JP2017179412A - Pt-Zn-Ni-BASED CORE-SHELL PARTICLE - Google Patents

Pt-Zn-Ni-BASED CORE-SHELL PARTICLE Download PDF

Info

Publication number
JP2017179412A
JP2017179412A JP2016064650A JP2016064650A JP2017179412A JP 2017179412 A JP2017179412 A JP 2017179412A JP 2016064650 A JP2016064650 A JP 2016064650A JP 2016064650 A JP2016064650 A JP 2016064650A JP 2017179412 A JP2017179412 A JP 2017179412A
Authority
JP
Japan
Prior art keywords
core
shell
particles
particle
based core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016064650A
Other languages
Japanese (ja)
Other versions
JP6653877B2 (en
Inventor
怜雄奈 宮崎
Reona Miyazaki
怜雄奈 宮崎
岳彦 日原
Takehiko Hihara
岳彦 日原
道久 梅澤
Michihisa Umezawa
道久 梅澤
瞭一 石河
Ryoichi Ishikawa
瞭一 石河
服部 達哉
Tatsuya Hattori
達哉 服部
鬼頭 賢信
Masanobu Kito
賢信 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Nagoya Institute of Technology NUC
Original Assignee
NGK Insulators Ltd
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Nagoya Institute of Technology NUC filed Critical NGK Insulators Ltd
Priority to JP2016064650A priority Critical patent/JP6653877B2/en
Publication of JP2017179412A publication Critical patent/JP2017179412A/en
Application granted granted Critical
Publication of JP6653877B2 publication Critical patent/JP6653877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a core-shell particle used for a catalyst of an electrode of a fuel cell and capable of exhibiting catalyst activity equal to or more than pure Pt particles with reduced Pt used amount.SOLUTION: There is provided a Pt-Zn-Ni core-shell particle 10 having a core particle 12 containing Pt and Ni and a shell layer 14 covering the core particle 12 and containing Zn and Ni. There is provided a Pt-Zn-Ni core-shell particle 10 where the shell layer 14 contains no Pt or the shell layer 14 is poor in Pt compared to the core layer 12. There is provided a Pt-Zn-Ni core-shell particle 10 having Pt of 30 to 70 atom%, Ni of 20 to 70 atom% and Zn of 10 to 50 atom% based on total amount of the core-shell particle. There is provided a Pt-Zn-Ni core-shell particle 10 preferably having particle diameter of 1 to 20 nm.SELECTED DRAWING: Figure 1

Description

本発明は、Pt−Zn−Ni系コアシェル粒子に関するものである。   The present invention relates to Pt—Zn—Ni-based core-shell particles.

白金(Pt)は、固体高分子形燃料電池(PEFC)、アルカリ燃料電池(AFC)及び金属空気電池における電極触媒材料として機能する。具体的には、固体高分子形燃料電池(PEFC)、アルカリ燃料電池(AFC)及び金属空気電池の正極において、及び固体高分子形燃料電池(PEFC)及びアルカリ燃料電池(AFC)の負極において、Ptが触媒として使用される。   Platinum (Pt) functions as an electrode catalyst material in polymer electrolyte fuel cells (PEFC), alkaline fuel cells (AFC), and metal-air cells. Specifically, in the positive electrode of the polymer electrolyte fuel cell (PEFC), alkaline fuel cell (AFC) and metal-air battery, and in the negative electrode of the polymer electrolyte fuel cell (PEFC) and alkaline fuel cell (AFC), Pt is used as a catalyst.

ところで、Ptは高価であるため、使用量の低減が求められている、近年、Pt使用量の低減を図るべく、非Pt原子で構成されるコア粒子の表面にPt原子を覆ったコアシェル粒子の研究が行われている。これは、コア(核)を安価な元素である非Pt元素で構成し、かつ、触媒機能に必要な表面(シェル)をPtで構成することで、Ptの使用量を低減させるというコンセプトに基づくものである。こうすることで、純Pt粒子よりも安価に、触媒活性の高い粒子を得ることができる。   By the way, since Pt is expensive, there is a demand for a reduction in the amount of use. In recent years, in order to reduce the amount of Pt used, the core-shell particles covered with Pt atoms on the surface of the core particles composed of non-Pt atoms are used. Research is underway. This is based on the concept of reducing the amount of Pt used by configuring the core (nucleus) with a non-Pt element, which is an inexpensive element, and configuring the surface (shell) necessary for the catalytic function with Pt. Is. By doing so, particles having high catalytic activity can be obtained at a lower cost than pure Pt particles.

例えば、非特許文献1(Vojuslav R. Stamenkovic et al., Science, 315, 493-497, 2007)には、PtNi(111)表面を有するコアシェル粒子が開示されている。そして、このPtNi(111)表面がPt(111)表面よりも酸素還元活性(ORR)に関して10倍以上の活性を有し、かつ、ポリマー電解質膜燃料電池(PEMFC)用の現状のPt/C触媒よりも90倍以上の活性を有することが記載されている。また、非特許文献2(Peter Strasser et al., Nature Chemistry, 2, 454-460, 2010)には、脱合金化されたコアシェル燃料電池触媒における活性の格子歪制御が検討されており、Ptリッチのシェルが、Ptのバンド構造のシフトと酸化体種の化学吸着の弱化とをもたらす圧縮歪を呈し、この知見が電極触媒活性の調整に応用可能であることが示唆されている。 For example, Non-Patent Document 1 (Vojuslav R. Stamenkovic et al., Science, 315, 493-497, 2007) discloses core-shell particles having a Pt 3 Ni (111) surface. The Pt 3 Ni (111) surface has an activity of 10 times or more with respect to the oxygen reduction activity (ORR) than the Pt (111) surface, and the current Pt / N for polymer electrolyte membrane fuel cell (PEMFC) It is described to have 90 times more activity than C catalyst. In addition, Non-Patent Document 2 (Peter Strasser et al., Nature Chemistry, 2, 454-460, 2010) discusses control of lattice strain of activity in dealloyed core-shell fuel cell catalysts. It is suggested that this shell can be applied to the adjustment of the electrocatalytic activity, exhibiting a compressive strain that causes a shift in the band structure of Pt and a weak chemisorption of the oxidant species.

ところで、非特許文献3(Yuichiro Kurokawa et al., Journal of Applied Physics 113, 174302 (2013))には、プラズマ・ガス凝縮クラスター堆積(PGCCD)装置を用いてナノサイズのコアシェルクラスターを作製できることが述べられており、PGCCD装置によりSn1−x/Siクラスター堆積フィルムを合成したことが開示されている。 By the way, Non-Patent Document 3 (Yuichiro Kurokawa et al., Journal of Applied Physics 113, 174302 (2013)) states that a nano-sized core-shell cluster can be produced using a plasma / gas condensation cluster deposition (PGCCD) apparatus. It is disclosed that a Sn 1-x / Si x cluster deposited film was synthesized by a PGCCD apparatus.

Vojuslav R. Stamenkovic et al., Science, 315, 493-497, 2007Vojuslav R. Stamenkovic et al., Science, 315, 493-497, 2007 Peter Strasser et al., Nature Chemistry, 2, 454-460, 2010Peter Strasser et al., Nature Chemistry, 2, 454-460, 2010 Yuichiro Kurokawa et al., Journal of Applied Physics 113, 174302 (2013)Yuichiro Kurokawa et al., Journal of Applied Physics 113, 174302 (2013)

前述のとおり、従来のコアシェル粒子は、非Pt原子で構成されるコアを、Pt原子を含むシェルで覆ったものであった。しかしながら、より低いPt使用量でありながら、より高い触媒活性の高い粒子が提供できればより望ましい。   As described above, the conventional core-shell particles have a core composed of non-Pt atoms covered with a shell containing Pt atoms. However, it would be more desirable to provide particles with higher catalytic activity while having lower Pt usage.

本発明者らは、今般、Pt、Zn及びNiの3元素を用いてコアシェル粒子を構成すること、とりわけシェル層を主としてZn及びNiで構成し、かつ、コア粒子を主としてPt及びNiで構成することで、低減されたPt使用量でありながら、純Pt粒子と同等以上の触媒活性を呈することができるとの知見を得た。   The present inventors now construct core-shell particles using three elements of Pt, Zn, and Ni, in particular, the shell layer is mainly composed of Zn and Ni, and the core particles are mainly composed of Pt and Ni. As a result, the inventors have obtained knowledge that catalytic activity equal to or higher than that of pure Pt particles can be exhibited while the amount of Pt used is reduced.

したがって、本発明の目的は、低減されたPt使用量でありながら、純Pt粒子と同等以上の触媒活性を呈することが可能なコアシェル粒子を提供することにある。   Accordingly, an object of the present invention is to provide core-shell particles capable of exhibiting catalytic activity equivalent to or higher than that of pure Pt particles while having a reduced amount of Pt used.

本発明の一態様によれば、
Pt及びNiを含むコア粒子と、
前記コア粒子を被覆する、Zn及びNiを含むシェル層と、
を備えた、Pt−Zn−Ni系コアシェル粒子が提供される。
According to one aspect of the invention,
Core particles comprising Pt and Ni;
A shell layer containing Zn and Ni covering the core particles;
A Pt—Zn—Ni-based core-shell particle is provided.

本発明のPt−Zn−Ni系コアシェル粒子の模式断面図である1 is a schematic cross-sectional view of a Pt—Zn—Ni-based core-shell particle of the present invention. プラズマ・ガス凝縮クラスター堆積(PGCCD)装置の基本構成を模式的に示す図である。It is a figure which shows typically the basic composition of a plasma gas condensation cluster deposition (PGCCD) apparatus. 例1において作製されたPt−Zn−Ni系コアシェル粒子(Pt:63原子%)と例2(比較)において作製された純Pt粒子(Pt:100原子%)の、固体高分子形燃料電池の電流−電圧(I−V)特性を示す図である。A solid polymer fuel cell composed of Pt—Zn—Ni-based core-shell particles (Pt: 63 atom%) produced in Example 1 and pure Pt particles (Pt: 100 atom%) produced in Example 2 (comparative) It is a figure which shows a current-voltage (IV) characteristic. 例1において作製されたPt−Zn−Ni系コアシェル粒子(Pt:63原子%)と例2(比較)において作製された純Pt粒子(Pt:100原子%)の、固体高分子形燃料電池の電流−出力(I−P)特性を示す図である。A solid polymer fuel cell composed of Pt—Zn—Ni-based core-shell particles (Pt: 63 atom%) produced in Example 1 and pure Pt particles (Pt: 100 atom%) produced in Example 2 (comparative) It is a figure which shows an electric current-output (IP) characteristic. 例3において作製されたPt−Zn−Ni系コアシェル粒子(Pt:40原子%)の対流ボルタンメトリ測定結果を示す図である。FIG. 6 is a diagram showing the results of convective voltammetry measurement of Pt—Zn—Ni-based core-shell particles (Pt: 40 atomic%) produced in Example 3. 例4(比較)において作製された純Pt粒子(Pt:100原子%)の対流ボルタンメトリ測定結果を示す図である。It is a figure which shows the convective voltammetry measurement result of the pure Pt particle | grains (Pt: 100 atomic%) produced in Example 4 (comparison). 例5で作製されたPt−Zn−Ni系コアシェル粒子(Pt:31原子%)のSTEM像である。6 is a STEM image of Pt—Zn—Ni-based core-shell particles (Pt: 31 atom%) produced in Example 5. 図6Aに示されるSTEM像に対応する、STEM−EDXによるNi、Pt及びZnの元素マッピング像である。It is an element mapping image of Ni, Pt, and Zn by STEM-EDX corresponding to the STEM image shown in FIG. 6A. 図6Aに示されるSTEM像に対応する、STEM−EDXによるNi単独の元素マッピング像である。It is an element mapping image of Ni alone by STEM-EDX corresponding to the STEM image shown in FIG. 6A. 図6Aに示されるSTEM像に対応する、STEM−EDXによるPt単独の元素マッピング像である。It is an element mapping image of Pt alone by STEM-EDX corresponding to the STEM image shown in FIG. 6A. 図6Aに示されるSTEM像に対応する、STEM−EDXによるZn単独の元素マッピング像である。It is an element mapping image of Zn alone by STEM-EDX corresponding to the STEM image shown in FIG. 6A. 例5で作製されたPt−Zn−Ni系コアシェル粒子(Pt:31原子%)の別のSTEM像である。6 is another STEM image of Pt—Zn—Ni-based core-shell particles (Pt: 31 atom%) produced in Example 5. 図7Aに示されるSTEM像に対応する、STEM−EDXによるNi、Pt及びZnの元素マッピング像である。It is an element mapping image of Ni, Pt, and Zn by STEM-EDX corresponding to the STEM image shown in FIG. 7A. 図7Aに示されるSTEM像に対応する、STEM−EDXによるNi単独の元素マッピング像である。It is an element mapping image of Ni alone by STEM-EDX corresponding to the STEM image shown in FIG. 7A. 図7Aに示されるSTEM像に対応する、STEM−EDXによるPt単独の元素マッピング像である。It is an element mapping image of Pt alone by STEM-EDX corresponding to the STEM image shown in FIG. 7A. 図7Aに示されるSTEM像に対応する、STEM−EDXによるZn単独の元素マッピング像である。It is an element mapping image of Zn alone by STEM-EDX corresponding to the STEM image shown in FIG. 7A.

Pt−Zn−Ni系コアシェル粒子
図1に本発明のPt−Zn−Ni系コアシェル粒子10(以下、コアシェル粒子10という)の模式断面図を示す。図1に模式的に示されるように、コアシェル粒子10は、コア粒子12とコア粒子を被覆するシェル層14とを備える。コア粒子12はPt及びNiを含む。また、シェル層14はZn及びNiを含む。したがって、コアシェル粒子10は全体としてPt−Zn−Ni系の基本組成を有する、すなわちPt、Zn及びNiを基本成分として含む、典型的にはPt、Zn及びNiで構成されるといえる。このようにPt、Zn及びNiの3元素を用いてコアシェル粒子を構成すること、とりわけシェル層を主としてZn及びNiで構成し、かつ、コア粒子を主としてPt及びNiで構成することで、低減されたPt使用量でありながら、純Pt粒子と同等以上の触媒活性を呈することができる。前述のとおり、従来のコアシェル粒子は、非Pt原子で構成されるコアを、Pt原子を含むシェルで覆ったものであった。これに対し、本発明のコアシェル粒子はPt原子を、粒子表面を構成するシェルよりも、むしろシェルに取り囲まれたコア内にリッチに含有させる。こうすることで、予想外にも純Pt粒子と同等以上の触媒活性を呈することができる。しかも、Pt原子はシェルに必ずしも存在する必要はなく、コアにさえ存在していればよい。それ故、Pt使用量を低減でき、コスト的にも有利となる。つまり、本発明の粒子の特徴は、従来のコアシェル粒子とは異なりPtが表面に無くても触媒活性が高く、しかもその触媒活性が純Ptと同等以上となることにある。
Pt—Zn—Ni-based core-shell particle FIG. 1 is a schematic cross-sectional view of a Pt—Zn—Ni-based core-shell particle 10 (hereinafter referred to as “core-shell particle 10”) of the present invention. As schematically shown in FIG. 1, the core-shell particle 10 includes a core particle 12 and a shell layer 14 that covers the core particle. The core particle 12 contains Pt and Ni. The shell layer 14 contains Zn and Ni. Therefore, it can be said that the core-shell particle 10 has a Pt—Zn—Ni-based basic composition as a whole, that is, is typically composed of Pt, Zn, and Ni containing Pt, Zn, and Ni as basic components. As described above, the core-shell particles are constituted by using the three elements of Pt, Zn, and Ni. In particular, the shell layer is mainly composed of Zn and Ni, and the core particles are mainly composed of Pt and Ni. Although the amount of Pt used is high, catalytic activity equivalent to or higher than that of pure Pt particles can be exhibited. As described above, the conventional core-shell particles have a core composed of non-Pt atoms covered with a shell containing Pt atoms. On the other hand, the core-shell particle of the present invention contains Pt atoms in a rich manner in the core surrounded by the shell, rather than the shell constituting the particle surface. By doing so, it is possible to unexpectedly exhibit catalytic activity equivalent to or higher than that of pure Pt particles. In addition, the Pt atom does not necessarily exist in the shell, and only needs to exist in the core. Therefore, the amount of Pt used can be reduced, which is advantageous in terms of cost. That is, the feature of the particles of the present invention is that, unlike conventional core-shell particles, the catalytic activity is high even when Pt is not present on the surface, and the catalytic activity is equal to or higher than that of pure Pt.

コア粒子12はPt及びNiを含み、典型的には主としてPt及びNiで構成される。コア粒子12はZnをさらに含むものであってよい。実際、プラズマ・ガス凝縮クラスター堆積(PGCCD)装置を用いて作製されたコアシェル粒子10においては、コア粒子12はZnを不可避的に含有しうる。したがって、コア粒子12単体に着目した場合、Znは不可避元素ないし不可避不純物ということもできる。コアシェル粒子10の粒子径は1〜20nmが好ましく、より好ましくは1〜15nm、さらに好ましくは1〜5nmである。   The core particle 12 includes Pt and Ni, and is typically mainly composed of Pt and Ni. The core particle 12 may further contain Zn. In fact, in the core-shell particle 10 produced using a plasma gas condensation cluster deposition (PGCCD) apparatus, the core particle 12 can inevitably contain Zn. Therefore, when focusing on the core particle 12 alone, Zn can be said to be an inevitable element or an inevitable impurity. The particle diameter of the core-shell particle 10 is preferably 1 to 20 nm, more preferably 1 to 15 nm, and still more preferably 1 to 5 nm.

シェル層14は、コア粒子12を被覆する層である。シェル層14はコア粒子12を完全に被覆していてよいし、部分的に被覆していてもよい。シェル層14がコア粒子12を完全でなくとも概ね全体的に被覆していれば十分である。シェル層14の厚さは0.25〜5nmが好ましく、より好ましくは0.25〜4nm、さらに好ましくは0.25〜1.5nmである。   The shell layer 14 is a layer that covers the core particles 12. The shell layer 14 may completely cover the core particle 12 or may partially cover it. It is sufficient that the shell layer 14 covers the core particle 12 almost entirely if not completely. The thickness of the shell layer 14 is preferably 0.25 to 5 nm, more preferably 0.25 to 4 nm, and still more preferably 0.25 to 1.5 nm.

シェル層14は、Zn及びNiを含む。したがって、Niはコア粒子12及びシェル層14の両方に含まれる。   The shell layer 14 contains Zn and Ni. Therefore, Ni is contained in both the core particle 12 and the shell layer 14.

シェル層14はPtを含まないのが好ましい。あるいは、シェル層14はPtを含むものであってもよいが、コア粒子12がシェル層14よりもPtに富んでいるものであればよい。いずれにしても、Ptの使用量を大幅に低減しながらも、触媒活性を向上させることができる。   The shell layer 14 preferably does not contain Pt. Alternatively, the shell layer 14 may contain Pt, but the core particle 12 only needs to be richer in Pt than the shell layer 14. In any case, the catalytic activity can be improved while greatly reducing the amount of Pt used.

コアシェル粒子10の粒子径は1〜20nmが好ましく、より好ましくは1〜15nm、さらに好ましくは1〜5nmである。このような範囲内であると、PGCCD装置等を用いたスパッタリング技術で作製しやすい上に、優れた触媒活性をより実現しやすい。   The particle diameter of the core-shell particle 10 is preferably 1 to 20 nm, more preferably 1 to 15 nm, and still more preferably 1 to 5 nm. Within such a range, it is easy to produce by a sputtering technique using a PGCCD apparatus or the like, and excellent catalytic activity is more easily realized.

Pt−Zn−Ni系コアシェル粒子10の全体量に対するPtの割合は30〜70原子%であるのが好ましく、より好ましくは30〜65原子%であり、さらに好ましくは30〜50原子%である。Pt−Zn−Ni系コアシェル粒子10の全体量に対するNiの割合は20〜70原子%であるのが好ましく、より好ましくは20〜60原子%であり、さらに好ましくは20〜50原子%である。Pt−Zn−Ni系コアシェル粒子10の全体量に対するZnの割合は10〜50原子%であるのが好ましく、より好ましくは10〜40原子%であり、さらに好ましくは10〜30原子%であり、特に好ましくは10〜20原子%である。   The proportion of Pt with respect to the total amount of the Pt—Zn—Ni-based core-shell particles 10 is preferably 30 to 70 atomic%, more preferably 30 to 65 atomic%, and further preferably 30 to 50 atomic%. The ratio of Ni to the total amount of the Pt—Zn—Ni-based core-shell particles 10 is preferably 20 to 70 atomic%, more preferably 20 to 60 atomic%, and further preferably 20 to 50 atomic%. The proportion of Zn with respect to the total amount of the Pt—Zn—Ni-based core-shell particles 10 is preferably 10 to 50 atomic%, more preferably 10 to 40 atomic%, still more preferably 10 to 30 atomic%, Most preferably, it is 10-20 atomic%.

本発明のPt−Zn−Ni系コアシェル粒子は、優れた触媒活性を発揮できることから、固体高分子形燃料電池の正極若しくは負極、アルカリ燃料電池の正極若しくは負極、又は金属空気電池の正極に触媒として用いられるのが好ましい。   Since the Pt—Zn—Ni-based core-shell particle of the present invention can exhibit excellent catalytic activity, it can be used as a catalyst for a positive electrode or negative electrode of a solid polymer fuel cell, a positive electrode or negative electrode of an alkaline fuel cell, or a positive electrode of a metal-air battery. It is preferably used.

製造方法
本発明のPt−Zn−Ni系コアシェル粒子はいかなる方法により製造されたものであってもよいが、好ましくは、プラズマ・ガス凝縮クラスター堆積(PGCCD)装置を用いて製造することができる。PGCCD装置は、後述する図2に例示されるように、直流マグネトロンスパッタリング方式の原料気化装置と、希ガス中凝縮装置とを組み合せたナノクラスター試料作製装置である。PGCCD装置を用いたクラスターないし粒子の製造方法は公知であり、例えば非特許文献3(Yuichiro Kurokawa et al., Journal of Applied Physics 113, 174302 (2013))に記載されており、この文献は参照により本明細書に組み込まれる。非特許文献3や図2に記載されるようなPGCCD装置を用いたクラスターないし粒子の製造において、Ptターゲットと、Ni−Zn合金ターゲットとを対向させてスパッタリングチャンバ内に配置してスパッタリングを行い、基材上に膜状に堆積させることにより、本発明のコアシェル粒子を製造することができる。スパッタリングの方式は直流マグネトロンスパッタリングが好ましい。PGCCD装置を用いた方法により本発明のPt−Zn−Ni系コアシェル粒子が形成されるメカニズムは必ずしも明らかではないが、Ptのように融点が高い元素は表面エネルギーが大きく、それ故、表面を減らすようにPtが粒子の内側に位置する傾向があるためではないかと推察される。
Production Method The Pt—Zn—Ni-based core-shell particles of the present invention may be produced by any method, but are preferably produced using a plasma gas condensation cluster deposition (PGCCD) apparatus. As illustrated in FIG. 2 to be described later, the PGCD device is a nanocluster sample preparation device in which a DC magnetron sputtering type material vaporization device and a rare gas condensing device are combined. A method for producing clusters or particles using a PGCD device is known, and is described, for example, in Non-Patent Document 3 (Yuichiro Kurokawa et al., Journal of Applied Physics 113, 174302 (2013)). Incorporated herein. In the production of clusters or particles using the PGCCD apparatus as described in Non-Patent Document 3 or FIG. 2, sputtering is performed by placing a Pt target and a Ni—Zn alloy target facing each other in a sputtering chamber, The core-shell particles of the present invention can be produced by depositing in a film form on a substrate. The sputtering method is preferably DC magnetron sputtering. Although the mechanism by which the Pt—Zn—Ni-based core-shell particles of the present invention are formed by the method using the PGCD device is not necessarily clear, an element having a high melting point such as Pt has a large surface energy and therefore reduces the surface. Thus, it is assumed that Pt tends to be located inside the particles.

本発明を以下の例によってさらに具体的に説明する。   The present invention is more specifically described by the following examples.

例1
本例ではコアシェル粒子を作製し、固体高分子形燃料電池の燃料極触媒としてのコアシェル粒子の特性を調べた。具体的には以下のとおりである。
Example 1
In this example, core-shell particles were prepared, and the characteristics of the core-shell particles as a fuel electrode catalyst of a polymer electrolyte fuel cell were examined. Specifically, it is as follows.

(1)コアシェル粒子の製造
図2に示される構成を有するプラズマ・ガス凝縮クラスター堆積(PGCCD)装置(株式会社日本ビーテック製)を用意した。このPGCCD装置100は、スパッタリングチャンバ102と、クラスター成長室104と、堆積チャンバ106とを備える。スパッタリングチャンバ102は、Arガス及び/又はHeガスを供給可能なガス供給口108と、上下に対向して配置される2つのターゲットホルダ112,114とを備える。クラスター成長室104は、スパッタリングチャンバ102と連通する成長ダクト116と、成長ダクト116の先端のノズル118と、ノズル118と対向して設けられるスキマー120とを備え、コンパウンド分子ポンプ(CMP)とメカニカルブースターポンプ(MBP)に連結され減圧可能とされる。堆積チャンバ106は、試料ホルダ122を備え、ターボ分子ポンプ(TMP)に連結され減圧可能とされる。試料ホルダ122は、スキマー120から放射される原子が堆積可能な位置、すなわちスキマー120と対向しかつ所定距離離れた位置に設けられる。
(1) Manufacture of core-shell particles A plasma / gas condensation cluster deposition (PGCCD) apparatus (manufactured by Nippon B-Tech Co., Ltd.) having the configuration shown in FIG. 2 was prepared. The PGCCD apparatus 100 includes a sputtering chamber 102, a cluster growth chamber 104, and a deposition chamber 106. The sputtering chamber 102 includes a gas supply port 108 that can supply Ar gas and / or He gas, and two target holders 112 and 114 that are arranged to face each other in the vertical direction. The cluster growth chamber 104 includes a growth duct 116 communicating with the sputtering chamber 102, a nozzle 118 at the tip of the growth duct 116, and a skimmer 120 provided to face the nozzle 118. A compound molecular pump (CMP) and a mechanical booster are provided. It is connected to a pump (MBP) and can be depressurized. The deposition chamber 106 includes a sample holder 122 and is connected to a turbo molecular pump (TMP) so that the pressure can be reduced. The sample holder 122 is provided at a position where atoms emitted from the skimmer 120 can be deposited, that is, at a position facing the skimmer 120 and separated by a predetermined distance.

スパッタリングチャンバ102内の上側のターゲットホルダ112にPtターゲットを、下側のターゲットホルダ114にNi−Zn合金ターゲット(組成:Ni−40原子%Zn)を固定した。こうしてPtターゲットとNi−Zn合金ターゲットを対向させて配置した。PGCCD装置100内を減圧し、スパッタ出力:250W(Ptターゲットに対して)及び150W(Ni−Zn合金ターゲットに対して)、Arガス流量:400sccmの条件で、マグネトロンスパッタリングを行い、試料ホルダ上にPt原子、Ni原子及びZn原子のナノ粒子を堆積させてコアシェル粒子を得た。   A Pt target was fixed to the upper target holder 112 in the sputtering chamber 102, and a Ni—Zn alloy target (composition: Ni-40 atomic% Zn) was fixed to the lower target holder 114. In this way, the Pt target and the Ni—Zn alloy target were arranged to face each other. The inside of the PGCCD apparatus 100 is depressurized, magnetron sputtering is performed under the conditions of sputtering output: 250 W (for Pt target) and 150 W (for Ni—Zn alloy target), and Ar gas flow rate: 400 sccm, on the sample holder. Core-shell particles were obtained by depositing nanoparticles of Pt atoms, Ni atoms, and Zn atoms.

試料ホルダ122上にセットしたCuグリッド上に堆積したコアシェル粒子をTEM観察用サンプルとした。STEM−EDX(走査透過型電子顕微鏡−エネルギー分散型X線分光分析器)(製品名:JEM−ARM200F、日本電子社製)により、コアシェル粒子に対して組成分析を行った。その結果、Pt及びNiを含むコア粒子と、Zn及びNiを含むシェル層とが確認された。また、コアシェル粒子の全体組成はPt63Ni25Zn12であった。 The core-shell particles deposited on the Cu grid set on the sample holder 122 were used as TEM observation samples. Composition analysis was performed on the core-shell particles using STEM-EDX (scanning transmission electron microscope-energy dispersive X-ray spectrometer) (product name: JEM-ARM200F, manufactured by JEOL Ltd.). As a result, core particles containing Pt and Ni and a shell layer containing Zn and Ni were confirmed. Further, the overall composition of the core-shell particles was Pt 63 Ni 25 Zn 12 .

(2)固体高分子形燃料電池の電流−電圧(I−V)特性
上記得られたPt−Zn−Ni系コアシェル粒子(組成:Pt63Ni25Zn12)を用いて、以下に示される燃料極(触媒及び集電体)、電解質及び空気極(触媒及び集電体)を用いて固体高分子形燃料電池の測定系を構成した。
<測定系>
‐燃料極
触媒:Pt−Zn−Ni系コアシェル粒子(組成:Pt63Ni25Zn12
集電体:カーボンペーパー(撥水加工が施されたもの)
‐電解質:Nafion(登録商標)(和光純薬工業社製)
‐空気極:
触媒:純Pt
集電体;カーボンペーパー(撥水加工が施されたもの)
(2) Current-Voltage (IV) Characteristics of Solid Polymer Fuel Cell The fuel shown below using the Pt—Zn—Ni-based core-shell particles (composition: Pt 63 Ni 25 Zn 12 ) obtained above A measurement system for a polymer electrolyte fuel cell was constructed using an electrode (catalyst and current collector), an electrolyte, and an air electrode (catalyst and current collector).
<Measurement system>
- anode catalyst: Pt-Zn-Ni-based core-shell particles (composition: Pt 63 Ni 25 Zn 12)
Current collector: Carbon paper (water repellent finish)
-Electrolyte: Nafion (registered trademark) (manufactured by Wako Pure Chemical Industries, Ltd.)
-Air electrode:
Catalyst: Pure Pt
Current collector: Carbon paper (water-repellent finish)

上記測定系を用いて以下の条件で固体高分子形燃料電池を作動させ、電流−電圧(I−V)特性と電流−出力(I−P)特性を測定した。測定結果は図3A及び3Bに示されるとおりであった。
<測定条件>
‐燃料極:純Hガス/流量:100sccm
‐空気極:純O/流量:100sccm
Using the above measurement system, the polymer electrolyte fuel cell was operated under the following conditions, and current-voltage (IV) characteristics and current-output (IP) characteristics were measured. The measurement results were as shown in FIGS. 3A and 3B.
<Measurement conditions>
- anode: pure H 2 gas / flow rate: 100 sccm
-Air electrode: Pure O 2 / Flow rate: 100 sccm

例2(比較)
Ni−40原子%Znターゲットの代わりにPtターゲットを250Wのスパッタ出力で用いたこと以外は例1と同様にして、純Pt粒子(組成:Pt100%)を作製した。次いで、燃料極触媒として上記純Pt粒子を用いたこと以外は例1と同様にして、固体高分子形燃料電池の電流−電圧特性(I−V)と電流−出力(I−P)特性の測定を行った。測定結果は図3A及び3Bに示されるとおりであった。
Example 2 (Comparison)
Pure Pt particles (composition: Pt 100%) were produced in the same manner as in Example 1 except that a Pt target was used at a sputtering output of 250 W instead of the Ni-40 atomic% Zn target. Next, in the same manner as in Example 1 except that the pure Pt particles were used as the fuel electrode catalyst, the current-voltage characteristics (IV) and current-output (IP) characteristics of the polymer electrolyte fuel cell were measured. Measurements were made. The measurement results were as shown in FIGS. 3A and 3B.

図3A及び3Bに示される結果から、Pt63%の例1のコアシェル粒子は、Pt100%の例2の粒子よりもPt含有量が少ないにも関わらず、I−V特性及びI−P特性がPt100%の例2よりも良好であった(すなわち同じ電流密度でのセル電圧及び出力密度が同等以上であった)。   From the results shown in FIGS. 3A and 3B, the core and shell particles of Example 1 with 63% Pt have lower Pt content than the particles of Example 2 with 100% Pt, but have IV and IP characteristics of Pt100. % Was better than Example 2 (ie, cell voltage and power density at the same current density were equal or better).

例3
本例ではコアシェル粒子を作製し、金属空気電池の正極触媒としてのコアシェル粒子の特性を調べた。具体的には以下のとおりである。
Example 3
In this example, core-shell particles were prepared, and the characteristics of the core-shell particles as the positive electrode catalyst of the metal-air battery were examined. Specifically, it is as follows.

(1)コアシェル粒子の製造
例1と同様にして、Pt−Zn−Ni系コアシェル粒子を製造した。試料ホルダ上に堆積したコアシェル粒子をサンプルとして採取し、例1と同様にしてコアシェル粒子に対して組成分析を行った。その結果、Pt及びNiを含むコア粒子と、Zn及びNiを含むシェル層とが確認された。また、コアシェル粒子の全体組成はPt40Ni42Zn18であった。
(1) Production of core-shell particles In the same manner as in Example 1, Pt-Zn-Ni-based core-shell particles were produced. The core-shell particles deposited on the sample holder were collected as samples, and composition analysis was performed on the core-shell particles in the same manner as in Example 1. As a result, core particles containing Pt and Ni and a shell layer containing Zn and Ni were confirmed. Further, the overall composition of the core-shell particles was Pt 40 Ni 42 Zn 18 .

(2)正極触媒の触媒活性の対流ボルタンメトリ測定
上記得られたPt−Zn−Ni系コアシェル粒子(組成:Pt40Ni42Zn18)を用いて、以下に示される作用極、電解質、対極及び参照極を用いて電気化学測定系を構成した。
<測定系>
‐作用極(正極触媒):コアシェル粒子(組成:Pt40Ni42Zn18
‐電解質:1M KOH水溶液
‐対極:Pt
‐参照極:Hg/HgO
(2) Convective voltammetry measurement of the catalytic activity of the positive electrode catalyst Using the obtained Pt—Zn—Ni-based core-shell particles (composition: Pt 40 Ni 42 Zn 18 ), the following working electrode, electrolyte, counter electrode and reference An electrochemical measurement system was constructed using the poles.
<Measurement system>
- working electrode (cathode catalyst): core-shell particles (composition: Pt 40 Ni 42 Zn 18)
-Electrolyte: 1M KOH aqueous solution-Counter electrode: Pt
-Reference electrode: Hg / HgO

<測定条件>
上記測定系を用いて以下の条件で正極触媒の触媒活性の対流ボルタンメトリ測定を行った。測定結果は図4に示されるとおりであった。
‐電位範囲:+0.1〜−0.8V(vsHg/HgO)
‐作用極回転数:500〜4000rpm(500rpm刻みで変化させた)
<Measurement conditions>
Using the above measurement system, convective voltammetry measurement of the catalytic activity of the positive electrode catalyst was performed under the following conditions. The measurement results were as shown in FIG.
-Potential range: +0.1 to -0.8 V (vsHg / HgO)
-Working pole rotational speed: 500-4000 rpm (changed in increments of 500 rpm)

例4(比較)
Ni−40原子%Znターゲットの代わりにPtターゲットを250Wのスパッタ出力で用いたこと以外は例1と同様にして、純Pt粒子(組成:Pt100%)を作製した。次いで、作用極(正極触媒)として上記純Pt粒子を用いたこと以外は例3と同様にして電気化学測定系を構成して、正極触媒の触媒活性の対流ボルタンメトリ測定を行った。測定結果は図5に示されるとおりであった。例3と同様の評価を行った。
Example 4 (Comparison)
Pure Pt particles (composition: Pt 100%) were produced in the same manner as in Example 1 except that a Pt target was used at a sputtering output of 250 W instead of the Ni-40 atomic% Zn target. Next, an electrochemical measurement system was configured in the same manner as in Example 3 except that the pure Pt particles were used as the working electrode (positive electrode catalyst), and convective voltammetry measurement of the catalytic activity of the positive electrode catalyst was performed. The measurement results were as shown in FIG. Evaluation similar to Example 3 was performed.

表1に示される結果から分かるように、Pt40%の例3のコアシェル粒子は、Pt100%の例4の粒子よりもPt含有量が少ないにも関わらず、触媒活性はPt100%の例4と同程度であった。   As can be seen from the results shown in Table 1, the core-shell particles of Example 3 with 40% Pt had the same catalytic activity as Example 4 with 100% Pt, although the Pt content was lower than the particles of Example 4 with 100% Pt. It was about.

例5
本例ではコアシェル粒子を作製し、そのSTEM−EDXによる組成分析を行った。具体的には以下のとおりである。
Example 5
In this example, core-shell particles were prepared, and composition analysis was performed using STEM-EDX. Specifically, it is as follows.

(1)コアシェル粒子の製造
例1と同様にして、Pt−Zn−Ni系コアシェル粒子を製造した。
(1) Production of core-shell particles In the same manner as in Example 1, Pt-Zn-Ni-based core-shell particles were produced.

(2)STEM−EDXによる組成分析
STEM−EDX(走査透過型電子顕微鏡−エネルギー分散型X線分光分析器)(製品名:JEM−ARM200F、日本電子社製)により、コアシェル粒子に対して組成分析を行った。その結果、図6A〜6B及び7A〜7Eに示されるように、Pt及びNiを含むコア粒子と、Zn及びNiを含むシェル層とが確認された。また、コアシェル粒子の全体組成はPt31Ni52Zn17であった。図6Aにコアシェル粒子のSTEM−EDX像を、図6B、6C、6D及び6Eに、図6Aに示されるSTEM像に対応する、Ni、Pt及びZnの元素マッピング像、Ni単独の元素マッピング像、Pt単独の元素マッピング像、及びZn単独の元素マッピング像をそれぞれ示す。また、図7Aにコアシェル粒子の別のSTEM−EDX像を、図7B、7C、7D及び7Eに、図7Aに示されるSTEM像に対応する、Ni、Pt及びZnの元素マッピング像、Ni単独の元素マッピング像、Pt単独の元素マッピング像、及びZn単独の元素マッピング像をそれぞれ示す。
(2) Composition analysis by STEM-EDX Composition analysis for core-shell particles by STEM-EDX (scanning transmission electron microscope-energy dispersive X-ray spectrometer) (product name: JEM-ARM200F, manufactured by JEOL Ltd.) Went. As a result, as shown in FIGS. 6A to 6B and 7A to 7E, core particles containing Pt and Ni and a shell layer containing Zn and Ni were confirmed. Further, the overall composition of the core-shell particles was Pt 31 Ni 52 Zn 17 . 6A, STEM-EDX images of the core-shell particles, FIGS. 6B, 6C, 6D and 6E, Ni, Pt and Zn element mapping images corresponding to the STEM image shown in FIG. 6A, Ni single element mapping image, An element mapping image of Pt alone and an element mapping image of Zn alone are shown. 7A shows another STEM-EDX image of the core-shell particle, FIGS. 7B, 7C, 7D and 7E show Ni, Pt and Zn element mapping images corresponding to the STEM image shown in FIG. 7A. An element mapping image, an element mapping image of Pt alone, and an element mapping image of Zn alone are shown.

10 コアシェル粒子
12 コア粒子
14 シェル層


10 Core-shell particle 12 Core particle 14 Shell layer


Claims (8)

Pt及びNiを含むコア粒子と、
前記コア粒子を被覆する、Zn及びNiを含むシェル層と、
を備えた、Pt−Zn−Ni系コアシェル粒子。
Core particles comprising Pt and Ni;
A shell layer containing Zn and Ni covering the core particles;
A Pt—Zn—Ni-based core-shell particle comprising:
前記シェル層がPtを含まない、請求項1に記載のPt−Zn−Ni系コアシェル粒子。   The Pt-Zn-Ni-based core-shell particle according to claim 1, wherein the shell layer does not contain Pt. 前記シェル層がPtを含むが、前記コア粒子が前記シェル層よりもPtに富んでいる、請求項1に記載のPt−Zn−Ni系コアシェル粒子。   The Pt-Zn-Ni-based core-shell particle according to claim 1, wherein the shell layer contains Pt, but the core particle is richer in Pt than the shell layer. 前記Pt−Zn−Ni系コアシェル粒子が1〜20nmの粒子径を有する、請求項1〜3のいずれか一項に記載のPt−Zn−Ni系コアシェル粒子。   The Pt-Zn-Ni-based core-shell particle according to any one of claims 1 to 3, wherein the Pt-Zn-Ni-based core-shell particle has a particle diameter of 1 to 20 nm. 前記Pt−Zn−Ni系コアシェル粒子の全体量に対するPtの割合が30〜70原子%である、請求項1〜4のいずれか一項に記載のPt−Zn−Ni系コアシェル粒子。   5. The Pt—Zn—Ni-based core-shell particle according to claim 1, wherein a ratio of Pt to the total amount of the Pt—Zn—Ni-based core-shell particle is 30 to 70 atomic%. 前記Pt−Zn−Ni系コアシェル粒子の全体量に対するNiの割合が20〜70原子%である、請求項1〜5のいずれか一項に記載のPt−Zn−Ni系コアシェル粒子。   The Pt-Zn-Ni-based core-shell particles according to any one of claims 1 to 5, wherein a ratio of Ni to the total amount of the Pt-Zn-Ni-based core-shell particles is 20 to 70 atomic%. 前記Pt−Zn−Ni系コアシェル粒子の全体量に対するZnの割合が10〜50原子%である、請求項1〜6のいずれか一項に記載のPt−Zn−Ni系コアシェル粒子。   The Pt-Zn-Ni-based core-shell particle according to any one of claims 1 to 6, wherein a ratio of Zn to the total amount of the Pt-Zn-Ni-based core-shell particle is 10 to 50 atomic%. 固体高分子形燃料電池の正極若しくは負極、アルカリ燃料電池の正極若しくは負極、又は金属空気電池の正極に触媒として用いられる、請求項1〜7のいずれか一項に記載のPt含有コアシェル粒子。


The Pt-containing core-shell particles according to any one of claims 1 to 7, which are used as a catalyst for a positive electrode or negative electrode of a solid polymer fuel cell, a positive electrode or negative electrode of an alkaline fuel cell, or a positive electrode of a metal-air battery.


JP2016064650A 2016-03-28 2016-03-28 Pt-Zn-Ni core-shell particles Active JP6653877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016064650A JP6653877B2 (en) 2016-03-28 2016-03-28 Pt-Zn-Ni core-shell particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064650A JP6653877B2 (en) 2016-03-28 2016-03-28 Pt-Zn-Ni core-shell particles

Publications (2)

Publication Number Publication Date
JP2017179412A true JP2017179412A (en) 2017-10-05
JP6653877B2 JP6653877B2 (en) 2020-02-26

Family

ID=60005528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064650A Active JP6653877B2 (en) 2016-03-28 2016-03-28 Pt-Zn-Ni core-shell particles

Country Status (1)

Country Link
JP (1) JP6653877B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212827A (en) * 1993-04-22 1996-08-20 Ajinomoto Co Inc Conductive powder, its manufacture and conductive paste containing it
JP2000345332A (en) * 1999-06-04 2000-12-12 Japan Science & Technology Corp Manufacture of layer-shaped cluster
JP2005135900A (en) * 2003-10-06 2005-05-26 Nissan Motor Co Ltd Electrode catalyst for fuel cell and its manufacturing method
JP2007332405A (en) * 2006-06-13 2007-12-27 Osaka Vacuum Ltd Apparatus and method for producing cluster
JP2015030882A (en) * 2013-08-02 2015-02-16 株式会社ノリタケカンパニーリミテド Base metal - noble metal composite nanoparticles and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212827A (en) * 1993-04-22 1996-08-20 Ajinomoto Co Inc Conductive powder, its manufacture and conductive paste containing it
JP2000345332A (en) * 1999-06-04 2000-12-12 Japan Science & Technology Corp Manufacture of layer-shaped cluster
JP2005135900A (en) * 2003-10-06 2005-05-26 Nissan Motor Co Ltd Electrode catalyst for fuel cell and its manufacturing method
JP2007332405A (en) * 2006-06-13 2007-12-27 Osaka Vacuum Ltd Apparatus and method for producing cluster
JP2015030882A (en) * 2013-08-02 2015-02-16 株式会社ノリタケカンパニーリミテド Base metal - noble metal composite nanoparticles and method for producing the same

Also Published As

Publication number Publication date
JP6653877B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
US7790647B2 (en) Catalyst layer for polymer electrolyte fuel cell, process for producing the catalyst layer, and polymer electrolyte fuel cell
JP5055788B2 (en) Electrocatalyst
US8846271B2 (en) Electrode material
JP5322110B2 (en) Manufacturing method of cathode electrode material for fuel cell, cathode electrode material for fuel cell, and fuel cell using the cathode electrode material
US9627695B2 (en) Electrical conductive member, method for manufacturing the same, separator for fuel cell, and polymer electrolyte fuel cell
KR102472737B1 (en) Cathode Electrode Design for Electrochemical Fuel Cells
WO2006137302A1 (en) Fuel cell, catalyst thereof, and electrode thereof
JP6276870B2 (en) Electrode catalyst layer for fuel cell, membrane electrode assembly for fuel cell and fuel cell using the catalyst layer
Du et al. High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell
US20170250432A1 (en) Electrode catalyst for fuel cell, method for producing the same, electrode catalyst layer for fuel cell comprising the catalyst, and membrane electrode assembly for fuel cell and fuel cell using the catalyst or the catalyst layer
JP2019517098A (en) Catalyst Coating of Perovskite Films and Particles Separated from Perovskite Films
JP6566413B2 (en) Catalyst for electrochemical oxygen reduction and / or oxygen generation
US8394550B2 (en) Nano-patterned electrolytes in solid oxide fuel cells
US11094954B2 (en) Electrode, membrane electrode assembly, electrochemical cell, stack, fuel cell, vehicle and flying object
JP2016091878A (en) Method for manufacturing electrode material, membrane-electrode assembly and fuel cell stack
JP6653877B2 (en) Pt-Zn-Ni core-shell particles
JP2005174835A (en) Electrode
JP2011031196A (en) Pt thin film electrode catalyst
JP2008243378A (en) Membrane electrode assembly for fuel cell, and fuel cell using the same
JP5434112B2 (en) Acicular boride powder, production method thereof, and fuel cell electrode catalyst
WO2013042429A1 (en) Solid polymer fuel cell
JP7218263B2 (en) Laminated catalysts, electrodes, membrane electrode assemblies, electrochemical cells, stacks, fuel cells, reversible water electrolysis devices, vehicles and flying objects
JP5375026B2 (en) Epitaxial thin film
Götsch et al. PVD-Deposited Micro-SOFC Model Systems
JP7131535B2 (en) Catalyst layer for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200116

R150 Certificate of patent or registration of utility model

Ref document number: 6653877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250