JP2017181003A - Ventilation device and calculation method - Google Patents

Ventilation device and calculation method Download PDF

Info

Publication number
JP2017181003A
JP2017181003A JP2016073155A JP2016073155A JP2017181003A JP 2017181003 A JP2017181003 A JP 2017181003A JP 2016073155 A JP2016073155 A JP 2016073155A JP 2016073155 A JP2016073155 A JP 2016073155A JP 2017181003 A JP2017181003 A JP 2017181003A
Authority
JP
Japan
Prior art keywords
gas
target area
gas flow
pressure
ventilation target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016073155A
Other languages
Japanese (ja)
Other versions
JP6656054B2 (en
Inventor
浩平 合田
Kohei Goda
浩平 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016073155A priority Critical patent/JP6656054B2/en
Publication of JP2017181003A publication Critical patent/JP2017181003A/en
Application granted granted Critical
Publication of JP6656054B2 publication Critical patent/JP6656054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Ventilation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ventilation device which depends neither on the shape of a device nor the installation place of the device, and which is capable of satisfactorily knowing an exhaust flow rate without receiving any influence of moisture and oil content contained in a gas ventilated; and a calculation method.SOLUTION: A controller C calculates an exhaust flow rate Q on the basis of a temperature T measured by a temperature measuring means, a differential pressure ΔP that is an absolute value of a difference between a first pressure and a second pressure, a specific reference temperature T, and the following equation 1. Q=a×(T/(T+T))×((T+T)/T×ΔP)(Equation 1), in which each of "a" and "b" is a constant number previously determined and stored in the controller C.SELECTED DRAWING: Figure 1

Description

本発明は、換気対象領域の前記気体を換気対象領域から換気対象領域外へ排出する換気装置、及び換気対象領域の前記気体を換気対象領域から換気対象領域外へ排出する排気流量Qの算出方法に関する。   The present invention relates to a ventilator that discharges the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area, and a calculation method of the exhaust flow rate Q that discharges the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area. About.

従来、換気対象領域の気体を、換気対象領域から換気対象領域外へ排出する換気装置としては、特許文献1に示されるように、換気対象領域と換気対象領域外とを繋ぐ排気ダクトと、当該排気ダクトを介して換気対象領域から換気対象領域外へ圧送するファンとを備えている。
このような換気装置は、排気流量を所定下限以上としつつ、排気流量が多くなりすぎて騒音が大きくなることを防止するため排気流量を所定上限以下とするべく、排気ダクトにおける気体の流量を測定する流量センサが設けられると共に、当該流量センサの測定値に基づいて、ファンの回転数が制御される。
Conventionally, as a ventilation device that exhausts the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area, as shown in Patent Document 1, the exhaust duct that connects the ventilation target area and the outside of the ventilation target area, A fan that pumps out of the ventilation target area from the ventilation target area via the exhaust duct.
Such a ventilator measures the gas flow rate in the exhaust duct in order to keep the exhaust flow rate below the predetermined upper limit in order to prevent the exhaust flow rate from increasing too much and increasing the noise while keeping the exhaust flow rate above the predetermined lower limit. The flow rate sensor is provided, and the rotational speed of the fan is controlled based on the measured value of the flow rate sensor.

特開2015−114617号公報JP2015-114617A

上記特許文献1に開示の技術にあっては、風量センサが、排気ダクトを通流する気体に晒される状態で設けられているため、例えば、気体に水分や油分等が含まれている場合、当該水分や油分が風量センサに付着して、風量センサが劣化したり、風量センサの測定精度が低下したりするといった問題があった。
また、このような問題を回避するべく、油分や水分が付着し難い排気ダクトの部位に風量センサを設けることが考えられるが、排気ダクトの形状は、換気装置毎及び装置の設置箇所毎に異なるため、換気装置毎及びその設定箇所毎に、風量センサの設置箇所や設置状態を検討する必要があり、改善の余地があった。
In the technique disclosed in Patent Document 1, since the air volume sensor is provided in a state exposed to the gas flowing through the exhaust duct, for example, when the gas contains moisture or oil, There existed a problem that the said water | moisture content or oil component adhered to an air volume sensor, an air volume sensor deteriorated, or the measurement accuracy of an air volume sensor fell.
In order to avoid such a problem, it is conceivable to provide an air flow sensor at a portion of the exhaust duct where oil or moisture hardly adheres. However, the shape of the exhaust duct differs depending on the ventilation device and the installation location of the device. Therefore, it is necessary to examine the installation location and installation state of the air flow sensor for each ventilation device and each setting location, and there is room for improvement.

本発明は、上述の課題に鑑みてなされたものであり、その目的は、装置の形状や装置の設置箇所に依存することがないと共に、換気する気体に含まれる水分や油分の影響を受けることなく、良好に排気流量を知ることができる換気装置、及び算出方法に関する。   The present invention has been made in view of the above-described problems, and the object thereof is not dependent on the shape of the device or the installation location of the device, and is affected by moisture and oil contained in the gas to be ventilated. The present invention relates to a ventilator that can know the exhaust flow rate well and a calculation method.

上記目的を達成するための換気装置は、
換気対象領域の気体を換気対象領域から換気対象領域外へ排出する換気装置であって、その特徴構成は、
前記換気対象領域の前記気体を前記換気対象領域から前記換気対象領域外へ圧送する送風手段と、
前記換気対象領域の前記気体を換気対象領域外へ導く気体通流部で、前記送風手段の上流側で前記気体が通流しない部位において、第1圧力を測定する第1圧力測定手段及び温度を測定する温度測定手段と、
前記換気対象領域の第2圧力を測定する第2圧力測定手段とを備え、
前記温度測定手段にて測定される温度Tと、前記第1圧力と前記第2圧力との差の絶対値である差圧ΔPと、特定の基準温度T0と、下記式1とに基づいて、排気流量Qを算出する制御装置を備える点にある。
Q=a×(T0/(T0+T))×((T0+T)/T0×ΔP)b (式1)
ただし、a、bは、予め決定され前記制御装置に記憶される定数。
A ventilator for achieving the above object is:
A ventilation device that exhausts gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area.
A blowing means for pumping the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area;
In the gas flow part for guiding the gas in the ventilation target area to the outside of the ventilation target area, the first pressure measurement means for measuring the first pressure and the temperature at the portion where the gas does not flow on the upstream side of the blowing means, Temperature measuring means for measuring;
Second pressure measuring means for measuring a second pressure in the ventilation target area;
Based on the temperature T measured by the temperature measuring means, the differential pressure ΔP that is the absolute value of the difference between the first pressure and the second pressure, the specific reference temperature T 0, and the following formula 1. The control device for calculating the exhaust flow rate Q is provided.
Q = a × (T 0 / (T 0 + T)) × ((T 0 + T) / T 0 × ΔP) b (Formula 1)
However, a and b are constants determined in advance and stored in the control device.

また、上記目的を達成するための排気流量の算出方法は、
換気対象領域の気体を換気対象領域から換気対象領域外へ排出する排気流量の算出方法であって、その特徴構成としては、
前記換気対象領域の前記気体を換気対象領域外へ導く気体通流部において、当該気体通流部に設けられる送風手段の上流側で前記気体を通流しない部位での第1圧力と前記換気対象領域の第2圧力との差の絶対値である差圧ΔPと、特定の基準温度T0と、下記式1とに基づいて、排気流量Qを算出する点にある。
Q=a×(T0/(T0+T))×((T0+T)/T0×ΔP)b (式1)
ただし、a、bは、予め決定され記憶される定数。
Also, the exhaust gas flow rate calculation method for achieving the above-mentioned purpose is as follows:
A method for calculating an exhaust flow rate for exhausting the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area.
In the gas flow part that guides the gas in the ventilation target area to the outside of the ventilation target area, the first pressure and the ventilation target in a part where the gas does not flow on the upstream side of the blowing means provided in the gas flow part The exhaust gas flow rate Q is calculated based on the differential pressure ΔP that is the absolute value of the difference from the second pressure in the region, the specific reference temperature T 0, and the following equation 1.
Q = a × (T 0 / (T 0 + T)) × ((T 0 + T) / T 0 × ΔP) b (Formula 1)
However, a and b are constants determined and stored in advance.

発明者らは、鋭意検討することにより、換気装置による排気流量Qは、気体通流部において送風手段の上流側で気体が通流しない部位にて測定される第1圧力としての静圧と、換気対象領域の第2圧力との差圧ΔPと、特定の基準温度T0とから、上記(式1)に基づいて、実測値に相関が高い状態で、算出できることを見出した。
上記特徴構成の如く、排気流量Qを算出する構成を採用することにより、換気装置にて換気対象領域外へ排出される排気流量を測定する流量センサを設ける必要がないから、流量センサへの水分や油分の付着の影響を受けずに、排気流量Qを適切に算出することができる。
更に、上記特徴構成によれば、例えば、温度測定手段として温度を測定するセンサ、第1圧力測定手段として第1圧力を測定するセンサ、第2圧力測定手段として第2圧力を測定するセンサを備えることとなるが、温度を測定するセンサは気体の温度を測定すれば良く、且つ第1圧力を測定するセンサは気体の静圧を測定すればよいので、両者は、気体の通流しない部位(気体の流れがない部位)に設ければ良い。また、第2圧力を測定するセンサは、換気対象領域の圧力を測定するので、気体の流れに晒されない部位に設ければ良い。即ち、上記構成によれば、センサ類に、気体に含まれる水分や油分が付着して、センサ類が劣化したり、センサの測定精度が低下したりすることを回避できる。
The inventors have studied diligently, and the exhaust flow rate Q by the ventilator is a static pressure as a first pressure measured at a portion where gas does not flow on the upstream side of the blowing means in the gas flow portion, Based on the above (Equation 1), it has been found that calculation can be performed with a high correlation with the actual measurement value from the differential pressure ΔP from the second pressure in the ventilation target region and the specific reference temperature T 0 .
By adopting a configuration for calculating the exhaust flow rate Q as in the above feature configuration, there is no need to provide a flow sensor for measuring the exhaust flow rate discharged from the ventilation target area by the ventilator. In addition, the exhaust flow rate Q can be appropriately calculated without being affected by the adhesion of oil.
Further, according to the above characteristic configuration, for example, a sensor for measuring temperature as the temperature measuring means, a sensor for measuring the first pressure as the first pressure measuring means, and a sensor for measuring the second pressure as the second pressure measuring means are provided. However, the sensor that measures the temperature only needs to measure the temperature of the gas, and the sensor that measures the first pressure only needs to measure the static pressure of the gas. It may be provided at a portion where there is no gas flow. Moreover, since the sensor which measures 2nd pressure measures the pressure of a ventilation object area | region, it should just be provided in the site | part which is not exposed to a gas flow. That is, according to the said structure, it can avoid that the water | moisture content and oil content which are contained in gas adhere to sensors, and sensors deteriorate or the measurement precision of a sensor falls.

また、例えば家庭に設定される換気装置は、コンロ等の調理器具の上方に設けられることが多いが、このような設定形態においては、換気装置にて排気される気体の温度が、調理器具の使用の有無により変化する。
発明者らは、このように、気体通流部を通流する気体の温度が異なる場合にも、良好に排気流量を導出できる式として、上記式1を導き出した。
In addition, for example, a ventilator set in a home is often provided above a cooking utensil such as a stove. In such a setting mode, the temperature of the gas exhausted by the ventilator is low. It varies depending on whether or not it is used.
As described above, the inventors have derived the above formula 1 as a formula that can derive a good exhaust flow rate even when the temperature of the gas flowing through the gas flow section is different.

