JP3053603B2 - Gas flow measuring device and method - Google Patents

Gas flow measuring device and method

Info

Publication number
JP3053603B2
JP3053603B2 JP9360670A JP36067097A JP3053603B2 JP 3053603 B2 JP3053603 B2 JP 3053603B2 JP 9360670 A JP9360670 A JP 9360670A JP 36067097 A JP36067097 A JP 36067097A JP 3053603 B2 JP3053603 B2 JP 3053603B2
Authority
JP
Japan
Prior art keywords
flow rate
gas flow
differential pressure
opening degree
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9360670A
Other languages
Japanese (ja)
Other versions
JPH11190646A (en
Inventor
洋介 末沢
裕幸 熱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP9360670A priority Critical patent/JP3053603B2/en
Publication of JPH11190646A publication Critical patent/JPH11190646A/en
Application granted granted Critical
Publication of JP3053603B2 publication Critical patent/JP3053603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラや焼却炉等
の燃焼排ガスなどの流量を計測するガス流量計測装置お
よび方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas flow rate measuring device and method for measuring a flow rate of flue gas from a boiler, an incinerator or the like.

【0002】[0002]

【従来の技術】ボイラ燃焼排ガスや焼却炉等の燃焼排ガ
スの流量の計測、セメントプラントの焼成等の通風系の
ガス流量の計測、排煙処理設備における有害物質の絶対
量の計測などでは、ガス流量の計測は不可欠の要素であ
る。また、ガス流量を正確に計測することは、関連する
製品の品質を維持する上でも不可欠の要素である。たと
えば、特開昭60−161480には、コークス乾式消
火設備で、ガス流量センサから直接かつ簡易に求める循
環ガス風量をヒートバランスから間接的に求める循環ガ
ス風量で補正する先行技術が開示されている。
2. Description of the Related Art Measurement of the flow rate of flue gas from a boiler or an incinerator, measurement of the gas flow rate of a ventilation system such as firing in a cement plant, and measurement of the absolute amount of harmful substances in a flue gas treatment facility require the use of gas. Flow measurement is an essential element. Accurate gas flow measurement is also an essential factor in maintaining the quality of the related products. For example, Japanese Patent Application Laid-Open No. Sho 60-161480 discloses a prior art in which a circulating gas flow amount directly and easily obtained from a gas flow sensor is corrected by a circulating gas air amount obtained indirectly from a heat balance in a coke dry fire extinguishing system. .

【0003】図9は、一般的なインラインに挿入するガ
ス流量計測のための構成を示す。ボイラや加熱炉などの
排ガスライン1には、排ガス循環のために、インライン
ファン2またはインラインコンプレッサなどが挿入され
る。排ガスの循環量を制御するため、開度が変更可能な
ダンパ3を設ける。ガス流量を計測するためには、オリ
フィス4やベンチュリなどを設け、その前後の差圧△P
を検出する。乱流などの影響が出ないようにして差圧△
Pを検出するためには、オリフィス4などの前後に排ガ
スライン1の直径Dの10倍程度の長さL1,L2で、
直管部5を設ける必要がある。
FIG. 9 shows a configuration for measuring a gas flow rate inserted in a general in-line. An in-line fan 2 or an in-line compressor is inserted into an exhaust gas line 1 such as a boiler or a heating furnace to circulate exhaust gas. In order to control the amount of exhaust gas circulation, a damper 3 whose opening degree can be changed is provided. In order to measure the gas flow, an orifice 4 and a venturi are provided, and the differential pressure before and after that
Is detected. Differential pressure so that turbulence is not affected.
In order to detect P, before and after the orifice 4, etc., the length L1, L2 of about 10 times the diameter D of the exhaust gas line 1,
It is necessary to provide the straight pipe section 5.

【0004】[0004]

【発明が解決しようとする課題】図9に示すようにし
て、排ガスライン1にインラインに挿入するガス流量計
測装置では、ダスト等が堆積して差圧の検出端が閉塞す
る問題が生じうる。また、差圧として検出するための圧
力損失を原理的に必要とするので、ファンの動力の増加
を招いてしまう。さらに、直管部5の長さとして、排ガ
スライン1の内径Dの10倍程度必要となるので、排ガ
スライン1を差圧検出部近傍で曲げることができず、装
置が大型化してしまう。
As shown in FIG. 9, in the gas flow measuring device inserted in-line into the exhaust gas line 1, dust or the like may accumulate and the differential pressure detecting end may be blocked. In addition, since a pressure loss for detecting the pressure difference is required in principle, the power of the fan increases. Further, since the length of the straight pipe portion 5 is required to be about 10 times the inner diameter D of the exhaust gas line 1, the exhaust gas line 1 cannot be bent in the vicinity of the differential pressure detecting portion, and the apparatus becomes large.

【0005】図10は、図9のインラインファン2など
の圧力PまたはヘッドHと流量Qとの関係を示すP−Q
またはH−Q性能曲線と、排ガスライン1の抵抗曲線と
の交点から、流量Qを求める考え方を簡略化して示す。
たとえば、前後差圧をPo とすると、ガス流量はQo で
ダンパ開度はSo であることが一義的に決る。ガス流量
このような流量計算は、JIS−B8330などの各種
規格でも記述されており、原理的には既知である。しか
しながら、排ガスライン1では、斜線を施して示すよう
に、ダスト付着や充填物の欠落等の経時変化で抵抗曲線
が変化するので、図10の原理は連続的な流量計測に使
用されてはいない。すなわち、原理は既知でも一時的な
計測にのみ使われ、連続ガス流量計としては使用されて
いないのが実状である。
FIG. 10 shows the relationship between the pressure P or the head H and the flow rate Q of the in-line fan 2 or the like in FIG.
Alternatively, the concept of obtaining the flow rate Q from the intersection of the HQ performance curve and the resistance curve of the exhaust gas line 1 is shown in a simplified manner.
For example, if the front-back differential pressure is Po, the gas flow rate is Qo and the damper opening is So. Gas flow rate Such a flow rate calculation is described in various standards such as JIS-B8330 and is known in principle. However, in the exhaust gas line 1, as shown by hatching, the resistance curve changes with the lapse of time such as dust adhesion or missing packing material, so the principle of FIG. 10 is not used for continuous flow rate measurement. . That is, although the principle is known, it is used only for temporary measurement, and is not actually used as a continuous gas flow meter.

【0006】本発明の目的は、通風系を構成するファン
の特性をそのまま利用し、通風系の経時的変化に対応す
るように計測値を補正してガス流量を連続的に計測可能
なガス流量計測装置および方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to utilize a characteristic of a fan constituting a ventilation system as it is, to correct a measured value so as to correspond to a temporal change of the ventilation system, and to continuously measure a gas flow. It is to provide a measuring device and method.

【0007】[0007]

【課題を解決するための手段】本発明は、開度を変更し
てガスの流量調整を行うダンパ、および回転数一定で運
転するファンを備える通風系のガス流量計測装置であっ
て、通風系の前後間の差圧を検出する差圧検出手段と、
ダンパの開度を検出する開度検出手段と、通風系の前後
の差圧とガス流量との関係を示すファン特性曲線が、ダ
ンパの開度をパラメータとして、予め計測されて記録さ
れる特性記憶手段と、特性記憶手段を参照し、開度検出
手段によって検出される開度に基づいて、ファン特性曲
線から対応するガス流量を求める流量導出手段と、特性
記憶手段を参照し、開度検出手段によって検出される開
度に基づいて、ファン特性曲線から対応する傾斜を求め
る傾斜導出手段と、特性記憶手段を参照し、開度検出手
段によって検出される開度に基づいて、ファン特性曲線
から対応する差圧を求める差圧導出手段と、差圧検出手
段によって検出される差圧と差圧導出手段によって求め
られる差圧との差に、傾斜導出手段によって求められる
傾斜を乗算した乗算結果を、流量導出手段によって求め
られるガス流量に加算する補正を行い、補正値をガス流
量の計測値として導出する演算手段とを含むことを特徴
とするガス流量計測装置である。
SUMMARY OF THE INVENTION The present invention relates to a gas flow measuring device of a ventilation system including a damper for adjusting a gas flow rate by changing an opening and a fan operating at a constant rotation speed. A differential pressure detecting means for detecting a differential pressure between before and after the system,
Opening detecting means for detecting the opening of the damper, and a fan characteristic curve indicating the relationship between the differential pressure before and after the ventilation system and the gas flow rate are stored in advance by measuring and recording the opening of the damper as a parameter. Means, a characteristic storage means, a flow rate deriving means for obtaining a corresponding gas flow rate from a fan characteristic curve based on the opening detected by the opening degree detecting means, and an opening degree detecting means by referring to the characteristic storage means. Reference is made to a slope deriving means for obtaining a corresponding slope from the fan characteristic curve based on the opening degree detected by the fan characteristic curve, and the characteristic storage means is referred to. Differential pressure deriving means for obtaining the differential pressure to be obtained, and a power obtained by multiplying the difference between the differential pressure detected by the differential pressure detecting means and the differential pressure obtained by the differential pressure deriving means by the gradient obtained by the gradient deriving means. The results, subjected to correction to be added to the gas flow rate obtained by the flow rate deriving means, the correction value is a gas flow rate measuring apparatus characterized by comprising calculating means for deriving a measured value of the gas flow.

