JP2004198271A - Flow measurement device in duct - Google Patents

Flow measurement device in duct Download PDF

Info

Publication number
JP2004198271A
JP2004198271A JP2002367622A JP2002367622A JP2004198271A JP 2004198271 A JP2004198271 A JP 2004198271A JP 2002367622 A JP2002367622 A JP 2002367622A JP 2002367622 A JP2002367622 A JP 2002367622A JP 2004198271 A JP2004198271 A JP 2004198271A
Authority
JP
Japan
Prior art keywords
differential pressure
outside air
gallery
air
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002367622A
Other languages
Japanese (ja)
Inventor
Takaharu Saegusa
隆晴 三枝
Ryuta Dazai
龍太 太宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2002367622A priority Critical patent/JP2004198271A/en
Publication of JP2004198271A publication Critical patent/JP2004198271A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow measurement device in a duct composed by improving work for adjustment and maintenance, and an issue of accuracy assurance. <P>SOLUTION: One end 3-3a of a tube 3-3 is positioned in front (on the upstream side) of a louver 1. One end 3-4a of a tube 3-4 is positioned behind (on the downstream side of) the louver 1. An airflow measurement device 3 is equipped with a differential pressure measurement part 3-1 and an actual airflow measurement part 3-2. In the measurement part 3-1, the difference between pressure obtained through the tube 3-3 and pressure through the tube 3-4 is measured as differential pressure ΔPG before and behind the louver 1; and in the actual airflow measurement part 3-2, actual airflow WG of outside air introduction is obtained from the measured differential pressure PG. Since the pressure resistance of the louver 1 is constant, the relationship between the differential pressure ΔPG before and behind the louver 1 and the flow rate WG of the outside air passing the louver 1 is exclusive, so that the actual flow rate WG of the outside air introduction can be obtained from the relationship. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、ダクト内を流れる空気などの流体の流量を計測するダクト内流量計測装置に関するものである。
【0002】
【従来の技術】
従来より、建物における室内の空気調和を行う場合、空調機より給気ダクトを介して冷風や温風を室内へ送っている。このような空気調和システムでは、室内からの還気の一部を給気に戻すと共に、室内の換気量を確保するために、室内への給気に外気を取り入れるようにしている。春秋の涼しい時期を除くと、暑い(寒い)空気は空調機の処理熱負荷となるので、外気の取り入れ量は必要最小限とすることが望ましい。
【0003】
一般に、外気の取り入れは外気ダクトを介して行われ、外気ダクトの外気取入口には、雨や風をよけたり、異物の混入を防いだりするための鎧戸状のガラリが設けられている。図4にガラリの正面図を示す。このガラリ1は、図5に示すように、外気ダクト2内を流れる外気の流れ方向(A方向)に対して所定の傾斜角αで固定されたブレード1−1〜1−nを有しており、ブレード1−1〜1−nの隙間を外気が通過し、図示されていない空調機に引き込まれる。
【0004】
〔風速センサを用いての実風量の計測〕
外気の取り入れ量の制御に際し、従来は、外気ダクト内に風速センサを設置し、この風速センサによって外気ダクト内の風速を計測することによって外気取り入れの実風量を求め、この実風量を必要外気取入量に一致させるように、空調機における外気ダンパ,排気ダンパ,還気ダンパの開度を制御するようにしている。この場合、使用される風速センサとしては、熱線式や差圧式などの風速センサが用いられる。
【0005】
しかしながら、風速センサを用いて外気取り入れの実風量を求めるものとした場合、外気ダクトの曲がり、障害物、絞りなどの影響により断面の風速分布が一様でないので、計測点を複数点設けたとしても、正確に計測できないことがある。
【0006】
また、ダクト内に設けられた白金素子などに電流を流して発熱させ、素子と周囲空気との熱交換量を風速に換算する熱線式風速センサは、他の方式と比べて、微小風速の計測には適している。しかし、外気ダクトでは屋外と同条件の周囲雰囲気になるので、粉塵による経年変化や温湿度変化によるドリフトが発生する。このため、安定かつ正確な計測が行えないという問題がある。
【0007】
また、差圧式風速センサの場合、全圧(動圧+静圧)と静圧との差をピトー管などで計測して風速に換算するが、微小風量域(例えば、1m/s以下)では動圧が小さくなるので高精度の計測が行えない。
【0008】
〔差圧センサを用いての実風量の計測〕
そこで、最近では、外気ダンパの入口側と出口側との間の差圧(外気ダンパの前後の差圧)を差圧センサによって計測し、この差圧と外気ダンパの現在の開度とから外気取り入れの実風量を求め、この実風量を必要外気取入量に一致させるように、還気ダンパの開度を制御するという方法が考えられている(例えば、特許文献1、非特許文献1参照)。
【0009】
この方法では、差圧センサを使用するので熱線式風速センサを使用した場合のような粉塵による経年変化や温湿度変化によるドリフトが発生しにくく、安定かつ正確に外気取り入れの実風量を計測することができ、メンテナンスの負担も軽減される。また、この方法は、差圧式風速センサを使用した場合のような動圧を計測する方式ではなく、外気ダンパの入口側と出口側との静圧の差ΔP=K・W2 を計測する方式であるので(K:圧力抵抗、W:風量)、圧力抵抗Kは外気ダンパの現在角度によって変化はするが、その値は大きく、Wが小さくてもΔPの精度にほとんど影響しない。これにより、微小風量域でも高精度に、外気取り入れの実風量を計測することができる。
【0010】
【特許文献1】
特開平11−106408号公報(段落〔0016〕〜〔0020〕、図1)
【非特許文献1】
「流体の力学」、安藤常世著、1998年 第15刷、62〜65頁
【0011】
【発明が解決しようとする課題】
しかしながら、上述した外気ダンパの前後の差圧と外気ダンパの現在開度とから外気取り入れの実風量を求める方法では、外気ダンパの圧力抵抗Kがその開度によって変化するので、外気ダンパの前後の差圧と風量との関係を外気ダンパの開度をパラメータとして事前に調べておき、関係式や特性テーブルなどとして設定しておく必要があり、この風量計測のための準備作業に過大な手間と工数を要するという問題があった。
また、外気ダンパの現在開度は、実測値ではなく、指令値から求めるようにしている。この場合、外気ダンパの開閉機構だけではなく、外気ダンパの開度を制御するモータ自体の開閉動作にも誤差やヒステリシスがあるので、数%の開度誤差が生じるのが普通である。この数%の開度誤差によって、外気取り入れの実風量の計測値に誤差が生じてしまう。
【0012】
本発明はこのような課題を解決するためになされたもので、その目的とするところは、調整・保守の手間や精度保証のしにくさを改善することができるダクト内流量計測装置を提供することにある。
【0013】
【課題を解決するための手段】
このような目的を達成するために本発明は、ダクト内を流れる流体の流れ方向に対して傾斜して固定されたブレードを有するガラリの前後の差圧を計測する差圧計測手段と、この差圧計測手段によって計測された差圧より、予め定められている差圧と流量との関係に基づいて、ガラリを通過する流体の実流量を求める実流量計測手段とを設けたものである。
【0014】
この発明によれば、圧力抵抗が一定であるガラリの前後の差圧が計測され、この計測された差圧より、予め定められている差圧と流量との関係に基づいて、ガラリを通過する流体の実流量が求められる。
【0015】
ガラリの前後の差圧は風量の2乗に比例する(ベルヌーイの定理)。すなわち、本発明において、ガラリの前後の差圧をΔPG、ガラリの圧力抵抗をKG、ガラリを通過する流体の実流量をWGとした場合、ΔPGはΔPG=KG・WG2 と表される。ここで、ガラリの圧力抵抗KGは一定であるので、ガラリの前後の差圧ΔPGとガラリを通過する流体の実流量WGとの関係は唯一つとなる。したがって、このガラリの前後の差圧ΔPGとガラリを通過する流体の実流量WGとの唯一つの関係を事前に調べておくのみで、この関係からガラリを通過する流体の実流量WGを求めることができる。
【0016】
例えば、ガラリの圧力抵抗KGを求め、この圧力抵抗KGが求められたΔPG=KG・WG2 を変形して得られる唯一の関係式(WG=(ΔPG/KG)1/2 )を記憶させておき、この式にΔPGを代入して実流量WGを求めたり、ΔPG=KG・WG2 で表される唯一の特性曲線を記憶させておき、この特性曲線からガラリを通過する流体の実流量WGを求めたりすることができる。
【0017】
なお、本発明においては、例えば、第1の管をガラリに組み付け、この第1の管の一端をガラリのガラリの前(上流側)に位置させ、第2の管の一端をガラリのガラリの後(下流側)に位置させ、第1の管を通してこの第1の管の他端から得られる圧力と第2の管を通してこの第2の管の他端から得られる圧力との差を差圧として計測するようにしてもよい。第1の管をガラリの後、第2の管をガラリの前に位置させてもよい。また、第1の管は必ずしもガラリに組み付けなくてもよい。
【0018】
【発明の実施の形態】
以下、本発明を図面に基づいて詳細に説明する。図1は本発明に係るダクト内流量計測装置の一実施の形態の設置状態を示す図である。
【0019】
同図において、1はガラリ、2は外気ダクト、3は本発明に係るダクト内流量計測装置の一実施の形態である風量計測装置である。ガラリ1は、先にも説明したように、外気ダクト2内を流れる外気の流れ方向に対して所定の傾斜角αで固定されたブレード1−1〜1−nを有しており、ブレード1−1〜1−nの隙間を外気が通過する。ガラリ1において、ブレード1−1〜1−nは、通過する外気に対して一定の固定抵抗成分となっている。すなわち、ガラリ1の圧力抵抗KGは一定である。
【0020】
本実施の形態では、この圧力抵抗KGが一定であるガラリ1に注目し、このガラリ1の前後の差圧ΔPGより、風量計測装置3においてガラリ1を通過する外気の実風量(外気取り入れの実風量)WGを求めるようにしている。風量計測装置3は、ガラリ1の前後の差圧ΔPGを計測する差圧計測部3−1と、計測された差圧ΔPGより外気取り入れの実風量WGを求める実風量計測部3−2とを有している。
【0021】
本実施の形態において、差圧計測部3−1へのガラリ1の前後の圧力は、両端が開口された管3−3および管3−4を用いて導くようにしている。管3−3はガラリ1に組み付けられており、その一端3−3aがガラリ1の前(上流側)に位置し、その他端3−3bが差圧計測部3−1の圧力導入部に位置している。また、管3−4は、その一端3−4aがガラリ1の後(下流側)に位置し、その他端3−4bが差圧計測部3−1の圧力導入部に位置している。
【0022】
図2(a),(b),(c),(d)は管3−3のガラリ1への組み付け状況を例示する正面図である。図2(a)では、ガラリ1の枠1Aに管3−3を通し、管3−3の一端3−3aをガラリ1の前に位置させている。図2(b)では、ガラリ1のブレード1−1〜1−nの1つに管3−3を這わせ、管3−3の一端3−3aをガラリ1の前に位置させている。ビルの上下風や横風が管3−3の開口部にあたると、その影響を計測してしまう虞れがある。そこで、図2(c)では管3−3の開口部を背面に回し、ビル風の影響を防いでいる。図2(d)では、管3−3を左右に1個ずつ設け、その根元部を合流させて1本としている。これによって、横風によって生じる正負圧を相殺できる。なお、ガラリ1は風雨に曝されるため、少なくとも管3−3は、劣化の少ない材質で丈夫なものが望ましい。
【0023】
風量計測装置3において、差圧計測部3−1は公知の差圧計を備え、この差圧計によって、管3−3を通してこの管3−3の他端3−3bから得られる圧力と管3−4を通してこの管3−4の他端3−4bから得られる圧力との差をガラリ1の前後の差圧ΔPGとして計測し、この計測した差圧ΔPGに応じた信号を出力する。
【0024】
風量計測装置3において、実風量計測部3−2は、演算装置やメモリを備え、差圧計測部3−1からの差圧ΔPGに応じた信号を入力とする。実風量計測部3−2では、差圧計測部3−1によって計測されたガラリ1の前後の差圧ΔPGより外気取り入れの実風量WGを求める。ここで、ガラリ1の前後の差圧ΔPGは、ベルヌーイの定理によりΔPG=KG・WG2 として表される。この式において、ガラリ1の圧力抵抗KGは一定であるので、ガラリ1の前後の差圧ΔPGとガラリ1を通過する外気の風量WGとの関係は唯一つとなる。
【0025】
本実施の形態では、このガラリ1の前後の差圧ΔPGとガラリ1を通過する外気の風量WGとの唯一つの関係を事前に調べ、この関係を実風量計測部3−2のメモリに設定している。例えば、ガラリ1の圧力抵抗KGを求め、この圧力抵抗KGが求められたΔPG=KG・WG2 を変形して得られる唯一の関係式(WG=(ΔPG/KG)1/2 )を実風量計測部3−2のメモリに設定している。実風量計測部3−2の演算装置は、メモリに格納されているこの関係式に、計測された差圧ΔPGを代入することによって、外気取り入れの実風量WGを得る。なお、ΔPG=KG・WG2 で表される唯一の特性曲線をテーブル形式で記憶させておき、この特性曲線から外気取り入れの実風量WGを得るようにしたりしてもよい。
【0026】
したがって、本実施の形態によれば、ガラリ1の前後の差圧ΔPGとガラリ1を通過する外気の実風量WGとの唯一つの関係を事前に調べておくのみでよく、外気ダンパの前後の差圧と外気ダンパの現在開度とから外気取り入れの実風量を求める従来の方法と比較し、風量計測のための準備作業に要する手間と工数を激減させることができる。また、外気ダンパの開度とは無関係となるので、外気ダンパに開度誤差があっても高精度に外気取り入れの実風量を計測することができる。
【0027】
なお、上述した実施の形態では、管3−3をガラリ1に組み付けるようにしたが、すなわちガラリ1の枠1Aに通したり、ガラリ1のブレード1−1〜1−nの1つに這わせるようにしたが、管3−3をガラリ1に組み付けず、管3−4と同様にしてガラリ1の前に設けるようにしてもよい。
【0028】
また、上述した実施の形態では、外気ダクト2を流れる外気(空気)の実風量を計測する例で説明したが、必ずしもダクトは外気ダクトでなくてもよく、また測定対象の流体も空気に限られるものでもない。
【0029】
〔風量計測装置3を使用した空気調和システム〕
図3に上述した風量計測装置3を使用した空気調和システムの要部を示す。同図において、4は空調機であり、5は外気取入量制御装置である。
空調機4において、4−1は冷却コイル、4−2は加熱コイル、4−3は送風ファン、4−4は還風ファン、4−5は外気ダンパ、4−6は排気ダンパ、4−7は還気ダンパである。
【0030】
この空調機4では、送風ファン4−3からの給気SAを給気ダクトを介して室内へ送り、室内からの還気RAを還風ファン4−4を介して排気ダンパ4−6を通し排気ExAとして排出するようにしている。また、還気ダンパ4−7を通して、還気RAの一部を給気SAに戻すようにしている。また、外気ダクト2より引き込まれる外気OAを外気ダンパ4−5を通して取り入れ、この外気OAを還気RAに加えるようにしている。
【0031】
外気取入量制御装置5は制御演算部5−1とダンパ開度制御部5−2とを備えている。制御演算部5−1は、風量計測装置3からの外気取り入れの実風量WG(WGpv)と上位装置から設定される必要外気取入量WGspとを入力し、外気取り入れの実風量WGpvと必要外気取入量WGspとの差を演算し、還気ダンパ開度制御部5−2へ送る。
【0032】
ダンパ開度制御部5−2は、制御演算部5−1からの外気取り入れの実風量WGpvと必要外気取入量WGspとの差に応じ、WGpvとWGspとが一致するように外気ダンパ4−5,排気ダンパ4−6,還気ダンパ4−7の開度を制御する。これにより、外気OAの量が必要外気取入量WGspに合わせ込まれ、常に適切な室内換気が行われるようになる。
【0033】
【発明の効果】
以上説明したことから明らかなように本発明によれば、圧力抵抗が一定であるガラリの前後の差圧を計測し、この計測した差圧より予め定められている差圧と流量との関係に基づいてガラリを通過する流体の実流量を求めるようにしたので、ガラリの圧力抵抗とガラリの前後の差圧との唯一つの関係を事前に調べておくのみで、この関係からガラリを通過する流体の実流量を求めることができるようになり、調整・保守の手間や精度保証のしにくさを改善することができる。
【図面の簡単な説明】
【図1】本発明に係るダクト内流量計測装置の一実施の形態(風量計測装置)の設置状態を示す図である。
【図2】ガラリへの差圧計測のための管の組み付け状況を例示する正面図である。
【図3】図1に示した風量計測装置を使用した空気調和システムの要部を示す図である。
【図4】外気ダクトの外気取入口に設けられるガラリの一例を示す正面図である。
【図5】外気ダクトへのガラリの設置状況を示す側断面図である。
【符号の説明】
1…ガラリ、1−1〜1−n…ブレード、1A…枠、2…外気ダクト、3…風量計測装置、3−1…差圧計測部、3−2…実風量計測部、3−3,3−4…管、3−3a,3−4a…一端、3−3b,3−4b…他端、4…空調機、4−1…冷却コイル、4−2…加熱コイル、4−3…送風ファン、4−4…還風ファン、4−5…外気ダンパ、4−6…排気ダンパ、4−7…還気ダンパ、5…外気取入量制御装置、5−1…制御演算部、5−2…ダンパ開度制御部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a duct flow rate measuring device for measuring a flow rate of a fluid such as air flowing in a duct.
[0002]
[Prior art]
BACKGROUND ART Conventionally, when air conditioning in a room in a building is performed, cool air or warm air is sent from an air conditioner to a room through an air supply duct. In such an air conditioning system, part of the return air from the room is returned to the air supply, and outside air is taken into the air supply to the room in order to secure the amount of ventilation in the room. Except during the cool seasons of spring and autumn, hot (cold) air becomes the processing heat load of the air conditioner, so it is desirable to minimize the intake of outside air.
[0003]
Generally, the outside air is taken in through an outside air duct, and an outside air intake of the outside air duct is provided with a door-shaped louver for preventing rain and wind and preventing entry of foreign matter. FIG. 4 shows a front view of the rattle. As shown in FIG. 5, the gallery 1 has blades 1-1 to 1-n fixed at a predetermined inclination angle α with respect to the flow direction (A direction) of the outside air flowing in the outside air duct 2. The outside air passes through the gap between the blades 1-1 to 1-n and is drawn into an air conditioner (not shown).
[0004]
[Measurement of actual air volume using wind speed sensor]
Conventionally, when controlling the amount of outside air intake, a wind speed sensor is installed in the outside air duct, and the wind speed sensor measures the wind speed inside the outside air duct to determine the actual amount of outside air intake. The openings of the outside air damper, the exhaust damper, and the return air damper in the air conditioner are controlled so as to match the input amount. In this case, as a wind speed sensor to be used, a wind speed sensor of a hot wire type, a differential pressure type, or the like is used.
[0005]
However, if the actual air volume of the outside air intake is obtained using a wind speed sensor, the wind speed distribution in the cross section is not uniform due to the effects of bending of the outside air duct, obstacles, throttles, etc. May not be able to measure accurately.
[0006]
In addition, a hot-wire type wind speed sensor that converts the amount of heat exchange between the element and the surrounding air to wind speed by passing an electric current through a platinum element etc. Suitable for However, since the outside air duct has an ambient atmosphere under the same conditions as the outdoors, drift due to aging due to dust and changes in temperature and humidity occur. Therefore, there is a problem that stable and accurate measurement cannot be performed.
[0007]
In the case of a differential pressure type wind speed sensor, the difference between the total pressure (dynamic pressure + static pressure) and the static pressure is measured with a pitot tube or the like and converted into a wind speed, but in a small air volume range (for example, 1 m / s or less). High precision measurement cannot be performed because the dynamic pressure is small.
[0008]
[Measurement of actual air volume using differential pressure sensor]
Therefore, recently, a differential pressure between the inlet side and the outlet side of the outside air damper (the pressure difference before and after the outside air damper) is measured by a differential pressure sensor, and the outside air damper is measured based on the differential pressure and the current opening degree of the outside air damper. A method has been considered in which the actual intake air volume is determined, and the opening degree of the return air damper is controlled so that the actual air volume matches the required external air intake amount (for example, see Patent Document 1 and Non-Patent Document 1). ).
[0009]
In this method, since the differential pressure sensor is used, drift due to aging or temperature and humidity changes due to dust unlike the case of using a hot-wire type wind speed sensor is unlikely to occur, and the actual air volume of the outside air intake should be measured stably and accurately. And the burden of maintenance is reduced. Further, this method is not a method of measuring a dynamic pressure as in the case of using a differential pressure type wind speed sensor, but a method of measuring a difference ΔP = K · W 2 of a static pressure between an inlet side and an outlet side of an outside air damper. (K: pressure resistance, W: air volume), the pressure resistance K changes depending on the current angle of the outside air damper, but its value is large, and even if W is small, the precision of ΔP is hardly affected. This makes it possible to accurately measure the actual air volume for taking in outside air even in a minute air volume region.
[0010]
[Patent Document 1]
JP-A-11-106408 (paragraphs [0016] to [0020], FIG. 1)
[Non-patent document 1]
"Mechanics of Fluids", written by Tsuneyo Ando, 1998, 15th edition, pp. 62-65
[Problems to be solved by the invention]
However, in the above-described method of calculating the actual air volume of the outside air intake from the pressure difference before and after the outside air damper and the current opening degree of the outside air damper, the pressure resistance K of the outside air damper changes according to the opening degree. It is necessary to check the relationship between the differential pressure and the air flow in advance using the opening degree of the outside air damper as a parameter, and to set it as a relational expression or characteristic table, etc. There was a problem that it required man-hours.
Further, the current opening of the outside air damper is obtained not from an actually measured value but from a command value. In this case, not only the opening / closing mechanism of the outside air damper but also the opening / closing operation of the motor itself for controlling the opening degree of the outside air damper has errors and hysteresis. Due to the opening degree error of several%, an error occurs in the measured value of the actual air flow rate of the outside air intake.
[0012]
The present invention has been made to solve such a problem, and an object of the present invention is to provide a flow rate measuring device in a duct capable of improving the trouble of adjustment and maintenance and the difficulty in guaranteeing accuracy. It is in.
[0013]
[Means for Solving the Problems]
In order to achieve such an object, the present invention provides a differential pressure measuring means for measuring a differential pressure before and after a gallery having blades fixedly inclined with respect to a flow direction of a fluid flowing through a duct, And an actual flow rate measuring means for obtaining an actual flow rate of the fluid passing through the gallery based on a predetermined relationship between the differential pressure and the flow rate based on the differential pressure measured by the pressure measuring means.
[0014]
According to the present invention, the differential pressure before and after the galling with a constant pressure resistance is measured, and from the measured differential pressure, the liquid passes through the galling based on a predetermined relationship between the differential pressure and the flow rate. The actual flow rate of the fluid is determined.
[0015]
The differential pressure before and after the galling is proportional to the square of the air volume (Bernoulli's theorem). That is, in the present invention, when the differential pressure before and after the rag is ΔPG, the pressure resistance of the rag is KG, and the actual flow rate of the fluid passing through the rag is WG, ΔPG is expressed as ΔPG = KG · WG 2 . Here, since the pressure resistance KG of the dust is constant, there is only one relationship between the differential pressure ΔPG before and after the dust and the actual flow rate WG of the fluid passing through the dust. Therefore, it is possible to obtain the actual flow rate WG of the fluid passing through the gallery from only this relationship by previously examining only the single relationship between the differential pressure ΔPG before and after the gallery and the actual flow rate WG of the fluid passing through the gallery. it can.
[0016]
For example, the pressure resistance KG of the rag is obtained, and the only relational expression (WG = (ΔPG / KG) 1/2 ) obtained by deforming ΔPG = KG · WG 2 from which the pressure resistance KG is obtained is stored. The actual flow rate WG is obtained by substituting ΔPG into this equation, or the only characteristic curve represented by ΔPG = KG · WG 2 is stored, and the actual flow rate WG of the fluid passing through the gallery is stored from this characteristic curve. Or you can ask.
[0017]
In the present invention, for example, the first tube is assembled to the slurries, one end of the first tube is positioned before (upstream) the slurries of the slurries, and one end of the second tubes is set to the slurries of the slurries. Located downstream (downstream), the differential pressure between the pressure obtained from the other end of the first tube through the first tube and the pressure obtained from the other end of the second tube through the second tube It may be measured as. The first tube may be located after the rattle and the second tube may be located before the rattle. In addition, the first tube does not necessarily need to be assembled to the rattle.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a view showing an installation state of an embodiment of a duct flow rate measuring device according to the present invention.
[0019]
In the figure, reference numeral 1 denotes a gallery, 2 denotes an outside air duct, and 3 denotes an air flow measuring device which is an embodiment of the duct flow measuring device according to the present invention. The gallery 1 has the blades 1-1 to 1-n fixed at a predetermined inclination angle α with respect to the flow direction of the outside air flowing in the outside air duct 2 as described above. Outside air passes through gaps -1 to 1-n. In the gallery 1, the blades 1-1 to 1-n have a fixed resistance component to the passing outside air. That is, the pressure resistance KG of the gallery 1 is constant.
[0020]
In the present embodiment, attention is paid to the gallery 1 in which the pressure resistance KG is constant, and based on the differential pressure ΔPG before and after the gallery 1, the actual air volume of outside air passing through the gallery 1 in the air volume measurement device 3 (the actual amount of outside air intake) (Air volume) WG is determined. The air volume measuring device 3 includes a differential pressure measuring unit 3-1 for measuring a differential pressure ΔPG before and after the garbage 1 and an actual air volume measuring unit 3-2 for obtaining an actual air volume WG for taking in outside air from the measured differential pressure ΔPG. Have.
[0021]
In the present embodiment, the pressure to the differential pressure measuring unit 3-1 before and after the gallery 1 is guided using the pipes 3-3 and 3-4 having both ends opened. The pipe 3-3 is assembled to the gallery 1 with one end 3-3a located in front of (upstream of) the gallery 1 and the other end 3-3b located at the pressure introducing section of the differential pressure measuring section 3-1. are doing. Further, the tube 3-4 has one end 3-4a located after (downstream side) the rag 1 and the other end 3-4b located at the pressure introducing section of the differential pressure measuring section 3-1.
[0022]
2 (a), (b), (c), and (d) are front views illustrating the state of assembly of the tube 3-3 to the gallery 1. FIG. In FIG. 2A, the tube 3-3 is passed through the frame 1A of the gallery 1 and one end 3-3a of the tube 3-3 is positioned in front of the gallery 1. In FIG. 2B, the pipe 3-3 is laid on one of the blades 1-1 to 1-n of the gallery 1, and one end 3-3 a of the pipe 3-3 is located in front of the gallery 1. When the up-down wind or the cross wind of the building hits the opening of the pipe 3-3, there is a possibility that the influence may be measured. Therefore, in FIG. 2C, the opening of the tube 3-3 is turned to the rear to prevent the influence of the building wind. In FIG. 2 (d), one tube 3-3 is provided on each of the left and right sides, and the roots are merged to form one tube. As a result, the positive and negative pressures generated by the cross wind can be offset. In addition, since the louver 1 is exposed to the weather, at least the pipe 3-3 is desirably made of a material with little deterioration and strong.
[0023]
In the air volume measuring device 3, the differential pressure measuring unit 3-1 includes a known differential pressure gauge, and the differential pressure gauge measures the pressure obtained from the other end 3-3b of the pipe 3-3 through the pipe 3-3 and the pipe 3-3. 4, a difference from the pressure obtained from the other end 3-4b of the tube 3-4 is measured as a differential pressure ΔPG before and after the gallery 1 and a signal corresponding to the measured differential pressure ΔPG is output.
[0024]
In the air volume measuring device 3, the actual air volume measuring unit 3-2 includes an arithmetic unit and a memory, and receives a signal corresponding to the differential pressure ΔPG from the differential pressure measuring unit 3-1 as an input. The actual air flow measuring unit 3-2 obtains the actual air flow WG for taking in the outside air from the differential pressure ΔPG before and after the garbage 1 measured by the differential pressure measuring unit 3-1. Here, the differential pressure ΔPG before and after the bulging 1 is expressed as ΔPG = KG · WG 2 by Bernoulli's theorem. In this equation, since the pressure resistance KG of the gallery 1 is constant, there is only one relationship between the differential pressure ΔPG before and after the gallery 1 and the airflow WG of the outside air passing through the gallery 1.
[0025]
In the present embodiment, only one relationship between the differential pressure ΔPG before and after the gallery 1 and the airflow WG of the outside air passing through the gallery 1 is checked in advance, and this relationship is set in the memory of the actual airflow measurement unit 3-2. ing. For example, the pressure resistance KG of the garbage 1 is determined, and the only relational expression (WG = (ΔPG / KG) 1/2 ) obtained by deforming ΔPG = KG · WG 2 from which the pressure resistance KG is determined is expressed by the actual air volume. It is set in the memory of the measuring unit 3-2. The arithmetic unit of the actual air volume measurement unit 3-2 obtains the actual air volume WG for taking in outside air by substituting the measured differential pressure ΔPG into the relational expression stored in the memory. It should be noted that only the characteristic curve represented by ΔPG = KG · WG 2 may be stored in the form of a table, and the actual air flow WG for taking in outside air may be obtained from this characteristic curve.
[0026]
Therefore, according to the present embodiment, only the relationship between the differential pressure ΔPG before and after the gallery 1 and the actual airflow WG of the outside air passing through the gallery 1 needs to be checked in advance, and the difference between before and after the outside air damper is sufficient. Compared with the conventional method of obtaining the actual air volume for taking in the outside air from the pressure and the current opening of the outside air damper, the labor and man-hour required for the preparation work for the air volume measurement can be drastically reduced. In addition, since the opening degree of the outside air damper is irrelevant, even if the opening degree error exists in the outside air damper, it is possible to accurately measure the actual air volume for taking in the outside air.
[0027]
In the above-described embodiment, the tube 3-3 is assembled to the gallery 1; that is, the tube 3-3 is passed through the frame 1A of the gallery 1 or crawled on one of the blades 1-1 to 1-n of the gallery 1. However, the tube 3-3 may not be assembled to the gallery 1 and may be provided in front of the gallery 1 in the same manner as the tube 3-4.
[0028]
Further, in the above-described embodiment, an example has been described in which the actual air volume of the outside air (air) flowing through the outside air duct 2 is measured. However, the duct does not necessarily need to be the outside air duct, and the fluid to be measured is limited to air. It is not something that can be done.
[0029]
[Air conditioning system using air flow measuring device 3]
FIG. 3 shows a main part of an air conditioning system using the above-described air flow measuring device 3. In the figure, 4 is an air conditioner, and 5 is an outside air intake amount control device.
In the air conditioner 4, 4-1 is a cooling coil, 4-2 is a heating coil, 4-3 is a blower fan, 4-4 is a return fan, 4-5 is an outside air damper, 4-6 is an exhaust damper, and 4-4. 7 is a return air damper.
[0030]
In the air conditioner 4, the air supply SA from the blower fan 4-3 is sent into the room via the air supply duct, and the return air RA from the room is passed through the exhaust damper 4-6 via the return air fan 4-4. Exhaust gas is discharged as ExA. Further, a part of the return air RA is returned to the supply air SA through the return air damper 4-7. Further, outside air OA drawn from the outside air duct 2 is taken in through the outside air damper 4-5, and the outside air OA is added to the return air RA.
[0031]
The outside air intake amount control device 5 includes a control calculation unit 5-1 and a damper opening degree control unit 5-2. The control calculation unit 5-1 inputs the actual air volume WG (WGpv) of the external air intake from the air volume measuring device 3 and the required external air intake amount WGsp set from the host device, and outputs the actual air volume WGpv of the external air intake and the required external air. The difference from the intake amount WGsp is calculated and sent to the return air damper opening control unit 5-2.
[0032]
The damper opening control unit 5-2 adjusts the outside air damper 4-g according to the difference between the actual air amount WGpv for intake of outside air from the control calculation unit 5-1 and the required outside air intake amount WGsp so that WGpv and WGsp match. 5, the opening degree of the exhaust damper 4-6 and the return air damper 4-7 is controlled. As a result, the amount of outside air OA is adjusted to the required outside air intake amount WGsp, and appropriate indoor ventilation is always performed.
[0033]
【The invention's effect】
As is apparent from the above description, according to the present invention, the differential pressure before and after the galling in which the pressure resistance is constant is measured, and the relationship between the predetermined differential pressure and the flow rate is determined from the measured differential pressure. The actual flow rate of the fluid passing through the gallery is determined based on the relationship between the pressure resistance of the gallery and the differential pressure before and after the gallery. It is possible to obtain the actual flow rate, and it is possible to improve the trouble of adjustment and maintenance and the difficulty in guaranteeing the accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram showing an installed state of an embodiment of a flow rate measuring device in a duct (air flow measuring device) according to the present invention.
FIG. 2 is a front view exemplifying a state of assembling a pipe for measuring a differential pressure to a squirrel;
FIG. 3 is a diagram showing a main part of an air conditioning system using the air volume measuring device shown in FIG.
FIG. 4 is a front view showing an example of a slush provided at an outside air intake of an outside air duct.
FIG. 5 is a side cross-sectional view showing a state of installation of slurries in an outside air duct.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gutter, 1-1-1-n ... Blade, 1A ... Frame, 2 ... External air duct, 3 ... Air volume measuring device, 3-1 ... Differential pressure measuring unit, 3-2 ... Actual air volume measuring unit, 3-3 , 3-4 ... tube, 3-3a, 3-4a ... one end, 3-3b, 3-4b ... other end, 4 ... air conditioner, 4-1 ... cooling coil, 4-2 ... heating coil, 4-3 ... Blower fan, 4-4 ... Return fan, 4-5 ... External air damper, 4-6 ... Exhaust damper, 4-7 ... Return air damper, 5 ... External air intake amount control device, 5-1 ... Control operation unit 5-2. Damper opening control unit.

Claims (2)

ダクト内を流れる流体の流れ方向に対して傾斜して固定されたブレードを有するガラリの前後の差圧を計測する差圧計測手段と、
この差圧計測手段によって計測された差圧より、予め定められている差圧と流量との関係に基づいて、前記ガラリを通過する流体の実流量を求める実流量計測手段と
を備えたことを特徴とするダクト内流量計測装置。
Differential pressure measuring means for measuring a differential pressure before and after a gallery having a blade fixed inclining with respect to the flow direction of the fluid flowing in the duct,
An actual flow rate measuring means for obtaining an actual flow rate of the fluid passing through the gallery, based on a differential pressure and a flow rate determined in advance from the differential pressure measured by the differential pressure measuring means. Characteristic flow measuring device in duct.
請求項1に記載されたダクト内流量計測装置において、
前記差圧計測手段は、前記ガラリに組み付けられてその一端が前記ガラリの上流に開口する第1の管と、前記ガラリの下流にその一端が開口する第2の管とを備え、前記第1の管を通してこの第1の管の他端から得られる圧力と前記第2の管を通してこの第2の管の他端から得られる圧力との差を前記差圧として計測する
ことを特徴とするダクト内流量計測装置。
In the duct flow rate measuring device according to claim 1,
The differential pressure measuring means includes a first pipe assembled to the gallery and having one end open upstream of the gallery, and a second pipe open at one end downstream of the gallery. Measuring the difference between the pressure obtained from the other end of the first pipe through the second pipe and the pressure obtained from the other end of the second pipe through the second pipe as the differential pressure. Internal flow measurement device.
JP2002367622A 2002-12-19 2002-12-19 Flow measurement device in duct Pending JP2004198271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002367622A JP2004198271A (en) 2002-12-19 2002-12-19 Flow measurement device in duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002367622A JP2004198271A (en) 2002-12-19 2002-12-19 Flow measurement device in duct

Publications (1)

Publication Number Publication Date
JP2004198271A true JP2004198271A (en) 2004-07-15

Family

ID=32764454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002367622A Pending JP2004198271A (en) 2002-12-19 2002-12-19 Flow measurement device in duct

Country Status (1)

Country Link
JP (1) JP2004198271A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169307A (en) * 2009-01-22 2010-08-05 Toda Constr Co Ltd Method and device for controlling air supply quantity
JP2014005996A (en) * 2012-06-25 2014-01-16 Hitachi Ltd Air flow measuring device for air conditioning system
EP2910732A1 (en) * 2014-02-24 2015-08-26 Sandvik Intellectual Property AB Mining machine filtration unit with minimised sound emission
JP2017078527A (en) * 2015-10-19 2017-04-27 株式会社日立産機システム Open type duct and safety cabinet
WO2020059378A1 (en) 2018-09-20 2020-03-26 ダイキン工業株式会社 Air conditioning device and method for controlling rotation speed of blower fan
US10908004B2 (en) 2018-07-13 2021-02-02 Onicon Inc. Airflow sensor and system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169307A (en) * 2009-01-22 2010-08-05 Toda Constr Co Ltd Method and device for controlling air supply quantity
JP2014005996A (en) * 2012-06-25 2014-01-16 Hitachi Ltd Air flow measuring device for air conditioning system
EP2910732A1 (en) * 2014-02-24 2015-08-26 Sandvik Intellectual Property AB Mining machine filtration unit with minimised sound emission
WO2015124516A3 (en) * 2014-02-24 2015-11-05 Sandvik Intellectual Property Ab Mining machine filtration unit with minimised sound emission
JP2017078527A (en) * 2015-10-19 2017-04-27 株式会社日立産機システム Open type duct and safety cabinet
US10908004B2 (en) 2018-07-13 2021-02-02 Onicon Inc. Airflow sensor and system
US11815378B2 (en) 2018-07-13 2023-11-14 Onicon Inc. Airflow sensor and system
US12085427B2 (en) 2018-07-13 2024-09-10 Onicon Inc. Airflow sensor and system
WO2020059378A1 (en) 2018-09-20 2020-03-26 ダイキン工業株式会社 Air conditioning device and method for controlling rotation speed of blower fan

Similar Documents

Publication Publication Date Title
US7891573B2 (en) Methods and apparatuses for controlling air to a building
US7174791B2 (en) Method and device for measuring airflows through HVAC grilles
US6430985B1 (en) Multiple point calibrated HVAC flow rate controller
JP2007309628A (en) Thermal output measuring device and its measuring method for hot air generator, and air conditioner
Fisk et al. Duct systems in large commercial buildings: physical characterization, air leakage, and heat conduction gains
JP2004198271A (en) Flow measurement device in duct
JPH0763404A (en) Air conditioner
Kettler Controlling minimum ventilation volume in VAV systems.
Yuill et al. Development of a fan airflow station for airflow control in VAV systems
KR102448002B1 (en) Hybrid Venturi Air valve and a method for control of Air volumn
US6543932B1 (en) Enthalpy tunnel
Khoo et al. Variable-air-volume terminal units I: Steady-state models
JPS61213648A (en) Air enthalpy method testing instrument for air conditioner
Federspiel Using the torque characteristics of dampers to measure airflow, Part II: analysis and testing
JPH08189692A (en) Air conditioner
Fisk et al. Outdoor airflow into HVAC systems: an evaluation of measurement technologies
CN114777857B (en) Fan air volume online accurate measurement method based on static pressure
JPH04133108A (en) Flow rate control valve and flow rate measuring instrument using this valve
JP3053603B2 (en) Gas flow measuring device and method
JP3401208B2 (en) Air conditioning control system
Wang et al. Development of power-head based fan airflow station
JP3228288U (en) Air density measuring device structure for air density measurement of buildings
KR102326374B1 (en) Power switching module having the isolated gate driver
CN214471592U (en) Active air inlet grille sealing performance test system
Liu et al. Method for measuring fan ventilation rates in livestock buildings. Velocity pressure measurement