発明者らは、まずもって、基準温度T0(例えば、273.15K)における排気流量Q0と、差圧ΔP0は、下記の式2の関係を有することを見出した。
0=a×ΔP0 b (式2)
The inventors first discovered that the exhaust flow rate Q 0 and the differential pressure ΔP 0 at the reference temperature T 0 (for example, 273.15 K) have the relationship of the following formula 2.
Q 0 = a × ΔP 0 b (Formula 2)

ここで、基準温度T0における排気流量Q0と、温度Tにおける排気流量Qとは、以下の式3の関係を有し、基準温度T0における差圧ΔP0と、温度Tにおける差圧ΔPは、以下の式4の関係を有する。
0=(T0+T)/T0×Q (式3)
Here, the exhaust flow rate Q 0 at the reference temperature T 0 and the exhaust flow rate Q at the temperature T have the relationship of the following expression (3): the differential pressure ΔP 0 at the reference temperature T 0 and the differential pressure ΔP at the temperature T Has the relationship of Equation 4 below.
Q 0 = (T 0 + T) / T 0 × Q (Formula 3)

ΔP0=(T0+T)/T0×ΔP (式4) ΔP 0 = (T 0 + T) / T 0 × ΔP (Formula 4)

そして、式2に対し、式3及び式4を代入することにより得られる式1は、温度Tが異なる場合にも同一の式で、排気流量Qを算出できるものとなるのである。
これにより、例えば、換気装置が、コンロ等からの排気を気体として換気対象領域外へ排出するように構成され、気体としての排気の温度が、コンロの使用の有無により大きく変化するような場合であっても、排気流量を、単一の式1により、実測値と相関の高い状態で、適切に算出できる。
即ち、上記特徴構成によれば、装置の形状や装置の設置箇所に依存することがないと共に、換気する気体に含まれる水分や油分の影響を受けることなく、良好に排気流量を知ることができる換気装置、及び換気方法を実現できる。
因みに、式1において係数a、bは、例えば、圧送手段の複数の出力毎に取得される排気流量Qと差圧ΔPとに基づいて、予め算出され決定される係数である。
Further, Expression 1 obtained by substituting Expression 3 and Expression 4 into Expression 2 can calculate the exhaust flow rate Q with the same expression even when the temperature T is different.
Thereby, for example, in a case where the ventilator is configured to exhaust the exhaust from the stove or the like as a gas to the outside of the ventilation target area, and the temperature of the exhaust as the gas varies greatly depending on whether or not the stove is used. Even in such a case, the exhaust flow rate can be appropriately calculated by a single equation 1 in a state highly correlated with the actually measured value.
That is, according to the above characteristic configuration, the exhaust flow rate can be known well without being dependent on the shape of the device and the installation location of the device and without being affected by moisture or oil contained in the gas to be ventilated. A ventilation device and a ventilation method can be realized.
Incidentally, the coefficients a and b in Expression 1 are coefficients that are calculated and determined in advance based on, for example, the exhaust flow rate Q and the differential pressure ΔP acquired for each of the plurality of outputs of the pressure feeding unit.

上述の換気装置としては、前記制御装置は、前記温度測定手段にて測定される温度Tに関わらず、前記式1に基づいて、排気流量Qを算出することが好ましい。   As the above-described ventilation device, it is preferable that the control device calculates the exhaust gas flow rate Q based on the equation 1 regardless of the temperature T measured by the temperature measuring means.

換気装置の更なる特徴構成は、
前記温度測定手段は、前記気体通流部において前記送風手段の上流側に配設される外囲筐体の内部に設けられ、
前記外囲筐体は、その内部を前記気体通流部の前記気体の通流領域へ連通する開口部を備え、当該開口部は、前記気体通流部の前記気体の流れ方向で下流側へ向けて開口している点にある。
Additional features of the ventilation system
The temperature measuring means is provided inside an outer casing disposed on the upstream side of the air blowing means in the gas flow part,
The outer casing includes an opening that communicates the inside thereof with the gas flow region of the gas flow part, and the opening is downstream in the gas flow direction of the gas flow part. It is in the point opening toward.

上記特徴構成によれば、温度測定手段が、気体通流部を通流する気体の温度を、略良好に測定できつつも、気体通流部を通流する気体の流れに接触することを抑制できるから、気体に水分や油分が含まれる場合にも、温度測定手段に当該水分や油分が付着することを抑制できる。   According to the above characteristic configuration, the temperature measuring means can measure the temperature of the gas flowing through the gas flow-through portion substantially well, but suppresses contact with the gas flow flowing through the gas flow-through portion. Therefore, even when moisture or oil is contained in the gas, the moisture or oil can be prevented from adhering to the temperature measuring means.

換気装置の更なる特徴構成は、
前記第1圧力測定手段は、前記気体通流部において前記送風手段の上流側に配設される外囲筐体の内部に設けられ、
前記外囲筐体は、その内部を前記気体通流部の前記気体の通流領域へ連通する開口部を備え、当該開口部は、前記気体通流部の前記気体の流れ方向で下流側へ向けて開口している点にある。
Additional features of the ventilation system
The first pressure measuring means is provided in an outer casing disposed on the upstream side of the air blowing means in the gas flow part,
The outer casing includes an opening that communicates the inside thereof with the gas flow region of the gas flow part, and the opening is downstream in the gas flow direction of the gas flow part. It is in the point opening toward.

上記特徴構成によれば、第1圧力測定手段が、気体通流部を通流する気体の圧力を、略良好に測定できつつも、気体通流部を通流する気体の流れに接触することを抑制できるから、気体に水分や油分が含まれる場合にも、第1圧力測定手段に当該水分や油分が付着することを抑制できる。   According to the above characteristic configuration, the first pressure measurement means can measure the pressure of the gas flowing through the gas flow-through portion substantially well, but is in contact with the gas flow flowing through the gas flow-through portion. Therefore, even when moisture or oil is contained in the gas, it is possible to suppress the moisture or oil from adhering to the first pressure measuring means.

これまで説明してきた換気装置としては、前記基準温度T0は、273.15Kであると、更に好適である。 In the ventilator described so far, the reference temperature T 0 is more preferably 273.15K.

換気装置の概略構成図Schematic configuration diagram of ventilator 基準温度にて補正を行わない関係式と差圧とに基づいて算出される排気流量を示すグラフ図A graph showing the exhaust flow rate calculated based on the relational expression and the differential pressure that are not corrected at the reference temperature 各差圧において、図2の算出値と実測値との差を示すグラフ図A graph showing the difference between the calculated value and the actually measured value in FIG. 2 at each differential pressure. 基準温度にて補正を行う関係式と差圧とに基づいて算出される排気流量、及び実測値を示すグラフ図A graph showing the exhaust flow rate calculated based on the relational expression for correcting at the reference temperature and the differential pressure, and the actual measurement value

本発明の実施形態に係る換気装置100は、装置の形状や設置箇所に依存することがないと共に、換気する気体に含まれる水分や油分の影響を受けることなく、良好に排気流量を知ることができる換気装置、及び算出方法に関する。   The ventilation device 100 according to the embodiment of the present invention does not depend on the shape or installation location of the device, and can know the exhaust flow rate well without being affected by moisture or oil contained in the gas to be ventilated. The present invention relates to a ventilation device and a calculation method.

換気装置100は、換気対象領域の気体を換気対象領域から換気対象領域外へ排出する換気装置であって、例えば、換気対象領域としてのキッチンや厨房等に備えられるものである。当該換気装置100は、例えば、キッチンや厨房等に備えられるガスコンロ10に設けられたバーナ部11の燃焼により発生する燃焼ガスE(気体の一例)を、換気対象領域外としての屋外へ排出するものである。当該換気装置100は、ガスコンロ10の上方に設けられた排気フード20と、当該排気フード20から取り込まれた換気対象領域の気体(バーナ部11が作動している場合には高温の燃焼ガスE、バーナ部11が非作動の場合は排ガスE)を換気対象領域外へ圧送する排気ファンF(送風手段の一例)と、図示しない操作部における運転操作部のON/OFF操作に基づいて排気ファンFの停止と運転とを切り換える切換制御する制御装置Cが設けられている。尚、当該制御装置Cは、排気ファンFの運転時における回転数を変更制御する。   The ventilator 100 is a ventilator that exhausts the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area, and is provided in, for example, a kitchen or a kitchen as the ventilation target area. The ventilator 100 discharges, for example, combustion gas E (an example of gas) generated by combustion of a burner unit 11 provided in a gas stove 10 provided in a kitchen, a kitchen, or the like, outside the ventilation target area. It is. The ventilator 100 includes an exhaust hood 20 provided above the gas stove 10, and a gas in a ventilation target area taken in from the exhaust hood 20 (when the burner unit 11 is operating, a high-temperature combustion gas E, When the burner unit 11 is not in operation, the exhaust fan F (an example of a blowing unit) that pumps the exhaust gas E) outside the ventilation target area, and the exhaust fan F based on the ON / OFF operation of the operation unit in the operation unit (not shown) A control device C that performs switching control for switching between stop and operation is provided. In addition, the said control apparatus C carries out change control of the rotation speed at the time of the driving | operation of the exhaust fan F. FIG.

更に、当該換気装置100には、各種センサとして、換気対象領域の気体を換気対象領域外へ導く気体通流部22で、排気ファンFの上流側で気体が通流しない部位において、気体通流部22の静圧としての第1圧力を測定する第1圧力センサS1(第1圧力測定手段の一例)を備えると共に気体通流部22の温度Tを測定する温度センサS2(温度測定手段の一例)とを備え、換気対象領域の圧力である第2圧力を測定する第2圧力センサS3(第2圧力測定手段の一例)とを備えている。
当該実施形態の如く、換気装置100が、換気対象領域にガスコンロ10が設けられ、当該ガスコンロ10のバーナ部11の燃焼ガスEを排気する設置形態をとる場合、水分や油分を含む気体を排気することになり、第1圧力センサS1及び温度センサS2が設けられる気体通流部22には、当該水分や油分を含む気体を通流することになり、第1圧力センサS1及び温度センサS2に水分や油分が付着しセンサが劣化したり、測定精度が悪化したりするといった問題が発生する虞がある。
そこで、当該実施形態にあっては、第1圧力センサS1及び温度センサS2は、気体通流部22において排気ファンFの上流側に配設される外囲筐体23の内部に設けられ、当該外囲筐体23は、その内部を気体通流部22の気体の通流領域へ連通する開口部25が設けられている。当該開口部25の開口方向は、気体通流部22の気体の流れ方向に直交する方向から、気体通流部22の気体の流れ方向下流側の方向である。
当該構成により、外囲筐体23の内部に気体の流れが大きく入り込むことを防止し、気体に水分や油分が含まれる場合にも、第1圧力センサS1及び温度センサS2に、水分や油分が付着することを良好に防止することができる。尚、このようにして測定される第1圧力センサS1の圧力は、気体通流部22の気体の静圧となる。
Further, in the ventilation device 100, as various sensors, the gas flow portion 22 that guides the gas in the ventilation target region to the outside of the ventilation target region, and the gas flow in the portion where the gas does not flow on the upstream side of the exhaust fan F. A temperature sensor S2 (an example of a temperature measurement unit) that includes a first pressure sensor S1 (an example of a first pressure measurement unit) that measures a first pressure as a static pressure of the unit 22 and that measures a temperature T of the gas flow unit 22 ), And a second pressure sensor S3 (an example of second pressure measuring means) that measures a second pressure that is a pressure in the ventilation target area.
When the gas stove 10 is provided in the ventilation target area and the combustion apparatus E is configured to exhaust the combustion gas E of the burner portion 11 of the gas stove 10 as in the embodiment, the gas including water and oil is exhausted. Therefore, the gas containing the moisture and oil is passed through the gas flow part 22 where the first pressure sensor S1 and the temperature sensor S2 are provided, and the moisture is supplied to the first pressure sensor S1 and the temperature sensor S2. There is a possibility that problems such as adhesion of oil and oil, deterioration of the sensor, and deterioration of measurement accuracy may occur.
Therefore, in the present embodiment, the first pressure sensor S1 and the temperature sensor S2 are provided inside the outer casing 23 disposed on the upstream side of the exhaust fan F in the gas flow portion 22, The outer casing 23 is provided with an opening 25 that communicates the inside with the gas flow region of the gas flow portion 22. The opening direction of the opening 25 is a direction downstream from the direction of the gas flow in the gas flow portion 22 from the direction perpendicular to the gas flow direction in the gas flow portion 22.
With this configuration, it is possible to prevent a large amount of gas from entering the inside of the enclosure 23, and even when the gas contains moisture or oil, moisture or oil is contained in the first pressure sensor S <b> 1 and the temperature sensor S <b> 2. Adhesion can be well prevented. Note that the pressure of the first pressure sensor S <b> 1 measured in this way is the static pressure of the gas in the gas flow part 22.

さて、発明者らは、鋭意検討することにより、排気流量Qは、第1圧力センサS1にて測定される第1圧力と第2圧力センサS3にて測定される第2圧力との差の絶対値である差圧ΔPと、下記式5とに基づいて、算出できることを見出した。   The inventors have intensively studied to determine that the exhaust flow rate Q is the absolute difference between the first pressure measured by the first pressure sensor S1 and the second pressure measured by the second pressure sensor S3. It was found that the value can be calculated based on the differential pressure ΔP, which is a value, and the following formula 5.

Q=c×ΔPd (式5) Q = c × ΔP d (Formula 5)

図2において、各差圧ΔP毎に、ガスコンロ10のバーナ部11が作動状態にあるときの排気流量Q(図2で、『機器稼働有り算出値』)と、ガスコンロ10のバーナ部11が非作動状態にあるときの排気流量Q(図2で、『機器稼働なし算出値』)とを示す。
バーナ部11が作動状態にあるときの排気流量Qを算出するための近似式は、以下の〔表1〕に示す異なる排気流量Qとその排気流量Qでの差圧ΔPの値を、既知の統計手法に基づいて導出でき、係数cは46.8964であり、乗数dは0.4791である。
同じく、バーナ部11が非作動状態にあるときの排気流量Qを算出するための近似式は、以下の〔表2〕に示す異なる排気流量Qとその排気流量Qでの差圧ΔPの値を、既知の統計手法に基づいて導出でき、係数cは36.7656であり、乗数dは0.5074である。
因みに、〔表1〕及び〔表2〕のインバータ値(Hz)は、排気ファンFへの駆動電圧の周波数であり、排気ファンFの出力に略比例する値である。また、各インバータ値(Hz)における値は、複数回(当該実施形態では、2回)の算出結果の平均値である。また、図3は、排気流量Qの測定値(実測値)と算出値との差を示したグラフ図である。
In FIG. 2, for each differential pressure ΔP, the exhaust flow rate Q when the burner portion 11 of the gas stove 10 is in an operating state (“calculated value with device operation” in FIG. 2) and the burner portion 11 of the gas stove 10 are not The exhaust gas flow rate Q (in FIG. 2, “calculated value without equipment operation”) when in an operating state is shown.
An approximate expression for calculating the exhaust flow rate Q when the burner unit 11 is in operation is a known exhaust flow rate Q shown in the following [Table 1] and the value of the differential pressure ΔP at the exhaust flow rate Q is known. The coefficient c is 46.8964, and the multiplier d is 0.4791.
Similarly, the approximate expression for calculating the exhaust flow rate Q when the burner unit 11 is in the non-operating state is the following different exhaust flow rate Q and the value of the differential pressure ΔP at the exhaust flow rate Q shown in Table 2 below. The coefficient c is 36.7656 and the multiplier d is 0.5074.
Incidentally, the inverter value (Hz) in [Table 1] and [Table 2] is the frequency of the drive voltage to the exhaust fan F and is a value substantially proportional to the output of the exhaust fan F. Moreover, the value in each inverter value (Hz) is an average value of the calculation result of multiple times (in this embodiment, 2 times). FIG. 3 is a graph showing the difference between the measured value (actual value) and the calculated value of the exhaust flow rate Q.

Figure 2017181003
Figure 2017181003

Figure 2017181003
Figure 2017181003

図2のグラフ図、及び上述した係数に示されるように、バーナ部11が作動状態にあるときの排気流量Qを算出するための式5と、バーナ部11が非作動状態にあるときの排気流量Qを算出するための式5とは異なる式となっている。つまり、上記式5に基づいて、排気流量Qを算出する場合、気体の温度T毎に、係数、乗数が異なる式5により、導出しなければないという問題が生じる。   As shown in the graph of FIG. 2 and the coefficient described above, Expression 5 for calculating the exhaust gas flow rate Q when the burner unit 11 is in the operating state, and exhaust when the burner unit 11 is in the non-operating state. This is an expression different from Expression 5 for calculating the flow rate Q. That is, when the exhaust gas flow rate Q is calculated based on the above equation 5, there arises a problem that it must be derived by equation 5 having a different coefficient and multiplier for each gas temperature T.

発明者らは、この原因は、排気流量Qは気体の温度Tに依存するものであり、差圧ΔPも気体の温度Tに依存するものであることが原因と考え、基準温度T0における排気流量Q0と、温度Tにおける排気流量Qとは、以下の式3の関係を有し、基準温度T0における差圧ΔP0と、温度Tにおける差圧ΔPは、以下の式4の関係を有し、基準温度T0(例えば、273.15K)における排気流量Q0と、差圧ΔP0は、下記の式2の関係を有することを見出した。 The inventors consider that this is because the exhaust flow rate Q depends on the gas temperature T, and the differential pressure ΔP also depends on the gas temperature T, and the exhaust at the reference temperature T 0 is considered. The flow rate Q 0 and the exhaust flow rate Q at the temperature T have the relationship of the following formula 3, and the differential pressure ΔP 0 at the reference temperature T 0 and the differential pressure ΔP at the temperature T have the relationship of the following formula 4. It has been found that the exhaust flow rate Q 0 at the reference temperature T 0 (for example, 273.15 K) and the differential pressure ΔP 0 have the relationship of the following formula 2.

0=a×ΔP0 b (式2) Q 0 = a × ΔP 0 b (Formula 2)

0=(T0+T)/T0×Q (式3) Q 0 = (T 0 + T) / T 0 × Q (Formula 3)

ΔP0=(T0+T)/T0×ΔP (式4) ΔP 0 = (T 0 + T) / T 0 × ΔP (Formula 4)

そして、式2に対し、式3及び式4を代入することにより得られる以下の式1は、温度Tが異なる場合にも同一の式で、排気流量Qを算出できるものとなることを見出した。   And it discovered that the following formula 1 obtained by substituting the formula 3 and the formula 4 into the formula 2 can calculate the exhaust flow rate Q with the same formula even when the temperature T is different. .

Q=a×(T0/(T0+T))×((T0+T)/T0×ΔP)b (式1) Q = a × (T 0 / (T 0 + T)) × ((T 0 + T) / T 0 × ΔP) b (Formula 1)

そして、T0が273.15Kとし、ガスコンロ10のバーナ部11が作動状態にあるときの〔表1〕の差圧ΔP、気体通流部22の温度T、排気流量Qと、ガスコンロ10のバーナ部11が非作動状態にあるときの〔表2〕の差圧ΔP、気体通流部22の温度T、排気流量Qとに基づいて、式1の係数a、乗数bの値を算出したところ、係数aは48.13319であり、乗数bは0.478865となり、バーナ部11が作動状態である場合も非作動状態である場合も、略同一の値となった。
つまり、気体の温度Tが異なる場合であっても、単一の式1にて排気流量Qを算出できるという新たな知見を得た。
And when T 0 is set to 273.15K and the burner part 11 of the gas stove 10 is in the operating state, the differential pressure ΔP in Table 1, the temperature T of the gas flow part 22, the exhaust flow rate Q, and the burner of the gas stove 10 Based on the differential pressure ΔP in Table 2 when the section 11 is in the non-operating state, the temperature T of the gas flow section 22, and the exhaust flow rate Q, the values of the coefficient a and the multiplier b in Equation 1 are calculated. The coefficient a is 48.13319 and the multiplier b is 0.478865, which is substantially the same value when the burner unit 11 is in the operating state and in the non-operating state.
That is, even when the gas temperature T is different, the new knowledge that the exhaust flow rate Q can be calculated by the single equation 1 was obtained.

上述の知見に基づき、本願の換気装置100にあっては、制御装置Cは、温度センサS2にて測定される温度Tと、第1圧力センサS1にて測定される第1圧力と、第2圧力センサS3にて測定される第2圧力とを受信し、それらの値と、予め記憶部(図示せず)に記憶された基準温度T0、係数a、乗数bと、上述の式1とに基づいて、排気流量Qを算出し、当該算出した排気流量Qが所望の値となるように、排気ファンFの回転数を制御するように構成されている。 Based on the above knowledge, in the ventilation device 100 of the present application, the control device C includes the temperature T measured by the temperature sensor S2, the first pressure measured by the first pressure sensor S1, and the second. The second pressure measured by the pressure sensor S3 is received, and these values, the reference temperature T 0 , the coefficient a, the multiplier b, and the above-described equation 1 are stored in advance in a storage unit (not shown). The exhaust flow rate Q is calculated based on the above, and the rotational speed of the exhaust fan F is controlled so that the calculated exhaust flow rate Q becomes a desired value.

因みに、上述の式1により、算出した排気流量Qと、実測した排気流量Qと、それらの差の排気流量Q(実測値)に対する割合を、〔表3〕及び〔表4〕に示す。因みに、〔表3〕はバーナ部11が作動状態にあるときの値であり、〔表4〕はバーナ部11が非作動状態にあるときの値である。
〔表3〕及び〔表4〕からわかるように、差の排気流量Q(実測値)に対する割合は、最大でも5.3%となっており、十分な精度があると言える。
Incidentally, Table 3 and Table 4 show the calculated exhaust gas flow rate Q, the actually measured exhaust gas flow rate Q, and the ratio of the difference between them to the exhaust gas flow rate Q (actually measured value) according to the above equation 1. Incidentally, [Table 3] is a value when the burner unit 11 is in an operating state, and [Table 4] is a value when the burner unit 11 is in an inoperative state.
As can be seen from [Table 3] and [Table 4], the ratio of the difference to the exhaust flow rate Q (actually measured value) is 5.3% at the maximum, and it can be said that there is sufficient accuracy.

Figure 2017181003
Figure 2017181003

Figure 2017181003
Figure 2017181003

〔別実施形態〕
(1)上記別実施形態にあっては、換気装置100は、換気対象領域にガスコンロ10等の気体の温度Tを変化させる設備が設けられている例を示した。
しかしながら、本願に係る換気装置100は、換気対象領域にガスコンロ等が設けられていない環境であっても、良好にその機能発揮する。
即ち、換気対象領域の気体の温度Tが大きく変化しない環境に対して、本願に係る換気装置100を備えても構わない。
[Another embodiment]
(1) In the other embodiment, the ventilator 100 has shown an example in which equipment for changing the temperature T of the gas such as the gas stove 10 is provided in the ventilation target region.
However, the ventilator 100 according to the present application performs well even in an environment where a gas stove or the like is not provided in the ventilation target area.
That is, you may provide the ventilation apparatus 100 which concerns on this application with respect to the environment where the gas temperature T of a ventilation object area | region does not change a lot.

(2)上記実施形態において、排気流量Qを算出するための式1の係数a及び乗数bを導出するときの各排気流量Q毎の取得された差圧ΔP等のパラメータは、平均値を採用したが、平均値でなく単独の値を採用しても構わない。 (2) In the above embodiment, an average value is adopted for parameters such as the acquired differential pressure ΔP for each exhaust flow Q when deriving the coefficient a and the multiplier b of Equation 1 for calculating the exhaust flow Q. However, a single value may be adopted instead of the average value.

(3)上記実施形態にあっては、基準温度T0は、273.15Kとしたが、この温度以外の温度としても構わない。 (3) In the above embodiment, the reference temperature T 0 is 273.15 K, but it may be a temperature other than this temperature.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.

本発明の換気装置、及び算出方法は、装置の形状や装置の設置箇所に依存することがないと共に、換気する気体に含まれる水分や油分の影響を受けることなく、良好に排気流量を知ることができる換気装置、及び算出方法として、有効に利用可能である。   The ventilation device and calculation method of the present invention do not depend on the shape of the device and the installation location of the device, and know the exhaust flow rate well without being affected by moisture or oil contained in the ventilated gas. It can be effectively used as a ventilation device that can perform the calculation and a calculation method.

22 :気体通流部
23 :外囲筐体
25 :開口部
100 :換気装置
C :制御装置
E :燃焼ガス(気体)
E :排ガス(気体)
F :排気ファン
Q :排気流量
S1 :第1圧力センサ
S2 :温度センサ
S3 :第2圧力センサ
T :温度
0 :基準温度
a :係数
b :乗数
ΔP :差圧
22: Gas flow part 23: Enclosure housing 25: Opening part 100: Ventilation device C: Control device E: Combustion gas (gas)
E: exhaust gas (gas)
F: the exhaust fan Q: flow rate of the exhaust gas S1: first pressure sensor S2: temperature sensor S3: second pressure sensor T: Temperature T 0: a reference temperature a: coefficient b: Multiplier [Delta] P: differential pressure

Claims (6)

換気対象領域の気体を換気対象領域から換気対象領域外へ排出する換気装置であって、
前記換気対象領域の前記気体を前記換気対象領域から前記換気対象領域外へ圧送する送風手段と、
前記換気対象領域の前記気体を換気対象領域外へ導く気体通流部で、前記送風手段の上流側で前記気体が通流しない部位において、第1圧力を測定する第1圧力測定手段及び温度を測定する温度測定手段と、
前記換気対象領域の第2圧力を測定する第2圧力測定手段とを備え、
前記温度測定手段にて測定される温度Tと、前記第1圧力と前記第2圧力との差の絶対値である差圧ΔPと、特定の基準温度T0と、下記式1とに基づいて、排気流量Qを算出する制御装置を備える換気装置。
Q=a×(T0/(T0+T))×((T0+T)/T0×ΔP)b (式1)
ただし、a、bは、予め決定され前記制御装置に記憶される定数。
A ventilation device that exhausts gas in a ventilation target area from the ventilation target area to the outside of the ventilation target area,
A blowing means for pumping the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area;
In the gas flow part for guiding the gas in the ventilation target area to the outside of the ventilation target area, the first pressure measurement means for measuring the first pressure and the temperature at the portion where the gas does not flow on the upstream side of the blowing means, Temperature measuring means for measuring;
Second pressure measuring means for measuring a second pressure in the ventilation target area;
Based on the temperature T measured by the temperature measuring means, the differential pressure ΔP that is the absolute value of the difference between the first pressure and the second pressure, the specific reference temperature T 0, and the following formula 1. A ventilator comprising a control device for calculating the exhaust flow rate Q.
Q = a × (T 0 / (T 0 + T)) × ((T 0 + T) / T 0 × ΔP) b (Formula 1)
However, a and b are constants determined in advance and stored in the control device.
前記制御装置は、前記温度測定手段にて測定される温度Tに関わらず、前記式1に基づいて、排気流量Qを算出する請求項1に記載の換気装置。   2. The ventilation device according to claim 1, wherein the control device calculates an exhaust gas flow rate Q based on the formula 1 regardless of the temperature T measured by the temperature measuring means. 前記温度測定手段は、前記気体通流部において前記送風手段の上流側に配設される外囲筐体の内部に設けられ、
前記外囲筐体は、その内部を前記気体通流部の前記気体の通流領域へ連通する開口部を備え、当該開口部は、前記気体通流部の前記気体の流れ方向で下流側へ向けて開口している請求項1又は2に記載の換気装置。
The temperature measuring means is provided inside an outer casing disposed on the upstream side of the air blowing means in the gas flow part,
The outer casing includes an opening that communicates the inside thereof with the gas flow region of the gas flow part, and the opening is downstream in the gas flow direction of the gas flow part. The ventilator according to claim 1 or 2, wherein the ventilator is open.
前記第1圧力測定手段は、前記気体通流部において前記送風手段の上流側に配設される外囲筐体の内部に設けられ、
前記外囲筐体は、その内部を前記気体通流部の前記気体の通流領域へ連通する開口部を備え、当該開口部は、前記気体通流部の前記気体の流れ方向で下流側へ向けて開口している請求項1〜3の何れか一項に記載の換気装置。
The first pressure measuring means is provided in an outer casing disposed on the upstream side of the air blowing means in the gas flow part,
The outer casing includes an opening that communicates the inside thereof with the gas flow region of the gas flow part, and the opening is downstream in the gas flow direction of the gas flow part. The ventilator according to any one of claims 1 to 3, wherein the ventilator is open.
前記基準温度T0は、273.15Kである請求項1〜4の何れか一項に記載の換気装置。 The reference temperature T 0, the ventilating device according to any one of claims 1 to 4 is 273.15 K. 換気対象領域の気体を換気対象領域から換気対象領域外へ排出する排気流量の算出方法であって、
前記換気対象領域の前記気体を換気対象領域外へ導く気体通流部において、当該気体通流部に設けられる送風手段の上流側で前記気体を通流しない部位での第1圧力と前記換気対象領域の第2圧力との差の絶対値である差圧ΔPと、特定の基準温度T0と、下記式1とに基づいて、排気流量Qを算出する排気流量の算出方法。
Q=a×(T0/(T0+T))×((T0+T)/T0×ΔP)b (式1)
ただし、a、bは、予め決定され記憶される定数。
A method for calculating an exhaust flow rate for discharging the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area,
In the gas flow part that guides the gas in the ventilation target area to the outside of the ventilation target area, the first pressure and the ventilation target in a part where the gas does not flow on the upstream side of the blowing means provided in the gas flow part An exhaust gas flow rate calculation method for calculating an exhaust gas flow rate Q based on a differential pressure ΔP that is an absolute value of a difference from a second pressure in a region, a specific reference temperature T 0, and the following formula 1.
Q = a × (T 0 / (T 0 + T)) × ((T 0 + T) / T 0 × ΔP) b (Formula 1)
However, a and b are constants determined and stored in advance.
JP2016073155A 2016-03-31 2016-03-31 Ventilation device and calculation method Active JP6656054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016073155A JP6656054B2 (en) 2016-03-31 2016-03-31 Ventilation device and calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016073155A JP6656054B2 (en) 2016-03-31 2016-03-31 Ventilation device and calculation method

Publications (2)

Publication Number Publication Date
JP2017181003A true JP2017181003A (en) 2017-10-05
JP6656054B2 JP6656054B2 (en) 2020-03-04

Family

ID=60005824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016073155A Active JP6656054B2 (en) 2016-03-31 2016-03-31 Ventilation device and calculation method

Country Status (1)

Country Link
JP (1) JP6656054B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109632022A (en) * 2018-12-25 2019-04-16 上海理工大学 The test evaluation method of 24 hourly average ventilation quantity of house room
JP2019190797A (en) * 2018-04-27 2019-10-31 リンナイ株式会社 Ventilation system
JP2020143551A (en) * 2019-03-08 2020-09-10 株式会社佐原 Ventilator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351651A (en) * 1998-06-05 1999-12-24 Toshiba Corp Air conditioner
JP2003075318A (en) * 2001-09-06 2003-03-12 Nippon Sanso Corp Fluid component concentration measuring method and device
JP2006170593A (en) * 2004-11-19 2006-06-29 Daikin Ind Ltd Ventilation control device
JP2012511138A (en) * 2008-12-03 2012-05-17 オーワイ ハルトン グループ リミテッド Exhaust flow control system and method
JP2012247121A (en) * 2011-05-27 2012-12-13 Techno Ryowa Ltd Variable air volume control device
US20120328378A1 (en) * 2011-06-21 2012-12-27 Hatton Thomas E Vapor mitigation system, vapor mitigation controller and methods of controlling vapors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351651A (en) * 1998-06-05 1999-12-24 Toshiba Corp Air conditioner
JP2003075318A (en) * 2001-09-06 2003-03-12 Nippon Sanso Corp Fluid component concentration measuring method and device
JP2006170593A (en) * 2004-11-19 2006-06-29 Daikin Ind Ltd Ventilation control device
JP2012511138A (en) * 2008-12-03 2012-05-17 オーワイ ハルトン グループ リミテッド Exhaust flow control system and method
JP2012247121A (en) * 2011-05-27 2012-12-13 Techno Ryowa Ltd Variable air volume control device
US20120328378A1 (en) * 2011-06-21 2012-12-27 Hatton Thomas E Vapor mitigation system, vapor mitigation controller and methods of controlling vapors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019190797A (en) * 2018-04-27 2019-10-31 リンナイ株式会社 Ventilation system
CN109632022A (en) * 2018-12-25 2019-04-16 上海理工大学 The test evaluation method of 24 hourly average ventilation quantity of house room
CN109632022B (en) * 2018-12-25 2020-05-15 上海理工大学 Method for testing and estimating 24-hour average ventilation quantity of residential room
JP2020143551A (en) * 2019-03-08 2020-09-10 株式会社佐原 Ventilator
JP7208625B2 (en) 2019-03-08 2023-01-19 株式会社佐原 ventilator

Also Published As

Publication number Publication date
JP6656054B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
US6994620B2 (en) Method of determining static pressure in a ducted air delivery system using a variable speed blower motor
JP2017181003A (en) Ventilation device and calculation method
US20080066661A1 (en) Method for controlling the exhaust flow from a cooking chamber of a baking oven
US7997263B2 (en) Method for controlling the exhaust flow from a cooking chamber of a baking oven
US20100191379A1 (en) Ventilating apparatus and method of controlling the same
CN102971772A (en) Detection of blockages and interruptions with an aspirating smoke detector (ASD)
KR20200012175A (en) Air conditioning system of negative pressure type special facility
US20120017906A1 (en) Breathing apparatus with compensation of the ambient pressure
TWI609567B (en) Control method for fans with constant wind volume
CN112240579B (en) Range hood and control method thereof
KR20200080736A (en) Leakage prediction and indoor airflow control device and control method thereof
CN107655048B (en) Range hood and constant air quantity adjusting method and system thereof
KR102241834B1 (en) Apparatus and Method for controlling supply air volume
JP2019011884A (en) Room Pressure Control System
JP2016145679A (en) Ventilation device
KR20200080735A (en) Interlocking control device and interlocking control method of kitchen hood and ventilation device
JP5011982B2 (en) Range hood blower
JP4844303B2 (en) Range hood blower
KR101963411B1 (en) Constant Airflow control method
JP2016173193A (en) Range hood
JP2008014813A (en) Vacuum measuring device, vapor deposition device, and vacuum measuring method
JP2022126332A (en) Air intake and exhaust state estimation system
CN111742146B (en) Stability of parameters
JP3053603B2 (en) Gas flow measuring device and method
KR102177217B1 (en) System and method for maintaining negative pressure in smoke control area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200204

R150 Certificate of patent or registration of utility model

Ref document number: 6656054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150