JP6656054B2 - Ventilation device and calculation method - Google Patents
Ventilation device and calculation method Download PDFInfo
- Publication number
- JP6656054B2 JP6656054B2 JP2016073155A JP2016073155A JP6656054B2 JP 6656054 B2 JP6656054 B2 JP 6656054B2 JP 2016073155 A JP2016073155 A JP 2016073155A JP 2016073155 A JP2016073155 A JP 2016073155A JP 6656054 B2 JP6656054 B2 JP 6656054B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- gas flow
- pressure
- temperature
- target area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
- Ventilation (AREA)
Description
本発明は、換気対象領域の前記気体を換気対象領域から換気対象領域外へ排出する換気装置、及び換気対象領域の前記気体を換気対象領域から換気対象領域外へ排出する排気流量Qの算出方法に関する。 The present invention provides a ventilator for discharging the gas in a ventilation target area from a ventilation target area to outside the ventilation target area, and a method of calculating an exhaust flow rate Q for discharging the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area. About.
従来、換気対象領域の気体を、換気対象領域から換気対象領域外へ排出する換気装置としては、特許文献1に示されるように、換気対象領域と換気対象領域外とを繋ぐ排気ダクトと、当該排気ダクトを介して換気対象領域から換気対象領域外へ圧送するファンとを備えている。
このような換気装置は、排気流量を所定下限以上としつつ、排気流量が多くなりすぎて騒音が大きくなることを防止するため排気流量を所定上限以下とするべく、排気ダクトにおける気体の流量を測定する流量センサが設けられると共に、当該流量センサの測定値に基づいて、ファンの回転数が制御される。
DESCRIPTION OF RELATED ART Conventionally, as a ventilator which discharges the gas of a ventilation target area | region from a ventilation target area | region outside a ventilation target area | region, as shown in patent document 1, the exhaust duct which connects the ventilation target area | region and the outside of a ventilation target area | region, A fan for pumping the air from the ventilation target area to the outside of the ventilation target area via the exhaust duct.
Such a ventilator measures the gas flow rate in the exhaust duct to keep the exhaust flow rate below a predetermined upper limit in order to prevent the exhaust flow rate from becoming too large and increasing the noise while keeping the exhaust flow rate above a predetermined lower limit. The flow rate sensor is provided, and the rotation speed of the fan is controlled based on the measurement value of the flow rate sensor.
上記特許文献1に開示の技術にあっては、風量センサが、排気ダクトを通流する気体に晒される状態で設けられているため、例えば、気体に水分や油分等が含まれている場合、当該水分や油分が風量センサに付着して、風量センサが劣化したり、風量センサの測定精度が低下したりするといった問題があった。
また、このような問題を回避するべく、油分や水分が付着し難い排気ダクトの部位に風量センサを設けることが考えられるが、排気ダクトの形状は、換気装置毎及び装置の設置箇所毎に異なるため、換気装置毎及びその設定箇所毎に、風量センサの設置箇所や設置状態を検討する必要があり、改善の余地があった。
In the technology disclosed in Patent Document 1, since the airflow sensor is provided in a state where it is exposed to gas flowing through the exhaust duct, for example, when the gas contains moisture, oil, or the like, There has been a problem that the moisture or oil content adheres to the air volume sensor, and the air volume sensor is deteriorated or the measurement accuracy of the air volume sensor is reduced.
In order to avoid such a problem, it is conceivable to provide an airflow sensor at a portion of the exhaust duct where oil and moisture hardly adhere, but the shape of the exhaust duct differs for each ventilation device and each installation location of the device. Therefore, it is necessary to study the installation location and installation state of the air flow sensor for each ventilation device and each setting location, and there is room for improvement.
本発明は、上述の課題に鑑みてなされたものであり、その目的は、装置の形状や装置の設置箇所に依存することがないと共に、換気する気体に含まれる水分や油分の影響を受けることなく、良好に排気流量を知ることができる換気装置、及び算出方法に関する。 The present invention has been made in view of the above-described problems, and its purpose is not to depend on the shape of the device and the installation location of the device, and to be affected by moisture and oil contained in the gas to be ventilated. The present invention relates to a ventilator capable of properly knowing the exhaust flow rate and a calculation method.
上記目的を達成するための換気装置は、
換気対象領域の気体を換気対象領域から換気対象領域外へ排出する換気装置であって、その特徴構成は、
前記換気対象領域の前記気体を前記換気対象領域から前記換気対象領域外へ圧送する送風手段と、
前記換気対象領域の前記気体を換気対象領域外へ導く気体通流部で、前記送風手段の上流側で前記気体が通流しない部位において、第1圧力を測定する第1圧力測定手段及び温度を測定する温度測定手段と、
前記換気対象領域の第2圧力を測定する第2圧力測定手段とを備え、
前記温度測定手段にて測定される温度Tと、前記第1圧力と前記第2圧力との差の絶対値である差圧ΔPと、特定の基準温度T0と、下記式1とに基づいて、排気流量Qを算出する制御装置を備える点にある。
Q=a×(T0/(T0+T))×((T0+T)/T0×ΔP)b (式1)
ただし、a、bは、予め決定され前記制御装置に記憶される定数。
Ventilation equipment to achieve the above purpose,
A ventilator that exhausts the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area, and its characteristic configuration is
Blowing means for pumping the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area,
In a gas flow portion that guides the gas in the ventilation target region to the outside of the ventilation target region, at a portion where the gas does not flow on the upstream side of the blowing device, a first pressure measuring unit that measures a first pressure and a temperature. Temperature measuring means for measuring;
A second pressure measuring means for measuring a second pressure of the ventilation target area,
Based on a temperature T measured by the temperature measuring means, a differential pressure ΔP which is an absolute value of a difference between the first pressure and the second pressure, a specific reference temperature T 0, and the following equation 1. And a control device for calculating the exhaust gas flow rate Q.