【0008】本発明に従えば、開度検出手段が検出する
ダンパの開度に基づいて、特性記憶手段を参照し、ファ
ン特性曲線から、流量導出手段は対応するガス流量を求
め、傾斜導出手段は、差圧検出手段によって検出される
差圧と差圧導出手段によって求められる差圧との差に、
傾斜導出手段によって求められる傾斜を乗算した乗算結
果を、流量導出手段によって求められるガス流量に加算
する補正を行い、補正値をガス流量の計測値として導出
する。通風系などの管系抵抗が経時的に変化しても、フ
ァン特性曲線に基づいて補正し、ガス流量の連続的な計
測精度を高めることができる。
According to the present invention, the flow rate deriving means obtains a corresponding gas flow rate from the fan characteristic curve by referring to the characteristic storage means based on the opening degree of the damper detected by the opening degree detecting means. Is the difference between the differential pressure detected by the differential pressure detecting means and the differential pressure determined by the differential pressure deriving means,
The multiplication result obtained by multiplying the inclination obtained by the inclination deriving means is corrected to be added to the gas flow rate obtained by the flow deriving means, and the correction value is derived as a measured value of the gas flow rate. Even if the resistance of the pipe system such as the ventilation system changes over time, it is corrected based on the fan characteristic curve, and the continuous measurement accuracy of the gas flow rate can be improved.

【0009】さらに本発明は、開度を変えて流量調整を
行うダンパ、および回転数一定で運転するファンを備え
る通風系のガス流量計測方法であって、通風系の前後間
の差圧とガス流量との関係を示す抵抗曲線を、予め計測
して記憶しておき、通風系の前後間の差圧を計測し、記
憶されている抵抗曲線に従って、差圧に対応するガス流
量を求め、求められたガス流量を、抵抗曲線の経時変化
を補償するように補正して、補正値をガス流量の計測値
とすることを特徴とするガス流量計測方法である。
Further, the present invention is a method for measuring a gas flow rate of a ventilation system including a damper for adjusting a flow rate by changing an opening degree and a fan operating at a constant rotation speed. A resistance curve indicating a relationship with the gas flow rate is measured and stored in advance, a differential pressure between before and after the ventilation system is measured, and a gas flow rate corresponding to the differential pressure is determined according to the stored resistance curve. A gas flow rate measuring method is characterized in that the determined gas flow rate is corrected so as to compensate for a change with time in the resistance curve, and the correction value is used as a measured value of the gas flow rate.

【0010】本発明に従えば、記憶されている抵抗曲線
から求められるガス流量を、抵抗曲線の経時変化を補正
して、ガス流量を連続計測することができる。
According to the present invention, the gas flow rate obtained from the stored resistance curve can be continuously measured by correcting the change over time in the resistance curve.

【0011】また本発明は、ダンパの開度をパラメータ
として差圧とガス流量との関係を示すファン特性曲線を
予め計測して記憶しておき、前記抵抗曲線の経時変化の
補正は、前記求められたガス流量付近でのファン特性曲
線の傾斜と、計測される差圧との積を、求められたガス
流量に加えて行うことを特徴とする。
Further, according to the present invention, a fan characteristic curve indicating a relationship between a differential pressure and a gas flow rate is measured and stored in advance by using the opening degree of the damper as a parameter. The product is obtained by adding the product of the inclination of the fan characteristic curve near the determined gas flow rate and the measured differential pressure to the determined gas flow rate.

【0012】本発明に従えば、予め記憶されているファ
ン特性曲線を用いて、抵抗曲線の経時変化を予測し、ガ
ス流量の連続計測の精度を向上させることができる。
According to the present invention, it is possible to predict the change with time of the resistance curve using the fan characteristic curve stored in advance, and to improve the accuracy of the continuous measurement of the gas flow rate.

【0013】[0013]

【発明の実施の形態】図1は、本発明の実施の一形態と
してのガス流量計測装置10の概略的な構成を示す。排
ガスライン11には、インラインファン12が挿入さ
れ、一定の回転数で定速駆動される。排ガスライン11
の流量調整のために、たとえばインラインファン12の
上流側にダンパ13が設けられる。ダンパ13の開度を
調整することによって、インラインファン12およびダ
ンパ13を備える通風系の排ガスの流量調整が可能であ
る。ダンパ13の開度は、開度検出装置14によって検
出される。通風系の前後の差圧は、直管部15の長さを
あまり必要としないで、通風系の前後の差圧を、差圧検
出装置16によって正確に検出することができる。排ガ
スライン11に設けられる種々の負荷は、管路系17,
18として示す。
FIG. 1 shows a schematic configuration of a gas flow measuring device 10 according to an embodiment of the present invention. An in-line fan 12 is inserted into the exhaust gas line 11, and is driven at a constant speed at a constant speed. Exhaust gas line 11
For example, a damper 13 is provided upstream of the in-line fan 12 to adjust the flow rate. By adjusting the opening of the damper 13, it is possible to adjust the flow rate of the exhaust gas of the ventilation system including the inline fan 12 and the damper 13. The opening of the damper 13 is detected by an opening detecting device 14. The differential pressure before and after the ventilation system does not require much length of the straight pipe part 15, and the differential pressure before and after the ventilation system can be accurately detected by the differential pressure detecting device 16. The various loads provided in the exhaust gas line 11 are:
Indicated as 18.

【0014】先に説明した図10で、差圧Po 、ガス流
量Qo 、ダンパ開度So の点における流路抵抗の変化の
影響を、線形近似させると、次の第1式が得られる。
In FIG. 10 described above, when the influence of the change in the flow path resistance at the points of the differential pressure Po, the gas flow rate Qo, and the damper opening So is linearly approximated, the following first equation is obtained.

【0015】[0015]

【数1】 (Equation 1)

【0016】図1では、半導体メモリや磁気記憶装置な
どによって実現される特性記憶手段20に、予め計測さ
れるファン特性曲線が記憶される。流量導出手段21
は、ダンパ開度Sに対応してガス流量Qo を求める。傾
斜導出手段22は、ダンパ開度Sに対応して傾斜(∂Q
/∂P)Po を求める。差圧導出手段23は、ダンパ開
度Sに対応してファン前後の差圧Po を求める。演算手
段24は、減算器25、乗算器26および加算器27を
含む。減算器25は、差圧検出装置16が検出する差圧
Pと、差圧導出手段23によって、求められる差圧Po
との差を算出する。乗算器26は、減算器25からの差
と傾斜導出手段22からの傾斜とを乗算する。加算器2
7は、流量導出手段21からのガス流量に乗算器26の
乗算結果を加算し、経時変化を補償したガス流量Qを導
出する。なお、特性記憶手段20および演算手段24
は、コンピュータ装置のメモリアクセス機能とプログラ
ム動作機能とを用いて実現することができる。
In FIG. 1, a fan characteristic curve measured in advance is stored in a characteristic storage means 20 realized by a semiconductor memory, a magnetic storage device, or the like. Flow rate deriving means 21
Determines the gas flow rate Qo corresponding to the damper opening S. The inclination deriving means 22 provides an inclination (ΔQ) corresponding to the damper opening S.
/ ∂P) Find Po. The differential pressure deriving means 23 obtains a differential pressure Po before and after the fan corresponding to the damper opening S. The operation means 24 includes a subtractor 25, a multiplier 26 and an adder 27. The subtractor 25 calculates the differential pressure P detected by the differential pressure detecting device 16 and the differential pressure Po obtained by the differential pressure deriving means 23.
Is calculated. The multiplier 26 multiplies the difference from the subtractor 25 by the slope from the slope deriving means 22. Adder 2
7 adds the result of multiplication by the multiplier 26 to the gas flow rate from the flow rate deriving means 21 and derives a gas flow rate Q that compensates for aging. Note that the characteristic storage means 20 and the arithmetic means 24
Can be realized using the memory access function and the program operation function of the computer device.

【0017】図2は、経時変化の補正についての考え方
を示す。抵抗曲線は、風圧Pの関数またはダンパ開度S
の関数として、第2式のように表される。 Q = f(P) = G(S) …(2)
FIG. 2 shows the concept of correcting a change with time. The resistance curve is a function of the wind pressure P or the damper opening S
Is expressed as in the second equation. Q = f (P) = G (S) (2)

【0018】ここで、ダンパ開度SがSo の場合を考え
る。流量は次の第3式のようになる。 Qo = f(Po)= G(So) …(3)
Here, consider the case where the damper opening S is So. The flow rate is as in the following third equation. Qo = f (Po) = G (So) (3)

【0019】したがって、ガス流量Qは、一般的に、第
1式と実質的に等しい、次の第4式で求められる。な
お、δP=P−Po であり、Po は差圧導出手段23に
よって求められる。
Therefore, the gas flow rate Q is generally determined by the following fourth equation, which is substantially equal to the first equation. Here, δP = P−Po, and Po is determined by the differential pressure deriving means 23.

【0020】[0020]

【数2】 (Equation 2)

【0021】図3は、図1の特性記憶手段20に予め記
憶されるファン特性曲線の一例を示す。このようなH−
Q特性は、ファンの製造時の性能試験の一環として計測
される。ダンパの例としては、ベーンを用いる。縦軸の
差圧は総ヘッドHtot [m]で示し、横軸は流量Q[m
3/sec]を示す。このH−Q特性で、右上がりの曲線
LRは抵抗曲線と示す。右下がりの複数の曲線LDは、
ベーン角度をパラメータとしたファン特性曲線を示す。
環状または右上がりの複数の等高線状の曲線LEは、等
効率曲線を示す。
FIG. 3 shows an example of a fan characteristic curve stored in advance in the characteristic storage means 20 of FIG. Such H-
The Q characteristic is measured as a part of a performance test at the time of manufacturing the fan. A vane is used as an example of the damper. The differential pressure on the vertical axis is represented by the total head Htot [m], and the horizontal axis is the flow rate Q [m
3 / sec]. In this HQ characteristic, a curve LR rising to the right is shown as a resistance curve. A plurality of downward-sloping curves LD are:
4 shows a fan characteristic curve with a vane angle as a parameter.
A plurality of contour lines LE that are annular or upwardly inclined show an iso-efficiency curve.

【0022】図4は、図1の差圧導出手段23によって
差圧を求める際に用いられる差圧とベーン角度との関係
を示す。この関係は、図3の各ファン特性曲線LDと、
抵抗曲線LRとの交点の差圧を、ファン特性曲線LDに
対応するベーン角度でプロットして得られる。
FIG. 4 shows the relationship between the differential pressure and the vane angle used when obtaining the differential pressure by the differential pressure deriving means 23 in FIG. This relationship is obtained by comparing each fan characteristic curve LD in FIG.
The differential pressure at the intersection with the resistance curve LR is obtained by plotting the vane angle corresponding to the fan characteristic curve LD.

【0023】図5は、図1の傾斜導出手段22によって
傾斜を求める際に用いられる傾斜とベーン角度との関係
の例を示す。この関係は、図3の抵抗曲線LRと交わる
点での各ファン特性曲線LDの傾斜を、ファン特性曲線
LDに対応するベーン角度でプロットして得られる。図
3では、ベーン角度15°,20°,25°に対する傾
斜は0.24、30°に対する傾斜は0.47、35°
および36.6°に対する傾斜は0.71となる。
FIG. 5 shows an example of the relationship between the inclination and the vane angle used for obtaining the inclination by the inclination deriving means 22 of FIG. This relationship is obtained by plotting the slope of each fan characteristic curve LD at the point where it intersects with the resistance curve LR in FIG. 3 at a vane angle corresponding to the fan characteristic curve LD. In FIG. 3, the inclination for vane angles of 15 °, 20 °, and 25 ° is 0.24, and the inclination for 30 ° is 0.47 and 35 °.
And the slope for 36.6 ° is 0.71.

【0024】図6は、図1の流量導出手段21によって
ガス流量を求める際に用いられる流量とベーン角度との
関係を示す。この関係は、図3の各ファン特性曲線LD
と、抵抗曲線LRとの交点の流量を、ファン特性曲線L
Dに対応するベーン角度でプロットして得られる。
FIG. 6 shows the relationship between the flow rate and the vane angle used when obtaining the gas flow rate by the flow rate deriving means 21 of FIG. This relationship is represented by the fan characteristic curves LD in FIG.
And the flow rate at the intersection of the resistance curve LR and the fan characteristic curve L
It is obtained by plotting at a vane angle corresponding to D.

【0025】図7および図8は、ガス流量および差圧と
ダンパ開度との関係の経時変化の例をそれぞれ示す。実
線は1年後に測定された正しい流量(特性)を示し、1
点鎖線は使用開始前に想定していた元の特性から得られ
た流量(特性)、2点鎖線は使用開始前の流量(特性)
を示す。縦軸は、ガス流量および差圧をそれぞれ示し、
横軸はダンパ開度を百分率で示す。
FIGS. 7 and 8 show examples of changes over time in the relationship between the gas flow rate and the differential pressure and the damper opening, respectively. The solid line shows the correct flow rate (characteristic) measured one year later,
The dotted line is the flow rate (characteristic) obtained from the original characteristics assumed before the start of use, and the two-dot chain line is the flow rate (characteristic) before the start of use.
Is shown. The vertical axis indicates the gas flow rate and the differential pressure, respectively,
The horizontal axis shows the damper opening in percentage.

【0026】同一ダンパ開度では、図8に示すように、
実際の特性(流量)の方が差圧δPが約20mmAq 高
くなる。元の特性の傾斜と差圧δPとの積は、ダンパ開
度が40%以上で、約2%減少する。したがって、元の
特性を用いると、正しい特性(流量)を用いる場合に比
較して、経時変化によって約2%程度低いガス流量を計
測することになる。
At the same damper opening, as shown in FIG.
In the actual characteristic (flow rate), the differential pressure δP becomes higher by about 20 mmAq. The product of the slope of the original characteristic and the differential pressure δP decreases by about 2% when the damper opening is 40% or more. Therefore, when the original characteristics are used, a gas flow rate that is about 2% lower due to a change with time is measured as compared with the case where correct characteristics (flow rates) are used.

【0027】これに対して、本実施形態のように補正を
行なわなければ、4.0%の誤差となり、ガス流量の計
測精度を高めることができる。図7に示すような正しい
特性を計測するには手間がかかり、しかも時間経過とと
もに誤差が増大するので、計測を繰返して行わなければ
ならなくなる。本実施形態では、ファンの製造時に行う
ファン特性に基づいて精度の良い計測を行うことができ
る。
On the other hand, if the correction is not performed as in the present embodiment, an error of 4.0% is obtained, and the measurement accuracy of the gas flow rate can be improved. Measuring the correct characteristics as shown in FIG. 7 is troublesome, and the error increases with the passage of time, so that the measurement must be repeated. In the present embodiment, accurate measurement can be performed based on the fan characteristics performed at the time of manufacturing the fan.

【0028】本実施形態は、JIS−B8808などに
基づいて各種パラメータやカーブをファン据付後のデー
タにより補正すれば、ファンのもつ最低流量から100
%のレンジにおいて、3%以内の誤差範囲に収めること
ができる。ファンの工場試験における抵抗曲線を含むP
−Q(H−Q)特性を基礎データとして使用しても、5
%以内の計測結果を得ることができる。また、ファンの
多段並行運転に対しても適用することができ、全体のガ
ス流量計測ばかりではなく、ファンの並列負荷分担用の
ガス流量計測にも使用することができる。さらにダンパ
としては、ベーンのみならず、ルーバやバタフライ弁等
でも、本発明を適用することができる。
In the present embodiment, if various parameters and curves are corrected based on JIS-B8808 and the like based on data after installation of the fan, the minimum flow rate of the fan can be reduced to 100%.
In the range of%, it can be kept within the error range of 3% or less. P including resistance curve in factory test of fan
Even if the -Q (HQ) characteristic is used as basic data, 5
% Measurement results can be obtained. Further, the present invention can be applied to the multi-stage parallel operation of the fan, and can be used not only for measuring the entire gas flow rate but also for measuring the gas flow rate for sharing the parallel load of the fans. Further, the present invention can be applied not only to the vane but also to a louver and a butterfly valve as the damper.

【0029】[0029]

【発明の効果】以上のように本発明によれば、開度検出
手段が検出するダンパの開度に基づいて求められるガス
流量は、差圧検出手段によって検出される差圧とファン
特性曲線に基づいて求められる差圧との差に、傾斜導出
手段によって求められる傾斜を乗算した乗算結果を加算
して補正されるので、通風系などの管系抵抗が経時的に
変化しても、連続ガス流量計として使用することができ
る。
As described above, according to the present invention, the gas flow rate obtained based on the opening degree of the damper detected by the opening degree detecting means is determined by the differential pressure detected by the differential pressure detecting means and the fan characteristic curve. The difference between the pressure and the differential pressure obtained based on the pressure is corrected by adding a multiplication result obtained by multiplying the gradient obtained by the gradient deriving means. It can be used as a flow meter.

【0030】さらに本発明によれば、記憶されている抵
抗曲線から求められる基本流量を、ダンパの開度に従っ
て、抵抗曲線の経時変化を補正して、ガス流量を連続計
測することができる。
Further, according to the present invention, it is possible to continuously measure the gas flow rate by correcting the basic flow rate determined from the stored resistance curve with the passage of time of the resistance curve according to the opening degree of the damper.

【0031】また本発明によれば、予め記憶されている
ファン特性曲線を用いて、管系抵抗の経時変化を予測
し、ガス流量の連続計測の精度を向上させることができ
る。
Further, according to the present invention, it is possible to predict the temporal change of the pipe system resistance by using the fan characteristic curve stored in advance, and to improve the accuracy of the continuous measurement of the gas flow rate.

【0032】すなわち本発明では、通風系を構成するフ
ァンの特性をそのまま利用して、通風系の経時的変化に
対応するように補正して、連続的にガス流量を計測する
ことができる。これは、従来のガス流量計がベンチュリ
やオリフィスをガス流の中に設け、検出端を挿入して抵
抗(差圧)として変化をとらえて流量の計測を行う必要
があるのに比較して、著しく相違する。
That is, in the present invention, it is possible to continuously measure the gas flow rate by making use of the characteristics of the fan constituting the ventilation system as it is and correcting it so as to correspond to the temporal change of the ventilation system. This is in comparison with the conventional gas flow meter, which requires that a venturi or orifice be provided in the gas flow, and that the detection end be inserted and the change in resistance (differential pressure) be measured to measure the flow rate. Significantly different.

【0033】また、本発明の流量計測範囲がファンの最
低流量〜100%で計測可能なため、従来の計測方式で
30%〜100%となる流量計測範囲よりも大きくとる
ことができる。精度もフルスケールに対する%精度では
なく、器差精度のため、低負荷になればなるほど、従来
の計測方式に対する絶対精度は高くなる。
Further, since the flow rate measurement range of the present invention can be measured at the minimum flow rate of the fan to 100%, it can be set larger than the flow rate measurement range of 30% to 100% in the conventional measurement method. Since the accuracy is not the% accuracy with respect to the full scale, but the instrument error accuracy, the lower the load, the higher the absolute accuracy with respect to the conventional measurement method.

【0034】また、流量計測のための圧力損失は、その
ままファンの動力の増加につながるけれども、本発明で
は流量計測用に差圧を発生させる必要が無いので、装置
の動力源単価の低減を図ることができる。
Although the pressure loss for measuring the flow rate directly leads to an increase in the power of the fan, the present invention does not require the generation of a differential pressure for measuring the flow rate. be able to.

【0035】さらに、オリフィスなどを用いる従来から
一般的な流量計測装置では、検出端の前後に整流のため
の直管長を必要とする。このため、設備が大型化するけ
れども、本発明では直管長は不要となり、設備の小型化
を図ることができる。
Further, a conventional general flow rate measuring device using an orifice or the like requires a straight pipe length for rectification before and after the detection end. For this reason, although the equipment is enlarged, the straight pipe length is not required in the present invention, and the equipment can be downsized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態の概略的な構成を示すブ
ロック図である。
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of the present invention.

【図2】図1の実施形態で補正を行う原理を示すグラフ
である。
FIG. 2 is a graph showing a principle of performing correction in the embodiment of FIG.

【図3】図1の実施形態の特性記憶手段20に記憶され
るファン特性の一例を示すグラフである。
FIG. 3 is a graph showing an example of fan characteristics stored in a characteristic storage unit 20 of the embodiment of FIG.

【図4】図3のグラフから得られるベーン角度と差圧と
の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the vane angle and the differential pressure obtained from the graph of FIG.

【図5】図3のグラフから得られるベーン角度と傾斜と
の関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the vane angle and the inclination obtained from the graph of FIG.

【図6】図3のグラフから得られるベーン角度と流量と
の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the vane angle and the flow rate obtained from the graph of FIG.

【図7】ダンパ開度とガス流量との関係の経時変化を示
すグラフである。
FIG. 7 is a graph showing a temporal change in a relationship between a damper opening degree and a gas flow rate.

【図8】ダンパ開度と差圧との関係の経時変化を示すグ
ラフである。
FIG. 8 is a graph showing a temporal change in a relationship between a damper opening and a differential pressure.

【図9】従来からの流量計測装置の概略的な構成を示す
簡略化した断面図である。
FIG. 9 is a simplified cross-sectional view showing a schematic configuration of a conventional flow rate measuring device.

【図10】ガス流量と前後差圧との関係を示す抵抗曲線
の経時変化を示すグラフである。
FIG. 10 is a graph showing a temporal change of a resistance curve showing a relationship between a gas flow rate and a differential pressure between before and after.

【符号の説明】 10 ガス流量計測装置 11 排ガスライン 12 インラインファン 13 ダンパ 14 開度検出装置 16 差圧検出装置 17 管路系 20 特性記憶手段 21 流量導出手段 22 傾斜導出手段 23 差圧導出手段 24 演算手段 25 減算器 26 乗算器 27 加算器DESCRIPTION OF SYMBOLS 10 Gas flow measuring device 11 Exhaust gas line 12 In-line fan 13 Damper 14 Openness detecting device 16 Differential pressure detecting device 17 Pipe line system 20 Characteristic storage means 21 Flow rate deriving means 22 Inclination deriving means 23 Differential pressure deriving means 24 Arithmetic means 25 Subtractor 26 Multiplier 27 Adder

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01F 1/34 - 1/50 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01F 1/34-1/50

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 開度を変更してガスの流量調整を行うダ
ンパ、および回転数一定で運転するファンを備える通風
系のガス流量計測装置であって、 通風系の前後間の差圧を検出する差圧検出手段と、 ダンパの開度を検出する開度検出手段と、 通風系の前後の差圧とガス流量との関係を示すファン特
性曲線が、ダンパの開度をパラメータとして、予め計測
されて記録される特性記憶手段と、 特性記憶手段を参照し、開度検出手段によって検出され
る開度に基づいて、ファン特性曲線から対応するガス流
量を求める流量導出手段と、 特性記憶手段を参照し、開度検出手段によって検出され
る開度に基づいて、ファン特性曲線から対応する傾斜を
求める傾斜導出手段と、 特性記憶手段を参照し、開度検出手段によって検出され
る開度に基づいて、ファン特性曲線から対応する差圧を
求める差圧導出手段と、 差圧検出手段によって検出される差圧と差圧導出手段に
よって求められる差圧との差に、傾斜導出手段によって
求められる傾斜を乗算した乗算結果を、流量導出手段に
よって求められるガス流量に加算する補正を行い、補正
値をガス流量の計測値として導出する演算手段とを含む
ことを特徴とするガス流量計測装置。
1. A ventilation gas flow measuring device comprising a damper for adjusting a gas flow rate by changing an opening degree and a fan operating at a constant rotation speed, wherein a differential pressure between before and after the ventilation system is measured. The differential pressure detecting means for detecting, the opening degree detecting means for detecting the opening degree of the damper, and the fan characteristic curve showing the relationship between the differential pressure before and after the ventilation system and the gas flow rate are obtained by using the opening degree of the damper as a parameter in advance. A characteristic storage means that is measured and recorded; a flow rate deriving means for referring to the characteristic storage means and obtaining a corresponding gas flow rate from a fan characteristic curve based on the opening detected by the opening detection means; And an inclination deriving means for obtaining a corresponding inclination from the fan characteristic curve based on the opening degree detected by the opening degree detecting means, and an opening degree detected by the opening degree detecting means by referring to the characteristic storage means. Based on Differential pressure deriving means for obtaining a corresponding differential pressure from the fan characteristic curve, and the difference between the differential pressure detected by the differential pressure detecting means and the differential pressure obtained by the differential pressure deriving means, A gas flow measuring device, comprising: a correction unit that corrects the multiplied result to be added to a gas flow rate obtained by a flow rate deriving unit, and derives a correction value as a measured value of the gas flow rate.
【請求項2】 開度を変えて流量調整を行うダンパ、お
よび回転数一定で運転するファンを備える通風系のガス
流量計測方法であって、 通風系の前後間の差圧とガス流量との関係を示す抵抗曲
線を、予め計測して記憶しておき、 通風系の前後間の差圧を計測し、 記憶されている抵抗曲線に従って、差圧に対応するガス
流量を求め、 求められたガス流量を、抵抗曲線の経時変化を補償する
ように補正して、補正値をガス流量の計測値とすること
を特徴とするガス流量計測方法。
2. A method for measuring a gas flow rate of a ventilation system, comprising a damper for adjusting a flow rate by changing an opening degree, and a fan operating at a constant rotation speed, comprising: a differential pressure between before and after the ventilation system; Is measured and stored in advance, the differential pressure between before and after the ventilation system is measured, and the gas flow rate corresponding to the differential pressure is determined according to the stored resistance curve. A gas flow rate measuring method, wherein a gas flow rate is corrected so as to compensate for a change with time in a resistance curve, and the correction value is used as a measured value of the gas flow rate.
【請求項3】 ダンパの開度をパラメータとして差圧と
ガス流量との関係を示すファン特性曲線を予め計測して
記憶しておき、 前記抵抗曲線の経時変化の補正は、前記求められたガス
流量付近でのファン特性曲線の傾斜と、計測される差圧
との積を、求められたガス流量に加えて行うことを特徴
とする請求項2記載のガス流量計測方法。
3. A fan characteristic curve indicating a relationship between a differential pressure and a gas flow rate is measured and stored in advance using the opening degree of the damper as a parameter. 3. The gas flow measuring method according to claim 2, wherein the product of the slope of the fan characteristic curve near the flow rate and the measured differential pressure is added to the determined gas flow rate.
JP9360670A 1997-12-26 1997-12-26 Gas flow measuring device and method Expired - Fee Related JP3053603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9360670A JP3053603B2 (en) 1997-12-26 1997-12-26 Gas flow measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9360670A JP3053603B2 (en) 1997-12-26 1997-12-26 Gas flow measuring device and method

Publications (2)

Publication Number Publication Date
JPH11190646A JPH11190646A (en) 1999-07-13
JP3053603B2 true JP3053603B2 (en) 2000-06-19

Family

ID=18470413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9360670A Expired - Fee Related JP3053603B2 (en) 1997-12-26 1997-12-26 Gas flow measuring device and method

Country Status (1)

Country Link
JP (1) JP3053603B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854641B2 (en) * 2011-05-27 2016-02-09 株式会社テクノ菱和 Variable air volume control device
MY195220A (en) 2016-12-16 2023-01-11 Murata Manufacturing Co Cpap Device
TWI717821B (en) * 2018-09-06 2021-02-01 日商住友重機械工業股份有限公司 Support devices, support methods, and support program products

Also Published As

Publication number Publication date
JPH11190646A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
US5947680A (en) Turbomachinery with variable-angle fluid guiding vanes
RU2534942C2 (en) Detection of blockages and interruptions in aspirating smoke detector (asd)
US8408878B2 (en) Flow control for fluid handling system
US20060116067A1 (en) Method and apparatus for determining critical pressure of variable air volume heating, ventilating, and air-conditioning systems
JP2014145763A (en) Systems and methods for measuring flow profile in turbine engine flow path
JP6195380B2 (en) Environmental test system
EP2863137A1 (en) Systems and methods for ventilating a building
CN112240579B (en) Range hood and control method thereof
JP3053603B2 (en) Gas flow measuring device and method
JP5416055B2 (en) TVOC detection method, detection apparatus, and outside air introduction amount control system
US7104460B2 (en) Method and controller for determining carbon dioxide emissions from a recirculating air heater
JP2006343136A (en) Partial pressure detector of steam, suction flow rate detector of engine and internal pressure detector of collector
KR101963411B1 (en) Constant Airflow control method
CN110824109A (en) Evaluation test method and test stand for dust holding performance of high-efficiency air filter material
WO2013159458A1 (en) Motor and constant air volume control method for air-conditioning fan system
JP2004198271A (en) Flow measurement device in duct
CN113250799A (en) Backpressure data detection method, device and system
CN114777857B (en) Fan air volume online accurate measurement method based on static pressure
JP2571615B2 (en) Abnormality detection device for temperature and humidity measurement means
KR102326374B1 (en) Power switching module having the isolated gate driver
JPH0633700A (en) Tunnel ventilation control system
JP3401208B2 (en) Air conditioning control system
Phelan In-situ performance testing of fans and pumps for energy analysis
JPH03156129A (en) Turbine inlet port temperature detecting device for gas turbine with heat exchanger
CN114810647A (en) Online accurate measurement method for fan air volume based on power

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees