JP2017178630A - Production method of glass fine particle deposit - Google Patents

Production method of glass fine particle deposit Download PDF

Info

Publication number
JP2017178630A
JP2017178630A JP2016063102A JP2016063102A JP2017178630A JP 2017178630 A JP2017178630 A JP 2017178630A JP 2016063102 A JP2016063102 A JP 2016063102A JP 2016063102 A JP2016063102 A JP 2016063102A JP 2017178630 A JP2017178630 A JP 2017178630A
Authority
JP
Japan
Prior art keywords
glass
fine particle
deposit
glass fine
particle deposit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016063102A
Other languages
Japanese (ja)
Other versions
JP6790410B2 (en
Inventor
宜孝 撫佐
Nobutaka Musa
宜孝 撫佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016063102A priority Critical patent/JP6790410B2/en
Publication of JP2017178630A publication Critical patent/JP2017178630A/en
Application granted granted Critical
Publication of JP6790410B2 publication Critical patent/JP6790410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a glass fine particle deposit capable of measuring accurately the shape of the glass fine particle deposit without depending on location accuracy of a measuring apparatus.SOLUTION: In a production method of a glass fine particle deposit 14, glass fine particles are deposited on a departure rod 13 to produce a glass fine particle deposit 14, and while depositing the glass fine particles, the glass fine particle deposit 14 is irradiated with a laser beam, to thereby measure a curved shape of the surface of the glass fine particle deposit 14, and a measurement result is reflected to a manufacturing condition of the glass fine particle deposit 14.SELECTED DRAWING: Figure 1

Description

本発明は、ガラス微粒子堆積体の製造方法に関する。   The present invention relates to a method for producing a glass particulate deposit.

一般に、コアとクラッドよりなる光ファイバは、光ファイバ用のガラス母材を線引きして製造される。ガラス母材は、VAD法やOVD法などにより、バーナの火炎中に生成したガラス微粒子を石英等からなるロッドの周りに堆積させて多孔質ガラス母材を形成し、その後、この多孔質ガラス母材を脱水焼結炉内で加熱して脱水及び焼結して透明ガラス化することにより製造される。   In general, an optical fiber composed of a core and a clad is manufactured by drawing a glass preform for an optical fiber. A glass base material is formed by depositing glass fine particles generated in a flame of a burner around a rod made of quartz or the like by a VAD method or an OVD method, and then forming the porous glass base material. It is manufactured by heating the material in a dehydration sintering furnace to dehydrate and sinter it into a transparent glass.

多孔質ガラス母材を製造する際に、多孔質ガラス母材の表面にレーザ光を照射し、その反射光を受光することで多孔質ガラス母材の外径を測定する技術が知られている(例えば、特許文献1〜5参照)。   A technique for measuring the outer diameter of a porous glass base material by irradiating the surface of the porous glass base material with a laser beam and receiving the reflected light when manufacturing the porous glass base material is known. (For example, refer to Patent Documents 1 to 5).

特開2007−153678号公報JP 2007-153678 A 特開2007−106616号公報JP 2007-106616 A 特開2006−335622号公報JP 2006-335622 A 特開2003−277069号公報JP 2003-277069 A 特開平6−171969号公報Japanese Patent Laid-Open No. 6-171969

上記の特許文献1〜5においては、レーザ光を照射して反射光を受光する測定装置により、当該測定装置と被測定物であるガラス母材との間の距離を測定して、ガラス母材の外径に換算しているため、設備メンテナンスの際などに測定装置の位置がずれてしまうと、測定誤差の原因となっていた。また、レーザ式外径測定器や読取顕微鏡でガラス母材の外径を測定する場合は、ガラス母材の外径より大きい幅の窓を、ガラス母材製造用の反応容器に設ける必要があるため、設備が複雑化してコストが増加してしまう。   In the above Patent Documents 1 to 5, the distance between the measuring device and the glass base material that is the object to be measured is measured by a measuring device that irradiates the laser beam and receives the reflected light. Therefore, if the position of the measuring device is deviated during equipment maintenance or the like, it causes a measurement error. Further, when measuring the outer diameter of the glass base material with a laser-type outer diameter measuring instrument or a reading microscope, it is necessary to provide a window having a width larger than the outer diameter of the glass base material in the reaction container for manufacturing the glass base material. This complicates the equipment and increases the cost.

本発明は、測定装置の位置精度に依存せず、被測定物であるガラス微粒子堆積体の形状を精度よく測定可能なガラス微粒子堆積体の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the glass fine particle deposit body which can measure the shape of the glass fine particle deposit body which is a to-be-measured object accurately, without depending on the positional accuracy of a measuring apparatus.

本発明のガラス微粒子堆積体の製造方法は、
ガラス微粒子を出発ロッドに堆積することでガラス微粒子堆積体を作製するガラス微粒子堆積体の製造方法であって、
前記ガラス微粒子の堆積中に前記ガラス微粒子堆積体にレーザ光を照射して、前記ガラス微粒子堆積体の表面の曲線形状を測定し、
その測定結果を前記ガラス微粒子堆積体の製造条件に反映させる。
The method for producing a glass particulate deposit according to the present invention comprises:
A method for producing a glass particulate deposit that produces a glass particulate deposit by depositing glass particulate on a starting rod,
Irradiating the glass fine particle deposit with laser light during the deposition of the glass fine particles, and measuring the curved shape of the surface of the glass fine particle deposit,
The measurement result is reflected in the manufacturing conditions of the glass fine particle deposit.

本発明によれば、測定装置の位置精度に依存せず、ガラス微粒子堆積体の形状を精度よく測定することができる。また、ガラス微粒子堆積体を製造する反応容器に設けられるレーザ光透過用の窓は小さいもので良いため、設備は複雑化せずコストの増加を抑制することができる。   According to the present invention, it is possible to accurately measure the shape of the glass particulate deposit without depending on the positional accuracy of the measuring device. Further, since the laser light transmitting window provided in the reaction vessel for producing the glass fine particle deposit body may be small, the equipment is not complicated and the increase in cost can be suppressed.

本発明に係るガラス微粒子堆積体の製造方法を説明する製造装置の構成図である。It is a block diagram of the manufacturing apparatus explaining the manufacturing method of the glass fine particle deposit body which concerns on this invention. 図1に示されるガラス微粒子堆積体の先端部分を示す部分拡大図である。It is the elements on larger scale which show the front-end | tip part of the glass particulate deposit shown by FIG.

[本願発明の実施形態の説明]
最初に本願発明の実施形態の内容を列記して説明する。
本願発明の実施形態に係るガラス微粒子堆積体の製造方法は、
(1)ガラス微粒子を出発ロッドに堆積することでガラス微粒子堆積体を作製するガラス微粒子堆積体の製造方法であって、
前記ガラス微粒子の堆積中に前記ガラス微粒子堆積体にレーザ光を照射して、前記ガラス微粒子堆積体の表面の曲線形状を測定し、
その測定結果を前記ガラス微粒子堆積体の製造条件に反映させる。
この構成によれば、測定装置の位置精度に依存せずに、ガラス微粒子堆積体の表面形状を正確に測定することができるため、ガラス微粒子堆積体の変形等を適切に検出することができる。また、ガラス微粒子堆積体を製造する反応容器に設けられるレーザ光透過用の窓は小さいもので良いため、設備は複雑化せずコストの増加を抑制することができる。
[Description of Embodiment of Present Invention]
First, the contents of the embodiments of the present invention will be listed and described.
A method for producing a glass particulate deposit according to an embodiment of the present invention,
(1) A method for producing a glass particulate deposit that produces a glass particulate deposit by depositing glass particulate on a starting rod,
Irradiating the glass fine particle deposit with laser light during the deposition of the glass fine particles, and measuring the curved shape of the surface of the glass fine particle deposit,
The measurement result is reflected in the manufacturing conditions of the glass fine particle deposit.
According to this configuration, it is possible to accurately measure the surface shape of the glass fine particle deposit without depending on the positional accuracy of the measuring apparatus, so that deformation or the like of the glass fine particle deposit can be appropriately detected. Further, since the laser light transmitting window provided in the reaction vessel for producing the glass fine particle deposit body may be small, the equipment is not complicated and the increase in cost can be suppressed.

(2)前記ガラス微粒子堆積体の中心軸に対して直交する方向の表面曲率を測定し、
その測定結果から前記ガラス微粒子堆積体の外径を算出し、
算出された前記外径をあらかじめ設定された外径の目標値と比較し、
その比較結果を前記製造条件に反映させることが好ましい。
この構成によれば、ガラス微粒子堆積体の円周面の表面曲率から外径を算出することで、測定装置の位置精度に依存せずに、ガラス微粒子堆積体の外径制御をより正確に行うことができる。
(2) Measure the surface curvature in the direction perpendicular to the central axis of the glass particulate deposit,
Calculate the outer diameter of the glass particulate deposit from the measurement results,
Compare the calculated outer diameter with a preset target value of the outer diameter,
It is preferable to reflect the comparison result in the manufacturing conditions.
According to this configuration, by calculating the outer diameter from the surface curvature of the circumferential surface of the glass fine particle deposit, the outer diameter of the glass fine particle deposit is more accurately controlled without depending on the positional accuracy of the measuring device. be able to.

(3)前記ガラス微粒子堆積体の製造方法はVAD法であって、
前記曲線形状は前記ガラス微粒子堆積体の中心軸方向に沿った方向の形状であることが好ましい。
この構成によれば、VAD法で形成されたガラス微粒子堆積体のテーパ部における縦方向の曲線形状を計測しながら当該テーパ部の形状制御を行うことで、安定した引き上げ制御が可能となる。
(3) The method for producing the glass fine particle deposit is a VAD method,
The curved shape is preferably a shape in a direction along the central axis direction of the glass fine particle deposit.
According to this configuration, it is possible to perform stable pulling control by controlling the shape of the taper portion while measuring the longitudinal curve shape of the taper portion of the glass particulate deposit formed by the VAD method.

(4)前記曲線形状があらかじめ設定された目標形状から外れる場合には前記ガラス微粒子の堆積を停止することが好ましい。
この構成によれば、不良品の発生を未然に防ぐことができ、かつガラス微粒子堆積体の製造状態の監視に要する人手を削減することができる。
(4) It is preferable to stop the deposition of the glass particles when the curved shape deviates from a preset target shape.
According to this structure, generation | occurrence | production of inferior goods can be prevented beforehand and the manpower required for monitoring the manufacturing state of a glass particulate deposit can be reduced.

[本願発明の実施形態の詳細]
以下、本発明に係るガラス微粒子堆積体の製造方法の実施の形態の例を、図面を参照して説明する。
[Details of the embodiment of the present invention]
Hereinafter, an example of an embodiment of a method for producing a glass fine particle deposit according to the present invention will be described with reference to the drawings.

図1は本実施形態に係るガラス微粒子堆積体の製造方法を説明する製造装置の構成図であり、図2は、図1のガラス微粒子堆積体の先端部分を示す部分拡大図である。なお、以下に示す製造方法としては、VAD(Vapor Phase Axial Deposition)法を例に説明するが、本実施形態はVAD法に限定されるものではない。VAD法と同様にガラス原料から火炎熱分解反応を利用してガラスを堆積させる方法、例えば、OVD(Outside Vapor-phase Deposition)法等に本実施形態を適用することも可能である。   FIG. 1 is a configuration diagram of a manufacturing apparatus for explaining a method for manufacturing a glass fine particle deposit according to the present embodiment, and FIG. 2 is a partially enlarged view showing a tip portion of the glass fine particle deposit in FIG. As a manufacturing method shown below, a VAD (Vapor Phase Axial Deposition) method will be described as an example, but the present embodiment is not limited to the VAD method. Similarly to the VAD method, the present embodiment can also be applied to a method of depositing glass from a glass raw material using a flame pyrolysis reaction, for example, an OVD (Outside Vapor-phase Deposition) method.

図1に示すように、本実施形態のガラス微粒子堆積体の製造方法を実施する製造装置10は、反応容器11を備えている。反応容器11の上方から容器内部に支持棒12が吊り下げられ、支持棒12の下側にダミーガラスロッド13(出発ロッドの一例)が取り付けられている。このダミーガラスロッド13にガラス微粒子が堆積してガラス微粒子堆積体14が形成される。支持棒12は、上端部を昇降装置15により把持されており、昇降装置15によって回転と共に昇降する。この昇降装置15は、制御装置20内の引き上げ制御部21によって制御されている。反応容器11の側壁部には排気管16が取り付けられている。   As shown in FIG. 1, a manufacturing apparatus 10 that performs the method for manufacturing a glass particulate deposit according to this embodiment includes a reaction vessel 11. A support rod 12 is suspended from above the reaction vessel 11 inside the vessel, and a dummy glass rod 13 (an example of a starting rod) is attached to the lower side of the support rod 12. Glass particulates are deposited on the dummy glass rod 13 to form a glass particulate deposit 14. The upper end of the support bar 12 is held by the lifting device 15 and is lifted and lowered by the lifting device 15 together with the rotation. The lifting device 15 is controlled by a pulling control unit 21 in the control device 20. An exhaust pipe 16 is attached to the side wall of the reaction vessel 11.

反応容器11の内部下方には、コア用バーナ17およびクラッド用バーナ18が設けられている。各々バーナ17,18には、ガス供給装置19から原料ガス、火炎形成ガスである可燃性ガスおよび助燃性ガスなどが供給される。ガス供給装置19から供給されるガスの供給量は、制御装置20によって制御される。   A core burner 17 and a clad burner 18 are provided below the inside of the reaction vessel 11. Each of the burners 17 and 18 is supplied with a raw material gas, a combustible gas which is a flame forming gas, an auxiliary combustible gas and the like from a gas supply device 19. The amount of gas supplied from the gas supply device 19 is controlled by the control device 20.

製造装置10の下方には、形状センサ23(測定装置の一例)が設置されている。この形状センサ23は、例えば、2次元レーザ測定器であって、被測定物であるガラス微粒子堆積体14に向けてレーザ光を照射し、ガラス微粒子堆積体14から反射された反射光を受光することでガラス微粒子堆積体14の表面形状、例えば、ガラス微粒子堆積体14の外表面における曲線形状(表面曲率など)を測定可能である。形状センサ23は、具体的には、例えば、被測定物であるガラス微粒子堆積体14にライン状にレーザ光を走査して照射し、その散乱光を三角測量の原理を用いて測定することで、ライン方向と深さ方向の位置からガラス微粒子堆積体14の形状を測定する。形状センサ23で計測された結果は、制御装置20内の外径算出部22に送られる。外径算出部22において、形状センサ23で測定されたガラス微粒子堆積体14の表面形状から、ガラス微粒子堆積体14の外径が算出される。
なお、製造装置10の下方には形状センサ23のレーザ光を透過させるための窓を設ける必要があるが、当該窓はガラス微粒子堆積体14の外径の1/4から1/2程度の幅を有していれば良い。窓の幅が大きいほど広い範囲にレーザ光を照射できるため測定精度は向上するが、必要な精度に応じて窓の幅は適宜選択してよい。
A shape sensor 23 (an example of a measuring device) is installed below the manufacturing apparatus 10. The shape sensor 23 is, for example, a two-dimensional laser measuring device, which irradiates laser light toward the glass fine particle deposit 14 that is an object to be measured, and receives reflected light reflected from the glass fine particle deposit 14. Thus, the surface shape of the glass fine particle deposit 14, for example, the curved shape (surface curvature, etc.) on the outer surface of the glass fine particle deposit 14 can be measured. Specifically, for example, the shape sensor 23 scans and irradiates laser light in a line shape on the glass fine particle deposit 14 that is the object to be measured, and measures the scattered light using the principle of triangulation. The shape of the glass fine particle deposit 14 is measured from the position in the line direction and the depth direction. The result measured by the shape sensor 23 is sent to the outer diameter calculation unit 22 in the control device 20. In the outer diameter calculator 22, the outer diameter of the glass particulate deposit 14 is calculated from the surface shape of the glass particulate deposit 14 measured by the shape sensor 23.
In addition, although it is necessary to provide a window for transmitting the laser beam of the shape sensor 23 below the manufacturing apparatus 10, the window has a width of about ¼ to ½ of the outer diameter of the glass particulate deposit 14. As long as it has. As the window width is larger, the laser beam can be irradiated over a wider range, so that the measurement accuracy is improved. However, the window width may be appropriately selected according to the required accuracy.

図2に示すように、ガラス微粒子堆積体14は、先端部の第一円柱部31と、定常部である第二円柱部32と、第一円柱部31と第二円柱部32との間に形成されるテーパ部33とから形成されている。ガラス微粒子堆積体14の堆積形状の目標値(第一円柱部31の外径D1、第二円柱部32の外径D2、テーパ部33のテーパ角度θ)は、制御装置20内にあらかじめ記憶されている。   As shown in FIG. 2, the glass particulate deposit 14 includes a first cylindrical portion 31 at the tip, a second cylindrical portion 32 that is a stationary portion, and between the first cylindrical portion 31 and the second cylindrical portion 32. The taper portion 33 is formed. The target values of the deposition shape of the glass particulate deposit 14 (the outer diameter D1 of the first cylindrical portion 31, the outer diameter D2 of the second cylindrical portion 32, and the taper angle θ of the tapered portion 33) are stored in advance in the control device 20. ing.

一例として、本実施形態に係るガラス微粒子堆積体14の製造方法においては、制御装置20は、ガラス微粒子の堆積中に、形状センサ23により、ガラス微粒子堆積体14の中心軸に直交する方向における第一円柱部31および第二円柱部32の表面曲率を測定し、その測定結果を外径算出部22へ送信する。外径算出部22は、円柱部31,32の円周面における表面曲率の測定結果に基づき、円柱部31,32の外径D1,D2を算出する。なお、図1においては形状センサ23は1つであるが、第一円柱部31と第二円柱部32とに対応する位置に形状センサ23をそれぞれ配置しても良く、また、形状センサ23を上下に移動させて測定しても良い。   As an example, in the method for manufacturing the glass particulate deposit 14 according to the present embodiment, the control device 20 uses the shape sensor 23 during the deposition of the glass particulates to perform the first measurement in the direction perpendicular to the central axis of the glass particulate deposit 14. The surface curvatures of the one cylindrical portion 31 and the second cylindrical portion 32 are measured, and the measurement results are transmitted to the outer diameter calculating portion 22. The outer diameter calculator 22 calculates the outer diameters D1 and D2 of the cylindrical portions 31 and 32 based on the measurement results of the surface curvatures on the circumferential surfaces of the cylindrical portions 31 and 32. In FIG. 1, there is only one shape sensor 23, but the shape sensor 23 may be disposed at a position corresponding to the first cylindrical portion 31 and the second cylindrical portion 32. You may measure by moving up and down.

制御装置20は、外径算出部22により算出された外径D1,D2があらかじめ設定された目標値の許容幅内に収まるように、ガラス微粒子堆積体14の引き上げ速度や、原料ガスおよび/または火炎形成ガスの流量を制御する。制御装置20は、外径D1,D2の値が目標値に近づくように、引き上げ速度やガス流量を調整しても良い。具体的には、制御装置20(の引き上げ制御部21)は、昇降装置15に制御信号を送信し、昇降装置15は当該制御信号に基づいてガラス微粒子堆積体14の引き上げ速度の調整を行う。また、制御装置20は、ガス供給装置19に制御信号を送信し、ガス供給装置19は当該制御信号に基づいてコア用バーナ17およびクラッド用バーナ18への原料ガスや火炎形成ガスの供給流量の調整を行う。なお、コア用バーナ17およびクラッド用バーナ18の位置を移動可能な構成とし、制御装置20からの制御信号に基づいてガラス微粒子堆積体14に対するコア用バーナ17およびクラッド用バーナ18の位置調整を行っても良い。   The control device 20 controls the pulling rate of the glass particulate deposit 14, the source gas, and / or the so that the outer diameters D1 and D2 calculated by the outer diameter calculating unit 22 are within the preset allowable range. Control the flow rate of flame forming gas. The control device 20 may adjust the pulling speed and the gas flow rate so that the values of the outer diameters D1 and D2 approach the target values. Specifically, the control device 20 (the pulling control unit 21) transmits a control signal to the lifting device 15, and the lifting device 15 adjusts the pulling speed of the glass particulate deposit 14 based on the control signal. Further, the control device 20 transmits a control signal to the gas supply device 19, and the gas supply device 19 determines the supply flow rate of the raw material gas and the flame forming gas to the core burner 17 and the clad burner 18 based on the control signal. Make adjustments. The positions of the core burner 17 and the cladding burner 18 are movable, and the positions of the core burner 17 and the cladding burner 18 relative to the glass particulate deposit 14 are adjusted based on a control signal from the control device 20. May be.

上述したように本実施形態の製造方法によれば、ガラス微粒子堆積中にガラス微粒子堆積体14にレーザ光を照射して、ガラス微粒子堆積体14の外表面の曲線形状を測定し、その測定結果をガラス微粒子堆積体14の製造条件(引き上げ速度やガス流量)にフィードバックさせている。これにより、ガラス微粒子堆積体14の第一円柱部31や第二円柱部32の外径が所定の許容幅内に収まるように制御することができる。そのため、高品質のガラス母材を安定して製造することができる。   As described above, according to the manufacturing method of this embodiment, the glass fine particle deposit 14 is irradiated with laser light during the glass fine particle deposition, and the curve shape of the outer surface of the glass fine particle deposit 14 is measured. Is fed back to the manufacturing conditions (pulling speed and gas flow rate) of the glass particulate deposit 14. Thereby, it can control so that the outer diameter of the 1st cylindrical part 31 and the 2nd cylindrical part 32 of the glass fine particle deposition body 14 may be settled in a predetermined | prescribed allowable width | variety. Therefore, a high quality glass base material can be manufactured stably.

形状センサ23は、ガラス微粒子堆積体14の円周面の表面曲率だけではなく、ガラス微粒子堆積体14のテーパ部33の形状(例えば、ガラス微粒子堆積体14の中心軸方向に沿った方向の曲線形状)を測定することも可能である。この場合、制御装置20は、形状センサ23により測定されたテーパ部33の縦方向の曲線形状から、テーパ部33のテーパ角度θ(図2参照)を算出する。そして、テーパ角度θが許容幅内に収まるようにガラス微粒子堆積体14の引き上げ速度や、原料ガスおよび/または火炎形成ガスの流量を制御する。このように、テーパ部33の縦方向の曲線形状を計測して製造条件に反映させることで、ガラス微粒子堆積体14の安定した引き上げ制御が可能となる。   The shape sensor 23 is not only the surface curvature of the circumferential surface of the glass fine particle deposit 14 but also the shape of the tapered portion 33 of the glass fine particle deposit 14 (for example, a curve in the direction along the central axis direction of the glass fine particle deposit 14). It is also possible to measure the shape. In this case, the control device 20 calculates the taper angle θ (see FIG. 2) of the taper portion 33 from the longitudinal curved shape of the taper portion 33 measured by the shape sensor 23. Then, the pulling-up speed of the glass fine particle deposit 14 and the flow rate of the raw material gas and / or the flame forming gas are controlled so that the taper angle θ falls within the allowable width. Thus, by measuring the vertical curved shape of the taper portion 33 and reflecting it in the manufacturing conditions, stable pulling control of the glass particulate deposit 14 can be performed.

また、テーパ角度θではなく、テーパ部33の縦方向の曲線形状からテーパ部33の平均的な高さを算出し、この平均高さを一定に維持するように、引き上げ速度や、原料ガスおよび/または火炎形成ガスの流量を制御することも可能である。このような実施形態は、図1に図示したコア用バーナとクラッド用バーナを設置した構成への適用だけではなく、出発ロッドがコア用ガラスロッドであり、その外側にガラス微粒子を堆積させる構成に適用すると特に好ましい。このような構成においては、従来、テーパ部33の特定の一点の高さを一定に維持するように引き上げ速度の制御を行っているが、テーパ部33に凹凸があると引き上げ速度が安定しないという問題があった。これに対して、本実施形態の構成を適用することで、引き上げ速度が安定し、その結果、ガラス微粒子堆積体14の外径を長手方向にわたって一定にできるという効果を得ることができる。   Further, the average height of the taper portion 33 is calculated from the longitudinal curved shape of the taper portion 33 instead of the taper angle θ, and the pulling speed, the source gas, and the like are adjusted so as to keep this average height constant. It is also possible to control the flow rate of the flame forming gas. Such an embodiment is not only applied to the configuration in which the core burner and the cladding burner shown in FIG. 1 are installed, but the starting rod is a core glass rod, and glass particles are deposited on the outside thereof. Application is particularly preferred. In such a configuration, conventionally, the pulling speed is controlled so as to keep the height of a specific point of the tapered portion 33 constant. However, if the tapered portion 33 is uneven, the pulling speed is not stable. There was a problem. On the other hand, by applying the configuration of the present embodiment, the pulling speed is stabilized, and as a result, the effect that the outer diameter of the glass fine particle deposit 14 can be made constant in the longitudinal direction can be obtained.

なお、形状センサ23により測定された円柱部31,32の外径D1,D2やテーパ部33のテーパ角度θが目標値の許容幅から外れる場合は、ガラス微粒子の堆積を停止することが好ましい。また、円柱部31,32の表面曲線にがたつきが生じる、すなわち波打ち形状となっていることが検出された場合にも、ガラス微粒子の堆積を停止することが好ましい。このように、ガラス微粒子堆積体14の堆積形状があらかじめ設定された目標形状から外れたり、異常曲線となっている場合には、ガラス微粒子堆積体14の堆積形状に変形(異常)が発生しているとみなしてガラス微粒子の堆積を停止させることにより、不良のガラス微粒子堆積体(光ファイバ用ガラス母材)の発生を未然に防ぐことができる。   When the outer diameters D1 and D2 of the cylindrical portions 31 and 32 and the taper angle θ of the tapered portion 33 measured by the shape sensor 23 deviate from the allowable width of the target value, it is preferable to stop the deposition of glass particles. Also, it is preferable to stop the deposition of the glass fine particles when it is detected that the surface curves of the cylindrical portions 31 and 32 are wobbled, that is, have a wavy shape. In this way, when the deposition shape of the glass particulate deposit 14 deviates from a preset target shape or has an abnormal curve, the deposition shape of the glass particulate deposit 14 is deformed (abnormal). By stopping the deposition of the glass fine particles, it is possible to prevent the occurrence of defective glass fine particle deposits (glass base material for optical fibers).

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができる。   Although the invention has been described in detail and with reference to specific embodiments, various changes and modifications can be made without departing from the spirit and scope of the invention.

10:製造装置
11:反応容器
12:支持棒
13:ダミーガラスロッド(出発ロッド)
14:ガラス微粒子堆積体
15:昇降装置
17:コア用バーナ
18:クラッド用バーナ
19:ガス供給装置
20:制御装置
21:引き上げ制御部
22:外径算出部
23:形状センサ(測定装置)
31:第一円柱部
32:第二円柱部
33:テーパ部
10: Production apparatus 11: Reaction vessel 12: Support rod 13: Dummy glass rod (starting rod)
14: Glass particulate deposit 15: Lifting device 17: Core burner 18: Clad burner 19: Gas supply device 20: Control device 21: Pull-up control unit 22: Outer diameter calculation unit 23: Shape sensor (measurement device)
31: First cylindrical portion 32: Second cylindrical portion 33: Tapered portion

Claims (4)

ガラス微粒子を出発ロッドに堆積することでガラス微粒子堆積体を作製するガラス微粒子堆積体の製造方法であって、
前記ガラス微粒子の堆積中に前記ガラス微粒子堆積体にレーザ光を照射して、前記ガラス微粒子堆積体の外表面の曲線形状を測定し、
その測定結果を前記ガラス微粒子堆積体の製造条件に反映させる、ガラス微粒子堆積体の製造方法。
A method for producing a glass particulate deposit that produces a glass particulate deposit by depositing glass particulate on a starting rod,
Irradiating the glass fine particle deposit with laser light during the deposition of the glass fine particles, and measuring the curved shape of the outer surface of the glass fine particle deposit
A method for producing a glass particulate deposit, wherein the measurement result is reflected in the conditions for producing the glass particulate deposit.
前記ガラス微粒子堆積体の中心軸に対して直交する方向の表面曲率を測定し、
その測定結果から前記ガラス微粒子堆積体の外径を算出し、
算出された前記外径をあらかじめ設定された外径の目標値と比較し、
その比較結果を前記製造条件に反映させる、請求項1に記載のガラス微粒子堆積体の製造方法。
Measure the surface curvature in the direction perpendicular to the central axis of the glass particulate deposit,
Calculate the outer diameter of the glass particulate deposit from the measurement results,
Compare the calculated outer diameter with a preset target value of the outer diameter,
The method for producing a glass particulate deposit according to claim 1, wherein the comparison result is reflected in the production conditions.
前記ガラス微粒子堆積体の製造方法はVAD法であって、
前記曲線形状は前記ガラス微粒子堆積体の中心軸方向に沿った方向の形状である、請求項1に記載のガラス微粒子堆積体の製造方法。
The method for producing the glass fine particle deposit is a VAD method,
The method for producing a glass particulate deposit according to claim 1, wherein the curved shape is a shape in a direction along a central axis direction of the glass particulate deposit.
前記曲線形状があらかじめ設定された目標形状から外れる場合には前記ガラス微粒子の堆積を停止する、請求項1から3のいずれか一項に記載のガラス微粒子堆積体の製造方法。   The method for producing a glass particulate deposit according to any one of claims 1 to 3, wherein when the curved shape deviates from a preset target shape, the deposition of the glass particulates is stopped.
JP2016063102A 2016-03-28 2016-03-28 Method for manufacturing glass fine particle deposits Active JP6790410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016063102A JP6790410B2 (en) 2016-03-28 2016-03-28 Method for manufacturing glass fine particle deposits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016063102A JP6790410B2 (en) 2016-03-28 2016-03-28 Method for manufacturing glass fine particle deposits

Publications (2)

Publication Number Publication Date
JP2017178630A true JP2017178630A (en) 2017-10-05
JP6790410B2 JP6790410B2 (en) 2020-11-25

Family

ID=60003486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016063102A Active JP6790410B2 (en) 2016-03-28 2016-03-28 Method for manufacturing glass fine particle deposits

Country Status (1)

Country Link
JP (1) JP6790410B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055722A (en) * 2018-10-04 2020-04-09 信越化学工業株式会社 Method for manufacturing optical fiber glass preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020055722A (en) * 2018-10-04 2020-04-09 信越化学工業株式会社 Method for manufacturing optical fiber glass preform

Also Published As

Publication number Publication date
JP6790410B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
US20020152772A1 (en) Optical fiber manufacture method, preform manufacture method, and preform manufacture apparatus
CN104355532A (en) Optical fiber preform manufacturing method
US6742363B1 (en) Straightening a glass rod for use in making an optical fiber preform
EP1279646A2 (en) Method and apparatus for producing a glass preform for optical fibres
US20050126227A1 (en) Process for determining the drawing tension in the manufacturing of an optical fibre
JP5578024B2 (en) Manufacturing method of glass base material
JP4820300B2 (en) Vertical stretching method for producing cylindrical glass bodies
JP6790410B2 (en) Method for manufacturing glass fine particle deposits
JP4239806B2 (en) Multimode optical fiber preform manufacturing method and multimode optical fiber manufacturing method
KR100640465B1 (en) Apparatus and method for vapor axial deposition
JP5294354B2 (en) Method for manufacturing optical fiber porous preform
CN108147655A (en) The manufacturing equipment and its manufacturing method of preform
JP6288056B2 (en) Glass base material manufacturing apparatus and manufacturing method
JP2012006791A (en) Method for producing optical fiber preform
JP5757196B2 (en) Method for producing glass particulate deposit
JP4379319B2 (en) Manufacturing method of glass base material
JP2006335622A (en) Method of manufacturing glass preform
JP6431349B2 (en) Optical fiber preform manufacturing method
JP3687625B2 (en) Manufacturing method of glass base material
JP2005139042A (en) Method of manufacturing porous glass preform
JP2003277097A (en) Method for manufacturing porous glass preform
JP2003040624A (en) Method and apparatus for producing glass base material
JP7211369B2 (en) Optical fiber preform, method for manufacturing optical fiber preform, and method for setting striae pitch of optical fiber preform
JP2013040070A (en) Method for producing glass fine particle deposit
JP2001010840A (en) Method and apparatus for producing porous preform for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R150 Certificate of patent or registration of utility model

Ref document number: 6790410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250