵抗率が低いことが分かった。   As is clear from Table 1, in Comparative Example 1 in which the particles are in a plurality of layers, Comparative Example 2 in which the particles are integrated on the nonwoven fabric base material, and Comparative Example 3 in which the average particle size is small, a short circuit is caused. Occurrence or electrical resistivity was high. On the other hand, in the separator of the example in which the crystalline oxide inorganic solid electrolyte particles having an average particle diameter of 5 to 100 μm are further supported on the substrate by placing the nonwoven fabric substrate on the arranged particles. In either case, it was found that no short circuit occurred and the electrical resistivity was low.

本発明によれば、薄い膜による高いイオン伝導性から電池特性を向上させることができ、セパレータの柔軟性により電池としての加工性が高まり、電池作製時、作動時に短絡を防ぐことができる不織布セパレータとなり、リチウムイオン電池用不織布セパレータとして広く適用可能である。   According to the present invention, a non-woven separator that can improve battery characteristics due to high ion conductivity due to a thin film, enhances workability as a battery due to the flexibility of the separator, and prevents a short circuit during battery production and operation. Therefore, it can be widely applied as a nonwoven fabric separator for lithium ion batteries.

100 セパレータ
110 結晶性酸化物系無機固体電解質粒子
120 基材
200 リチウムイオン二次電池
210 正極
220 負極
230 正極集電体
240 負極集電体
250 電池外装
DESCRIPTION OF SYMBOLS 100 Separator 110 Crystalline oxide type inorganic solid electrolyte particle 120 Base material 200 Lithium ion secondary battery 210 Positive electrode 220 Negative electrode 230 Positive electrode collector 240 Negative electrode collector 250 Battery exterior

Claims (4)

平均粒径が5〜100μmの結晶性酸化物系無機固体電解質粒子が、基材上に一層に担持されてなることを特徴とするセパレータ。   A separator characterized in that crystalline oxide-based inorganic solid electrolyte particles having an average particle diameter of 5 to 100 μm are supported on a substrate in a single layer. 前記基材がポリオレフィン微多孔膜または不織布である、請求項1に記載のセパレータ。   The separator according to claim 1, wherein the substrate is a polyolefin microporous film or a nonwoven fabric. 前記基材が不織布である、請求項1に記載のセパレータ。   The separator according to claim 1, wherein the substrate is a nonwoven fabric. 平均粒径が5〜100μmの結晶性酸化物系無機固体電解質粒子を支持体上に一層に配列させた後、該固体電解質粒子上に基材を積層し、該固体電解質粒子と該基材とを一体化させることを特徴とするセパレータの製造方法。   After the crystalline oxide inorganic solid electrolyte particles having an average particle size of 5 to 100 μm are arranged in a layer on a support, a substrate is laminated on the solid electrolyte particles, and the solid electrolyte particles, the substrate, A method for manufacturing a separator, characterized in that the separator is integrated.
JP2016069390A 2016-03-30 2016-03-30 Separator and method of manufacturing the same Pending JP2017183111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069390A JP2017183111A (en) 2016-03-30 2016-03-30 Separator and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069390A JP2017183111A (en) 2016-03-30 2016-03-30 Separator and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020138139A Division JP7016392B2 (en) 2020-08-18 2020-08-18 Separator and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2017183111A true JP2017183111A (en) 2017-10-05

Family

ID=60008520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069390A Pending JP2017183111A (en) 2016-03-30 2016-03-30 Separator and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2017183111A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019111906A (en) * 2017-12-22 2019-07-11 倉敷紡績株式会社 Electric power-assisted bicycle
JP2019192564A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 All-solid battery
WO2021085488A1 (en) * 2019-10-30 2021-05-06 富士フイルム株式会社 Lithium ion secondary battery and method for producing same, and solid electrolyte membrane for lithium ion secondary batteries and method for producing same
WO2021132203A1 (en) * 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 Separator for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing separator for nonaqueous electrolyte secondary batteries
WO2022220186A1 (en) * 2021-04-15 2022-10-20 旭化成株式会社 Solid electrolyte support and solid electrolyte sheet including same
US20220384908A1 (en) * 2021-05-07 2022-12-01 Global Graphene Group, Inc. Thermally stable polymer composite separator for a lithium secondary battery and manufacturing method
EP3960921A4 (en) * 2019-04-25 2023-01-18 The Japan Steel Works, Ltd. Non-woven fabric, method for producing non-woven fabric, solid electrolyte membrane, method for producing solid electrolyte membrane, all-solid-battery, and method for producing all-solid-state battery
US12087911B2 (en) 2019-04-26 2024-09-10 The Japan Steel Works, Ltd. Method of manufacturing a solid electrolyte membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378405A (en) * 1986-09-19 1988-04-08 松下電器産業株式会社 Anisotropic ion conductor
JP2009238739A (en) * 2008-03-07 2009-10-15 Tokyo Metropolitan Univ Manufacturing method of solid electrolyte structure, manufacturing method of all-solid-state-cell, solid electrolyte structure, and all-solid-state-cell
WO2014123033A1 (en) * 2013-02-05 2014-08-14 三菱製紙株式会社 Nonwoven substrate for lithium-ion secondary cell separator, and lithium-ion secondary cell separator
JP2014182963A (en) * 2013-03-19 2014-09-29 Sekisui Chem Co Ltd Laminate film, cell separator using the same, and cell
JP2015527722A (en) * 2012-08-29 2015-09-17 コーニング インコーポレイテッド Ion conductive composite electrolyte
US20150357125A1 (en) * 2012-07-16 2015-12-10 Nthdegree Technologies Worldwide Inc. Printable Ionic Gel Separation Layer For Energy Storage Devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378405A (en) * 1986-09-19 1988-04-08 松下電器産業株式会社 Anisotropic ion conductor
JP2009238739A (en) * 2008-03-07 2009-10-15 Tokyo Metropolitan Univ Manufacturing method of solid electrolyte structure, manufacturing method of all-solid-state-cell, solid electrolyte structure, and all-solid-state-cell
US20150357125A1 (en) * 2012-07-16 2015-12-10 Nthdegree Technologies Worldwide Inc. Printable Ionic Gel Separation Layer For Energy Storage Devices
JP2015527722A (en) * 2012-08-29 2015-09-17 コーニング インコーポレイテッド Ion conductive composite electrolyte
WO2014123033A1 (en) * 2013-02-05 2014-08-14 三菱製紙株式会社 Nonwoven substrate for lithium-ion secondary cell separator, and lithium-ion secondary cell separator
JP2014182963A (en) * 2013-03-19 2014-09-29 Sekisui Chem Co Ltd Laminate film, cell separator using the same, and cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019111906A (en) * 2017-12-22 2019-07-11 倉敷紡績株式会社 Electric power-assisted bicycle
JP7045642B2 (en) 2018-04-27 2022-04-01 トヨタ自動車株式会社 All solid state battery
JP2019192564A (en) * 2018-04-27 2019-10-31 トヨタ自動車株式会社 All-solid battery
US10826073B2 (en) 2018-04-27 2020-11-03 Toyota Jidosha Kabushiki Kaisha All-solid-state battery
EP3960921A4 (en) * 2019-04-25 2023-01-18 The Japan Steel Works, Ltd. Non-woven fabric, method for producing non-woven fabric, solid electrolyte membrane, method for producing solid electrolyte membrane, all-solid-battery, and method for producing all-solid-state battery
US12087911B2 (en) 2019-04-26 2024-09-10 The Japan Steel Works, Ltd. Method of manufacturing a solid electrolyte membrane
WO2021085488A1 (en) * 2019-10-30 2021-05-06 富士フイルム株式会社 Lithium ion secondary battery and method for producing same, and solid electrolyte membrane for lithium ion secondary batteries and method for producing same
CN114514645A (en) * 2019-10-30 2022-05-17 富士胶片株式会社 Lithium ion secondary battery and method for producing same, and solid electrolyte membrane for lithium ion secondary battery and method for producing same
JP7297916B2 (en) 2019-10-30 2023-06-26 富士フイルム株式会社 Lithium ion secondary battery and manufacturing method thereof, solid electrolyte membrane for lithium ion secondary battery and manufacturing method thereof
JPWO2021085488A1 (en) * 2019-10-30 2021-05-06
WO2021132203A1 (en) * 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 Separator for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing separator for nonaqueous electrolyte secondary batteries
WO2022220186A1 (en) * 2021-04-15 2022-10-20 旭化成株式会社 Solid electrolyte support and solid electrolyte sheet including same
TWI790958B (en) * 2021-04-15 2023-01-21 日商旭化成股份有限公司 Support body for solid electrolyte and solid electrolyte sheet containing same
US20220384908A1 (en) * 2021-05-07 2022-12-01 Global Graphene Group, Inc. Thermally stable polymer composite separator for a lithium secondary battery and manufacturing method

Similar Documents

Publication Publication Date Title
JP2017183111A (en) Separator and method of manufacturing the same
JP7289665B2 (en) Manufacture of solid state batteries
JP6941808B2 (en) All solid state battery
KR101032443B1 (en) Separator for electronic components and production method therefor
JP4615339B2 (en) Porous solid electrode and all-solid lithium secondary battery using the same
CN105706275B (en) Battery
EP3043406B1 (en) Solid-state batteries and methods for fabrication
US20160308243A1 (en) Electrochemical cell with solid and liquid electrolytes
Frankenberger et al. Laminated Lithium Ion Batteries with improved fast charging capability
CN103620818B (en) Dividing plate with heat-resistant insulating layer
JP2016031789A (en) Solid electrolyte sheet and all-solid type secondary battery
JP2015529947A (en) Organic / inorganic composite coating porous separation membrane and secondary battery element using the same
KR20160101895A (en) Non-aqueous secondary cell separator and non-aqueous secondary cell
TW201530863A (en) Method of preparing separator for lithium secondary battery, separator prepared therefrom, and lithium secondary battery comprising the same
JP2017103146A (en) Solid electrolyte sheet and manufacturing method thereof, and all-solid battery and manufacturing method thereof
JP6831633B2 (en) Solid electrolyte membrane and all-solid-state lithium-ion battery
JP2006344506A (en) Separator for electronic components
US20160233542A1 (en) Electrolytic separator, manufacturing method and system
CN110416630B (en) All-solid-state battery
Muchakayala et al. Modified ceramic coated polyethylene separator–A strategy for using lithium metal as anode with superior electrochemical performance and thermal stability
JP6748909B2 (en) All solid state battery
JP2013012338A (en) Lithium secondary battery
JP7016392B2 (en) Separator and its manufacturing method
KR20180106381A (en) Stack-folding Type Electrode Assembly Comprising Two Kinds of Separators
JP2018018729A (en) Lamination type secondary battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519