Q = a × (T 0 / (T 0 + T)) × ((T 0 + T) / T 0 × ΔP) b (Equation 1)
Here, a and b are constants determined in advance and stored in the control device.
また、上記目的を達成するための排気流量の算出方法は、
換気対象領域の気体を換気対象領域から換気対象領域外へ排出する排気流量の算出方法であって、その特徴構成としては、
前記換気対象領域の前記気体を換気対象領域外へ導く気体通流部において、当該気体通流部に設けられる送風手段の上流側で前記気体を通流しない部位での第1圧力と前記換気対象領域の第2圧力との差の絶対値である差圧ΔPと、前記部位での温度Tと、特定の基準温度T0と、下記式1とに基づいて、排気流量Qを算出する点にある。
Q=a×(T0/(T0+T))×((T0+T)/T0×ΔP)b (式1)
ただし、a、bは、予め決定され記憶される定数。
Further, a method of calculating the exhaust flow rate to achieve the above object is as follows.
It is a method of calculating the exhaust flow rate of discharging the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area, and as a characteristic configuration,
In the gas flow portion that guides the gas in the region to be ventilated to the outside of the region to be ventilated, the first pressure at a portion where the gas does not flow upstream of the blowing means provided in the gas flow portion and the ventilation target The point at which the exhaust gas flow rate Q is calculated based on the differential pressure ΔP which is the absolute value of the difference from the second pressure in the region, the temperature T at the site, the specific reference temperature T 0, and the following equation 1. is there.
Q = a × (T 0 / (T 0 + T)) × ((T 0 + T) / T 0 × ΔP) b (Equation 1)
Here, a and b are predetermined and stored constants.
発明者らは、鋭意検討することにより、換気装置による排気流量Qは、気体通流部において送風手段の上流側で気体が通流しない部位にて測定される第1圧力としての静圧と、換気対象領域の第2圧力との差圧ΔPと、特定の基準温度T0とから、上記(式1)に基づいて、実測値に相関が高い状態で、算出できることを見出した。
上記特徴構成の如く、排気流量Qを算出する構成を採用することにより、換気装置にて換気対象領域外へ排出される排気流量を測定する流量センサを設ける必要がないから、流量センサへの水分や油分の付着の影響を受けずに、排気流量Qを適切に算出することができる。
更に、上記特徴構成によれば、例えば、温度測定手段として温度を測定するセンサ、第1圧力測定手段として第1圧力を測定するセンサ、第2圧力測定手段として第2圧力を測定するセンサを備えることとなるが、温度を測定するセンサは気体の温度を測定すれば良く、且つ第1圧力を測定するセンサは気体の静圧を測定すればよいので、両者は、気体の通流しない部位(気体の流れがない部位)に設ければ良い。また、第2圧力を測定するセンサは、換気対象領域の圧力を測定するので、気体の流れに晒されない部位に設ければ良い。即ち、上記構成によれば、センサ類に、気体に含まれる水分や油分が付着して、センサ類が劣化したり、センサの測定精度が低下したりすることを回避できる。
The present inventors have made intensive studies and found that the exhaust flow rate Q by the ventilator is determined by a static pressure as a first pressure measured at a portion where gas does not flow upstream of the blowing means in the gas flow portion, From the differential pressure ΔP with the second pressure in the region to be ventilated and the specific reference temperature T 0 , it has been found that it can be calculated based on the above (Equation 1) in a state where the actual measured value is highly correlated.
By adopting a configuration for calculating the exhaust flow rate Q as in the above characteristic configuration, it is not necessary to provide a flow sensor for measuring the exhaust flow discharged to the outside of the area to be ventilated by the ventilator. It is possible to appropriately calculate the exhaust flow rate Q without being affected by oil or oil adhesion.
Furthermore, according to the above-mentioned characteristic configuration, for example, a sensor that measures temperature as temperature measuring means, a sensor that measures first pressure as first pressure measuring means, and a sensor that measures second pressure as second pressure measuring means are provided. In other words, the sensor for measuring the temperature may measure the temperature of the gas, and the sensor for measuring the first pressure may measure the static pressure of the gas. It may be provided at a portion where there is no gas flow). In addition, since the sensor for measuring the second pressure measures the pressure in the area to be ventilated, it may be provided at a portion not exposed to the gas flow. That is, according to the above configuration, it is possible to prevent the sensors and the like from adhering to the sensors and the like, such as moisture and oil, thereby deteriorating the sensors and reducing the measurement accuracy of the sensors.
また、例えば家庭に設定される換気装置は、コンロ等の調理器具の上方に設けられることが多いが、このような設定形態においては、換気装置にて排気される気体の温度が、調理器具の使用の有無により変化する。
発明者らは、このように、気体通流部を通流する気体の温度が異なる場合にも、良好に排気流量を導出できる式として、上記式1を導き出した。
In addition, for example, a ventilation device set at home is often provided above a cooking appliance such as a stove, but in such a configuration, the temperature of gas exhausted by the ventilation device increases the temperature of the cooking appliance. It changes depending on whether or not it is used.
The inventors have derived Equation 1 above as an equation that can derive the exhaust flow rate well even when the temperature of the gas flowing through the gas flow section is different.
発明者らは、まずもって、基準温度T0(例えば、273.15K)における排気流量Q0と、差圧ΔP0は、下記の式2の関係を有することを見出した。
Q0=a×ΔP0 b (式2)
The inventors first found that the exhaust gas flow rate Q 0 at the reference temperature T 0 (for example, 273.15 K) and the differential pressure ΔP 0 have the relationship of the following Expression 2.
Q 0 = a × ΔP 0 b (Equation 2)
ここで、基準温度T0における排気流量Q0と、温度Tにおける排気流量Qとは、以下の式3の関係を有し、基準温度T0における差圧ΔP0と、温度Tにおける差圧ΔPは、以下の式4の関係を有する。
Q0=(T0+T)/T0×Q (式3)
Here, the exhaust flow rate Q 0 at the reference temperature T 0 and the exhaust flow rate Q at the temperature T have the relationship of the following equation 3, where the differential pressure ΔP 0 at the reference temperature T 0 and the differential pressure ΔP at the temperature T Has the relationship of Equation 4 below.
Q 0 = (T 0 + T) / T 0 × Q (Equation 3)
ΔP0=(T0+T)/T0×ΔP (式4) ΔP 0 = (T 0 + T) / T 0 × ΔP (Equation 4)
そして、式2に対し、式3及び式4を代入することにより得られる式1は、温度Tが異なる場合にも同一の式で、排気流量Qを算出できるものとなるのである。
これにより、例えば、換気装置が、コンロ等からの排気を気体として換気対象領域外へ排出するように構成され、気体としての排気の温度が、コンロの使用の有無により大きく変化するような場合であっても、排気流量を、単一の式1により、実測値と相関の高い状態で、適切に算出できる。
即ち、上記特徴構成によれば、装置の形状や装置の設置箇所に依存することがないと共に、換気する気体に含まれる水分や油分の影響を受けることなく、良好に排気流量を知ることができる換気装置、及び換気方法を実現できる。
因みに、式1において係数a、bは、例えば、圧送手段の複数の出力毎に取得される排気流量Qと差圧ΔPとに基づいて、予め算出され決定される係数である。
Equation 1 obtained by substituting Equations 3 and 4 into Equation 2 allows the exhaust flow rate Q to be calculated by the same equation even when the temperature T is different.
Thereby, for example, the ventilation device is configured to discharge the exhaust gas from the stove or the like as a gas to the outside of the region to be ventilated, and in a case where the temperature of the exhaust gas as the gas greatly changes depending on whether the stove is used or not. Even so, the exhaust flow rate can be properly calculated by the single equation 1 in a state where the exhaust flow rate is highly correlated with the actually measured value.
That is, according to the above-described characteristic configuration, the exhaust flow rate can be well known without depending on the shape of the device or the installation location of the device, and without being affected by the moisture or oil contained in the gas to be ventilated. A ventilation device and a ventilation method can be realized.
Incidentally, the coefficients a and b in Equation 1 are coefficients that are calculated and determined in advance based on, for example, the exhaust flow rate Q and the differential pressure ΔP obtained for each of a plurality of outputs of the pumping means.
上述の換気装置としては、前記制御装置は、前記温度測定手段にて測定される温度Tに関わらず、前記式1に基づいて、排気流量Qを算出することが好ましい。 As the above-described ventilation device, it is preferable that the control device calculates the exhaust gas flow rate Q based on the expression 1 regardless of the temperature T measured by the temperature measuring means.
換気装置の更なる特徴構成は、
前記温度測定手段は、前記気体通流部において前記送風手段の上流側に配設される外囲筐体の内部に設けられ、
前記外囲筐体は、その内部を前記気体通流部の前記気体の通流領域へ連通する開口部を備え、当該開口部は、前記気体通流部の前記気体の流れ方向で下流側へ向けて開口している点にある。
Further features of the ventilation system
The temperature measuring means is provided inside an outer casing arranged on the upstream side of the blowing means in the gas flow portion,
The outer housing includes an opening communicating the inside thereof with the gas flow region of the gas flow portion, and the opening is located downstream in the gas flow direction of the gas flow portion. There is a point that is open toward.
上記特徴構成によれば、温度測定手段が、気体通流部を通流する気体の温度を、略良好に測定できつつも、気体通流部を通流する気体の流れに接触することを抑制できるから、気体に水分や油分が含まれる場合にも、温度測定手段に当該水分や油分が付着することを抑制できる。 According to the above-mentioned characteristic configuration, the temperature measuring means can measure the temperature of the gas flowing through the gas flow section substantially satisfactorily, but suppresses contact with the gas flow flowing through the gas flow section. Therefore, even if the gas contains moisture or oil, the moisture or oil can be prevented from adhering to the temperature measuring means.
換気装置の更なる特徴構成は、
前記第1圧力測定手段は、前記気体通流部において前記送風手段の上流側に配設される外囲筐体の内部に設けられ、
前記外囲筐体は、その内部を前記気体通流部の前記気体の通流領域へ連通する開口部を備え、当該開口部は、前記気体通流部の前記気体の流れ方向で下流側へ向けて開口している点にある。
Further features of the ventilation system
The first pressure measuring means is provided inside an outer casing provided in the gas flow portion on the upstream side of the blowing means,
The outer housing includes an opening communicating the inside thereof with the gas flow region of the gas flow portion, and the opening is located downstream in the gas flow direction of the gas flow portion. There is a point that is open toward.
上記特徴構成によれば、第1圧力測定手段が、気体通流部を通流する気体の圧力を、略良好に測定できつつも、気体通流部を通流する気体の流れに接触することを抑制できるから、気体に水分や油分が含まれる場合にも、第1圧力測定手段に当該水分や油分が付着することを抑制できる。 According to the above-mentioned characteristic configuration, the first pressure measuring means can measure the pressure of the gas flowing through the gas flow section substantially satisfactorily, and contact the gas flow flowing through the gas flow section. Therefore, even when the gas contains moisture or oil, the moisture or oil can be prevented from adhering to the first pressure measuring means.
これまで説明してきた換気装置としては、前記基準温度T0は、273.15Kであると、更に好適である。 For the ventilator described so far, it is more preferable that the reference temperature T 0 is 273.15K.
本発明の実施形態に係る換気装置100は、装置の形状や設置箇所に依存することがないと共に、換気する気体に含まれる水分や油分の影響を受けることなく、良好に排気流量を知ることができる換気装置、及び算出方法に関する。
The
換気装置100は、換気対象領域の気体を換気対象領域から換気対象領域外へ排出する換気装置であって、例えば、換気対象領域としてのキッチンや厨房等に備えられるものである。当該換気装置100は、例えば、キッチンや厨房等に備えられるガスコンロ10に設けられたバーナ部11の燃焼により発生する燃焼ガスE(気体の一例)を、換気対象領域外としての屋外へ排出するものである。当該換気装置100は、ガスコンロ10の上方に設けられた排気フード20と、当該排気フード20から取り込まれた換気対象領域の気体(バーナ部11が作動している場合には高温の燃焼ガスE、バーナ部11が非作動の場合は排ガスE)を換気対象領域外へ圧送する排気ファンF(送風手段の一例)と、図示しない操作部における運転操作部のON/OFF操作に基づいて排気ファンFの停止と運転とを切り換える切換制御する制御装置Cが設けられている。尚、当該制御装置Cは、排気ファンFの運転時における回転数を変更制御する。
The
更に、当該換気装置100には、各種センサとして、換気対象領域の気体を換気対象領域外へ導く気体通流部22で、排気ファンFの上流側で気体が通流しない部位において、気体通流部22の静圧としての第1圧力を測定する第1圧力センサS1(第1圧力測定手段の一例)を備えると共に気体通流部22の温度Tを測定する温度センサS2(温度測定手段の一例)とを備え、換気対象領域の圧力である第2圧力を測定する第2圧力センサS3(第2圧力測定手段の一例)とを備えている。
当該実施形態の如く、換気装置100が、換気対象領域にガスコンロ10が設けられ、当該ガスコンロ10のバーナ部11の燃焼ガスEを排気する設置形態をとる場合、水分や油分を含む気体を排気することになり、第1圧力センサS1及び温度センサS2が設けられる気体通流部22には、当該水分や油分を含む気体を通流することになり、第1圧力センサS1及び温度センサS2に水分や油分が付着しセンサが劣化したり、測定精度が悪化したりするといった問題が発生する虞がある。
そこで、当該実施形態にあっては、第1圧力センサS1及び温度センサS2は、気体通流部22において排気ファンFの上流側に配設される外囲筐体23の内部に設けられ、当該外囲筐体23は、その内部を気体通流部22の気体の通流領域へ連通する開口部25が設けられている。当該開口部25の開口方向は、気体通流部22の気体の流れ方向に直交する方向から、気体通流部22の気体の流れ方向下流側の方向である。
当該構成により、外囲筐体23の内部に気体の流れが大きく入り込むことを防止し、気体に水分や油分が含まれる場合にも、第1圧力センサS1及び温度センサS2に、水分や油分が付着することを良好に防止することができる。尚、このようにして測定される第1圧力センサS1の圧力は、気体通流部22の気体の静圧となる。
Further, in the
As in the present embodiment, when the
Therefore, in the present embodiment, the first pressure sensor S1 and the temperature sensor S2 are provided inside the outer casing 23 provided on the gas flow portion 22 on the upstream side of the exhaust fan F. The outer casing 23 is provided with an opening 25 that communicates the inside with the gas flow area of the gas flow section 22. The opening direction of the opening 25 is a direction downstream of the gas flow direction of the gas flow portion 22 from the direction perpendicular to the gas flow direction of the gas flow portion 22.
With this configuration, it is possible to prevent a large flow of gas from entering the inside of the outer housing 23, and even when moisture or oil is contained in the gas, the moisture or oil is detected by the first pressure sensor S1 and the temperature sensor S2. Adherence can be satisfactorily prevented. The pressure of the first pressure sensor S1 measured in this manner is the static pressure of the gas in the gas flow section 22.
さて、発明者らは、鋭意検討することにより、排気流量Qは、第1圧力センサS1にて測定される第1圧力と第2圧力センサS3にて測定される第2圧力との差の絶対値である差圧ΔPと、下記式5とに基づいて、算出できることを見出した。 Now, the present inventors have made intensive studies and found that the exhaust flow rate Q is the absolute value of the difference between the first pressure measured by the first pressure sensor S1 and the second pressure measured by the second pressure sensor S3. It has been found that it can be calculated based on the differential pressure ΔP which is a value and the following Expression 5.
Q=c×ΔPd (式5) Q = c × ΔP d (Equation 5)
図2において、各差圧ΔP毎に、ガスコンロ10のバーナ部11が作動状態にあるときの排気流量Q(図2で、『機器稼働有り算出値』)と、ガスコンロ10のバーナ部11が非作動状態にあるときの排気流量Q(図2で、『機器稼働なし算出値』)とを示す。
バーナ部11が作動状態にあるときの排気流量Qを算出するための近似式は、以下の〔表1〕に示す異なる排気流量Qとその排気流量Qでの差圧ΔPの値を、既知の統計手法に基づいて導出でき、係数cは46.8964であり、乗数dは0.4791である。
同じく、バーナ部11が非作動状態にあるときの排気流量Qを算出するための近似式は、以下の〔表2〕に示す異なる排気流量Qとその排気流量Qでの差圧ΔPの値を、既知の統計手法に基づいて導出でき、係数cは36.7656であり、乗数dは0.5074である。
因みに、〔表1〕及び〔表2〕のインバータ値(Hz)は、排気ファンFへの駆動電圧の周波数であり、排気ファンFの出力に略比例する値である。また、各インバータ値(Hz)における値は、複数回(当該実施形態では、2回)の算出結果の平均値である。また、図3は、排気流量Qの測定値(実測値)と算出値との差を示したグラフ図である。
In FIG. 2, for each differential pressure ΔP, the exhaust flow rate Q (“calculated value with device operation” in FIG. 2) when the burner unit 11 of the
An approximate expression for calculating the exhaust flow rate Q when the burner unit 11 is in the operating state is as follows: The different exhaust flow rates Q shown in Table 1 below and the value of the differential pressure ΔP at the exhaust flow rate Q are known. It can be derived based on a statistical method, the coefficient c is 46.8964, and the multiplier d is 0.4791.
Similarly, an approximate expression for calculating the exhaust flow rate Q when the burner unit 11 is in the non-operating state is obtained by calculating a different exhaust flow rate Q shown in the following Table 2 and the value of the differential pressure ΔP at the exhaust flow rate Q. The coefficient c is 36.7656, and the multiplier d is 0.5074.
Incidentally, the inverter values (Hz) in [Table 1] and [Table 2] are the frequencies of the drive voltage to the exhaust fan F, and are values that are substantially proportional to the output of the exhaust fan F. Further, the value at each inverter value (Hz) is an average value of the calculation results obtained a plurality of times (two times in this embodiment). FIG. 3 is a graph showing a difference between a measured value (actually measured value) and a calculated value of the exhaust gas flow rate Q.
図2のグラフ図、及び上述した係数に示されるように、バーナ部11が作動状態にあるときの排気流量Qを算出するための式5と、バーナ部11が非作動状態にあるときの排気流量Qを算出するための式5とは異なる式となっている。つまり、上記式5に基づいて、排気流量Qを算出する場合、気体の温度T毎に、係数、乗数が異なる式5により、導出しなければないという問題が生じる。 As shown in the graph of FIG. 2 and the coefficients described above, Equation 5 for calculating the exhaust gas flow rate Q when the burner unit 11 is in the operating state, and the exhaust gas flow when the burner unit 11 is in the non-operating state. The equation is different from Equation 5 for calculating the flow rate Q. That is, when calculating the exhaust gas flow rate Q based on the above equation 5, a problem arises that the coefficient and the multiplier must be derived for each gas temperature T using the equation 5 which is different.
発明者らは、この原因は、排気流量Qは気体の温度Tに依存するものであり、差圧ΔPも気体の温度Tに依存するものであることが原因と考え、基準温度T0における排気流量Q0と、温度Tにおける排気流量Qとは、以下の式3の関係を有し、基準温度T0における差圧ΔP0と、温度Tにおける差圧ΔPは、以下の式4の関係を有し、基準温度T0(例えば、273.15K)における排気流量Q0と、差圧ΔP0は、下記の式2の関係を有することを見出した。 We, this causes the exhaust flow rate Q are dependent on the temperature T of the gas, even the differential pressure ΔP probably because is dependent on the temperature T of the gas, the exhaust gas at the reference temperature T 0 The flow rate Q 0 and the exhaust flow rate Q at the temperature T have the relationship of the following equation 3, and the differential pressure ΔP 0 at the reference temperature T 0 and the differential pressure ΔP at the temperature T are expressed by the following equation 4. It has been found that the exhaust gas flow rate Q 0 at the reference temperature T 0 (for example, 273.15 K) and the differential pressure ΔP 0 have the relationship of the following equation 2.
Q0=a×ΔP0 b (式2) Q 0 = a × ΔP 0 b (Equation 2)
Q0=(T0+T)/T0×Q (式3) Q 0 = (T 0 + T) / T 0 × Q (Equation 3)
ΔP0=(T0+T)/T0×ΔP (式4) ΔP 0 = (T 0 + T) / T 0 × ΔP (Equation 4)
そして、式2に対し、式3及び式4を代入することにより得られる以下の式1は、温度Tが異なる場合にも同一の式で、排気流量Qを算出できるものとなることを見出した。 Then, it has been found that the following equation 1 obtained by substituting the equations 3 and 4 into the equation 2 allows the exhaust flow rate Q to be calculated by the same equation even when the temperature T is different. .
Q=a×(T0/(T0+T))×((T0+T)/T0×ΔP)b (式1) Q = a × (T 0 / (T 0 + T)) × ((T 0 + T) / T 0 × ΔP) b (Equation 1)
そして、T0が273.15Kとし、ガスコンロ10のバーナ部11が作動状態にあるときの〔表1〕の差圧ΔP、気体通流部22の温度T、排気流量Qと、ガスコンロ10のバーナ部11が非作動状態にあるときの〔表2〕の差圧ΔP、気体通流部22の温度T、排気流量Qとに基づいて、式1の係数a、乗数bの値を算出したところ、係数aは48.13319であり、乗数bは0.478865となり、バーナ部11が作動状態である場合も非作動状態である場合も、略同一の値となった。
つまり、気体の温度Tが異なる場合であっても、単一の式1にて排気流量Qを算出できるという新たな知見を得た。
When T 0 is 273.15 K, the differential pressure ΔP in Table 1 when the burner 11 of the
That is, a new finding has been obtained that the exhaust gas flow rate Q can be calculated by the single equation 1 even when the gas temperature T is different.
上述の知見に基づき、本願の換気装置100にあっては、制御装置Cは、温度センサS2にて測定される温度Tと、第1圧力センサS1にて測定される第1圧力と、第2圧力センサS3にて測定される第2圧力とを受信し、それらの値と、予め記憶部(図示せず)に記憶された基準温度T0、係数a、乗数bと、上述の式1とに基づいて、排気流量Qを算出し、当該算出した排気流量Qが所望の値となるように、排気ファンFの回転数を制御するように構成されている。
Based on the above findings, in the
因みに、上述の式1により、算出した排気流量Qと、実測した排気流量Qと、それらの差の排気流量Q(実測値)に対する割合を、〔表3〕及び〔表4〕に示す。因みに、〔表3〕はバーナ部11が作動状態にあるときの値であり、〔表4〕はバーナ部11が非作動状態にあるときの値である。
〔表3〕及び〔表4〕からわかるように、差の排気流量Q(実測値)に対する割合は、最大でも5.3%となっており、十分な精度があると言える。
Incidentally, Table 3 and Table 4 show the exhaust flow rate Q calculated by the above equation 1, the actually measured exhaust flow rate Q, and the ratio of the difference to the exhaust flow rate Q (actually measured value). Incidentally, [Table 3] is a value when the burner unit 11 is in the operating state, and [Table 4] is a value when the burner unit 11 is in the non-operating state.
As can be seen from Tables 3 and 4, the ratio of the difference to the exhaust flow rate Q (actually measured value) is 5.3% at the maximum, and it can be said that there is sufficient accuracy.
〔別実施形態〕
(1)上記別実施形態にあっては、換気装置100は、換気対象領域にガスコンロ10等の気体の温度Tを変化させる設備が設けられている例を示した。
しかしながら、本願に係る換気装置100は、換気対象領域にガスコンロ等が設けられていない環境であっても、良好にその機能発揮する。
即ち、換気対象領域の気体の温度Tが大きく変化しない環境に対して、本願に係る換気装置100を備えても構わない。
[Another embodiment]
(1) In the above-described another embodiment, the example in which the
However, the
That is, the
(2)上記実施形態において、排気流量Qを算出するための式1の係数a及び乗数bを導出するときの各排気流量Q毎の取得された差圧ΔP等のパラメータは、平均値を採用したが、平均値でなく単独の値を採用しても構わない。 (2) In the above embodiment, the parameters such as the differential pressure ΔP obtained for each exhaust flow rate Q when deriving the coefficient a and the multiplier b in Equation 1 for calculating the exhaust flow rate Q employ an average value. However, a single value may be used instead of the average value.
(3)上記実施形態にあっては、基準温度T0は、273.15Kとしたが、この温度以外の温度としても構わない。 (3) In the above embodiment, the reference temperature T 0 is 273.15K, but may be a temperature other than this temperature.
尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 Note that the configuration disclosed in the above-described embodiment (including another embodiment, the same applies hereinafter) can be applied in combination with the configuration disclosed in other embodiments, as long as no contradiction occurs. The embodiment disclosed in the present specification is an exemplification, and the embodiment of the present invention is not limited thereto, and can be appropriately modified without departing from the object of the present invention.
本発明の換気装置、及び算出方法は、装置の形状や装置の設置箇所に依存することがないと共に、換気する気体に含まれる水分や油分の影響を受けることなく、良好に排気流量を知ることができる換気装置、及び算出方法として、有効に利用可能である。 The ventilation device and the calculation method of the present invention are not dependent on the shape of the device and the installation location of the device, and are capable of properly knowing the exhaust flow rate without being affected by moisture or oil contained in the gas to be ventilated. The present invention can be effectively used as a ventilator and a calculation method that can be used.
22 :気体通流部
23 :外囲筐体
25 :開口部
100 :換気装置
C :制御装置
E :燃焼ガス(気体)
E :排ガス(気体)
F :排気ファン
Q :排気流量
S1 :第1圧力センサ
S2 :温度センサ
S3 :第2圧力センサ
T :温度
T0 :基準温度
a :係数
b :乗数
ΔP :差圧
22: gas flow portion 23: enclosure 25: opening 100: ventilation device C: control device E: combustion gas (gas)
E: Exhaust gas (gas)
F: the exhaust fan Q: flow rate of the exhaust gas S1: first pressure sensor S2: temperature sensor S3: second pressure sensor T: Temperature T 0: a reference temperature a: coefficient b: Multiplier [Delta] P: differential pressure
Claims (6)
前記換気対象領域の前記気体を前記換気対象領域から前記換気対象領域外へ圧送する送風手段と、
前記換気対象領域の前記気体を換気対象領域外へ導く気体通流部で、前記送風手段の上流側で前記気体が通流しない部位において、第1圧力を測定する第1圧力測定手段及び温度を測定する温度測定手段と、
前記換気対象領域の第2圧力を測定する第2圧力測定手段とを備え、
前記温度測定手段にて測定される温度Tと、前記第1圧力と前記第2圧力との差の絶対値である差圧ΔPと、特定の基準温度T0と、下記式1とに基づいて、排気流量Qを算出する制御装置を備える換気装置。
Q=a×(T0/(T0+T))×((T0+T)/T0×ΔP)b (式1)
ただし、a、bは、予め決定され前記制御装置に記憶される定数。
A ventilator that exhausts gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area,
Blowing means for pumping the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area,
In a gas flow portion that guides the gas in the ventilation target region to the outside of the ventilation target region, at a portion where the gas does not flow on the upstream side of the blowing device, a first pressure measuring unit that measures a first pressure and a temperature. Temperature measuring means for measuring;
A second pressure measuring means for measuring a second pressure of the ventilation target area,
Based on a temperature T measured by the temperature measuring means, a differential pressure ΔP which is an absolute value of a difference between the first pressure and the second pressure, a specific reference temperature T 0, and the following equation 1. , A ventilation device including a control device for calculating an exhaust flow rate Q.
Q = a × (T 0 / (T 0 + T)) × ((T 0 + T) / T 0 × ΔP) b (Equation 1)
Here, a and b are constants determined in advance and stored in the control device.
前記外囲筐体は、その内部を前記気体通流部の前記気体の通流領域へ連通する開口部を備え、当該開口部は、前記気体通流部の前記気体の流れ方向で下流側へ向けて開口している請求項1又は2に記載の換気装置。 The temperature measuring means is provided inside an outer casing arranged on the upstream side of the blowing means in the gas flow portion,
The outer housing includes an opening communicating the inside thereof with the gas flow region of the gas flow portion, and the opening is located downstream in the gas flow direction of the gas flow portion. The ventilator according to claim 1, wherein the ventilator is open toward the vehicle.
前記外囲筐体は、その内部を前記気体通流部の前記気体の通流領域へ連通する開口部を備え、当該開口部は、前記気体通流部の前記気体の流れ方向で下流側へ向けて開口している請求項1〜3の何れか一項に記載の換気装置。 The first pressure measuring means is provided inside an outer casing provided in the gas flow portion on the upstream side of the blowing means,
The outer housing includes an opening communicating the inside thereof with the gas flow region of the gas flow portion, and the opening is located downstream in the gas flow direction of the gas flow portion. The ventilation device according to any one of claims 1 to 3, which is open toward the user.
前記換気対象領域の前記気体を換気対象領域外へ導く気体通流部において、当該気体通流部に設けられる送風手段の上流側で前記気体を通流しない部位での第1圧力と前記換気対象領域の第2圧力との差の絶対値である差圧ΔPと、前記部位での温度Tと、特定の基準温度T0と、下記式1とに基づいて、排気流量Qを算出する排気流量の算出方法。
Q=a×(T0/(T0+T))×((T0+T)/T0×ΔP)b (式1)
ただし、a、bは、予め決定され記憶される定数。 A method of calculating the exhaust flow rate to discharge the gas in the ventilation target area from the ventilation target area to the outside of the ventilation target area,
In the gas flow portion that guides the gas in the ventilation target region to the outside of the ventilation target region, the first pressure and the ventilation target in a portion where the gas does not flow upstream of the blowing means provided in the gas flow portion Exhaust flow rate for calculating an exhaust flow rate Q based on the differential pressure ΔP that is the absolute value of the difference from the second pressure in the region, the temperature T at the site, a specific reference temperature T 0, and the following equation 1. Calculation method.
Q = a × (T 0 / (T 0 + T)) × ((T 0 + T) / T 0 × ΔP) b (Equation 1)
Here, a and b are predetermined and stored constants.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016073155A JP6656054B2 (en) | 2016-03-31 | 2016-03-31 | Ventilation device and calculation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016073155A JP6656054B2 (en) | 2016-03-31 | 2016-03-31 | Ventilation device and calculation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017181003A JP2017181003A (en) | 2017-10-05 |
JP6656054B2 true JP6656054B2 (en) | 2020-03-04 |
Family
ID=60005824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016073155A Active JP6656054B2 (en) | 2016-03-31 | 2016-03-31 | Ventilation device and calculation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6656054B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6967486B2 (en) * | 2018-04-27 | 2021-11-17 | リンナイ株式会社 | Ventilation system |
CN109632022B (en) * | 2018-12-25 | 2020-05-15 | 上海理工大学 | Method for testing and estimating 24-hour average ventilation quantity of residential room |
JP7208625B2 (en) * | 2019-03-08 | 2023-01-19 | 株式会社佐原 | ventilator |
JP7561651B2 (en) | 2021-02-18 | 2024-10-04 | 大阪瓦斯株式会社 | Intake and exhaust condition estimation system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11351651A (en) * | 1998-06-05 | 1999-12-24 | Toshiba Corp | Air conditioner |
JP3655569B2 (en) * | 2001-09-06 | 2005-06-02 | 大陽日酸株式会社 | Gas component concentration measuring method and apparatus |
JP3815498B2 (en) * | 2004-11-19 | 2006-08-30 | ダイキン工業株式会社 | Ventilation control device |
US9494324B2 (en) * | 2008-12-03 | 2016-11-15 | Oy Halton Group Ltd. | Exhaust flow control system and method |
JP5854641B2 (en) * | 2011-05-27 | 2016-02-09 | 株式会社テクノ菱和 | Variable air volume control device |
US8939825B2 (en) * | 2011-06-21 | 2015-01-27 | Vapor Dynamics, LLC | Vapor mitigation system, vapor mitigation controller and methods of controlling vapors |
-
2016
- 2016-03-31 JP JP2016073155A patent/JP6656054B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017181003A (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6656054B2 (en) | Ventilation device and calculation method | |
JP5144998B2 (en) | Aerodynamic stability management system and its controller | |
US6994620B2 (en) | Method of determining static pressure in a ducted air delivery system using a variable speed blower motor | |
JP2009289177A (en) | Electronic equipment | |
CN107975842A (en) | Common duct smoke evacuation system and control method | |
US20080066732A1 (en) | Method for controlling the exhaust flow from a cooking chamber of a baking oven | |
JP6505551B2 (en) | Clean room exhaust unit | |
BR112017015750A2 (en) | air conditioner with variable air volume device | |
EP2172713A1 (en) | Ventilation device and method of controlling the same | |
KR102546394B1 (en) | Leakage prediction and indoor airflow control device and control method thereof | |
JP2006329440A (en) | Pressure control unit | |
JP2005300089A (en) | Ventilator with air quantity correction function | |
KR102241834B1 (en) | Apparatus and Method for controlling supply air volume | |
CN107655048B (en) | Range hood and constant air quantity adjusting method and system thereof | |
JP4844303B2 (en) | Range hood blower | |
US20160131146A1 (en) | Pressure sensor system for calculating compressor mass flow rate using sensors at plenum and compressor entrance plane | |
JP2008138900A (en) | Air blower for range hood | |
JP2016173193A (en) | Range hood | |
JP2022126332A (en) | Air intake and exhaust state estimation system | |
CN111742146B (en) | Stability of parameters | |
JP2019158216A (en) | Kitchen ventilation unit and kitchen ventilation method | |
JP2008014813A (en) | Vacuum measuring device, vapor deposition device, and vacuum measuring method | |
KR101510780B1 (en) | Constant Air Volume Controlling Method of BLDC Motor | |
JPH1082523A (en) | Method for controlling pressure in furnace | |
KR102388905B1 (en) | Air-curtain system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190813 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190814 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191029 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6656054 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |