WO2013042429A1 - Solid polymer fuel cell - Google Patents

Solid polymer fuel cell Download PDF

Info

Publication number
WO2013042429A1
WO2013042429A1 PCT/JP2012/067357 JP2012067357W WO2013042429A1 WO 2013042429 A1 WO2013042429 A1 WO 2013042429A1 JP 2012067357 W JP2012067357 W JP 2012067357W WO 2013042429 A1 WO2013042429 A1 WO 2013042429A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
amorphous carbon
carbon film
fuel cell
peak intensity
Prior art date
Application number
PCT/JP2012/067357
Other languages
French (fr)
Japanese (ja)
Inventor
基 柳沼
友克 姫野
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013042429A1 publication Critical patent/WO2013042429A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte fuel cell, and more particularly to a polymer electrolyte fuel cell having good drainage (flooding resistance) on the cathode side and excellent output characteristics particularly in a high current density region. It is.
  • Polymer electrolyte fuel cells using proton conducting polymer electrolyte membranes operate at lower temperatures compared to other types of fuel cells such as solid oxide fuel cells and molten carbonate fuel cells. It is also expected as a power source for moving bodies such as automobiles, and its practical use has also started.
  • Such a polymer electrolyte fuel cell generally has a structure in which a plurality of single cells exhibiting a power generation function are stacked.
  • This single cell includes a polymer electrolyte membrane having proton conductivity (for example, a Nafion (registered trademark) membrane), an anode and a pair of electrode layers sandwiching the membrane (also referred to as an “electrode catalyst layer”), these A membrane electrode assembly including a pair of gas diffusion layers including an anode and a cathode sandwiching the electrolyte membrane and the electrode layer is provided.
  • a gas diffusion layer hereinafter sometimes abbreviated as “GDL”).
  • MEA Membrane electrode assemblies constituting individual single cells are electrically connected to MEAs of adjacent single cells via separators.
  • the fuel cell stack is configured by stacking and connecting. Such a fuel cell stack is applied to various uses and functions as a power generation means.
  • the separator exhibits a function of electrically connecting adjacent single cells as described above.
  • a gas flow path is usually provided on the surface of the separator facing the MEA, and this gas flow path functions as a gas supply means for supplying fuel gas and oxidant gas to the anode and the cathode, respectively.
  • separators made of carbon or conductive resin require a relatively large thickness in order to ensure the strength after the formation of the gas flow path, which increases the overall size of the fuel cell stack. Therefore, it is not preferable as an in-vehicle power supply that is particularly required to be downsized.
  • the metal separator since the metal separator has a relatively high strength, the thickness can be reduced and the conductivity is excellent, so that there is an advantage that the contact resistance with the MEA can be reduced.
  • the metal separator in the case of a metal material, there may be a problem that the conductivity is reduced due to corrosion caused by, for example, generated water or a potential difference generated during operation, and the output of the stack is reduced accordingly. Accordingly, the metal separator is required to improve the corrosion resistance while ensuring its excellent conductivity.
  • Patent Document 1 As a countermeasure against such flooding, for example, in Patent Document 1, an amorphous carbon film is provided on the surface so that generated water does not stay as water droplets in the gas flow path of the separator and spreads. It has been proposed that the expanded metal is used as a gas flow path structure and the surface is hydrophilized so that the contact angle with attached water is 40 ° or less.
  • the invention described in the above document is a technique related to the improvement of drainage of the separator, and in order to prevent battery flooding, the drainage path of generated water until reaching the separator must be taken into consideration. Don't be. That is, the water generated by the battery reaction is generated at the portion of the air electrode surface that is in contact with the electrolyte membrane, and is discharged from the GDL through the separator to the outside, so that the generated water is smoothly discharged from the GDL to the separator.
  • the separator is hydrophilic, whereas GDL needs to have water repellency.
  • the separator for fuel cells described in the above documents is carbon paper or carbon cloth. It can be said that this is effective when combined with a typical MEA using GDL as a GDL.
  • surface treatment with amorphous carbon is required to reduce electrical resistance, resulting in hydrophilicity equivalent to that of the separator. Can not improve drainage.
  • the surface treatment is applied to impart water repellency to the GDL, the contact resistance with the separator increases, and the battery performance deteriorates.
  • the present invention has been made to solve such problems in conventional polymer electrolyte fuel cells, and the object of the present invention is to use materials other than carbon materials, for example, metal materials as GDL. It is another object of the present invention to provide a polymer electrolyte fuel cell that can smoothly discharge generated water and suppress flooding.
  • the present inventors formed an amorphous carbon film on each of the GDL and the separator, and Raman scattering spectroscopic analysis of the amorphous carbon film formed on the GDL side.
  • the intensity ratio (I D / I G ) between the D band peak intensity I D and the G band peak intensity I G measured by the above is made smaller than the intensity ratio of the amorphous carbon film formed on the separator side.
  • the present invention is based on the above knowledge, and the solid polymer fuel cell of the present invention includes a polymer electrolyte membrane, an electrode layer sandwiching the polymer electrolyte membrane, and a gas diffusion sandwiching the polymer electrolyte membrane and the electrode layer.
  • a membrane electrode assembly having a layer and a separator for forming a gas flow path between the membrane electrode assembly, and forming an amorphous carbon film on at least the gas flow path side surface of the gas diffusion layer and the separator, respectively
  • the amorphous carbon film formed on the separator is more hydrophilic than the amorphous carbon film formed on the gas diffusion layer.
  • the gas flow path surface of the separator can always be made hydrophilic with respect to the gas diffusion layer, the drainage of the generated water can be improved, and flooding in the polymer electrolyte fuel cell can be suppressed. it can.
  • FIG. 1 is a cross-sectional view showing the structure of a solid polymer fuel cell according to the present invention.
  • a polymer electrolyte fuel cell (PEFC) 1 shown in FIG. 1 has a polymer electrolyte membrane 11 and 1 sandwiching it. It has a pair of electrode layers (anode electrode layer 12a, cathode electrode layer 12c).
  • the polymer electrolyte membrane 11 and the electrode layers 12a and 12c are further sandwiched by a pair of gas diffusion layers (anode GDL 13a and cathode GDL 13c), thereby forming a membrane electrode assembly (MEA) 10.
  • MEA membrane electrode assembly
  • MPLs 14a and 14c those provided with microporous layers (MPLs 14a and 14c) on the electrode layer side are used respectively.
  • MPL microporous layer
  • the present invention is such a microporous layer (MPL). It is not limited only to the thing provided with.
  • separators are disposed on the GDLs 13a and 13c side of the MEA 10, and gas flow paths 16a and 16c are formed between the GDLs 13a and 13c.
  • gas flow paths 16a and 16c are formed between the GDLs 13a and 13c.
  • FIG. 1 only the cathode-side separator 15c is shown.
  • a fuel gas such as hydrogen is supplied to the anode-side gas flow path 16a, and an oxidant gas such as air is supplied to the cathode-side gas flow path 16c.
  • the cathode side of the GDL13c and surfaces of the gas flow path 16c side of the separator 15c, the amorphous carbon layer C G and C B are respectively formed.
  • the intensity ratio of the D-band peak intensity I D and G band peak intensity I G (I D / I G) is identified
  • the film is formed so as to maintain this relationship. That is, the the amorphous carbon layer C G and C B, carried out Raman scattering spectroscopy, as described below, to determine their D-band peak intensity I D and G band peak intensity I G.
  • the calculated these intensity ratio (I D / I G) towards the peak intensity ratio R G in the amorphous carbon film C G formed in GDL13c is, amorphous carbon formed on the separator 15c so that the value smaller than the peak intensity ratio R B in the membrane C B.
  • the amorphous carbon film is formed by a known method such as a PVD method, a CVD method, or a sputtering method.
  • a carbon material is analyzed by Raman spectroscopy, it is usually around 1350 cm ⁇ 1 and 1584 cm ⁇ 1 .
  • a peak occurs. Highly crystalline graphite has a single peak near 1584 cm ⁇ 1 , and this peak is usually referred to as the “G band”.
  • a peak near 1350 cm ⁇ 1 appears as the crystallinity decreases (crystal structure defects increase). This peak is usually referred to as the “D band” (note that the peak of diamond is strictly 1333 cm ⁇ 1 and is distinct from the D band).
  • An increase in the D band peak intensity that is, an increase in the intensity ratio R means an increase in crystal structure defects in the graphite structure. In other words, it means that the sp3 carbon increases in the highly crystalline graphite composed of almost only the sp2 carbon.
  • the R value (I D / I G ) is calculated by measuring the Raman spectrum of the carbon material using a microscopic Raman spectrometer. Specifically, the peak intensity of 1300 ⁇ 1400 cm -1 called the D band (I D), the relative intensity ratio of the peak intensity of 1500 ⁇ 1600 cm -1 called the G band (I G) (peak area ratio ( I D / I G )).
  • FIG. 2 shows the relationship between the R value (I D / I G ) in an amorphous carbon film and the static contact angle of water droplets on the carbon film, in other words, hydrophilicity.
  • the contact angle decreases, in other words, the hydrophilicity of the carbon film improves (increases).
  • the R value in the amorphous carbon film C G formed GDL13c, i.e.
  • R value in the amorphous carbon film C B formed a R G separator if a value smaller than R B, to GDL13c
  • the separator 15c is richer in hydrophilicity (higher hydrophilicity), the drainage performance of the entire cathode is improved, and flooding can be suppressed.
  • the bias voltage applied to the metal substrate is adjusted to adjust R.
  • the value was changed. That is, the R value can be increased as the value of the negative bias voltage is increased.
  • the solid polymer fuel cell of the present invention has the above-described structure and characteristics, and the constituent elements of the cell will be described in more detail together with preferred forms thereof.
  • the polymer electrolyte membrane has a function of selectively transmitting protons generated in the anode electrode layer during PEFC operation to the cathode electrode layer in the film thickness direction.
  • the polymer electrolyte membrane also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
  • Polymer electrolyte membranes are roughly classified into fluorine-based polymer electrolyte membranes and hydrocarbon-based polymer electrolyte membranes depending on the type of ion exchange resin that is a constituent material.
  • ion exchange resins constituting the fluorine-based polymer electrolyte membrane examples include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like.
  • Perfluorocarbon sulfonic acid polymer perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride- Examples include perfluorocarbon sulfonic acid polymers. From the viewpoint of improving power generation performance such as heat resistance and chemical stability, these fluorine-based polymer electrolyte membranes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. A membrane is used.
  • hydrocarbon polymer electrolytes examples include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, and sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP).
  • S-PES sulfonated polyethersulfone
  • S-PEEK ether ketone
  • S-PPP sulfonated polyphenylene
  • These hydrocarbon polymer electrolyte membranes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the material selectivity is high.
  • the ion exchange resin mentioned above can be used individually by 1 type, or can also use 2 or more types together. Moreover, it is not restricted only to the material mentioned
  • the thickness of the polymer electrolyte membrane may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited, and is usually about 5 to 300 ⁇ m. If the thickness of the polymer electrolyte membrane is within such a numerical range, the balance between strength during film formation, durability during use, and output characteristics during use will be appropriate.
  • the electrode layer (anode electrode layer, cathode electrode layer) includes a catalyst component, a conductive catalyst carrier supporting the catalyst component, and an electrolyte, and is a layer in which a battery reaction actually proceeds.
  • anode electrode layer hydrogen oxidation The reaction proceeds, and the oxygen reduction reaction proceeds in the cathode electrode layer.
  • the catalyst component used for the anode electrode layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used.
  • the catalyst component used for the cathode electrode layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a conventionally known catalyst can be applied.
  • catalyst components include platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), osmium (Os), tungsten (W), lead (Pb), iron (Fe), chromium (Cr), cobalt (Co), nickel (Ni), manganese (Mn), vanadium (V), molybdenum (Mo), gallium (Ga), aluminum (Al) and other metals, An alloy etc. can be mentioned.
  • an alloy is a generic term for an element obtained by adding one or more metal elements or non-metal elements to a metal element and having metallic properties.
  • the alloy structure consists of a eutectic alloy, which is a mixture of the constituent elements as separate crystals, a solid solution in which the constituent elements are completely dissolved, and an intermetallic compound or a compound of a metal and a nonmetal. In the present invention, any of them may be used.
  • the catalyst components used for the anode electrode layer and the cathode electrode layer are appropriately selected from the above, but the catalyst components of the anode electrode layer and the cathode electrode layer do not have to be the same, It can be selected appropriately.
  • the shape and size of the catalyst particles are not particularly limited, and the same shape and size as those of conventionally known catalysts are adopted, but the shape of the catalyst component is preferably granular.
  • the average particle diameter of the catalyst particles is preferably 1 to 30 nm. When the average particle diameter of the catalyst particles is within such a range, it is possible to appropriately control the balance between the catalyst utilization rate related to the effective electrode area where the electrochemical reaction proceeds and the ease of loading.
  • the “average particle size” as used herein is measured as an average value of a crystallite size obtained from a half-value width of a diffraction peak of a catalyst component in X-ray diffraction or a particle size of a catalyst component examined from a transmission electron microscope image. can do.
  • the catalyst carrier is a carrier for supporting the catalyst component, and functions as an electron conduction path involved in the transfer of electrons between the catalyst component and other members.
  • Any catalyst carrier may be used as long as it has a specific surface area for supporting the catalyst component in a desired dispersion state and sufficient electron conductivity, and the main component is preferably carbon.
  • Specific examples include carbon particles made of carbon black, activated carbon, coke, natural graphite, artificial graphite and the like.
  • the main component is carbon means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. If necessary, elements other than carbon atoms may be included in order to improve the characteristics of the fuel cell. Further, “substantially consisting of carbon atoms” means that an impurity of about 2 to 3% by mass or less is allowed to be mixed.
  • the specific surface area of the catalyst support, the catalyst component may be a sufficient specific surface area to be highly dispersed supported but is preferably in the range of 20 ⁇ 1600m 2 / g in BET specific surface area, 80 ⁇ 1200 m 2 / More preferably, it is g.
  • the specific surface area of the catalyst support is within such a range, the balance between the dispersibility of the catalyst component on the catalyst support and the effective utilization rate of the catalyst component becomes appropriate.
  • the size of the catalyst carrier is not particularly limited, but the average particle size is about 5 to 200 nm from the viewpoint of easy loading, catalyst utilization, and catalyst layer thickness control within an appropriate range.
  • the thickness is preferably about 10 to 100 nm.
  • the amount of the catalyst component supported is preferably 10 to 80% by mass, more preferably 30 to 70% by mass, based on the total amount of the electrode catalyst.
  • the amount of the catalyst component supported on the electrode catalyst can be measured by inductively coupled plasma emission spectroscopy (ICP).
  • the electrode layer contains an ion conductive polymer electrolyte in addition to the electrode catalyst.
  • an ion conductive polymer electrolyte in addition to the electrode catalyst.
  • the ion exchange resin which comprises the polymer electrolyte membrane mentioned above can be added to a catalyst layer as a polymer electrolyte.
  • the gas diffusion layers are supplied via a gas flow path (fuel gas flow path, oxidant gas flow path) formed between the separator (anode separator, cathode separator) ( In addition to promoting the diffusion of fuel gas, oxidant gas) to the electrode layers (anode electrode layer, cathode electrode layer), it functions as an electron conduction path.
  • an amorphous carbon film is formed on at least the gas channel side surface of GDL as described above.
  • the difference in peak intensity ratio between the GDL and the amorphous carbon film formed on the separator (that is, R B -R G ) is desirably large to some extent, and the value of R B -R G is 0.5.
  • R B -R G is 0.5. The above is preferable.
  • the RG value is preferably 1.3 or more from the viewpoint of reducing contact resistance with the amorphous carbon film formed on the separator. If the RG value is less than 1.3, the sp3 property of the carbon film becomes high and the conductivity tends to deteriorate. Furthermore, when the peak intensity ratio (I D / I G ) between the D band and the G band by the Raman scattering spectroscopic analysis of an amorphous carbon film having a static contact angle of a water droplet of 90 ° is R 90 , it is formed in the GDL. in order to ensure the water repellency of the amorphous carbon film, it is desirable the R G value is smaller than R 90. In addition, it can be read that the R 90 value of the amorphous carbon film in which the contact angle of water is 90 ° is about 1.5 from the graph of FIG.
  • the thickness of the amorphous carbon film formed on the GDL is not particularly limited, but from the viewpoint of reliably exhibiting conductivity and corrosion resistance, and further water repellency according to the RG value. It is desirable that the thickness be in the range of 1 to 1000 nm, more preferably 2 to 500 nm, and further 5 to 200 nm.
  • the amorphous carbon film only needs to be formed on the surface of the GDL on the gas flow path side.
  • the device and process during film formation, workability, and simplicity during battery assembly (confirmation of the film formation surface) If unnecessary) the film may be formed on a surface other than the surface on the gas flow path side.
  • the formation of the amorphous carbon film is a countermeasure against flooding, it is basically unnecessary to form such an amorphous carbon film on the anode-side GDL.
  • GDL provided with an amorphous carbon film on the anode side from the viewpoint of sharing parts. The same applies to the separator described later.
  • the material constituting the GDL substrate is not particularly limited, and conventionally known materials can be applied.
  • carbon-based materials such as carbon paper and carbon cloth are widely used, but metal materials such as stainless steel are used from the viewpoint of material cost, electrical conductivity, workability, and variety of types.
  • metal materials such as stainless steel are used from the viewpoint of material cost, electrical conductivity, workability, and variety of types. It is desirable to apply a ferrous material typified by steel, felt, mesh, or foam metal made of aluminum or aluminum alloy, titanium or titanium alloy, or the like.
  • the thickness of the GDL substrate is appropriately determined in consideration of the characteristics of the obtained GDL, but is generally preferably about 30 to 500 ⁇ m. If the thickness of the GDL substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be made appropriate.
  • the separator (anode separator, cathode separator) is disposed between the MEAs, and forms a fuel gas flow path and an oxidant gas flow path between the anode GDL and the cathode GDL in the MEA, and electrically connects the MEAs. It has a function to connect to.
  • an amorphous carbon film is formed on at least the gas flow path side surface of the separator from the viewpoint of suppressing flooding as in the GDL.
  • This amorphous carbon film the ratio of the D-band peak intensity was measured by Raman scattering spectroscopy I D and G band peak intensity I G (I D / I G), that is, the R B value in the GDL It is necessary to make it larger than the RG value of the formed amorphous carbon film.
  • the thickness of the amorphous carbon film formed on the separator as in the GDL, but are not particularly limited, conductivity and corrosion resistance, furthermore reliably exhibit water repellency corresponding to R B value Therefore, it is desirable that the thickness be in the range of 1 to 1000 nm, more preferably 2 to 500 nm, and further 5 to 200 nm.
  • the amorphous carbon film is formed only on the surface of the separator on the gas flow path side.
  • the amorphous carbon film is formed on a surface other than the surface of the gas flow path side, for example, on the cooling water channel side. Even if a film is formed, there is no particular problem. In addition, it is basically unnecessary to form an amorphous carbon film on the separator on the anode side.
  • a separator having an amorphous carbon film on the anode side is applied, there is no particular problem. There is no.
  • the material is not particularly limited, and the same metal material as GDL described above, for example, iron, titanium, aluminum, Mention may be made of alloys containing these metals. These materials can be preferably used from the viewpoints of mechanical strength, versatility, cost performance, workability, and the like.
  • stainless steel can be mentioned as a typical example of an iron alloy.
  • any of austenite, martensite, ferrite, austenite / ferrite, and precipitation hardening can be applied without any problem.
  • austenite include SUS301, SUS302, SUS303, SUS304, SUS305, SUS316 (L), and SUS317.
  • austenite / ferrite type include SUS329J1
  • examples of the martensite type include SUS403 and SUS420.
  • examples of the ferrite system include SUS405, SUS430, and SUS430LX
  • examples of the precipitation hardening system include SUS630.
  • austenitic stainless steel such as SUS304 and SUS316.
  • the content of iron (Fe) in the stainless steel is preferably 60 to 84% by mass, more preferably 65 to 72% by mass.
  • the content of chromium (Cr) in the stainless steel is preferably 16 to 20% by mass, more preferably 16 to 18% by mass.
  • examples of the aluminum alloy include pure aluminum, aluminum-manganese, and aluminum-magnesium.
  • Elements other than aluminum in the aluminum alloy are not particularly limited as long as they are generally usable as an aluminum alloy.
  • copper (Cu), manganese (Mn), silicon (Si), magnesium (Mn ), Zinc (Zn), nickel, and the like may be included in the aluminum alloy.
  • the aluminum alloy examples include A1050 and A1050P as the pure aluminum system, A3003P and A3004P as the aluminum-manganese system, and A5052P and A5083P as the aluminum-magnesium system.
  • the separator since the separator is also required to have mechanical strength and formability, it is possible to appropriately select the tempering of the alloy in addition to the above alloy types.
  • the separator substrate is composed of a simple substance of titanium or aluminum
  • the purity of the titanium or aluminum is preferably 95% by mass or more, more preferably 97% by mass or more, and further preferably 99% by mass. That's it.
  • the thickness of the base material of the separator is not particularly limited, and is preferably 50 to 500 ⁇ m, and preferably 80 to 300 ⁇ m from the viewpoints of workability, mechanical strength, and improvement of battery energy density by thinning the separator itself. Is more preferable, and 80 to 200 ⁇ m is more preferable. In particular, the thickness when stainless steel is used is preferably 80 to 150 ⁇ m. On the other hand, the base material thickness when an aluminum-based material is used is preferably 100 to 300 ⁇ m. When the base material thickness of the separator is within the above range, it has excellent workability and can achieve a suitable thickness while having sufficient strength as a separator.
  • the separator is preferably made of a material having a high gas barrier property. Since the separator of the fuel cell plays a role of partitioning cells, different gas flows on both sides of the separator. Therefore, from the viewpoint of eliminating the mixing of adjacent gases in each cell of each cell unit and the fluctuation of the gas flow rate, the metal base layer 31 is preferably as the gas barrier property is higher.
  • an amorphous carbon film may be formed on the base material via an intermediate layer in order to improve the adhesion between the separator base material and the amorphous carbon layer.
  • Such an intermediate layer also has a function of preventing elution of ions from the separator substrate. Such an effect becomes more prominent when aluminum or an alloy thereof is used as the separator substrate.
  • the intermediate layer may be formed as necessary and does not necessarily exist.
  • the material constituting the intermediate layer is not particularly limited as long as it provides adhesion as described above.
  • group 4 metals titanium (Ti), zirconium (Zr), hafnium (Hf)), group 5 metals (vanadium (V), niobium (Nb), tantalum (Ta)) in the periodic table
  • group 6 metals chromium (Cr), molybdenum (Mo), tungsten (W)
  • carbides nitrides, and carbonitrides thereof.
  • metals with low ion elution such as chromium, tungsten, titanium, molybdenum, niobium, and hafnium, or nitrides, carbides, or carbonitrides thereof can be preferably used.
  • chromium, titanium, and carbides and nitrides thereof are preferable.
  • the role of the intermediate layer is to ensure adhesion with the upper amorphous carbon film and to prevent corrosion of the underlying separator substrate.
  • the separator base material is an aluminum-based material, corrosion proceeds due to moisture reaching the vicinity of the interface, and an aluminum oxide film is formed. As a result, the conductivity in the film thickness direction of the entire substrate is deteriorated.
  • Chromium, titanium, these carbides, and nitrides are particularly useful in that even if exposed portions are present due to the formation of a passive film, the elution itself is hardly observed.
  • the metal especially chromium, titanium
  • it is excellent also in the point which can improve the corrosion resistance of a separator effectively. Thereby, the corrosion resistance of the separator can be maintained.
  • the thickness (film thickness) of the intermediate layer is not particularly limited.
  • the thickness of the intermediate layer is preferably 0.01 to 10 ⁇ m from the viewpoint of making the separator thinner and thereby reducing the size of the fuel cell stack as much as possible.
  • the thickness is more preferably 0.05 to 5 ⁇ m, further preferably 0.02 to 5 ⁇ m, and particularly preferably 0.1 to 1 ⁇ m. If the thickness of the intermediate layer is 0.01 ⁇ m or more, a uniform layer is formed, and the corrosion resistance of the separator substrate can be effectively improved. On the other hand, if the thickness of the intermediate layer is 10 ⁇ m or less, an increase in the film stress of the intermediate layer can be suppressed, and a decrease in film followability with respect to the substrate and the accompanying peeling and cracking can be prevented.
  • MPL microporous layer
  • the carbon particles constituting the MPL are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Of these, carbon blacks such as oil furnace black, channel black, lamp black, thermal black, and acetylene black are preferably used because of their excellent electron conductivity and large specific surface area.
  • the average particle diameter of the carbon particles is preferably about 10 to 100 nm.
  • the water repellent is not particularly limited.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • polypropylene polyethylene and the like.
  • a fluorine-type polymeric material can be used preferably.
  • the mixing ratio of carbon particles and water repellent in MPL is about 90:10 to 40:60 (carbon particles: water repellent) in terms of mass ratio in consideration of the balance between water repellency and electron conductivity.
  • the thickness of the MPL is not particularly limited and is appropriately determined in consideration of the water repellency of the obtained GDL, but is preferably about 10 to 1000 ⁇ m, more preferably 50 to 500 ⁇ m.
  • a stainless steel plate (SUS316L) having a plate thickness of 100 ⁇ m was formed into a predetermined separator shape to obtain a separator base material.
  • the obtained base material is ultrasonically cleaned in an aqueous ethanol solution for 3 minutes as a pretreatment, and the cleaned base material is stored in a vacuum chamber and subjected to ion bombardment treatment with Ar gas, and an oxide film on the surface of the base material. Was removed.
  • cleaning and film removal processing were implemented with respect to both surfaces of the base material.
  • an intermediate layer is formed on the separator substrate using a Cr plate as a target, and then solid graphite is used as a target.
  • an amorphous carbon film having a thickness of 0.2 ⁇ m was formed on both surfaces of the base material while applying a negative bias voltage to the base material.
  • the intensity ratio (I D / I G ) between the D band peak intensity I D and the G band peak intensity I G measured by Raman scattering spectroscopic analysis by changing the negative bias voltage applied to the substrate. , that were prepared five kinds of separators R B values with different amorphous carbon film, respectively.
  • R B, R G the R value for the separator and GDL obtained by measuring the above, the R value of amorphous carbon films formed on respectively, i.e. R B values and R G values were measured .
  • the Raman spectrum of the amorphous carbon film was measured using a microscopic Raman spectrometer. Then, 1300 ⁇ 1400 cm peak intensity of the bands (D-band) located -1 (I D), the peak area ratio of the peak intensity (I G) of band (G-band) located 1500 ⁇ 1600 cm -1 ( It calculates the I D / I G), to obtain a R B values and R G values, respectively.
  • R B value of the amorphous carbon film formed on the separator is in the range 1.2 to 1.9, and the amorphous carbon film formed GDL R G The value was confirmed to be in the range of 1.2 to 1.5.
  • MEA membrane electrode assembly
  • the peak intensity ratio of D band and G band in the amorphous carbon film formed in the separator i.e. the peak intensity ratio of the amorphous carbon film R B value is formed on the GDL R G
  • the peak intensity ratio of the amorphous carbon film R B value is formed on the GDL R G
  • the output performance was particularly excellent on the high current density side. From this, it is considered that flooding can be substantially prevented in the battery of this example.
  • R B value in the amorphous carbon film of the separator is composed of a smaller combination than R G value in the amorphous carbon film of the GDL, the voltage decreases as the current density increases Therefore, it is estimated that the water produced on the cathode side has not been smoothly discharged.
  • PEFC Polymer electrolyte fuel cell
  • MEA Membrane electrode assembly
  • GDL Gas diffusion layer
  • separator 16c gas channel C G, C B amorphous carbon film

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

Provided is a solid polymer fuel cell which is capable of smoothly discharging produced water and capable of suppressing flooding even if a material other than a carbon material, for example, a metal material is used for a gas diffusion layer (GDL). Amorphous carbon films (CG, CB) are respectively formed on a gas diffusion layer (13c) and a separator (15c) that constitute a solid polymer fuel cell (1) so that the value (RG) of the ratio (ID/IG) of the D-band peak intensity (ID) to the G-band peak intensity (IG) of the amorphous carbon film (CG) as determined by Raman scattering spectroscopy, said amorphous carbon film (CG) being formed on the gas diffusion layer (13c) side, is smaller than the value (RB) of the similarly obtained ratio (ID/IG) of the amorphous carbon film (CB), which is formed on the separator (15c) side.

Description

固体高分子形燃料電池Polymer electrolyte fuel cell
 本発明は、固体高分子形燃料電池、さらに詳細には、カソード側での排水性(耐フラッディング性)が良好で、特に高電流密度領域における出力特性に優れた固体高分子形燃料電池に関するものである。 The present invention relates to a polymer electrolyte fuel cell, and more particularly to a polymer electrolyte fuel cell having good drainage (flooding resistance) on the cathode side and excellent output characteristics particularly in a high current density region. It is.
 プロトン伝導性固体高分子膜を用いた固体高分子形燃料電池は、固体酸化物形燃料電池や溶融炭酸塩形燃料電池のような他のタイプの燃料電池と比較して低温で作動することから、自動車など移動体用の動力源としても期待され、その実用も開始されている。 Polymer electrolyte fuel cells using proton conducting polymer electrolyte membranes operate at lower temperatures compared to other types of fuel cells such as solid oxide fuel cells and molten carbonate fuel cells. It is also expected as a power source for moving bodies such as automobiles, and its practical use has also started.
 ここで、PEFCの発電メカニズムを簡単に説明すると、PEFCの運転時には、単セルのアノード側に、例えば水素ガスのような燃料ガスが供給される一方、カソード側には、例えば空気や酸素のような酸化剤ガスが供給される。
 これによって、アノード及びカソードのそれぞれにおいて、下記反応式で表される電気化学反応が進行し、電気が発生する。
  アノード側:H→2H+2e
  カソード側:2H+2e+(1/2)O→H
Here, the power generation mechanism of the PEFC will be briefly described. During operation of the PEFC, a fuel gas such as hydrogen gas is supplied to the anode side of the single cell, while air such as oxygen or oxygen is supplied to the cathode side. Oxidant gas is supplied.
Thereby, in each of the anode and the cathode, an electrochemical reaction represented by the following reaction formula proceeds to generate electricity.
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O
 このような固体高分子形燃料電池(以下、「PEFC」と略記することがある)は、一般に、発電機能を発揮する複数の単セルが積層された構造を備えている。
 この単セルは、プロトン伝導性を有する高分子電解質膜(例えば、Nafion(登録商標)膜)と、これを挟持するアノード、カソード1対の電極層(「電極触媒層」とも言う)と、これら電解質膜及び電極層を挟持するアノード、カソード1対のガス拡散層を含む膜電極接合体をそれぞれ備えている。なお、上記ガス拡散層(以下、「GDL」と略記することがある)としては、一般にカーボンペーパーやカーボンクロスなどが用いられる。
Such a polymer electrolyte fuel cell (hereinafter sometimes abbreviated as “PEFC”) generally has a structure in which a plurality of single cells exhibiting a power generation function are stacked.
This single cell includes a polymer electrolyte membrane having proton conductivity (for example, a Nafion (registered trademark) membrane), an anode and a pair of electrode layers sandwiching the membrane (also referred to as an “electrode catalyst layer”), these A membrane electrode assembly including a pair of gas diffusion layers including an anode and a cathode sandwiching the electrolyte membrane and the electrode layer is provided. In general, carbon paper, carbon cloth, or the like is used as the gas diffusion layer (hereinafter sometimes abbreviated as “GDL”).
 個々の単セルを構成する膜電極接合体(以下。「MEA」と略記することがある)は、セパレータを介して隣接する単セルのMEAと電気的に接続され、このようにして単セルが積層、接続されることによって、燃料電池スタックが構成される。そして、このような燃料電池スタックは、種々の用途に適用され、発電手段として機能する。
 燃料電池スタックにおいて、セパレータは、上記したように、隣接する単セル同士を電気的に接続する機能を発揮する。また、当該セパレータのMEAと対向する表面には、通常ガス流路が設けてあり、このガス流路は、アノード及びカソードに燃料ガス及び酸化剤ガスをそれぞれ供給するためのガス供給手段として機能する。
Membrane electrode assemblies (hereinafter, may be abbreviated as “MEA”) constituting individual single cells are electrically connected to MEAs of adjacent single cells via separators. The fuel cell stack is configured by stacking and connecting. Such a fuel cell stack is applied to various uses and functions as a power generation means.
In the fuel cell stack, the separator exhibits a function of electrically connecting adjacent single cells as described above. Further, a gas flow path is usually provided on the surface of the separator facing the MEA, and this gas flow path functions as a gas supply means for supplying fuel gas and oxidant gas to the anode and the cathode, respectively. .
 このような燃料電池用セパレータの素材としては、導電性が要求されることから、金属やカーボン、導電性樹脂などが知られている。
 これらのうち、カーボンや導電性樹脂から成るセパレータでは、ガス流路形成後の強度を確保するために、厚さを比較的大きく設定する必要があることから、燃料電池スタック全体のサイズが大きくなってしまい、特に小型化が求められている車載用電源としては、好ましくない。
As a material for such a fuel cell separator, metal, carbon, conductive resin, and the like are known because conductivity is required.
Of these, separators made of carbon or conductive resin require a relatively large thickness in order to ensure the strength after the formation of the gas flow path, which increases the overall size of the fuel cell stack. Therefore, it is not preferable as an in-vehicle power supply that is particularly required to be downsized.
 これに対して、金属セパレータは強度が比較的大きいため、厚さを小さくすることができると共に、導電性にも優れることから、MEAとの接触抵抗を低減させることができるという利点もある。
 反面、金属材料では、例えば生成水や運転時に生じる電位差などに起因する腐食による導電性の低下や、これに伴うスタックの出力の低下という問題が生じる場合がある。したがって、金属セパレータでは、その優れた導電性を確保しつつ、耐食性をも向上させることが求めらる。
On the other hand, since the metal separator has a relatively high strength, the thickness can be reduced and the conductivity is excellent, so that there is an advantage that the contact resistance with the MEA can be reduced.
On the other hand, in the case of a metal material, there may be a problem that the conductivity is reduced due to corrosion caused by, for example, generated water or a potential difference generated during operation, and the output of the stack is reduced accordingly. Accordingly, the metal separator is required to improve the corrosion resistance while ensuring its excellent conductivity.
 一方、固体高分子形燃料電池においては、先に示した反応式による電気化学反応の結果、カソードでは生成水ができるが、この水が触媒層、GDL、セパレータ等に滞留することにより、カソード触媒層に酸素が拡散し難くなり、発電を継続できなくなることがある。このような現象をフラッディングと呼ぶ。 On the other hand, in the polymer electrolyte fuel cell, as a result of the electrochemical reaction according to the above-described reaction formula, water is generated at the cathode. This water stays in the catalyst layer, GDL, separator, etc. Oxygen can hardly diffuse into the bed, and power generation cannot be continued. Such a phenomenon is called flooding.
 このようなフラッディング対策として、例えば特許文献1には、生成水がセパレータのガス流路内に水滴となって滞留することなく、濡れ広がるようにするために、表面に非晶質炭素膜を備えたエキスパンドメタルをガス流路構造体として用い、付着する水との接触角が40°以下となるように表面を親水化することが提案されている。 As a countermeasure against such flooding, for example, in Patent Document 1, an amorphous carbon film is provided on the surface so that generated water does not stay as water droplets in the gas flow path of the separator and spreads. It has been proposed that the expanded metal is used as a gas flow path structure and the surface is hydrophilized so that the contact angle with attached water is 40 ° or less.
特開2010-186578号公報JP 2010-186578 A
 しかし、上記文献に記載された発明は、セパレータの排水性の改善に関する技術であって、電池のフラッディングを防止するためには、セパレータに到達するまでの生成水の排水経路をも考慮しなければならない。
 すなわち、電池反応による生成水は、空気極表面の電解質膜に接する部分で発生し、GDLからセパレータを経て外部に排出されることから、GDLからセパレータへ生成水が円滑に排出されるためには、セパレータが親水性であるのに対して、GDLは撥水性を備えている必要がある。
However, the invention described in the above document is a technique related to the improvement of drainage of the separator, and in order to prevent battery flooding, the drainage path of generated water until reaching the separator must be taken into consideration. Don't be.
That is, the water generated by the battery reaction is generated at the portion of the air electrode surface that is in contact with the electrolyte membrane, and is discharged from the GDL through the separator to the outside, so that the generated water is smoothly discharged from the GDL to the separator. The separator is hydrophilic, whereas GDL needs to have water repellency.
 上記したように、GDLにはカーボンペーパーやカーボンクロスなどが広く用いられており、これらの炭素材料は、撥水性を示すことから、上記文献に記載の燃料電池用セパレータは、カーボンペーパーやカーボンクロスなどをGDLとして用いた典型的なMEAと組み合わせた場合に効果を発揮するものと言える。
 しかしながら、他の材料、例えば金属材料をGDLに適用した場合には、電気抵抗を低減するために、非晶質炭素による表面処理が必要となり、その結果、セパレータと同等の親水性となってしまい、排水性を改善することができない。一方、GDLに撥水性を付与すべく表面処理を施した場合には、セパレータとの間の接触抵抗が増加するため、電池性能が劣化することになる。
As described above, carbon paper, carbon cloth, and the like are widely used for GDL, and these carbon materials exhibit water repellency. Therefore, the separator for fuel cells described in the above documents is carbon paper or carbon cloth. It can be said that this is effective when combined with a typical MEA using GDL as a GDL.
However, when other materials, such as metal materials, are applied to the GDL, surface treatment with amorphous carbon is required to reduce electrical resistance, resulting in hydrophilicity equivalent to that of the separator. Can not improve drainage. On the other hand, when the surface treatment is applied to impart water repellency to the GDL, the contact resistance with the separator increases, and the battery performance deteriorates.
 本発明は、従来の固体高分子形燃料電池におけるこのような課題を解決すべくなされたものであって、その目的とするところは、炭素材料以外の材料、例えば金属材料をGDLとして用いたとしても、生成水を円滑に排出することができ、フラッディングを抑制することができる固体高分子形燃料電池を提供することにある。 The present invention has been made to solve such problems in conventional polymer electrolyte fuel cells, and the object of the present invention is to use materials other than carbon materials, for example, metal materials as GDL. It is another object of the present invention to provide a polymer electrolyte fuel cell that can smoothly discharge generated water and suppress flooding.
 本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、GDLとセパレータのそれぞれに非晶質炭素膜を形成し、GDL側に形成された非晶質炭素膜のラマン散乱分光分析により測定されたDバンドピーク強度IとGバンドピーク強度Iとの強度比(I/I)をセパレータ側に形成された非晶質炭素膜の強度比よりも小さくなるようにすることによって上記目的が達成できることを見出し、本発明を完成するに到った。 As a result of intensive studies to achieve the above object, the present inventors formed an amorphous carbon film on each of the GDL and the separator, and Raman scattering spectroscopic analysis of the amorphous carbon film formed on the GDL side. The intensity ratio (I D / I G ) between the D band peak intensity I D and the G band peak intensity I G measured by the above is made smaller than the intensity ratio of the amorphous carbon film formed on the separator side. Thus, the inventors have found that the above object can be achieved, and have completed the present invention.
 本発明は上記知見に基づくものであって、本発明の固体高分子形燃料電池は、高分子電解質膜と、これを挟持する電極層と、上記高分子電解質膜及び電極層を挟持するガス拡散層を有する膜電極接合体と、該膜電極接合体との間にガス流路を形成するセパレータを備え、上記ガス拡散層とセパレータの少なくともガス流路側の面に非晶質炭素膜がそれぞれ形成されており、上記ガス拡散層に形成された非晶質炭素膜よりも上記セパレータに形成された非晶質炭素膜の親水性が高いことを特徴としている。 The present invention is based on the above knowledge, and the solid polymer fuel cell of the present invention includes a polymer electrolyte membrane, an electrode layer sandwiching the polymer electrolyte membrane, and a gas diffusion sandwiching the polymer electrolyte membrane and the electrode layer. A membrane electrode assembly having a layer and a separator for forming a gas flow path between the membrane electrode assembly, and forming an amorphous carbon film on at least the gas flow path side surface of the gas diffusion layer and the separator, respectively The amorphous carbon film formed on the separator is more hydrophilic than the amorphous carbon film formed on the gas diffusion layer.
 本発明によれば、ガス拡散層に対してセパレータのガス流路面を常に親水性にしておくことができ、生成水の排水性を改善して、固体高分子形燃料電池におけるフラッディングを抑えることができる。 According to the present invention, the gas flow path surface of the separator can always be made hydrophilic with respect to the gas diffusion layer, the drainage of the generated water can be improved, and flooding in the polymer electrolyte fuel cell can be suppressed. it can.
本発明の固体高分子形燃料電池の構造を示す断面図である。It is sectional drawing which shows the structure of the polymer electrolyte fuel cell of this invention. 非晶質炭素膜に対する水滴の静的接触角に及ぼす(I/I)値の影響を示すグラフである。It is a graph which shows the influence of the ( ID / IG ) value which acts on the static contact angle of the water droplet with respect to an amorphous carbon film. 本発明の実施例で得られた単セルによる発電特性を比較例のものと比較して示すグラフである。It is a graph which shows the electric power generation characteristic by the single cell obtained in the Example of this invention compared with the thing of a comparative example.
 以下に、本発明の固体高分子形燃料電池について、その構造や製法について、さらに具体的かつ詳細に説明する。 Hereinafter, the structure and production method of the polymer electrolyte fuel cell of the present invention will be described more specifically and in detail.
 図1は、本発明の固体高分子形燃料電池の構造を示す断面図であって、図に示す固体高分子形燃料電池(PEFC)1は、高分子電解質膜11と、これを挟持する1対の電極層(アノード電極層12a、カソード電極層12c)を有する。また、これら高分子電解質膜11と電極層12a、12cは、さらに1対のガス拡散層(アノードGDL13a、カソードGDL13c)により挟持され、これによって膜電極接合体(MEA)10が構成される。なお、この例において、GDL13a及び13cとしては、その電極層側にマイクロポーラス層(MPL14a及び14c)をそれぞれ備えたものを使用しているが、本発明は、このようなマイクロポーラス層(MPL)を備えたもののみに限定されることはない。 FIG. 1 is a cross-sectional view showing the structure of a solid polymer fuel cell according to the present invention. A polymer electrolyte fuel cell (PEFC) 1 shown in FIG. 1 has a polymer electrolyte membrane 11 and 1 sandwiching it. It has a pair of electrode layers (anode electrode layer 12a, cathode electrode layer 12c). The polymer electrolyte membrane 11 and the electrode layers 12a and 12c are further sandwiched by a pair of gas diffusion layers (anode GDL 13a and cathode GDL 13c), thereby forming a membrane electrode assembly (MEA) 10. In this example, as the GDLs 13a and 13c, those provided with microporous layers (MPLs 14a and 14c) on the electrode layer side are used respectively. However, the present invention is such a microporous layer (MPL). It is not limited only to the thing provided with.
 さらに、上記MEA10のGDL13a及び13cの側には、セパレータ(アノードセパレータ15a、カソードセパレータ15c)がそれぞれ配置され、GDL13a及び13cとの間に、ガス流路16a、16cが形成される。なお、図1においては、カソード側のセパレータ15cのみが示してある。
 上記したアノード側のガス流路16aには、水素などの燃料ガスが、カソード側のガス流路16cには、空気などの酸化剤ガスがそれぞれ供給されるようになっている。
Further, separators (anode separator 15a and cathode separator 15c) are disposed on the GDLs 13a and 13c side of the MEA 10, and gas flow paths 16a and 16c are formed between the GDLs 13a and 13c. In FIG. 1, only the cathode-side separator 15c is shown.
A fuel gas such as hydrogen is supplied to the anode-side gas flow path 16a, and an oxidant gas such as air is supplied to the cathode-side gas flow path 16c.
 また、本発明のPEFCにおいては、カソード側のGDL13c及びセパレータ15cのガス流路16c側の表面には、非晶質炭素膜C及びCがそれぞれ成膜されている。 Further, in the PEFC of the present invention, the cathode side of the GDL13c and surfaces of the gas flow path 16c side of the separator 15c, the amorphous carbon layer C G and C B are respectively formed.
 そして、上記GDL13c及びセパレータ15cに形成された非晶質炭素膜C及びCについては、Dバンドピーク強度IとGバンドピーク強度Iとの強度比(I/I)が特定の関係を保持するように成膜してある。
 すなわち、上記非晶質炭素膜C及びCについて、後述するようなラマン散乱分光分析を実施し、それぞれのDバンドピーク強度IとGバンドピーク強度Iを測定する。そして、これらの強度比(I/I)を算出したとき、GDL13cに形成された非晶質炭素膜Cにおけるピーク強度比Rの方が、セパレータ15cに形成された非晶質炭素膜Cにおけるピーク強度比Rよりも小さい値となるようになっている。
And, for the GDL13c and amorphous carbon layer C G and C B which are formed in the separator 15c, the intensity ratio of the D-band peak intensity I D and G band peak intensity I G (I D / I G) is identified The film is formed so as to maintain this relationship.
That is, the the amorphous carbon layer C G and C B, carried out Raman scattering spectroscopy, as described below, to determine their D-band peak intensity I D and G band peak intensity I G. When the calculated these intensity ratio (I D / I G), towards the peak intensity ratio R G in the amorphous carbon film C G formed in GDL13c is, amorphous carbon formed on the separator 15c so that the value smaller than the peak intensity ratio R B in the membrane C B.
 非晶質炭素膜は、PVD法やCVD法、スパッタリング法など、公知の手法によって形成されるが、このような炭素材料をラマン分光法により分析すると、通常1350cm-1付近および1584cm-1付近にピークが生じる。結晶性の高いグラファイトは、1584cm-1付近にシングルピークを有し、このピークは通常、「Gバンド」と称される。
 一方、結晶性が低くなる(結晶構造欠陥が増す)につれて、1350cm-1付近のピークが現れてくる。このピークは通常、「Dバンド」と称される(なお、ダイヤモンドのピークは厳密には1333cm-1であり、上記Dバンドとは区別される)。Dバンドピーク強度(I)とGバンドピーク強度(I)との強度比R(=I/I)は、炭素材料のグラファイトクラスターサイズやグラファイト構造の乱れ具合(結晶構造欠陥性)、sp2結合比率などの指標として用いられる。
The amorphous carbon film is formed by a known method such as a PVD method, a CVD method, or a sputtering method. When such a carbon material is analyzed by Raman spectroscopy, it is usually around 1350 cm −1 and 1584 cm −1 . A peak occurs. Highly crystalline graphite has a single peak near 1584 cm −1 , and this peak is usually referred to as the “G band”.
On the other hand, a peak near 1350 cm −1 appears as the crystallinity decreases (crystal structure defects increase). This peak is usually referred to as the “D band” (note that the peak of diamond is strictly 1333 cm −1 and is distinct from the D band). D-band peak intensity (I D) and the intensity ratio of the G-band peak intensity (I G) R (= I D / I G) is disturbed degree (crystalline structural defects of) the graphite cluster size and graphite structure of the carbon material , And is used as an indicator such as sp2 bond ratio.
 Dバンドピーク強度が大きくなる、すなわち、強度比Rが大きくなるということは、グラファイト構造における結晶構造欠陥の増加を意味する。換言すれば、ほぼsp2炭素のみからなる高結晶性グラファイトにおいてsp3炭素が増加することを意味する。 An increase in the D band peak intensity, that is, an increase in the intensity ratio R means an increase in crystal structure defects in the graphite structure. In other words, it means that the sp3 carbon increases in the highly crystalline graphite composed of almost only the sp2 carbon.
 上記R値(I/I)は、顕微ラマン分光器を用いて、炭素材料のラマンスペクトルを計測することにより算出される。具体的には、Dバンドと呼ばれる1300~1400cm-1のピーク強度(I)と、Gバンドと呼ばれる1500~1600cm-1のピーク強度(I)との相対的強度比(ピーク面積比(I/I))を算出することにより求められる。 The R value (I D / I G ) is calculated by measuring the Raman spectrum of the carbon material using a microscopic Raman spectrometer. Specifically, the peak intensity of 1300 ~ 1400 cm -1 called the D band (I D), the relative intensity ratio of the peak intensity of 1500 ~ 1600 cm -1 called the G band (I G) (peak area ratio ( I D / I G )).
 図2は、非晶質炭素膜における上記R値(I/I)と、当該炭素膜に対する水滴の静的接触角、言い換えると親水性との関係を示すものであって、非晶質炭素膜における上記R値(I/I)が増すほど接触角が減少する、言い換えると炭素膜の親水性が向上する(高くなる)ことになる。
 したがって、GDL13cに形成された非晶質炭素膜CにおけるR値、すなわちRをセパレータに形成された非晶質炭素膜CにおけるR値、Rよりも小さい値であれば、GDL13cに対して、セパレータ15cの方が親水性に富むことになり(親水性が高くなり)、カソード全体の排水性が向上し、フラッディング抑制が可能になる。
FIG. 2 shows the relationship between the R value (I D / I G ) in an amorphous carbon film and the static contact angle of water droplets on the carbon film, in other words, hydrophilicity. As the R value (I D / I G ) in the carbon film increases, the contact angle decreases, in other words, the hydrophilicity of the carbon film improves (increases).
Thus, the R value in the amorphous carbon film C G formed GDL13c, i.e. R value in the amorphous carbon film C B formed a R G separator, if a value smaller than R B, to GDL13c In contrast, the separator 15c is richer in hydrophilicity (higher hydrophilicity), the drainage performance of the entire cathode is improved, and flooding can be suppressed.
 なお、図2に示した結果を得るに当たっては、金属基板(SUS316L)上に、スパッタリング等によって非晶質炭素膜を成膜するに際して、金属基板に対して印加するバイアス電圧を調整することによってR値を変化させた。すなわち、負のバイアス電圧の値を大きくするほどR値を大きくすることができる。 In order to obtain the result shown in FIG. 2, when an amorphous carbon film is formed on a metal substrate (SUS316L) by sputtering or the like, the bias voltage applied to the metal substrate is adjusted to adjust R. The value was changed. That is, the R value can be increased as the value of the negative bias voltage is increased.
 本発明の固体高分子形燃料電池は、上記した構造、特性を備えたものであるが、当該電池の構成要素について、その好適形態と共に、さらに詳細に説明する。 The solid polymer fuel cell of the present invention has the above-described structure and characteristics, and the constituent elements of the cell will be described in more detail together with preferred forms thereof.
〔高分子電解質膜〕
 高分子電解質膜は、PEFCの運転時にアノード電極層で生成したプロトンをカソード電極層に対して、膜厚方向に選択的に透過させる機能を有する。また、高分子電解質膜は、アノード側に供給される燃料ガスとカソード側に供給される酸化剤ガスとを混合させないための隔壁としての機能をも有する。
[Polymer electrolyte membrane]
The polymer electrolyte membrane has a function of selectively transmitting protons generated in the anode electrode layer during PEFC operation to the cathode electrode layer in the film thickness direction. The polymer electrolyte membrane also has a function as a partition wall for preventing the fuel gas supplied to the anode side and the oxidant gas supplied to the cathode side from being mixed.
 高分子電解質膜は、構成材料であるイオン交換樹脂の種類によって、フッ素系高分子電解質膜と炭化水素系高分子電解質膜とに大別される。 Polymer electrolyte membranes are roughly classified into fluorine-based polymer electrolyte membranes and hydrocarbon-based polymer electrolyte membranes depending on the type of ion exchange resin that is a constituent material.
 フッ素系高分子電解質膜を構成するイオン交換樹脂としては、例えば、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成株式会社製)、フレミオン(登録商標、旭硝子株式会社製)等のパーフルオロカーボンスルホン酸系ポリマー、パーフルオロカーボンホスホン酸系ポリマー、トリフルオロスチレンスルホン酸系ポリマー、エチレンテトラフルオロエチレン-g-スチレンスルホン酸系ポリマー、エチレン-テトラフルオロエチレン共重合体、ポリビニリデンフルオリド-パーフルオロカーボンスルホン酸系ポリマーなどが挙げられる。
 耐熱性、化学的安定性などの発電性能を向上させるという観点からは、これらのフッ素系高分子電解質膜が好ましく用いられ、特に好ましくはパーフルオロカーボンスルホン酸系ポリマーから構成されるフッ素系高分子電解質膜が用いられる。
Examples of ion exchange resins constituting the fluorine-based polymer electrolyte membrane include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Co., Ltd.), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), and the like. Perfluorocarbon sulfonic acid polymer, perfluorocarbon phosphonic acid polymer, trifluorostyrene sulfonic acid polymer, ethylene tetrafluoroethylene-g-styrene sulfonic acid polymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride- Examples include perfluorocarbon sulfonic acid polymers.
From the viewpoint of improving power generation performance such as heat resistance and chemical stability, these fluorine-based polymer electrolyte membranes are preferably used, and particularly preferably fluorine-based polymer electrolytes composed of perfluorocarbon sulfonic acid polymers. A membrane is used.
 炭化水素系高分子電解質としては、例えば、スルホン化ポリエーテルスルホン(S-PES)、スルホン化ポリアリールエーテルケトン、スルホン化ポリベンズイミダゾールアルキル、ホスホン化ポリベンズイミダゾールアルキル、スルホン化ポリスチレン、スルホン化ポリエーテルエーテルケトン(S-PEEK)、スルホン化ポリフェニレン(S-PPP)などを挙げることができる。
 原料が安価で製造工程が簡便であり、かつ材料の選択性が高いといった製造上の観点からは、これらの炭化水素系高分子電解質膜が好ましく用いられる。なお、上述したイオン交換樹脂は、1種のみを単独で用いることも、2種以上を併用することもできる。また、上述した材料のみに制限されず、これ以外の材料が用いてもよい。
Examples of hydrocarbon polymer electrolytes include sulfonated polyethersulfone (S-PES), sulfonated polyaryletherketone, sulfonated polybenzimidazole alkyl, phosphonated polybenzimidazole alkyl, sulfonated polystyrene, and sulfonated poly Examples include ether ether ketone (S-PEEK) and sulfonated polyphenylene (S-PPP).
These hydrocarbon polymer electrolyte membranes are preferably used from the viewpoint of production such that the raw material is inexpensive, the production process is simple, and the material selectivity is high. In addition, the ion exchange resin mentioned above can be used individually by 1 type, or can also use 2 or more types together. Moreover, it is not restricted only to the material mentioned above, You may use materials other than this.
 高分子電解質膜の厚さは、得られる燃料電池の特性を考慮して適宜決定すればよく、特に制限されることはなく、通常は5~300μm程度である。高分子電解質膜の厚さがこのような数値範囲内であれば、製膜時の強度や使用時の耐久性及び使用時の出力特性のバランスが適切なものとなる。 The thickness of the polymer electrolyte membrane may be appropriately determined in consideration of the characteristics of the obtained fuel cell, and is not particularly limited, and is usually about 5 to 300 μm. If the thickness of the polymer electrolyte membrane is within such a numerical range, the balance between strength during film formation, durability during use, and output characteristics during use will be appropriate.
〔電極層〕
 電極層(アノード電極層、カソード電極層)は、触媒成分と触媒成分を担持する導電性の触媒担体と電解質を含み、実際に電池反応が進行する層であって、アノード電極層では水素の酸化反応が進行し、カソード電極層では酸素の還元反応が進行する。
(Electrode layer)
The electrode layer (anode electrode layer, cathode electrode layer) includes a catalyst component, a conductive catalyst carrier supporting the catalyst component, and an electrolyte, and is a layer in which a battery reaction actually proceeds. In the anode electrode layer, hydrogen oxidation The reaction proceeds, and the oxygen reduction reaction proceeds in the cathode electrode layer.
 アノード電極層に用いられる触媒成分は、水素の酸化反応に触媒作用を有するものであれば特に制限はなく、公知の触媒が使用できる。
 また、カソード電極層に用いられる触媒成分についても、酸素の還元反応に触媒作用を有するものであれば特に制限はなく、従来公知の触媒を適用することができる。
The catalyst component used for the anode electrode layer is not particularly limited as long as it has a catalytic action in the oxidation reaction of hydrogen, and a known catalyst can be used.
The catalyst component used for the cathode electrode layer is not particularly limited as long as it has a catalytic action for the oxygen reduction reaction, and a conventionally known catalyst can be applied.
 これら触媒成分の具体例としては、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、タングステン(W)、鉛(Pb)、鉄(Fe)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)、ガリウム(Ga)、アルミニウム(Al)等の金属や、これらの合金などを挙げることができる。 Specific examples of these catalyst components include platinum (Pt), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), osmium (Os), tungsten (W), lead (Pb), iron (Fe), chromium (Cr), cobalt (Co), nickel (Ni), manganese (Mn), vanadium (V), molybdenum (Mo), gallium (Ga), aluminum (Al) and other metals, An alloy etc. can be mentioned.
 これらの中では、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものを好適に用いることができる。このような合金の組成としては、合金化する金属の種類にもよるが、白金の含有量を30~90原子%とするのが好ましい。
 なお、合金とは、一般に金属元素に1種以上の金属元素または非金属元素を加えたものであって、金属的性質をもっているものの総称である。合金の組織には、成分元素が別個の結晶となるいわば混合物である共晶合金、成分元素が完全に溶け合い固溶体となっているもの、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあり、本発明においては、そのいずれであってもよい。
Among these, those containing at least platinum can be suitably used in order to improve catalyst activity, poisoning resistance to carbon monoxide, etc., heat resistance, and the like. The composition of such an alloy depends on the type of metal to be alloyed, but the platinum content is preferably 30 to 90 atomic%.
In general, an alloy is a generic term for an element obtained by adding one or more metal elements or non-metal elements to a metal element and having metallic properties. The alloy structure consists of a eutectic alloy, which is a mixture of the constituent elements as separate crystals, a solid solution in which the constituent elements are completely dissolved, and an intermetallic compound or a compound of a metal and a nonmetal. In the present invention, any of them may be used.
 アノード電極層及びカソード電極層に用いられる触媒成分は、上記の中から適宜選択されるが、アノード電極層及びカソード電極層の触媒成分は同一である必要はなく、上記した作用を奏するように、適宜選択することができる。 The catalyst components used for the anode electrode layer and the cathode electrode layer are appropriately selected from the above, but the catalyst components of the anode electrode layer and the cathode electrode layer do not have to be the same, It can be selected appropriately.
 触媒粒子の形状や大きさは、特に限定されるものではなく、従来公知の触媒と同様の形状、大きさが採用されるが、触媒成分の形状は、粒状であることが好ましい。
 触媒粒子の平均粒子径としては、1~30nmが好ましい。触媒粒子の平均粒子径がこのような範囲内の値であると、電気化学反応が進行する有効電極面積に関連する触媒利用率と担持の簡便さとのバランスを適切に制御することができる。なお、ここで言う「平均粒子径」は、X線回折における触媒成分の回折ピークの半値幅より求められる結晶子径や、透過形電子顕微鏡像より調べられる触媒成分の粒子径の平均値として測定することができる。
The shape and size of the catalyst particles are not particularly limited, and the same shape and size as those of conventionally known catalysts are adopted, but the shape of the catalyst component is preferably granular.
The average particle diameter of the catalyst particles is preferably 1 to 30 nm. When the average particle diameter of the catalyst particles is within such a range, it is possible to appropriately control the balance between the catalyst utilization rate related to the effective electrode area where the electrochemical reaction proceeds and the ease of loading. The “average particle size” as used herein is measured as an average value of a crystallite size obtained from a half-value width of a diffraction peak of a catalyst component in X-ray diffraction or a particle size of a catalyst component examined from a transmission electron microscope image. can do.
 触媒担体は、上記触媒成分を担持するための担体であって、触媒成分と他の部材との間での電子の授受に関与する電子伝導パスとして機能する。 The catalyst carrier is a carrier for supporting the catalyst component, and functions as an electron conduction path involved in the transfer of electrons between the catalyst component and other members.
 触媒担体としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、充分な電子伝導性を有しているものであればよく、主成分がカーボンであることが好ましい。
 具体的には、カーボンブラック、活性炭、コークス、天然黒鉛、人造黒鉛などからなるカーボン粒子が挙げられる。なお、「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみから成る、実質的に炭素原子から成ることの双方を含む概念である。必要に応じて、燃料電池の特性を向上させるために、炭素原子以外の元素が含まれていてもよい。また、「実質的に炭素原子から成る」とは、2~3質量%程度以下の不純物の混入が許容されることを意味する。
Any catalyst carrier may be used as long as it has a specific surface area for supporting the catalyst component in a desired dispersion state and sufficient electron conductivity, and the main component is preferably carbon.
Specific examples include carbon particles made of carbon black, activated carbon, coke, natural graphite, artificial graphite and the like. “The main component is carbon” means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. If necessary, elements other than carbon atoms may be included in order to improve the characteristics of the fuel cell. Further, “substantially consisting of carbon atoms” means that an impurity of about 2 to 3% by mass or less is allowed to be mixed.
 触媒担体の比表面積は、触媒成分を高分散担持させるのに充分な比表面積であればよいが、BET比表面積で20~1600m/gの範囲内であることが好ましく、80~1200m/gであることがより好ましい。
 触媒担体の比表面積がこのような範囲内の値であることにより、触媒担体上での触媒成分の分散性と触媒成分の有効利用率とのバランスが適切なものとなる。
The specific surface area of the catalyst support, the catalyst component may be a sufficient specific surface area to be highly dispersed supported but is preferably in the range of 20 ~ 1600m 2 / g in BET specific surface area, 80 ~ 1200 m 2 / More preferably, it is g.
When the specific surface area of the catalyst support is within such a range, the balance between the dispersibility of the catalyst component on the catalyst support and the effective utilization rate of the catalyst component becomes appropriate.
 触媒担体のサイズについても特に限定されるものではないが、担持の簡便さ、触媒利用率、触媒層の厚みを適切な範囲で制御するなどの観点からすれば、平均粒子径を5~200nm程度、好ましくは10~100nm程度とすることが好ましい。 The size of the catalyst carrier is not particularly limited, but the average particle size is about 5 to 200 nm from the viewpoint of easy loading, catalyst utilization, and catalyst layer thickness control within an appropriate range. The thickness is preferably about 10 to 100 nm.
 触媒担体に触媒成分が担持されてなる電極触媒において、触媒成分の担持量は、電極触媒の全量に対して、好ましくは10~80質量%、より好ましくは30~70質量%である。触媒成分の担持量を上記範囲内の値とすることによって、触媒担体上での触媒成分の分散度と触媒性能とのバランスを適切に制御することができる。なお、電極触媒における触媒成分の担持量は、誘導結合プラズマ発光分光法(ICP)によって測定することができる。 In the electrode catalyst in which the catalyst component is supported on the catalyst carrier, the amount of the catalyst component supported is preferably 10 to 80% by mass, more preferably 30 to 70% by mass, based on the total amount of the electrode catalyst. By setting the amount of the catalyst component supported within the above range, the balance between the degree of dispersion of the catalyst component on the catalyst carrier and the catalyst performance can be appropriately controlled. The amount of the catalyst component supported on the electrode catalyst can be measured by inductively coupled plasma emission spectroscopy (ICP).
 電極層には、電極触媒に加えて、イオン伝導性の高分子電解質が含まれる。この高分子電解質については、特に限定されることはなく、従来公知の知見を適宜参照することができる。例えば、上述した高分子電解質膜を構成するイオン交換樹脂を高分子電解質として触媒層に添加することができる。 The electrode layer contains an ion conductive polymer electrolyte in addition to the electrode catalyst. About this polymer electrolyte, it does not specifically limit and conventionally well-known knowledge can be referred suitably. For example, the ion exchange resin which comprises the polymer electrolyte membrane mentioned above can be added to a catalyst layer as a polymer electrolyte.
〔ガス拡散層(GDL)〕
 ガス拡散層(アノードGDL、カソードGDL)は、セパレータ(アノードセパレータ、カソードセパレータ)との間に形成されるガス流路(燃料ガス流路、酸化剤ガス流路)を介して供給されたガス(燃料ガス、酸化剤ガス)の電極層(アノード電極層、カソード電極層)への拡散を促進する機能と共に、電子伝導パスとしての機能を有する。
[Gas diffusion layer (GDL)]
The gas diffusion layers (anode GDL, cathode GDL) are supplied via a gas flow path (fuel gas flow path, oxidant gas flow path) formed between the separator (anode separator, cathode separator) ( In addition to promoting the diffusion of fuel gas, oxidant gas) to the electrode layers (anode electrode layer, cathode electrode layer), it functions as an electron conduction path.
 本発明の固体高分子形燃料電池においては、フラッディングを抑制する観点から、上記したように、GDLの少なくともガス流路側の面に非晶質炭素膜が形成される。
 この非晶質炭素膜の特性について、ラマン散乱分光分析により測定されたDバンドピーク強度IとGバンドピーク強度Iとの比(I/I)、すなわちR値を後述するセパレータにおける非晶質炭素膜のピーク強度比(I/I)R値よりも小さくなっていることも前述したとおりである。
In the polymer electrolyte fuel cell of the present invention, from the viewpoint of suppressing flooding, an amorphous carbon film is formed on at least the gas channel side surface of GDL as described above.
Characteristics of the amorphous carbon film, the ratio of the D-band peak intensity I D and G band peak intensity I G measured by Raman scattering spectroscopy (I D / I G), i.e. a separator which will be described later R G value it is also the same as described above that is smaller than the amorphous carbon film peak intensity ratio (I D / I G) R B value in the.
 このとき、当該GDLとセパレータに形成された非晶質炭素膜におけるピーク強度比の相違(すなわちRB -R)はある程度大きいことが望ましく、上記RB -Rの値については0.5以上であることが好ましい。 At this time, the difference in peak intensity ratio between the GDL and the amorphous carbon film formed on the separator (that is, R B -R G ) is desirably large to some extent, and the value of R B -R G is 0.5. The above is preferable.
 また、上記R値については、セパレータに形成された非晶質炭素膜との接触抵抗を低減する観点から、1.3以上であることが望ましい。R値が1.3に満たないと、当該炭素膜のsp3性が高くなって、導電性が劣化する傾向があることによる。
 さらに、水滴の静的接触角が90°の非晶質炭素膜のラマン散乱分光分析によるDバンドとGバンドのピーク強度比(I/I)をR90とするとき、GDLに形成された非晶質炭素膜の撥水性を確保する観点から、上記R値がR90よりも小さい値であることが望ましい。なお、水の接触角が90°となる非晶質炭素膜のR90値については、先に示した図2のグラフから、1.5程度であることを読み取ることができる。
The RG value is preferably 1.3 or more from the viewpoint of reducing contact resistance with the amorphous carbon film formed on the separator. If the RG value is less than 1.3, the sp3 property of the carbon film becomes high and the conductivity tends to deteriorate.
Furthermore, when the peak intensity ratio (I D / I G ) between the D band and the G band by the Raman scattering spectroscopic analysis of an amorphous carbon film having a static contact angle of a water droplet of 90 ° is R 90 , it is formed in the GDL. in order to ensure the water repellency of the amorphous carbon film, it is desirable the R G value is smaller than R 90. In addition, it can be read that the R 90 value of the amorphous carbon film in which the contact angle of water is 90 ° is about 1.5 from the graph of FIG.
 本発明において、GDLに形成する非晶質炭素膜の厚さとしては、特に限定されるものではないが、導電性と耐食性、さらにはR値に応じた撥水性を確実に発揮させる観点から、1~1000nm、より好ましくは2~500nm、さらには5~200nmの範囲内とすることが望ましい。 In the present invention, the thickness of the amorphous carbon film formed on the GDL is not particularly limited, but from the viewpoint of reliably exhibiting conductivity and corrosion resistance, and further water repellency according to the RG value. It is desirable that the thickness be in the range of 1 to 1000 nm, more preferably 2 to 500 nm, and further 5 to 200 nm.
 非晶質炭素膜は、GDLのガス流路側の面のみに形成されていれば足りるが、成膜時の装置や工程、作業性、さらには電池の組み立て時の簡便性(成膜面の確認不要)を考慮すれば、ガス流路側の面以外の面にも成膜しても差し支えない。
 また、本発明においては、非晶質炭素膜の形成がフラッディング対策であることから、基本的にアノード側のGDLにこのような非晶質炭素膜を形成する必要はない。しかし、部品の共通化の観点から、アノード側にも非晶質炭素膜を備えたGDLを適用することも可能である。このことは、後述するセパレータについても同様である。
The amorphous carbon film only needs to be formed on the surface of the GDL on the gas flow path side. However, the device and process during film formation, workability, and simplicity during battery assembly (confirmation of the film formation surface) If unnecessary), the film may be formed on a surface other than the surface on the gas flow path side.
In the present invention, since the formation of the amorphous carbon film is a countermeasure against flooding, it is basically unnecessary to form such an amorphous carbon film on the anode-side GDL. However, it is also possible to apply GDL provided with an amorphous carbon film on the anode side from the viewpoint of sharing parts. The same applies to the separator described later.
 このGDLの基材を構成する材料については、特に限定されず、従来公知のものが適用できる。
 一般には、カーボンペーパーやカーボンクロスなど炭素系の材料が広く用いられているのが現状であるが、素材コスト、電気伝導性、加工性、種類の多様性などの観点から金属材料、例えば、ステンレス鋼に代表される鉄系材料、アルミニウムやアルミニウム合金、チタンやチタン合金などから成るフェルト、メッシュ、発泡金属を適用することが望ましい。
The material constituting the GDL substrate is not particularly limited, and conventionally known materials can be applied.
In general, carbon-based materials such as carbon paper and carbon cloth are widely used, but metal materials such as stainless steel are used from the viewpoint of material cost, electrical conductivity, workability, and variety of types. It is desirable to apply a ferrous material typified by steel, felt, mesh, or foam metal made of aluminum or aluminum alloy, titanium or titanium alloy, or the like.
 GDL基材の厚さとしては、得られるGDLの特性を考慮して適宜決定することになるが、一般には30~500μm程度とすることが好ましい。GDL基材の厚さがこのような範囲内であれば、機械的強度とガス及び水などの拡散性とのバランスを適切なものとすることができる。 The thickness of the GDL substrate is appropriately determined in consideration of the characteristics of the obtained GDL, but is generally preferably about 30 to 500 μm. If the thickness of the GDL substrate is within such a range, the balance between mechanical strength and diffusibility such as gas and water can be made appropriate.
〔セパレータ〕
 セパレータ(アノードセパレータ、カソードセパレータ)は、MEAの間に配置され、MEAにおけるアノードGDL及びカソードGDLとの間に、燃料ガス流路及び酸化剤ガス流路をそれぞれ形成すると共に、MEA間を電気的に接続する機能を有する。
[Separator]
The separator (anode separator, cathode separator) is disposed between the MEAs, and forms a fuel gas flow path and an oxidant gas flow path between the anode GDL and the cathode GDL in the MEA, and electrically connects the MEAs. It has a function to connect to.
 本発明においては、上記GDLと同様に、フラッディングを抑制する観点から、当該セパレータの少なくともガス流路側の面に非晶質炭素膜が形成される。
 この非晶質炭素膜については、ラマン散乱分光分析により測定されたDバンドピーク強度IとGバンドピーク強度Iとの比(I/I)、すなわちR値を上記GDLに成膜した非晶質炭素膜のR値よりも大きなものとする必要がある。
In the present invention, an amorphous carbon film is formed on at least the gas flow path side surface of the separator from the viewpoint of suppressing flooding as in the GDL.
This amorphous carbon film, the ratio of the D-band peak intensity was measured by Raman scattering spectroscopy I D and G band peak intensity I G (I D / I G), that is, the R B value in the GDL It is necessary to make it larger than the RG value of the formed amorphous carbon film.
 このセパレータに形成する非晶質炭素膜の厚さとしては、上記GDLと同様に、特に限定されるものではないが、導電性と耐食性、さらにはR値に応じた撥水性を確実に発揮させるため、1~1000nm、より好ましくは2~500nm、さらには5~200nmの範囲内とすることが望ましい。 The thickness of the amorphous carbon film formed on the separator, as in the GDL, but are not particularly limited, conductivity and corrosion resistance, furthermore reliably exhibit water repellency corresponding to R B value Therefore, it is desirable that the thickness be in the range of 1 to 1000 nm, more preferably 2 to 500 nm, and further 5 to 200 nm.
 この非晶質炭素膜は、セパレータのガス流路側の面のみに形成されていれば充分であるが、GDLの場合と同様に、ガス流路側の面以外の面、例えば冷却用の水路側に成膜したとしても特に差し支えはない。
 また、基本的にアノード側のセパレータに非晶質炭素膜を形成する必要はないが、GDLの場合と同様に、アノード側に非晶質炭素膜を備えたセパレータを適用したとしても、特に支障はない。
It is sufficient that the amorphous carbon film is formed only on the surface of the separator on the gas flow path side. However, as in the case of GDL, the amorphous carbon film is formed on a surface other than the surface of the gas flow path side, for example, on the cooling water channel side. Even if a film is formed, there is no particular problem.
In addition, it is basically unnecessary to form an amorphous carbon film on the separator on the anode side. However, as in the case of GDL, even if a separator having an amorphous carbon film on the anode side is applied, there is no particular problem. There is no.
 このセパレータの基材としては、導電性及び機械的強度の確保に寄与するものであれば、その材料に特に制限はなく、前述したGDLと同様の金属材料、例えば、鉄、チタン、アルミニウム共に、これら金属を含む合金を挙げることができる。
 これらの材料は、機械的強度、汎用性、コストパフォーマンス、加工性などの観点で、好ましく用いることができる。ここで、鉄合金の典型例としてステンレス鋼を挙げることができる。
As a base material of this separator, as long as it contributes to ensuring electrical conductivity and mechanical strength, the material is not particularly limited, and the same metal material as GDL described above, for example, iron, titanium, aluminum, Mention may be made of alloys containing these metals.
These materials can be preferably used from the viewpoints of mechanical strength, versatility, cost performance, workability, and the like. Here, stainless steel can be mentioned as a typical example of an iron alloy.
 これらの中では、ステンレス鋼、アルミニウム又はアルミニウム合金を用いることが好ましい。
 ステンレス鋼としては、オーステナイト系、マルテンサイト系、フェライト系、オーステナイト・フェライト系、析出硬化系いずれをも支障なく適用することができる。オーステナイト系としては、SUS301、SUS302、SUS303、SUS304、SUS305、SUS316(L)、SUS317が挙げられる。オーステナイト・フェライト系としては、SUS329J1を挙げることができ、マルテンサイト系としては、SUS403、SUS420が挙げられる。また、フェライト系としては、SUS405、SUS430、SUS430LXが挙げられ、析出硬化系としては、SUS630が挙げられる。
In these, it is preferable to use stainless steel, aluminum, or an aluminum alloy.
As the stainless steel, any of austenite, martensite, ferrite, austenite / ferrite, and precipitation hardening can be applied without any problem. Examples of austenite include SUS301, SUS302, SUS303, SUS304, SUS305, SUS316 (L), and SUS317. Examples of the austenite / ferrite type include SUS329J1, and examples of the martensite type include SUS403 and SUS420. Further, examples of the ferrite system include SUS405, SUS430, and SUS430LX, and examples of the precipitation hardening system include SUS630.
 とりわけ、SUS304、SUS316等のオーステナイト系ステンレスを用いることがより好ましい。なお、ステンレス鋼中の鉄(Fe)の含有量は、好ましくは60~84質量%であり、より好ましくは65~72質量%である。さらに、ステンレス鋼中のクロム(Cr)の含有量については、16~20質量%が好ましく、16~18質量%がより好ましい。 In particular, it is more preferable to use austenitic stainless steel such as SUS304 and SUS316. The content of iron (Fe) in the stainless steel is preferably 60 to 84% by mass, more preferably 65 to 72% by mass. Furthermore, the content of chromium (Cr) in the stainless steel is preferably 16 to 20% by mass, more preferably 16 to 18% by mass.
 一方、アルミニウム合金としては、純アルミニウム系、アルミニウム-マンガン系、アルミニウム-マグネシウム系などを挙げることができる。
 アルミニウム合金中におけるアルミニウム以外の元素については、アルミニウム合金として一般に使用可能なものであれば特に制限されることはなく、例えば、銅(Cu)、マンガン(Mn)、ケイ素(Si)、マグネシウム(Mn)、亜鉛(Zn)、ニッケルなどがアルミニウム合金に含まれることがある。
On the other hand, examples of the aluminum alloy include pure aluminum, aluminum-manganese, and aluminum-magnesium.
Elements other than aluminum in the aluminum alloy are not particularly limited as long as they are generally usable as an aluminum alloy. For example, copper (Cu), manganese (Mn), silicon (Si), magnesium (Mn ), Zinc (Zn), nickel, and the like may be included in the aluminum alloy.
 アルミニウム合金の具体例として、純アルミニウム系としてはA1050、A1050Pが挙げられ、アルミニウム-マンガン系としてはA3003P、A3004Pが挙げられ、アルミニウム-マグネシウム系としてはA5052P、A5083Pを挙げることができる。
 一方、セパレータには機械的な強度や成形性も求められるため、上記の合金種に加えて、合金の調質についても適宜選択することができる。なお、セパレータ基材がチタンやアルミニウムの単体から構成される場合、当該チタンやアルミニウムの純度は、好ましくは95質量%以上であり、より好ましくは97質量%以上であり、さらに好ましくは99質量%以上である。
Specific examples of the aluminum alloy include A1050 and A1050P as the pure aluminum system, A3003P and A3004P as the aluminum-manganese system, and A5052P and A5083P as the aluminum-magnesium system.
On the other hand, since the separator is also required to have mechanical strength and formability, it is possible to appropriately select the tempering of the alloy in addition to the above alloy types. When the separator substrate is composed of a simple substance of titanium or aluminum, the purity of the titanium or aluminum is preferably 95% by mass or more, more preferably 97% by mass or more, and further preferably 99% by mass. That's it.
 セパレータの基材の厚さについては、特に限定されず、加工性、機械的強度、セパレータ自体を薄膜化することによる電池のエネルギー密度の向上等の観点から、50~500μmが好ましく、80~300μmがより好ましく、80~200μmとすることがさらに好ましい。特に、ステンレス鋼を用いた場合の厚さは、80~150μmであることが好ましい。一方、アルミニウム系材料を用いた場合の基材厚さについては、100~300μmであることが好ましい。
 セパレータの基材厚さが上記範囲内の場合、セパレータとして十分な強度を有しながらも、加工性に優れ、好適な薄さを達成することができる。
The thickness of the base material of the separator is not particularly limited, and is preferably 50 to 500 μm, and preferably 80 to 300 μm from the viewpoints of workability, mechanical strength, and improvement of battery energy density by thinning the separator itself. Is more preferable, and 80 to 200 μm is more preferable. In particular, the thickness when stainless steel is used is preferably 80 to 150 μm. On the other hand, the base material thickness when an aluminum-based material is used is preferably 100 to 300 μm.
When the base material thickness of the separator is within the above range, it has excellent workability and can achieve a suitable thickness while having sufficient strength as a separator.
 また、セパレータは、ガス遮断性が高い材料から構成されることが好ましい。燃料電池のセパレータはセル同士を仕切る役割を担っているため、セパレータを挟んで両側で異なるガスが流れる構成となる。したがって、それぞれのセルユニットの各セルの隣り合うガスの混合やガス流量の変動をなくすという観点から、金属基材層31はガス遮断性が高いほど好ましい。 The separator is preferably made of a material having a high gas barrier property. Since the separator of the fuel cell plays a role of partitioning cells, different gas flows on both sides of the separator. Therefore, from the viewpoint of eliminating the mixing of adjacent gases in each cell of each cell unit and the fluctuation of the gas flow rate, the metal base layer 31 is preferably as the gas barrier property is higher.
 本発明に用いるセパレータにおいては、セパレータ基材と非晶質炭素層との密着性を向上させるために、基材上に中間層を介して非晶質炭素膜を形成してもよい。このような中間層は、セパレータ基材からのイオンの溶出を防止するという機能もある。
 このような効果は、セパレータの基材にアルミニウム又はその合金を用いた場合に一層顕著なものとなる。なお、本発明において、中間層は必要に応じて形成すればよく、必ずしも存在しなくてもよい。
In the separator used in the present invention, an amorphous carbon film may be formed on the base material via an intermediate layer in order to improve the adhesion between the separator base material and the amorphous carbon layer. Such an intermediate layer also has a function of preventing elution of ions from the separator substrate.
Such an effect becomes more prominent when aluminum or an alloy thereof is used as the separator substrate. In the present invention, the intermediate layer may be formed as necessary and does not necessarily exist.
 中間層を構成する材料としては、上記したように密着性を付与するものであれば特に制限はない。例えば、周期律表の第4族の金属(チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf))、第5族の金属(バナジウム(V)、ニオブ(Nb)、タンタル(Ta))、第6族の金属(クロム(Cr)、モリブデン(Mo)、タングステン(W))、これらの炭化物、窒化物および炭窒化物などを挙げることができる。 The material constituting the intermediate layer is not particularly limited as long as it provides adhesion as described above. For example, group 4 metals (titanium (Ti), zirconium (Zr), hafnium (Hf)), group 5 metals (vanadium (V), niobium (Nb), tantalum (Ta)) in the periodic table, Examples include Group 6 metals (chromium (Cr), molybdenum (Mo), tungsten (W)), carbides, nitrides, and carbonitrides thereof.
 とりわけ、クロム、タングステン、チタン、モリブデン、ニオブ、ハフニウムといったイオン溶出の少ない金属、またはこれらの窒化物、炭化物もしくは炭窒化物を好適に用いることができる。特に、クロム、チタン、これらの炭化物や窒化物が好ましい。これらを用いる場合、中間層の役割として、上側の非晶質炭素膜との密着性確保と、下地のセパレータ基材の防食効果がある。特にセパレータ基材がアルミニウム系材料である場合、界面付近に到達した水分により腐食が進行しアルミニウムの酸化皮膜の形成が生じる。その結果、基材全体の膜厚方向の導電性が悪化する。
 クロム、チタン、これらの炭化物、窒化物は不動態皮膜の形成により、露出部が存在していたとしても、それ自体の溶出はほとんど見られない点において特に有用である。中でも、上述したイオン溶出の少ない金属(特にクロム、チタン)、又はその炭化物や窒化物を用いた場合、セパレータの耐食性を効果的に向上させることができる点でも優れている。これにより、セパレータの耐食性を維持することができる。
In particular, metals with low ion elution such as chromium, tungsten, titanium, molybdenum, niobium, and hafnium, or nitrides, carbides, or carbonitrides thereof can be preferably used. In particular, chromium, titanium, and carbides and nitrides thereof are preferable. When these are used, the role of the intermediate layer is to ensure adhesion with the upper amorphous carbon film and to prevent corrosion of the underlying separator substrate. In particular, when the separator base material is an aluminum-based material, corrosion proceeds due to moisture reaching the vicinity of the interface, and an aluminum oxide film is formed. As a result, the conductivity in the film thickness direction of the entire substrate is deteriorated.
Chromium, titanium, these carbides, and nitrides are particularly useful in that even if exposed portions are present due to the formation of a passive film, the elution itself is hardly observed. Especially, when the metal (especially chromium, titanium) with little ion elution mentioned above or its carbide | carbonized_material and nitride is used, it is excellent also in the point which can improve the corrosion resistance of a separator effectively. Thereby, the corrosion resistance of the separator can be maintained.
 中間層の厚さ(膜厚)としては、特に制限されることはない。但し、セパレータをより薄膜化し、もって燃料電池のスタックのサイズをできるだけ小さくするという観点からは、中間層の厚さを0.01~10μmとすることが好ましい。より好ましくは0.05~5μmであり、さらに好ましくは0.02~5μmであり、特に好ましくは0.1~1μmである。
 中間層の厚さが0.01μm以上であれば、均一な層が形成され、セパレータ基材の耐食性を効果的に向上させることが可能となる。一方、中間層の厚さが10μm以下であれば、中間層の膜応力の上昇が抑えられ、基材に対する皮膜追従性の低下やこれに伴う剥離やクラックの発生を防止することができる。
The thickness (film thickness) of the intermediate layer is not particularly limited. However, the thickness of the intermediate layer is preferably 0.01 to 10 μm from the viewpoint of making the separator thinner and thereby reducing the size of the fuel cell stack as much as possible. The thickness is more preferably 0.05 to 5 μm, further preferably 0.02 to 5 μm, and particularly preferably 0.1 to 1 μm.
If the thickness of the intermediate layer is 0.01 μm or more, a uniform layer is formed, and the corrosion resistance of the separator substrate can be effectively improved. On the other hand, if the thickness of the intermediate layer is 10 μm or less, an increase in the film stress of the intermediate layer can be suppressed, and a decrease in film followability with respect to the substrate and the accompanying peeling and cracking can be prevented.
 本発明の固体高分子形燃料電池においては、必要に応じて、図1に示したように、GDLと電極層の間の電気抵抗を下げると共に、ガスの流れを良くするための中間層としてのマイクロポーラス層(以下、「MPL」と略記する)をGDL基材の電極層側に設けることができる。
 このMPLは、撥水剤を含むカーボン粒子の集合体からなるものである。
In the polymer electrolyte fuel cell of the present invention, as shown in FIG. 1, as the need arises, the electric resistance between the GDL and the electrode layer is lowered and the intermediate layer for improving the gas flow is used. A microporous layer (hereinafter abbreviated as “MPL”) can be provided on the electrode layer side of the GDL substrate.
This MPL consists of an aggregate of carbon particles containing a water repellent.
 MPLを構成するカーボン粒子としては、特に限定されず、カーボンブラック、グラファイト、膨張黒鉛など、従来公知の材料を適宜採用することができる。これらのうち、電子伝導性に優れ、比表面積が大きいことから、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどのカーボンブラックが好ましく用いらる。カーボン粒子の平均粒子径は、10~100nm程度とするのがよい。これにより、毛細管力による高い排水性が得られるとともに、電極層との接触性も向上する。 The carbon particles constituting the MPL are not particularly limited, and conventionally known materials such as carbon black, graphite, and expanded graphite can be appropriately employed. Of these, carbon blacks such as oil furnace black, channel black, lamp black, thermal black, and acetylene black are preferably used because of their excellent electron conductivity and large specific surface area. The average particle diameter of the carbon particles is preferably about 10 to 100 nm. Thereby, while being able to obtain the high drainage property by capillary force, the contact property with an electrode layer also improves.
 上記撥水剤としては、特に限定されるものではないが、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系の高分子材料、ポリプロピレン、ポリエチレンなどを挙げることができる。
 これらの中では、撥水性、電極反応時の耐食性などに優れることから、フッ素系の高分子材料を好ましく用いることができる。
The water repellent is not particularly limited. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyhexafluoropropylene, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) ) And the like, polypropylene, polyethylene and the like.
In these, since it is excellent in water repellency, the corrosion resistance at the time of electrode reaction, etc., a fluorine-type polymeric material can be used preferably.
 MPLにおけるカーボン粒子と撥水剤との混合比は、撥水性及び電子伝導性のバランスを考慮して、質量比で90:10~40:60(カーボン粒子:撥水剤)程度とするのが好ましい。
 なお、MPLの厚さについても特に制限はなく、得られるGDLの撥水性を考慮して適宜決定されるが、10~1000μm程度、さらには50~500μmの範囲とするのが好ましい。
The mixing ratio of carbon particles and water repellent in MPL is about 90:10 to 40:60 (carbon particles: water repellent) in terms of mass ratio in consideration of the balance between water repellency and electron conductivity. preferable.
The thickness of the MPL is not particularly limited and is appropriately determined in consideration of the water repellency of the obtained GDL, but is preferably about 10 to 1000 μm, more preferably 50 to 500 μm.
 以下、本発明を実施例に基づいて、具体的に説明するが、本発明はこのような実施例によって何ら限定されないことは言うまでもない。 Hereinafter, although the present invention will be specifically described based on examples, it is needless to say that the present invention is not limited to such examples.
(1)セパレータの作製
 板厚100μmのステンレス鋼板(SUS316L)を所定のセパレータ形状に成形してセパレータ基材とした。
 得られた基材に、前処理としてエタノール水溶液中で3分間超音波洗浄したのち、洗浄後の基材を真空チャンバ内に収納し、Arガスによるイオンボンバード処理を施し、基材表面の酸化皮膜を除去した。なお、これら洗浄及び皮膜除去処理は、基材の両面に対して実施した。
(1) Production of Separator A stainless steel plate (SUS316L) having a plate thickness of 100 μm was formed into a predetermined separator shape to obtain a separator base material.
The obtained base material is ultrasonically cleaned in an aqueous ethanol solution for 3 minutes as a pretreatment, and the cleaned base material is stored in a vacuum chamber and subjected to ion bombardment treatment with Ar gas, and an oxide film on the surface of the base material. Was removed. In addition, these washing | cleaning and film removal processing were implemented with respect to both surfaces of the base material.
 次に、アンバランスドマグネトロンスパッタリング(UBMS)法によるスパッタ装置(神戸製鋼所製、UBMS504)を用いて、Cr板をターゲットとして、上記セパレータ基材上に中間層を形成した後、固体グラファイトをターゲットとして、上記基材に対して負のバイアス電圧を印加しながら、基材の両面に、それぞれ0.2μmの厚さの非晶質炭素膜を形成した。
 このとき、基材に印加する負のバイアス電圧をそれぞれ変えることによって、ラマン散乱分光分析により測定されるDバンドピーク強度IとGバンドピーク強度Iとの強度比(I/I)、すなわちR値がそれぞれ異なる非晶質炭素膜を備えた5種類のセパレータを作製した。
Next, using a sputtering apparatus (UBMS504, manufactured by Kobe Steel, Ltd.) by an unbalanced magnetron sputtering (UBMS) method, an intermediate layer is formed on the separator substrate using a Cr plate as a target, and then solid graphite is used as a target. As described above, an amorphous carbon film having a thickness of 0.2 μm was formed on both surfaces of the base material while applying a negative bias voltage to the base material.
At this time, the intensity ratio (I D / I G ) between the D band peak intensity I D and the G band peak intensity I G measured by Raman scattering spectroscopic analysis by changing the negative bias voltage applied to the substrate. , that were prepared five kinds of separators R B values with different amorphous carbon film, respectively.
(2)ガス拡散層の作製
 径100μmのステンレス鋼線(SUS316L)から成る厚さ200μmのメッシュをGDL基材として使用し、この基材に上記同様の洗浄及び皮膜除去処理を施した後、上記同様の方法によって、当該基材の一方の面上に、非晶質炭素膜を0.2μmの厚さに形成した。
 このとき、基材に印加する負のバイアス電圧をそれぞれ変えることによって、ラマン散乱分光分析により測定されるDバンドピーク強度IとGバンドピーク強度Iとの強度比(I/I)、すなわちR値がそれぞれ異なる非晶質炭素膜を備えた3種類のGDLを作製した。
(2) Preparation of gas diffusion layer A 200 μm-thick mesh made of stainless steel wire (SUS316L) having a diameter of 100 μm was used as a GDL substrate, and the substrate was subjected to the same cleaning and film removal treatment as described above. By the same method, an amorphous carbon film having a thickness of 0.2 μm was formed on one surface of the substrate.
At this time, the intensity ratio (I D / I G ) between the D band peak intensity I D and the G band peak intensity I G measured by Raman scattering spectroscopic analysis by changing the negative bias voltage applied to the substrate. That is, three types of GDLs having amorphous carbon films having different RG values were produced.
(3)R値(R,R)の測定
 上記により得られたセパレータ及びGDLについて、それぞれに形成された非晶質炭素膜のR値、すなわちR値及びR値をそれぞれ測定した。具体的には、まず、顕微ラマン分光器を用いて、非晶質炭素膜のラマンスペクトルを計測した。そして、1300~1400cm-1に位置するバンド(Dバンド)のピーク強度(I)と、1500~1600cm-1に位置するバンド(Gバンド)のピーク強度(I)とのピーク面積比(I/I)を算出して、それぞれR値及びR値を得た。
 その結果は、表1に示すとおりで、セパレータに形成された非晶質炭素膜のR値は、1.2~1.9の範囲、GDLに形成された非晶質炭素膜のR値は、1.2~1.5の範囲であることが確認された。
(3) the R value (R B, R G) for the separator and GDL obtained by measuring the above, the R value of amorphous carbon films formed on respectively, i.e. R B values and R G values were measured . Specifically, first, the Raman spectrum of the amorphous carbon film was measured using a microscopic Raman spectrometer. Then, 1300 ~ 1400 cm peak intensity of the bands (D-band) located -1 (I D), the peak area ratio of the peak intensity (I G) of band (G-band) located 1500 ~ 1600 cm -1 ( It calculates the I D / I G), to obtain a R B values and R G values, respectively.
As a result, were as shown in Table 1, R B value of the amorphous carbon film formed on the separator is in the range 1.2 to 1.9, and the amorphous carbon film formed GDL R G The value was confirmed to be in the range of 1.2 to 1.5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(4)膜電極接合体(MEA)の作製
 上記によって得られたそれぞれのGDLを用いて、MEAを作製した。
 すなわち、パーフルオロスルホン酸系電解質から成る高分子電解質膜の両面に、白金担持カーボンと上記電解質膜と同様のパーフルオロスルホン酸系電解質から成る電極層を形成し、その両側を上記GDLで挟み込み、R値の異なる非晶質炭素膜を備えたGDLを有するMEA(アクティブエリア:5×5cm)を得た。
(4) Manufacture of membrane electrode assembly (MEA) MEA was manufactured using each GDL obtained by the above.
That is, on both sides of a polymer electrolyte membrane made of a perfluorosulfonic acid electrolyte, an electrode layer made of platinum-supporting carbon and a perfluorosulfonic acid electrolyte similar to the above electrolyte membrane is formed, and both sides thereof are sandwiched by the GDL, An MEA (active area: 5 × 5 cm) having a GDL provided with amorphous carbon films having different RG values was obtained.
(5)燃料電池の組み立て
 上記によって得られた各MEAと、先に得られた各セパレータをそれぞれ組み合わせて、固体高分子形燃料電池の小型単セルを作製した。
(5) Assembly of fuel cell Each MEA obtained by the above and each separator obtained previously were combined, respectively, and the small unit cell of the polymer electrolyte fuel cell was produced.
(6)電池性能の評価
 それぞれのMEAとセパレータとの組み合わせによる各実施例及び比較例の単セルについて、以下の条件の下に、発電出力の測定(I-V特性)を行った。
 その結果を、R値、R値がそれぞれ異なる非晶質炭素膜を備えたGDL及びセパレータの組み合わせと共に表2、図3に示す。
 ・ガス成分:水素(アノード側)、空気(カソード側)
 ・セル温度:80℃
 ・相対湿度:100%(湿潤条件)
(6) Evaluation of battery performance For each unit cell of each example and comparative example using a combination of each MEA and a separator, power generation output was measured (IV characteristics) under the following conditions.
The results are shown R G value, with a combination of GDL and a separator having a R B value is different amorphous carbon film in Table 2, FIG.
-Gas components: hydrogen (anode side), air (cathode side)
-Cell temperature: 80 ° C
・ Relative humidity: 100% (wet condition)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2、図3に示すように、セパレータに形成した非晶質炭素膜におけるDバンドとGバンドのピーク強度比、すなわちR値がGDLに形成した非晶質炭素膜のピーク強度比R値よりも大きい実施例、特にその差がある程度大きい実施例においては、特に高電流密度側での出力性能に優れることが確認された。このことから、当該実施例の電池においては、フラッディングが実質的に防止できているものと考えられる。
 これに対して、セパレータの非晶質炭素膜におけるR値がGDLの非晶質炭素膜におけるR値よりも小さい組み合わせから成る比較例においては、電流密度が高くなるにつれて電圧が低下しており、カソード側での生成水が円滑に排出できていないものと推定される。
Table 2, as shown in FIG. 3, the peak intensity ratio of D band and G band in the amorphous carbon film formed in the separator, i.e. the peak intensity ratio of the amorphous carbon film R B value is formed on the GDL R G In the example larger than the value, especially in the example where the difference is somewhat large, it was confirmed that the output performance was particularly excellent on the high current density side. From this, it is considered that flooding can be substantially prevented in the battery of this example.
In contrast, in the comparative example R B value in the amorphous carbon film of the separator is composed of a smaller combination than R G value in the amorphous carbon film of the GDL, the voltage decreases as the current density increases Therefore, it is estimated that the water produced on the cathode side has not been smoothly discharged.
  1 固体高分子形燃料電池(PEFC)
 10 膜電極接合体(MEA)
 11 高分子電解質膜
 12a、12c 電極層
 13a、13c ガス拡散層(GDL)
 15c セパレータ
 16c ガス流路
 C、C 非晶質炭素膜
1 Polymer electrolyte fuel cell (PEFC)
10 Membrane electrode assembly (MEA)
11 Polymer electrolyte membrane 12a, 12c Electrode layer 13a, 13c Gas diffusion layer (GDL)
15c separator 16c gas channel C G, C B amorphous carbon film

Claims (4)

  1.  高分子電解質膜と、これを挟持する電極層と、上記高分子電解質膜及び電極層を挟持するガス拡散層を有する膜電極接合体と、
     該膜電極接合体との間にガス流路を形成するセパレータを備えた固体高分子形燃料電池において、
     上記ガス拡散層とセパレータの少なくともガス流路側の面に非晶質炭素膜がそれぞれ形成されており、
     上記ガス拡散層に形成された非晶質炭素膜よりも上記セパレータに形成された非晶質炭素膜の親水性が高いことを特徴とする燃料電池。
    A membrane electrode assembly having a polymer electrolyte membrane, an electrode layer sandwiching the polymer electrolyte membrane, and a gas diffusion layer sandwiching the polymer electrolyte membrane and the electrode layer;
    In a polymer electrolyte fuel cell comprising a separator that forms a gas flow path between the membrane electrode assembly,
    An amorphous carbon film is formed on at least the gas flow path side surface of the gas diffusion layer and the separator,
    A fuel cell, wherein the amorphous carbon film formed on the separator is more hydrophilic than the amorphous carbon film formed on the gas diffusion layer.
  2.  上記ガス拡散層に形成された非晶質炭素膜のラマン散乱分光分析により測定されたDバンドピーク強度IとGバンドピーク強度Iとの強度比(I/I)をR、上記セパレータに形成された非晶質炭素膜のラマン散乱分光分析により測定されたDバンドピーク強度IとGバンドピーク強度Iとの強度比(I/I)をRとするとき、R<Rであることを特徴とする請求項1に記載の燃料電池。 The intensity ratio (I D / I G ) between D band peak intensity I D and G band peak intensity I G measured by Raman scattering spectroscopic analysis of the amorphous carbon film formed in the gas diffusion layer is R G , when the intensity ratio of the measured D-band peak intensity I D and G band peak intensity I G by Raman scattering spectroscopy of amorphous carbon film formed on the separator (I D / I G) and R B the fuel cell according to claim 1, characterized in that the R G <R B.
  3.  水滴の静的接触角が90°の非晶質炭素膜のラマン散乱分光分析による上記ピーク強度比(I/I)をR90とするとき、ガス拡散層に形成された非晶質炭素膜のピーク強度比RがR90より小さく、セパレータに形成された非晶質炭素膜のピーク強度比RがR90より大きいことを特徴とする請求項2に記載の燃料電池。 Amorphous carbon formed in the gas diffusion layer when the peak intensity ratio (I D / I G ) of the amorphous carbon film having a static contact angle of water droplets of 90 ° by Raman scattering spectroscopy is R 90 the fuel cell according to claim 2 in which the peak intensity ratio R G of the film is less than R 90, the peak intensity ratio R B of the amorphous carbon film formed on the separator is equal to or greater than R 90.
  4.  上記ガス拡散層及びセパレータの基材が鉄、ステンレス鋼、アルミニウム、アルミニウム合金、チタン及びチタン合金から成る群から選ばれるいずれかの金属であることを特徴とする請求項1~3のいずれか1つの項に記載の燃料電池。 The base material of the gas diffusion layer and the separator is any metal selected from the group consisting of iron, stainless steel, aluminum, an aluminum alloy, titanium, and a titanium alloy. A fuel cell according to one of the items.
PCT/JP2012/067357 2011-09-22 2012-07-06 Solid polymer fuel cell WO2013042429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-207604 2011-09-22
JP2011207604 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042429A1 true WO2013042429A1 (en) 2013-03-28

Family

ID=47914210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067357 WO2013042429A1 (en) 2011-09-22 2012-07-06 Solid polymer fuel cell

Country Status (1)

Country Link
WO (1) WO2013042429A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005019A1 (en) * 2013-07-11 2015-01-15 日産自動車株式会社 Surface treatment device and surface treatment method
DE102022212791A1 (en) 2022-11-29 2024-05-29 Robert Bosch Gesellschaft mit beschränkter Haftung Cell for an electrochemical energy converter, electrochemical energy converter and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541344A (en) * 2005-05-03 2008-11-20 ビーエーエスエフ、フューエル、セル、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Small lightweight fuel cell
JP2011108503A (en) * 2009-11-18 2011-06-02 Toyota Motor Corp Fuel battery system and operation control method for the same
JP2011108547A (en) * 2009-11-19 2011-06-02 Toyota Motor Corp Fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541344A (en) * 2005-05-03 2008-11-20 ビーエーエスエフ、フューエル、セル、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Small lightweight fuel cell
JP2011108503A (en) * 2009-11-18 2011-06-02 Toyota Motor Corp Fuel battery system and operation control method for the same
JP2011108547A (en) * 2009-11-19 2011-06-02 Toyota Motor Corp Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005019A1 (en) * 2013-07-11 2015-01-15 日産自動車株式会社 Surface treatment device and surface treatment method
DE102022212791A1 (en) 2022-11-29 2024-05-29 Robert Bosch Gesellschaft mit beschränkter Haftung Cell for an electrochemical energy converter, electrochemical energy converter and method

Similar Documents

Publication Publication Date Title
EP2604717B1 (en) Conductive member, manufacturing method therefor, separator for fuel cell, and solid polymer fuel cell
US10135077B2 (en) Corrosion resistant metal bipolar plate for a PEMFC including a radical scavenger
JP5391855B2 (en) Conductive member, method for producing the same, fuel cell separator using the same, and polymer electrolyte fuel cell
JP6649675B2 (en) Conductive member, method for producing the same, fuel cell separator and polymer electrolyte fuel cell using the same
JP5353205B2 (en) Conductive member, method for producing the same, fuel cell separator and polymer electrolyte fuel cell using the same
JP5332554B2 (en) Gas diffusion layer for fuel cell, method for producing the same, and fuel cell using the same
JP5439965B2 (en) Conductive member, method for producing the same, fuel cell separator using the same, and polymer electrolyte fuel cell
JP5493341B2 (en) Conductive member, method for producing the same, fuel cell separator and polymer electrolyte fuel cell using the same
JP2013143325A (en) Fuel cell, and separator for fuel cell
JP2008176990A (en) Membrane electrode assembly for fuel cell, and fuel cell using it
JP2017073218A (en) Conductive member, method for manufacturing the same, separator for fuel cell using the same, and solid polymer fuel cell
JP5332550B2 (en) Conductive member, method for producing the same, fuel cell separator and polymer electrolyte fuel cell using the same
JP5369497B2 (en) Fuel cell separator
WO2009118991A1 (en) Fuel cell separator
WO2013042429A1 (en) Solid polymer fuel cell
JP6628122B2 (en) Conductive member, manufacturing method thereof, fuel cell separator and polymer electrolyte fuel cell using the same
JP6512577B2 (en) Surface treatment member for fuel cell components
JP2010033969A (en) Separator for fuel cell
JP5928782B2 (en) Fuel cell
JP2010129396A (en) Conductive member, its manufacturing method, separator for fuel cell using the same, and solid polymer fuel cell
JP2020059282A (en) Conductive member, manufacturing method therefor, separator for fuel battery and solid polymer type fuel battery using the same
JP5287180B2 (en) Laminated structure, manufacturing method thereof, and fuel cell using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP