WO2021132203A1 - Separator for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing separator for nonaqueous electrolyte secondary batteries - Google Patents

Separator for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing separator for nonaqueous electrolyte secondary batteries Download PDF

Info

Publication number
WO2021132203A1
WO2021132203A1 PCT/JP2020/047807 JP2020047807W WO2021132203A1 WO 2021132203 A1 WO2021132203 A1 WO 2021132203A1 JP 2020047807 W JP2020047807 W JP 2020047807W WO 2021132203 A1 WO2021132203 A1 WO 2021132203A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrolyte secondary
secondary battery
aqueous electrolyte
positive electrode
Prior art date
Application number
PCT/JP2020/047807
Other languages
French (fr)
Japanese (ja)
Inventor
恒平 原
松井 徹
拡哲 鈴木
基浩 坂田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP20905589.6A priority Critical patent/EP4083125A1/en
Priority to US17/786,940 priority patent/US20230029282A1/en
Priority to CN202080088194.9A priority patent/CN114868302A/en
Priority to JP2021567466A priority patent/JPWO2021132203A1/ja
Publication of WO2021132203A1 publication Critical patent/WO2021132203A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method for manufacturing a separator for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a separator for a non-aqueous electrolyte secondary battery.
  • the separator for non-aqueous electrolyte secondary batteries may contain an inorganic filler for the purpose of improving heat resistance and ion permeability.
  • Patent Document 1 discloses a separator having excellent shape stability without shrinking even at a high temperature by containing an inorganic filler and a water-soluble polymer having a predetermined structure.
  • the characteristics of the separator for non-aqueous electrolyte secondary batteries change depending on the pore size, and the characteristics often have a trade-off relationship.
  • a separator having a large pore size of several hundred nm has a feature that the penetration rate of the electrolytic solution is high, but dendrites easily grow through the pores, so that an internal short circuit is likely to occur.
  • a separator having a small pore size can suppress an internal short circuit, but the permeation rate of the electrolytic solution is slow.
  • the separator for a non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, contains a polymer compound and a solid electrolyte, and has a pore volume of 0.06 cm 3 / g or less.
  • the non-aqueous electrolyte secondary battery includes the above-mentioned separator for a non-aqueous electrolyte secondary battery, a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • One aspect of the present disclosure is a method for producing a separator for a non-aqueous electrolyte secondary battery, which comprises a slurry preparation step of mixing a solution prepared by dissolving a polymer compound in an ionic liquid and a solid electrolyte to prepare a slurry.
  • a gelling step in which the slurry is applied to the surface of the substrate to prepare a coating film, and the coating film is gelled by substituting with an organic poor solvent having a lower solubility of the polymer compound than the ionic liquid.
  • a drying step of drying the gelled film to obtain a composite film.
  • the separator for a non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, it is possible to improve the permeation rate of the electrolytic solution while suppressing an internal short circuit.
  • a cylindrical battery in which a wound electrode body is housed in a bottomed cylindrical outer can is illustrated, but the outer body is not limited to the cylindrical outer can, for example, a square outer can. It may be an exterior body composed of a laminated sheet including a metal layer and a resin layer. Further, the electrode body may be a laminated electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via a separator.
  • FIG. 1 is a vertical cross-sectional view of a cylindrical secondary battery 10 which is an example of an embodiment.
  • an electrode body 14 and a non-aqueous electrolyte (not shown) are housed in an exterior body 15.
  • the electrode body 14 has a winding structure in which the positive electrode 11 and the negative electrode 12 are wound via the separator 13.
  • the sealing body 16 side will be referred to as “top” and the bottom side of the exterior body 15 will be referred to as “bottom”.
  • the inside of the secondary battery 10 is sealed by closing the opening end of the exterior body 15 with the sealing body 16.
  • Insulating plates 17 and 18 are provided above and below the electrode body 14, respectively.
  • the positive electrode lead 19 extends upward through the through hole of the insulating plate 17 and is welded to the lower surface of the filter 22 which is the bottom plate of the sealing body 16.
  • the cap 26, which is the top plate of the sealing body 16 electrically connected to the filter 22, serves as the positive electrode terminal.
  • the negative electrode lead 20 extends to the bottom side of the exterior body 15 through the through hole of the insulating plate 18 and is welded to the inner surface of the bottom portion of the exterior body 15.
  • the exterior body 15 serves as a negative electrode terminal.
  • the negative electrode lead 20 passes through the outside of the insulating plate 18 and extends to the bottom side of the exterior body 15 and is welded to the inner surface of the bottom portion of the exterior body 15.
  • the exterior body 15 is, for example, a bottomed cylindrical metal exterior can.
  • a gasket 27 is provided between the exterior body 15 and the sealing body 16 to ensure the internal airtightness of the secondary battery 10.
  • the exterior body 15 has a grooved portion 21 that supports the sealing body 16 and is formed by pressing, for example, a side surface portion from the outside.
  • the grooved portion 21 is preferably formed in an annular shape along the circumferential direction of the exterior body 15, and the sealing body 16 is supported on the upper surface thereof via the gasket 27.
  • the sealing body 16 has a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26, which are laminated in order from the electrode body 14 side.
  • Each member constituting the sealing body 16 has, for example, a disk shape or a ring shape, and each member except the insulating member 24 is electrically connected to each other.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at their central portions, and an insulating member 24 is interposed between the peripheral portions thereof.
  • the positive electrode 11, the negative electrode 12, the separator 13, and the non-aqueous electrolyte constituting the electrode body 14 will be described in detail, particularly the separator 13.
  • the positive electrode 11 has a positive electrode core body and a positive electrode mixture layer provided on the surface of the positive electrode core body.
  • a metal foil stable in the potential range of the positive electrode 11 such as aluminum, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the thickness of the positive electrode core is, for example, 10 ⁇ m to 30 ⁇ m.
  • the positive electrode mixture layer contains a positive electrode active material, a binder, and a conductive material, and is preferably provided on both sides of the positive electrode core body excluding the portion to which the positive electrode lead 19 is connected.
  • a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive material, and the like is applied to the surface of a positive electrode core, the coating film is dried, and then compressed to form a positive electrode mixture layer. It can be manufactured by forming it on both sides of the core body.
  • Examples of the positive electrode active material contained in the positive electrode mixture layer include lithium transition metal oxides containing transition metal elements such as Co, Mn, and Ni.
  • Lithium transition metal oxides for example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1- y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, Ni , Cu, Zn, Al, Cr, Pb, Sb, B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, 2.0 ⁇ z ⁇ 2.3).
  • the positive electrode active material Li x NiO 2, Li x Co y Ni 1-y O 2, Li x Ni 1-y M y O z ( M; At least one of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0. It is preferable to contain a lithium nickel composite oxide such as 9.9, 2.0 ⁇ z ⁇ 2.3).
  • Examples of the conductive material contained in the positive electrode mixture layer include carbon materials such as carbon black (CB), acetylene black (AB), Ketjen black, carbon nanotubes, carbon nanofibers, and graphite. These may be used alone or in combination of two or more.
  • carbon black CB
  • AB acetylene black
  • Ketjen black Ketjen black
  • carbon nanotubes carbon nanofibers
  • graphite graphite
  • binder contained in the positive electrode mixture layer examples include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. .. These resins may be used in combination with cellulose derivatives such as carboxymethyl cellulose (CMC) or salts thereof, polyethylene oxide (PEO) and the like. These may be used alone or in combination of two or more.
  • fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. .. These resins may be used in combination with cellulose derivatives such as carboxymethyl cellulose (CMC) or salts thereof, polyethylene oxide (PEO) and the like. These may be used alone or in combination of two or more.
  • the negative electrode 12 has a negative electrode core body and a negative electrode mixture layer provided on the surface of the negative electrode core body.
  • a metal foil stable in the potential range of the negative electrode 12 such as copper, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the thickness of the negative electrode core is, for example, 5 ⁇ m to 15 ⁇ m.
  • the negative electrode mixture layer contains a negative electrode active material and a binder, and is preferably provided on both sides of the negative electrode core body excluding the portion to which the negative electrode lead 20 is connected, for example.
  • a negative electrode mixture slurry containing a negative electrode active material and a binder is applied to the surface of the negative electrode core body, the coating film is dried, and then compressed to form the negative electrode mixture layer on both sides of the negative electrode core body. It can be produced by forming in. Further, a conductive material may be added to the negative electrode mixture slurry. The conductive material can make the conductive path uniform.
  • a fluororesin such as PTFE or PVdF, PAN, polyimide, acrylic resin, polyolefin or the like may be used as in the case of the positive electrode 11, but styrene-is preferable.
  • Polyolefin rubber (SBR) is used.
  • these resins may be used in combination with CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA) and the like.
  • the conductive material contained in the negative electrode mixture layer include carbon black, acetylene black, ketjen black, carbon nanotubes, and carbon nanofibers.
  • the separator 13 contains a polymer compound and a solid electrolyte.
  • the separator 13 contains a polymer compound as a matrix and a solid electrolyte as an inorganic filler.
  • Pore volume of the separator 13 is less 0.06 cm 3 / g, preferably not more than 0.05 cm 3 / g.
  • the pore volume can be measured using nitrogen gas by, for example, a commercially available measuring device such as BELSORP-miniX manufactured by Microtrac Bell.
  • the thickness of the separator 13 is preferably 0.2 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.4 ⁇ m or more and 1 ⁇ m or less. If the thickness of the separator 13 is less than 0.2 ⁇ m, the strength is insufficient. If the thickness of the separator 13 exceeds 10 ⁇ m, the volume of the separator that does not contribute to charging / discharging increases in the internal space of the battery, and the density of the battery decreases.
  • the mass ratio of the polymer compound to the solid electrolyte in the separator 13 is preferably 100: 1 to 100: 100,000, more preferably 100: 1 to 100: 10000, and particularly preferably 100: 1 to 100: 400.
  • the separator 13 may contain additives other than the polymer compound and the solid electrolyte as long as the object of the present disclosure is not impaired.
  • Examples of the polymer compound contained in the separator 13 include olefin resins such as polyethylene and polypropylene, cellulose, and cellulose derivatives.
  • Cellulose is preferable as the polymer compound. Cellulose is inexpensive and dissolves in an ionic liquid, so that the separator 13 can be easily thinned by a production method described later.
  • the solid electrolyte contained in the separator 13 includes Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet type structure, Li 1 + x Al x Ti 2-x P 3 O 12 (LATP) having a NASICON type structure, and a perovskite type.
  • LLZ La 3 Zr 2 O 12
  • LATP Li 1 + x Al x Ti 2-x P 3 O 12
  • perovskite type examples thereof include La 2 / 3-x Li x TiO 3 (LLT) having a structure, and lithium ion-containing polyethylene oxide (Li + ⁇ PEO).
  • LLT Li ion-containing polyethylene oxide
  • LLZ, LATP, and LLT include those in which some of the elements contained in the above general formula are replaced with other additive elements.
  • LATP is preferable from the viewpoint of ionic conductivity.
  • LATP for example, a LICGC TM manufactured by O'Hara, which is represented by Li 1 + x + y Al x Ti 2-x Si y P 3-y O 12 , can be used.
  • the solid electrolyte may be powder.
  • the average particle size is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less, preferably 0.4 ⁇ m or more and 1 ⁇ m or less.
  • the average particle size means a particle size in which the cumulative frequency is 50% from the smaller particle size in the volume-based particle size distribution, and is also called a median size.
  • the particle size distribution of the solid electrolyte can be measured using water as a dispersion medium using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.).
  • Lithium ions may be allowed to move inside the separator 13 by contacting and connecting a plurality of solid electrolytes from one surface to the other surface of the separator 13, and the thickness of the separator 13 is the average particle size of the solid electrolyte. By doing the following, one solid electrolyte particle may penetrate the separator. From the viewpoint of the ease of movement of lithium ions, it is preferable that the thickness of the separator is equal to or smaller than the average particle size of the solid electrolyte.
  • a heat-resistant layer containing a heat-resistant material may be formed on the surface of the separator 13.
  • the heat-resistant material include polyamide resins such as aliphatic polyamides and aromatic polyamides (aramid), and polyimide resins such as polyamideimide and polyimide.
  • a slurry is prepared by mixing a solution prepared by dissolving a polymer compound in an ionic liquid and a solid electrolyte.
  • An ionic liquid is a salt containing anions and cations and is a liquid at room temperature.
  • a commercially available ionic liquid for dissolving cellulose can be used.
  • an alkylimidazolium salt or the like can be used, and examples of the salt type include chloride, acetate, phosphate and the like.
  • the mass ratio of the ionic liquid to the polymer compound in the slurry is, for example, 100: 0.2 to 100: 15. Within this range, the polymer compound dissolves in the ionic liquid, and the separator 13 can be produced by film formation.
  • the solid electrolyte can be added, for example, from 1 part by mass to 100,000 parts by mass with respect to 100 parts by mass of the polymer compound.
  • the slurry is applied to the surface of the substrate to prepare a coating film, and the coating film is gelled by substituting with an organic poor solvent having a lower solubility of the polymer compound than the ionic liquid.
  • Make a membrane As the substrate on which the slurry is applied, for example, a flat resin, glass, or metal substrate can be used. Ethyl acetate can be exemplified as an organic antisolvent to be replaced with an ionic liquid.
  • the substrate on which the coating film is formed on the surface may be immersed in acetone and then immersed in ethyl acetate to relay the acetone and replace the ionic liquid with ethyl acetate.
  • the gelled film is dried to obtain a composite film.
  • the gelled membrane shrinks due to drying, but according to the above-mentioned production method, the shrinkage of the polymer compound in the gelled membrane is suppressed, so that voids are formed between the polymer compound and the solid electrolyte. Can be suppressed.
  • the obtained composite film may be used as it is as the separator 13, or the composite film may be further subjected to a post-process.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte is not limited to the liquid electrolyte (electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • the non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen substituent in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • esters examples include cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate.
  • Ethylpropyl carbonate chain carbonate such as methyl isopropyl carbonate, cyclic carboxylic acid ester such as ⁇ -butyrolactone, ⁇ -valerolactone, methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate, Examples thereof include chain carboxylic acid esters such as ⁇ -butyrolactone.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahexyl, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4.
  • -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxy Chain ethers such as ethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl
  • a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, a fluorinated chain carboxylic acid ester such as methyl fluoropropionate (FMP), or the like. ..
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4 O 7 , borates such as Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) ⁇ l , M is an integer of 1 or more ⁇ and other imide salts.
  • lithium salt these may be used individually by 1 type, or a plurality of types may be mixed and used. Of these, LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per 1 L of the solvent.
  • the adsorption isotherm due to nitrogen adsorption was measured using BELSORP-miniX manufactured by Microtrac Bell, and the pore volume was determined by the BJH method. As a result, it was 0.047 cm 3 / g.
  • the thickness of the separator was 60 ⁇ m.
  • LiNi 0.5 Co 0.2 Mn 0.3 O2 was used as the positive electrode active material.
  • the positive electrode active material, acetylene black, and polyvinylidene fluoride (PVdF) are mixed at a solid content mass ratio of 100: 3: 1, and an appropriate amount of N-methyl-2-pyrrolidone (NMP) is added and then kneaded.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode mixture slurry is applied to both sides of the positive electrode core made of aluminum foil, the coating film is dried, and then the coating film is rolled using a roller and cut to a predetermined electrode size to form the positive electrode core.
  • a positive electrode having a positive electrode mixture layer formed on both sides was obtained. An exposed portion where the surface of the positive electrode core was exposed was provided on a part of the positive electrode.
  • Li metal was pressed against the Ni mesh as the negative electrode active material to fix it, and the negative electrode was cut to a predetermined electrode size to obtain a negative electrode. An exposed portion where the surface of the negative electrode core was exposed was provided on a part of the negative electrode.
  • Lithium hexafluorophosphate LiPF 6 was added to a mixed solvent in which fluoroethylene carbonate (FEC) and methyl 3,3,3-trifluoropropionate (FMP) were mixed in a volume ratio of 2: 8.
  • FEC fluoroethylene carbonate
  • FMP methyl 3,3,3-trifluoropropionate
  • An electrode body was produced by attaching an aluminum lead to the exposed portion of the positive electrode and a nickel lead to the exposed portion of the negative electrode, and arranging the positive electrode and the negative electrode facing each other via the prepared separator. This electrode body was housed in an exterior body made of an aluminum laminated sheet, and after injecting the non-aqueous electrolyte, the opening of the exterior body was sealed to obtain a test cell.
  • Example 1 ⁇ Comparison example> Evaluation was carried out in the same manner as in Example 1 except that the slurry described in Example 1 was formed on a glass plate by a casting method, the ionic liquid was removed with ultrapure water, and the slurry was naturally dried to prepare a separator. It was.
  • Table 1 shows the evaluation results of Examples and Comparative Examples. Table 1 shows the thickness of the separator and the pore volume together with the evaluation results.
  • the separator of the example had an effect of suppressing a short circuit as compared with the separator of the comparative example.
  • the separator of the example had a faster permeation rate of the electrolytic solution than the separator of the comparative example. This is because the use of ethyl acetate as the solvent increased the nano-sized pores in the separator, while the smaller pore volume was due to the increase in the nano-sized pores between the solid electrolyte and the matrix. It is presumed that this is because the effect of the reduction of the voids is large.

Abstract

This separator for nonaqueous electrolyte secondary batteries contains a polymer compound and a solid electrolyte, and has a pore volume of 0.06 cm3/g or less.

Description

非水電解質二次電池用セパレータ、非水電解質二次電池、及び非水電解質二次電池用セパレータの製造方法Method for manufacturing separator for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and separator for non-aqueous electrolyte secondary battery
 本開示は、非水電解質二次電池用セパレータ、非水電解質二次電池、及び非水電解質二次電池用セパレータの製造方法に関する。 The present disclosure relates to a method for manufacturing a separator for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and a separator for a non-aqueous electrolyte secondary battery.
 非水電解質二次電池用セパレータは、耐熱性向上やイオン透過性向上を目的として、無機フィラーを含有することがある。特許文献1には、無機フィラーと所定の構造を有する水溶性重合体とを含むことで、高温でも収縮せずに形状安定性に優れるセパレータが開示されている。 The separator for non-aqueous electrolyte secondary batteries may contain an inorganic filler for the purpose of improving heat resistance and ion permeability. Patent Document 1 discloses a separator having excellent shape stability without shrinking even at a high temperature by containing an inorganic filler and a water-soluble polymer having a predetermined structure.
国際公開第2018/079474号公報International Publication No. 2018/079474
 非水電解質二次電池用セパレータは、孔径によって特性が変化し、その特性はトレードオフの関係となる場合が多い。数100nmと大孔径のセパレータは、電解液の浸透速度が速いという特長を有するが、孔を通ってデンドライトが成長しやすいので内部短絡を発生しやすい。一方、小孔径のセパレータは、内部短絡を抑制できるが、電解液の浸透速度が遅い。 The characteristics of the separator for non-aqueous electrolyte secondary batteries change depending on the pore size, and the characteristics often have a trade-off relationship. A separator having a large pore size of several hundred nm has a feature that the penetration rate of the electrolytic solution is high, but dendrites easily grow through the pores, so that an internal short circuit is likely to occur. On the other hand, a separator having a small pore size can suppress an internal short circuit, but the permeation rate of the electrolytic solution is slow.
 本開示の一態様である非水電解質二次電池用セパレータは、高分子化合物と、固体電解質とを含み、細孔容積が0.06cm/g以下である。 The separator for a non-aqueous electrolyte secondary battery, which is one aspect of the present disclosure, contains a polymer compound and a solid electrolyte, and has a pore volume of 0.06 cm 3 / g or less.
 本開示の一態様である非水電解質二次電池は、上記非水電解質二次電池用セパレータと、正極と、負極と、非水電解質とを備える。 The non-aqueous electrolyte secondary battery according to one aspect of the present disclosure includes the above-mentioned separator for a non-aqueous electrolyte secondary battery, a positive electrode, a negative electrode, and a non-aqueous electrolyte.
 本開示の一態様である非水電解質二次電池用セパレータの製造方法は、イオン液体に高分子化合物を溶解させた溶解液と、固体電解質とを混合してスラリーを作製するスラリー作製工程と、スラリーを基板表面に塗布して塗布膜を作製し、イオン液体よりも高分子化合物の溶解度が低い有機系貧溶媒で置換することで塗布膜がゲル化したゲル化膜を作製するゲル化工程と、ゲル化膜を乾燥させてコンポジット膜を得る乾燥工程と、を含む。 One aspect of the present disclosure is a method for producing a separator for a non-aqueous electrolyte secondary battery, which comprises a slurry preparation step of mixing a solution prepared by dissolving a polymer compound in an ionic liquid and a solid electrolyte to prepare a slurry. A gelling step in which the slurry is applied to the surface of the substrate to prepare a coating film, and the coating film is gelled by substituting with an organic poor solvent having a lower solubility of the polymer compound than the ionic liquid. , A drying step of drying the gelled film to obtain a composite film.
 本開示の一態様である非水電解質二次電池用セパレータによれば、内部短絡を抑制しつつ、電解液の浸透速度を向上させることができる。 According to the separator for a non-aqueous electrolyte secondary battery, which is one aspect of the present disclosure, it is possible to improve the permeation rate of the electrolytic solution while suppressing an internal short circuit.
実施形態の一例である非水電解質二次電池の縦方向断面図である。It is a vertical sectional view of the non-aqueous electrolyte secondary battery which is an example of embodiment.
 以下、本開示に係る非水電解質二次電池用セパレータ、及び当該非水電解質二次電池用セパレータを用いた非水電解質二次電池の実施形態の一例について詳細に説明する。以下では、巻回型の電極体が有底円筒形状の外装缶に収容された円筒形電池を例示するが、外装体は円筒形の外装缶に限定されず、例えば角形の外装缶であってもよく、金属層及び樹脂層を含むラミネートシートで構成された外装体であってもよい。また、電極体は複数の正極と複数の負極がセパレータを介して交互に積層された積層型の電極体であってもよい。 Hereinafter, an example of an embodiment of the non-aqueous electrolyte secondary battery separator according to the present disclosure and the non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery separator will be described in detail. In the following, a cylindrical battery in which a wound electrode body is housed in a bottomed cylindrical outer can is illustrated, but the outer body is not limited to the cylindrical outer can, for example, a square outer can. It may be an exterior body composed of a laminated sheet including a metal layer and a resin layer. Further, the electrode body may be a laminated electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via a separator.
 図1は、実施形態の一例である円筒型の二次電池10の縦方向断面図である。図1に示す二次電池10は、電極体14及び非水電解質(図示せず)が外装体15に収容されている。電極体14は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の構造を有する。なお、以下では、説明の便宜上、封口体16側を「上」、外装体15の底部側を「下」として説明する。 FIG. 1 is a vertical cross-sectional view of a cylindrical secondary battery 10 which is an example of an embodiment. In the secondary battery 10 shown in FIG. 1, an electrode body 14 and a non-aqueous electrolyte (not shown) are housed in an exterior body 15. The electrode body 14 has a winding structure in which the positive electrode 11 and the negative electrode 12 are wound via the separator 13. In the following, for convenience of explanation, the sealing body 16 side will be referred to as “top” and the bottom side of the exterior body 15 will be referred to as “bottom”.
 外装体15の開口端部が封口体16で塞がれることで、二次電池10の内部は、密閉される。電極体14の上下には、絶縁板17,18がそれぞれ設けられる。正極リード19は絶縁板17の貫通孔を通って上方に延び、封口体16の底板であるフィルタ22の下面に溶接される。二次電池10では、フィルタ22と電気的に接続された封口体16の天板であるキャップ26が正極端子となる。他方、負極リード20は絶縁板18の貫通孔を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。二次電池10では、外装体15が負極端子となる。なお、負極リード20が終端部に設置されている場合は、負極リード20は絶縁板18の外側を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。 The inside of the secondary battery 10 is sealed by closing the opening end of the exterior body 15 with the sealing body 16. Insulating plates 17 and 18 are provided above and below the electrode body 14, respectively. The positive electrode lead 19 extends upward through the through hole of the insulating plate 17 and is welded to the lower surface of the filter 22 which is the bottom plate of the sealing body 16. In the secondary battery 10, the cap 26, which is the top plate of the sealing body 16 electrically connected to the filter 22, serves as the positive electrode terminal. On the other hand, the negative electrode lead 20 extends to the bottom side of the exterior body 15 through the through hole of the insulating plate 18 and is welded to the inner surface of the bottom portion of the exterior body 15. In the secondary battery 10, the exterior body 15 serves as a negative electrode terminal. When the negative electrode lead 20 is installed at the terminal portion, the negative electrode lead 20 passes through the outside of the insulating plate 18 and extends to the bottom side of the exterior body 15 and is welded to the inner surface of the bottom portion of the exterior body 15.
 外装体15は、例えば有底の円筒形状の金属製外装缶である。外装体15と封口体16の間にはガスケット27が設けられ、二次電池10の内部の密閉性が確保されている。外装体15は、例えば側面部を外側からプレスして形成された、封口体16を支持する溝入部21を有する。溝入部21は、外装体15の周方向に沿って環状に形成されることが好ましく、その上面でガスケット27を介して封口体16を支持する。 The exterior body 15 is, for example, a bottomed cylindrical metal exterior can. A gasket 27 is provided between the exterior body 15 and the sealing body 16 to ensure the internal airtightness of the secondary battery 10. The exterior body 15 has a grooved portion 21 that supports the sealing body 16 and is formed by pressing, for example, a side surface portion from the outside. The grooved portion 21 is preferably formed in an annular shape along the circumferential direction of the exterior body 15, and the sealing body 16 is supported on the upper surface thereof via the gasket 27.
 封口体16は、電極体14側から順に積層された、フィルタ22、下弁体23、絶縁部材24、上弁体25、及びキャップ26を有する。封口体16を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材24を除く各部材は互いに電気的に接続されている。下弁体23と上弁体25とは各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材24が介在している。異常発熱で電池の内圧が上昇すると、例えば、下弁体23が破断し、これにより上弁体25がキャップ26側に膨れて下弁体23から離れることにより両者の電気的接続が遮断される。さらに内圧が上昇すると、上弁体25が破断し、キャップ26の開口部26aからガスが排出される。 The sealing body 16 has a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26, which are laminated in order from the electrode body 14 side. Each member constituting the sealing body 16 has, for example, a disk shape or a ring shape, and each member except the insulating member 24 is electrically connected to each other. The lower valve body 23 and the upper valve body 25 are connected to each other at their central portions, and an insulating member 24 is interposed between the peripheral portions thereof. When the internal pressure of the battery rises due to abnormal heat generation, for example, the lower valve body 23 breaks, which causes the upper valve body 25 to swell toward the cap 26 side and separate from the lower valve body 23, thereby cutting off the electrical connection between the two. .. When the internal pressure further rises, the upper valve body 25 breaks and gas is discharged from the opening 26a of the cap 26.
 以下、電極体14を構成する正極11、負極12、セパレータ13、及び非水電解質について、特にセパレータ13について詳説する。 Hereinafter, the positive electrode 11, the negative electrode 12, the separator 13, and the non-aqueous electrolyte constituting the electrode body 14 will be described in detail, particularly the separator 13.
 [正極]
 正極11は、正極芯体と、正極芯体の表面に設けられた正極合材層とを有する。正極芯体には、アルミニウムなどの正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極芯体の厚みは、例えば10μm~30μmである。正極合材層は、正極活物質、結着材、及び導電材を含み、正極リード19が接続される部分を除く正極芯体の両面に設けられることが好ましい。正極11は、例えば正極芯体の表面に正極活物質、結着材、及び導電材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合材層を正極芯体の両面に形成することにより作製できる。
[Positive electrode]
The positive electrode 11 has a positive electrode core body and a positive electrode mixture layer provided on the surface of the positive electrode core body. As the positive electrode core body, a metal foil stable in the potential range of the positive electrode 11 such as aluminum, a film in which the metal is arranged on the surface layer, or the like can be used. The thickness of the positive electrode core is, for example, 10 μm to 30 μm. The positive electrode mixture layer contains a positive electrode active material, a binder, and a conductive material, and is preferably provided on both sides of the positive electrode core body excluding the portion to which the positive electrode lead 19 is connected. For the positive electrode 11, for example, a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive material, and the like is applied to the surface of a positive electrode core, the coating film is dried, and then compressed to form a positive electrode mixture layer. It can be manufactured by forming it on both sides of the core body.
 正極合材層に含まれる正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y、LiMPO、LiMPOF(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。非水電解質二次電池の高容量化を図ることができる点で、正極活物質は、LiNiO、LiCoNi1-y、LiNi1-y(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)等のリチウムニッケル複合酸化物を含むことが好ましい。 Examples of the positive electrode active material contained in the positive electrode mixture layer include lithium transition metal oxides containing transition metal elements such as Co, Mn, and Ni. Lithium transition metal oxides, for example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1- y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, Ni , Cu, Zn, Al, Cr, Pb, Sb, B, 0 <x ≦ 1.2, 0 <y ≦ 0.9, 2.0 ≦ z ≦ 2.3). These may be used alone or in admixture of a plurality of types. In that it can increase the capacity of the nonaqueous electrolyte secondary battery, the positive electrode active material, Li x NiO 2, Li x Co y Ni 1-y O 2, Li x Ni 1-y M y O z ( M; At least one of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, 0 <x≤1.2, 0 <y≤0. It is preferable to contain a lithium nickel composite oxide such as 9.9, 2.0 ≦ z ≦ 2.3).
 正極合材層に含まれる導電材としては、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、カーボンナノチューブ、カーボンナノファイバー、黒鉛等の炭素材料が例示できる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the conductive material contained in the positive electrode mixture layer include carbon materials such as carbon black (CB), acetylene black (AB), Ketjen black, carbon nanotubes, carbon nanofibers, and graphite. These may be used alone or in combination of two or more.
 正極合材層に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂などが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩等のセルロース誘導体、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the binder contained in the positive electrode mixture layer include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. .. These resins may be used in combination with cellulose derivatives such as carboxymethyl cellulose (CMC) or salts thereof, polyethylene oxide (PEO) and the like. These may be used alone or in combination of two or more.
 [負極]
 負極12は、負極芯体と、負極芯体の表面に設けられた負極合材層とを有する。負極芯体には、銅などの負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極芯体の厚みは、例えば5μm~15μmである。負極合材層は、負極活物質及び結着材を含み、例えば負極リード20が接続される部分を除く負極芯体の両面に設けられることが好ましい。負極12は、例えば負極芯体の表面に負極活物質及び結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合材層を負極芯体の両面に形成することにより作製できる。また、負極合材スラリーに導電材を添加してもよい。導電材によって、導電パスを均一化することができる。
[Negative electrode]
The negative electrode 12 has a negative electrode core body and a negative electrode mixture layer provided on the surface of the negative electrode core body. As the negative electrode core, a metal foil stable in the potential range of the negative electrode 12 such as copper, a film in which the metal is arranged on the surface layer, or the like can be used. The thickness of the negative electrode core is, for example, 5 μm to 15 μm. The negative electrode mixture layer contains a negative electrode active material and a binder, and is preferably provided on both sides of the negative electrode core body excluding the portion to which the negative electrode lead 20 is connected, for example. For the negative electrode 12, for example, a negative electrode mixture slurry containing a negative electrode active material and a binder is applied to the surface of the negative electrode core body, the coating film is dried, and then compressed to form the negative electrode mixture layer on both sides of the negative electrode core body. It can be produced by forming in. Further, a conductive material may be added to the negative electrode mixture slurry. The conductive material can make the conductive path uniform.
 負極合材層に含まれる結着材としては、正極11の場合と同様に、PTFE、PVdF等の含フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィンなどを用いてもよいが、好ましくはスチレン-ブタジエンゴム(SBR)が用いられる。また、これらの樹脂と、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)等が併用されてもよい。負極合材層に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノファイバーが例示できる。 As the binder contained in the negative electrode mixture layer, a fluororesin such as PTFE or PVdF, PAN, polyimide, acrylic resin, polyolefin or the like may be used as in the case of the positive electrode 11, but styrene-is preferable. Polyolefin rubber (SBR) is used. Further, these resins may be used in combination with CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA) and the like. Examples of the conductive material contained in the negative electrode mixture layer include carbon black, acetylene black, ketjen black, carbon nanotubes, and carbon nanofibers.
 [セパレータ]
 セパレータ13は、高分子化合物と、固体電解質とを含む。換言すれば、セパレータ13は、マトリックスとしての高分子化合物と、無機フィラーとしての固体電解質とを含む。セパレータ13の細孔容積は、0.06cm/g以下であり、0.05cm/g以下が好ましい。これにより、正極と負極の間でのイオン伝導性を確保しつつ、内部短絡を抑制できる。ここで、細孔容積は、例えば、マイクロトラック・ベル社製のBELSORP-miniX等の市販の測定装置によって窒素ガスを用いて測定できる。
[Separator]
The separator 13 contains a polymer compound and a solid electrolyte. In other words, the separator 13 contains a polymer compound as a matrix and a solid electrolyte as an inorganic filler. Pore volume of the separator 13 is less 0.06 cm 3 / g, preferably not more than 0.05 cm 3 / g. As a result, an internal short circuit can be suppressed while ensuring ionic conductivity between the positive electrode and the negative electrode. Here, the pore volume can be measured using nitrogen gas by, for example, a commercially available measuring device such as BELSORP-miniX manufactured by Microtrac Bell.
 セパレータ13の厚みは、0.2μm以上10μm以下が好ましく、0.4μm以上1μm以下がより好ましい。セパレータ13の厚みが0.2μm未満では、強度が不足する。セパレータ13の厚みが10μm超では、電池の内部空間において充放電に寄与しないセパレータの体積が大きくなり、電池の密度が低下する。 The thickness of the separator 13 is preferably 0.2 μm or more and 10 μm or less, and more preferably 0.4 μm or more and 1 μm or less. If the thickness of the separator 13 is less than 0.2 μm, the strength is insufficient. If the thickness of the separator 13 exceeds 10 μm, the volume of the separator that does not contribute to charging / discharging increases in the internal space of the battery, and the density of the battery decreases.
 セパレータ13における高分子化合物と固体電解質との質量比は、100:1~100:100000が好ましく、100:1~100:10000がさらに好ましく、100:1~100:400が特に好ましい。なお、セパレータ13は、本開示の目的を損なわない範囲で、高分子化合物及び固体電解質以外の添加物を含んでもよい。 The mass ratio of the polymer compound to the solid electrolyte in the separator 13 is preferably 100: 1 to 100: 100,000, more preferably 100: 1 to 100: 10000, and particularly preferably 100: 1 to 100: 400. The separator 13 may contain additives other than the polymer compound and the solid electrolyte as long as the object of the present disclosure is not impaired.
 セパレータ13に含まれる高分子化合物としては、ポリエチレン、ポリプロピレン等のオレフィン樹脂、セルロース、セルロース誘導体などが例示できる。高分子化合物としては、セルロースが好ましい。セルロースは、安価であり、また、イオン液体に溶解するので後述する製造方法によりセパレータ13を薄膜化しやすい。 Examples of the polymer compound contained in the separator 13 include olefin resins such as polyethylene and polypropylene, cellulose, and cellulose derivatives. Cellulose is preferable as the polymer compound. Cellulose is inexpensive and dissolves in an ionic liquid, so that the separator 13 can be easily thinned by a production method described later.
 セパレータ13に含まれる固体電解質としては、ガーネット型構造を有するLiLaZr12(LLZ)、NASICON型構造を有するLi1+xAlTi2-x12(LATP)、ペロブスカイト型構造を有するLa2/3-xLiTiO(LLT)、リチウムイオンを含有するポリエチレンオキシド(Li・PEO)などが例示できる。ここで、LLZ、LATP、及びLLTは、上記の一般式に含有する元素の一部を他の添加元素に置換されたものを含む。 The solid electrolyte contained in the separator 13 includes Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet type structure, Li 1 + x Al x Ti 2-x P 3 O 12 (LATP) having a NASICON type structure, and a perovskite type. Examples thereof include La 2 / 3-x Li x TiO 3 (LLT) having a structure, and lithium ion-containing polyethylene oxide (Li + · PEO). Here, LLZ, LATP, and LLT include those in which some of the elements contained in the above general formula are replaced with other additive elements.
 固体電解質としては、イオン導電率の観点から、LATPが好ましい。LATPとしては、例えば、Li1+x+yAlTi2-xSi3-y12で表されるオハラ社製のLICGCTMを用いることができる。 As the solid electrolyte, LATP is preferable from the viewpoint of ionic conductivity. As the LATP, for example, a LICGC TM manufactured by O'Hara, which is represented by Li 1 + x + y Al x Ti 2-x Si y P 3-y O 12 , can be used.
 固体電解質は粉末であってもよい。その平均粒子径は、例えば、0.1μm以上10μm以下であり、好ましくは0.4μm以上1μm以下である。ここで、平均粒子径とは、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味し、中位径(メジアン系)とも呼ばれる。固体電解質の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。 The solid electrolyte may be powder. The average particle size is, for example, 0.1 μm or more and 10 μm or less, preferably 0.4 μm or more and 1 μm or less. Here, the average particle size means a particle size in which the cumulative frequency is 50% from the smaller particle size in the volume-based particle size distribution, and is also called a median size. The particle size distribution of the solid electrolyte can be measured using water as a dispersion medium using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.).
 セパレータ13の一方の面から他方の面まで複数の固体電解質が接触して連なることで、セパレータ13内部をリチウムイオンが移動できるようにしてもよいし、セパレータ13の厚みを固体電解質の平均粒子径以下にすることで1個の固体電解質の粒子がセパレータを貫通するようにしてもよい。リチウムイオンの移動し易さの観点から、セパレータの厚みを固体電解質の平均粒子径以下にすることが好ましい。 Lithium ions may be allowed to move inside the separator 13 by contacting and connecting a plurality of solid electrolytes from one surface to the other surface of the separator 13, and the thickness of the separator 13 is the average particle size of the solid electrolyte. By doing the following, one solid electrolyte particle may penetrate the separator. From the viewpoint of the ease of movement of lithium ions, it is preferable that the thickness of the separator is equal to or smaller than the average particle size of the solid electrolyte.
 セパレータ13の表面には、耐熱性材料を含む耐熱層が形成されていてもよい。耐熱性材料としては、脂肪族系ポリアミド、芳香族系ポリアミド(アラミド)等のポリアミド樹脂、ポリアミドイミド、ポリイミド等のポリイミド樹脂などが例示できる。 A heat-resistant layer containing a heat-resistant material may be formed on the surface of the separator 13. Examples of the heat-resistant material include polyamide resins such as aliphatic polyamides and aromatic polyamides (aramid), and polyimide resins such as polyamideimide and polyimide.
 以下、セパレータ13の製造方法の一例について説明する。 Hereinafter, an example of a method for manufacturing the separator 13 will be described.
 まず、スラリー作製工程において、イオン液体に高分子化合物を溶解させた溶解液と、固体電解質とを混合してスラリーを作製する。イオン液体は、アニオンとカチオンを含む塩であり、室温では液体である。セルロースを溶解するイオン液体は、市販のセルロース溶解用のイオン液体を用いることができる。イオン液体としては、アルキルイミダゾリウム塩などを用いることができ、塩の種類としては、例えば、クロライド、アセテート、ホスフェートなどが挙げられる。 First, in the slurry preparation step, a slurry is prepared by mixing a solution prepared by dissolving a polymer compound in an ionic liquid and a solid electrolyte. An ionic liquid is a salt containing anions and cations and is a liquid at room temperature. As the ionic liquid for dissolving cellulose, a commercially available ionic liquid for dissolving cellulose can be used. As the ionic liquid, an alkylimidazolium salt or the like can be used, and examples of the salt type include chloride, acetate, phosphate and the like.
 スラリーにおける、イオン液体と高分子化合物の質量比は、例えば100:0.2~100:15である。この範囲であれば、高分子化合物がイオン液体に溶解し、成膜によってセパレータ13を作製することができる。固体電解質は、高分子化合物100質量部に対して、例えば1質量部~100000質量部添加することができる。 The mass ratio of the ionic liquid to the polymer compound in the slurry is, for example, 100: 0.2 to 100: 15. Within this range, the polymer compound dissolves in the ionic liquid, and the separator 13 can be produced by film formation. The solid electrolyte can be added, for example, from 1 part by mass to 100,000 parts by mass with respect to 100 parts by mass of the polymer compound.
 次に、ゲル化工程において、スラリーを基板表面に塗布して塗布膜を作製し、イオン液体よりも高分子化合物の溶解度が低い有機系貧溶媒で置換することで塗布膜がゲル化したゲル化膜を作製する。スラリーを塗布する基板としては、例えば、平坦な樹脂製、ガラス製、又は金属製の基板を用いることができる。イオン液体と置換する有機系貧溶媒としては、酢酸エチルが例示できる。塗布膜を表面に形成した基板をアセトンに浸漬した後に酢酸エチルに浸漬することで、アセトンを中継してイオン液体と酢酸エチルとを置換してもよい。 Next, in the gelling step, the slurry is applied to the surface of the substrate to prepare a coating film, and the coating film is gelled by substituting with an organic poor solvent having a lower solubility of the polymer compound than the ionic liquid. Make a membrane. As the substrate on which the slurry is applied, for example, a flat resin, glass, or metal substrate can be used. Ethyl acetate can be exemplified as an organic antisolvent to be replaced with an ionic liquid. The substrate on which the coating film is formed on the surface may be immersed in acetone and then immersed in ethyl acetate to relay the acetone and replace the ionic liquid with ethyl acetate.
 乾燥工程において、ゲル化膜を乾燥させてコンポジット膜を得る。乾燥によりゲル化膜が収縮するが、上記の作製方法によれば、ゲル化膜中の特に高分子化合物の収縮が抑制されるため、高分子化合物と固体電解質との間に空隙が生じるのを抑制できる。得られたコンポジット膜をそのままセパレータ13として用いてもよいし、さらにコンポジット膜に後工程を行ってもよい。 In the drying step, the gelled film is dried to obtain a composite film. The gelled membrane shrinks due to drying, but according to the above-mentioned production method, the shrinkage of the polymer compound in the gelled membrane is suppressed, so that voids are formed between the polymer compound and the solid electrolyte. Can be suppressed. The obtained composite film may be used as it is as the separator 13, or the composite film may be further subjected to a post-process.
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
[Non-aqueous electrolyte]
The non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent. The non-aqueous electrolyte is not limited to the liquid electrolyte (electrolyte solution), and may be a solid electrolyte using a gel polymer or the like. As the non-aqueous solvent, for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used. The non-aqueous solvent may contain a halogen substituent in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ-ブチロラクトン等の鎖状カルボン酸エステルなどが挙げられる。 Examples of the above esters include cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC) and methylpropyl carbonate. , Ethylpropyl carbonate, chain carbonate such as methyl isopropyl carbonate, cyclic carboxylic acid ester such as γ-butyrolactone, γ-valerolactone, methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate, Examples thereof include chain carboxylic acid esters such as γ-butyrolactone.
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等の鎖状エーテル類などが挙げられる。 Examples of the above ethers include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahexyl, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4. -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxy Chain ethers such as ethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl, etc. Kind and so on.
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。 As the halogen substituent, it is preferable to use a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, a fluorinated chain carboxylic acid ester such as methyl fluoropropionate (FMP), or the like. ..
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは1以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、溶媒1L当り0.8~1.8molとすることが好ましい。 The electrolyte salt is preferably a lithium salt. Examples of the lithium salt, LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 <x <6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4 O 7 , borates such as Li (B (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C 1 F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) {l , M is an integer of 1 or more} and other imide salts. As the lithium salt, these may be used individually by 1 type, or a plurality of types may be mixed and used. Of these, LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, and the like. The concentration of the lithium salt is preferably 0.8 to 1.8 mol per 1 L of the solvent.
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be further described with reference to Examples, but the present disclosure is not limited to these Examples.
 <実施例>
 [セパレータの作製]
 質量平均分子量30万程度のセルロースを、セルロース溶解用のイオン液体である1-エチル-3-メチルイミダゾリウムジエチルホスファートに溶解した。1質量部のセルロースに対して、2質量部のLICGC粉末(オハラ社製、粒子径1μm)を加え、均一に混合しスラリーとした。ガラス板に対してキャスト法により成膜、アセトンによりイオン液体を除去し、更にアセトンを酢酸エチルで置換した後、自然乾燥させてセパレータを作製した。作製したセパレータについて、マイクロトラック・ベル社製のBELSORP-miniXを用いて、窒素吸着による吸着等温線を測定し、BJH法により細孔容積を求めたところ、0.047cm/gであった。また、セパレータの厚みは、60μmであった。
<Example>
[Making a separator]
Cellulose having a mass average molecular weight of about 300,000 was dissolved in 1-ethyl-3-methylimidazolium diethyl phosphate, which is an ionic liquid for dissolving cellulose. To 1 part by mass of cellulose, 2 parts by mass of LICGC powder (manufactured by O'Hara, particle size 1 μm) was added and mixed uniformly to prepare a slurry. A separator was prepared by forming a film on a glass plate by a casting method, removing the ionic liquid with acetone, substituting acetone with ethyl acetate, and then air-drying the glass plate. With respect to the prepared separator, the adsorption isotherm due to nitrogen adsorption was measured using BELSORP-miniX manufactured by Microtrac Bell, and the pore volume was determined by the BJH method. As a result, it was 0.047 cm 3 / g. The thickness of the separator was 60 μm.
 [正極の作製]
 正極活物質としてLiNi0.5Co0.2Mn0.3O2を用いた。正極活物質と、アセチレンブラックと、ポリフッ化ビニリデン(PVdF)を、100:3:1の固形分質量比で混合し、N-メチル-2-ピロリドン(NMP)を適量加えた後、これを混練して正極合材スラリーを調製した。当該正極合材スラリーをアルミニウム箔からなる正極芯体の両面に塗布し、塗膜を乾燥させた後、ローラーを用いて塗膜を圧延し、所定の電極サイズに切断して、正極芯体の両面に正極合材層が形成された正極を得た。なお、正極の一部に正極芯体の表面が露出した露出部を設けた。
[Preparation of positive electrode]
LiNi 0.5 Co 0.2 Mn 0.3 O2 was used as the positive electrode active material. The positive electrode active material, acetylene black, and polyvinylidene fluoride (PVdF) are mixed at a solid content mass ratio of 100: 3: 1, and an appropriate amount of N-methyl-2-pyrrolidone (NMP) is added and then kneaded. To prepare a positive electrode mixture slurry. The positive electrode mixture slurry is applied to both sides of the positive electrode core made of aluminum foil, the coating film is dried, and then the coating film is rolled using a roller and cut to a predetermined electrode size to form the positive electrode core. A positive electrode having a positive electrode mixture layer formed on both sides was obtained. An exposed portion where the surface of the positive electrode core was exposed was provided on a part of the positive electrode.
 [負極の作製]
 Niメッシュに負極活物質としてLi金属を押し付けて固定し、所定の電極サイズに切断して負極を得た。なお、負極の一部に負極芯体の表面が露出した露出部を設けた。
[Preparation of negative electrode]
Li metal was pressed against the Ni mesh as the negative electrode active material to fix it, and the negative electrode was cut to a predetermined electrode size to obtain a negative electrode. An exposed portion where the surface of the negative electrode core was exposed was provided on a part of the negative electrode.
 [電解液の調製]
 フルオロエチレンカーボネート(FEC)と3,3,3-トリフルオロプロピオン酸メチル(FMP)を、2:8の体積比で混合した混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.0モル/リットルの濃度で溶解させた電解液(非水電解質)を調製した。
[Preparation of electrolyte]
Lithium hexafluorophosphate (LiPF 6 ) was added to a mixed solvent in which fluoroethylene carbonate (FEC) and methyl 3,3,3-trifluoropropionate (FMP) were mixed in a volume ratio of 2: 8. An electrolytic solution (non-aqueous electrolyte) dissolved at a concentration of 0.0 mol / liter was prepared.
 [試験セルの作製]
 上記正極の露出部にアルミニウムリードを、上記負極の露出部にニッケルリードをそれぞれ取り付け、作製したセパレータを介して正極と負極を対向配置することにより電極体を作製した。この電極体をアルミラミネートシートで構成される外装体内に収容し、上記非水電解質を注入した後、外装体の開口部を封止して、試験セルを得た。
[Preparation of test cell]
An electrode body was produced by attaching an aluminum lead to the exposed portion of the positive electrode and a nickel lead to the exposed portion of the negative electrode, and arranging the positive electrode and the negative electrode facing each other via the prepared separator. This electrode body was housed in an exterior body made of an aluminum laminated sheet, and after injecting the non-aqueous electrolyte, the opening of the exterior body was sealed to obtain a test cell.
 [電解液の浸透速度の評価]
 上記で作製したセパレータをハイパーシートガスケットで挟みH型セルの中央部に固定した。H型セルの左室にLiTFSI/DME(モル比LiTFSI:DME=1:10)を入れ、右室にLiTFSI/FEC+FMP(モル比LITFSI:FMP=1:10)を入れ、5時間後の右室の液を回収し、GC-MSでDMEの濃度を定量分析した。右室の液のDME濃度が高いほど、電解液の浸透速度が速いことを示す。
[Evaluation of permeation rate of electrolyte]
The separator produced above was sandwiched between hypersheet gaskets and fixed to the center of the H-shaped cell. LiTFSI / DME (molar ratio LiTFSI: DME = 1:10) is placed in the left chamber of the H-type cell, and LiTFSI / FEC + FMP (molar ratio LITFSI: FMP = 1:10) is placed in the right chamber. The liquid was collected and the concentration of DME was quantitatively analyzed by GC-MS. The higher the DME concentration of the liquid in the right ventricle, the faster the permeation rate of the electrolytic solution.
 [短絡抑制の評価]
 上記で作製した試験セルについて、25℃の温度環境において、電池電圧が4.7Vになるまで0.01Cの定電流(CC)で充電を行い、充電中の電圧低下の有無を確認した。充電中の電圧低下が無かったものは内部短絡が発生しなかったものとして「〇」と評価し、電圧低下が有ったものは内部短絡が発生したものとして「×」と評価した。
[Evaluation of short circuit suppression]
The test cell produced above was charged with a constant current (CC) of 0.01 C until the battery voltage reached 4.7 V in a temperature environment of 25 ° C., and it was confirmed whether or not there was a voltage drop during charging. Those without a voltage drop during charging were evaluated as "○" as those without an internal short circuit, and those with a voltage drop were evaluated as "x" as having an internal short circuit.
 <比較例>
 実施例1に記載のスラリーをキャスト法によりガラス板に成膜し、超純水によってイオン液体を除去し、自然乾燥させてセパレータを作製したこと以外は、実施例1と同様にして評価を行った。
<Comparison example>
Evaluation was carried out in the same manner as in Example 1 except that the slurry described in Example 1 was formed on a glass plate by a casting method, the ionic liquid was removed with ultrapure water, and the slurry was naturally dried to prepare a separator. It was.
 実施例及び比較例の評価結果を表1に示す。表1には、当該評価結果と共に、セパレータの厚みと細孔容積を示す。 Table 1 shows the evaluation results of Examples and Comparative Examples. Table 1 shows the thickness of the separator and the pore volume together with the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例のセパレータは、比較例のセパレータと比べて、短絡抑制の効果を有することがわかった。また、実施例のセパレータは、比較例のセパレータに比べて、電解液の浸透速度が速かった。これは溶媒を酢酸エチルにすることで、セパレータ中のナノサイズの孔が増加したためで、一方で細孔容積が小さくなったのは、ナノサイズの孔の増加の影響よりも固体電解質とマトリックス間の空隙の減少による影響が大きいためであると推測している。 As shown in Table 1, it was found that the separator of the example had an effect of suppressing a short circuit as compared with the separator of the comparative example. In addition, the separator of the example had a faster permeation rate of the electrolytic solution than the separator of the comparative example. This is because the use of ethyl acetate as the solvent increased the nano-sized pores in the separator, while the smaller pore volume was due to the increase in the nano-sized pores between the solid electrolyte and the matrix. It is presumed that this is because the effect of the reduction of the voids is large.
10  二次電池
11  正極
12  負極
13  セパレータ
14  電極体
15  外装体
16  封口体
17,18  絶縁板
19  正極リード
20  負極リード
21  溝入部
22  フィルタ
23  下弁体
24  絶縁部材
25  上弁体
26  キャップ
26a  開口部
27  ガスケット
10 Rechargeable battery 11 Positive electrode 12 Negative electrode 13 Separator 14 Electrode body 15 Exterior body 16 Sealing body 17, 18 Insulating plate 19 Positive electrode lead 20 Negative electrode lead 21 Grooving part 22 Filter 23 Lower valve body 24 Insulating member 25 Upper valve body 26 Cap 26a Open Part 27 Gasket

Claims (6)

  1.  高分子化合物と、固体電解質とを含み、
     細孔容積が0.06cm/g以下である、非水電解質二次電池用セパレータ。
    Contains polymer compounds and solid electrolytes
    A separator for a non-aqueous electrolyte secondary battery having a pore volume of 0.06 cm 3 / g or less.
  2.  厚みが、0.2μm以上10μm以下である、請求項1に記載の非水電解質二次電池用セパレータ。 The separator for a non-aqueous electrolyte secondary battery according to claim 1, wherein the thickness is 0.2 μm or more and 10 μm or less.
  3.  前記高分子化合物が、セルロースである、請求項1又は2に記載の非水電解質二次電池用セパレータ。 The separator for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the polymer compound is cellulose.
  4.  前記固体電解質が、LATPである、請求項1~3のいずれか1項に記載の非水電解質二次電池用セパレータ。 The separator for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the solid electrolyte is LATP.
  5.  請求項1~4のいずれか1項に記載の非水電解質二次電池用セパレータと、正極と、負極と、非水電解質とを備える、非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising the separator for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  6.  イオン液体に高分子化合物を溶解させた溶解液と、固体電解質とを混合してスラリーを作製するスラリー作製工程と、
     前記スラリーを基板表面に塗布して塗布膜を作製し、前記イオン液体よりも前記高分子化合物の溶解度が低い有機系貧溶媒で置換することで前記塗布膜がゲル化したゲル化膜を作製するゲル化工程と、
     前記ゲル化膜を乾燥させてコンポジット膜を得る乾燥工程と、を含む非水電解質二次電池用セパレータの製造方法。
    A slurry preparation step of mixing a solution obtained by dissolving a polymer compound in an ionic liquid and a solid electrolyte to prepare a slurry.
    The slurry is applied to the surface of a substrate to prepare a coating film, and the coating film is gelled by substituting with an organic poor solvent having a lower solubility of the polymer compound than the ionic liquid to prepare a gelled film. Gelling process and
    A method for producing a separator for a non-aqueous electrolyte secondary battery, which comprises a drying step of drying the gelled film to obtain a composite film.
PCT/JP2020/047807 2019-12-27 2020-12-22 Separator for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing separator for nonaqueous electrolyte secondary batteries WO2021132203A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20905589.6A EP4083125A1 (en) 2019-12-27 2020-12-22 Separator for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing separator for nonaqueous electrolyte secondary batteries
US17/786,940 US20230029282A1 (en) 2019-12-27 2020-12-22 Separator for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing separator for nonaqueous electrolyte secondary batteries
CN202080088194.9A CN114868302A (en) 2019-12-27 2020-12-22 Separator for nonaqueous electrolyte secondary battery, and method for producing separator for nonaqueous electrolyte secondary battery
JP2021567466A JPWO2021132203A1 (en) 2019-12-27 2020-12-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019237742 2019-12-27
JP2019-237742 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132203A1 true WO2021132203A1 (en) 2021-07-01

Family

ID=76574131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047807 WO2021132203A1 (en) 2019-12-27 2020-12-22 Separator for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing separator for nonaqueous electrolyte secondary batteries

Country Status (5)

Country Link
US (1) US20230029282A1 (en)
EP (1) EP4083125A1 (en)
JP (1) JPWO2021132203A1 (en)
CN (1) CN114868302A (en)
WO (1) WO2021132203A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220761A (en) * 1993-10-07 1995-08-18 Matsushita Electric Ind Co Ltd Organic electrolyte lithium secondary battery and manufacture of separator in this battery
JP2001176479A (en) * 1999-12-16 2001-06-29 Nitto Denko Corp Porous film for electrochemical element separator
JP2006310295A (en) * 2005-04-27 2006-11-09 Samsung Sdi Co Ltd Lithium secondary battery
JP2016076474A (en) * 2014-10-02 2016-05-12 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー Composite separator with array of particles
JP2017525106A (en) * 2014-07-15 2017-08-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Separator with particles frictionally clamped
JP2017183111A (en) * 2016-03-30 2017-10-05 旭化成株式会社 Separator and method of manufacturing the same
WO2018079474A1 (en) 2016-10-28 2018-05-03 東レ株式会社 Separator for nonaqueous-electrolyte cell, and nonaqueous-electrolyte cell
JP2019169245A (en) * 2018-03-22 2019-10-03 株式会社東芝 Electrode group, secondary battery, battery pack, vehicle and fixed power source

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176598A (en) * 2008-01-25 2009-08-06 Panasonic Corp Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2011129352A (en) * 2009-12-17 2011-06-30 Nissan Motor Co Ltd Nonaqueous electrolyte secondary battery
JP2014053154A (en) * 2012-09-06 2014-03-20 Denso Corp Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN105103362A (en) * 2013-03-27 2015-11-25 三洋电机株式会社 Nonaqueous electrolyte secondary battery
WO2014156011A1 (en) * 2013-03-27 2014-10-02 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN107408722B (en) * 2015-04-22 2019-09-27 松下知识产权经营株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220761A (en) * 1993-10-07 1995-08-18 Matsushita Electric Ind Co Ltd Organic electrolyte lithium secondary battery and manufacture of separator in this battery
JP2001176479A (en) * 1999-12-16 2001-06-29 Nitto Denko Corp Porous film for electrochemical element separator
JP2006310295A (en) * 2005-04-27 2006-11-09 Samsung Sdi Co Ltd Lithium secondary battery
JP2017525106A (en) * 2014-07-15 2017-08-31 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Separator with particles frictionally clamped
JP2016076474A (en) * 2014-10-02 2016-05-12 フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー Composite separator with array of particles
JP2017183111A (en) * 2016-03-30 2017-10-05 旭化成株式会社 Separator and method of manufacturing the same
WO2018079474A1 (en) 2016-10-28 2018-05-03 東レ株式会社 Separator for nonaqueous-electrolyte cell, and nonaqueous-electrolyte cell
JP2019169245A (en) * 2018-03-22 2019-10-03 株式会社東芝 Electrode group, secondary battery, battery pack, vehicle and fixed power source

Also Published As

Publication number Publication date
CN114868302A (en) 2022-08-05
US20230029282A1 (en) 2023-01-26
EP4083125A1 (en) 2022-11-02
JPWO2021132203A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP6854331B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US20210159489A1 (en) Non-aqueous electrolyte secondary cell
US11005090B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
US20220131131A1 (en) Non-aqueous electrolyte secondary battery
US20230061388A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US11626593B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2019163367A1 (en) Non-aqueous electrolyte secondary battery
WO2016151979A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery
CN114730862A (en) Nonaqueous electrolyte secondary battery
WO2019239948A1 (en) Non-aqueous electrolyte secondary battery
US20210193995A1 (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2021186950A1 (en) Non-aqueous electrolyte secondary battery
WO2021132203A1 (en) Separator for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing separator for nonaqueous electrolyte secondary batteries
JP7361340B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
WO2019171761A1 (en) Secondary battery positive electrode, secondary battery positive electrode current collector, and secondary battery
US20230142602A1 (en) Nonaqueous electrolyte secondary battery
US20220416245A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary batteries
US20230018422A1 (en) Nonaqueous electrolyte secondary battery
WO2021261358A1 (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2022113797A1 (en) Non-aqueous electrolyte secondary battery
CN112913049B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2021117748A1 (en) Nonaqueous electrolyte secondary battery
CN116941058A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN117480652A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020905589

Country of ref document: EP

Effective date: 20220727