JP2012006791A - Method for producing optical fiber preform - Google Patents
Method for producing optical fiber preform Download PDFInfo
- Publication number
- JP2012006791A JP2012006791A JP2010144692A JP2010144692A JP2012006791A JP 2012006791 A JP2012006791 A JP 2012006791A JP 2010144692 A JP2010144692 A JP 2010144692A JP 2010144692 A JP2010144692 A JP 2010144692A JP 2012006791 A JP2012006791 A JP 2012006791A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- flow rate
- fiber preform
- growth rate
- supply flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/36—Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
本発明は、VAD法によりガラス微粒子を堆積させてガラス微粒子堆積体を製造する光ファイバ母材の製造方法に関する。 The present invention relates to an optical fiber preform manufacturing method for manufacturing glass particle deposits by depositing glass particles by the VAD method.
従来の光ファイバ母材の製造方法としては、VAD法によりガラス微粒子を堆積させてガラス微粒子堆積体を形成する製造方法が知られている(特許文献1参照)。
特許文献1に記載された光ファイバ母材の製造方法では、多孔質母材の製造中に逐次ガラス微粒子堆積体の重量、成長速度を測定し、ガラス微粒子堆積体の単位長さ当たりの測定増加重量と目標増加重量の偏差を原料ガス、可燃性ガス、助燃性ガスのいずれかにフィードバックし、径方向のガラス微粒子堆積量を調整して、光ファイバ母材のコア部とクラッド部との屈折率の差である比屈折率差(ΔN)を安定化させるようにしている。
As a conventional method for manufacturing an optical fiber preform, there is known a manufacturing method in which glass fine particles are deposited by depositing glass fine particles by a VAD method (see Patent Document 1).
In the optical fiber preform manufacturing method described in Patent Document 1, the weight and growth rate of the glass particulate deposit are sequentially measured during the production of the porous preform, and the measurement increase per unit length of the glass particulate deposit is measured. The deviation between the weight and the target weight increase is fed back to the source gas, flammable gas, or auxiliary combustion gas, and the amount of glass particles deposited in the radial direction is adjusted to refract the core and cladding of the optical fiber preform. The relative refractive index difference (ΔN), which is the difference in rate, is stabilized.
ところで、光ファイバ母材の製造工程で、コア部をスス付けしてガラス微粒子堆積体を形成する際、コア部用のバーナとクラッド部用のバーナの2つのバーナを用いて形成する場合がある。この場合、コア部の先端部の位置をモニターして成長速度を算出しているが、堆積条件の変化等により、この成長速度が変動する場合がある。
成長速度が変化した場合、屈折率を調整する添加剤(例えば、GeCl4)を成長速度に依らず常に一定流量を添加すると屈折率も変動してしまうため、製造された光ファイバ母材の軸方向のΔNが変動して、光ファイバの特性にばらつきが出るという不都合があった。
By the way, in the optical fiber preform manufacturing process, when the core part is sooted to form the glass fine particle deposit, the core part burner and the clad part burner may be used. . In this case, the growth rate is calculated by monitoring the position of the tip of the core, but this growth rate may vary due to changes in deposition conditions and the like.
When the growth rate changes, the refractive index also fluctuates if an additive for adjusting the refractive index (for example, GeCl 4 ) is constantly added at a constant flow rate regardless of the growth rate. Therefore, the axis of the manufactured optical fiber preform is changed. There is a disadvantage that the ΔN of the direction fluctuates and the characteristics of the optical fiber vary.
これを解消するために、屈折率を調整するGeCl4の供給流量をガラス微粒子堆積体の軸方向の成長速度に比例させて増減させる光ファイバ母材の製造方法が提案されている(特許文献2参照)。図4に示すように、例えば、成長速度が上昇したときには、GeCl4の供給流量を増加させることにより、ΔNの軸方向の変動を抑えて一定にすることができる。 In order to solve this problem, a method of manufacturing an optical fiber preform is proposed in which the supply flow rate of GeCl 4 for adjusting the refractive index is increased or decreased in proportion to the growth rate in the axial direction of the glass fine particle deposit (Patent Document 2). reference). As shown in FIG. 4, for example, when the growth rate increases, by increasing the supply flow rate of GeCl 4 , variation in the axial direction of ΔN can be suppressed and made constant.
しかしながら、特許文献2に記載の光ファイバ母材の製造方法では、外径変動が発生する可能性があった。即ち、成長速度が変動すると、例えば成長速度が遅くなると、単位長さ当たりのススを堆積する時間が長くなるため、単位長さ当たりの堆積量が増え、スス径は太くなる。このようにスス径が変動すると、例え、ΔNの変動を一定にしたとしても、それ以外の光ファイバの特性が一定とならないという不都合が生じた。 However, in the manufacturing method of the optical fiber preform described in Patent Document 2, there is a possibility that the outer diameter fluctuates. That is, if the growth rate varies, for example, if the growth rate is slow, the time for depositing soot per unit length becomes longer, so the amount of deposition per unit length increases and the soot diameter increases. When the soot diameter fluctuates in this way, there arises a disadvantage that the characteristics of the other optical fibers are not constant even if the fluctuation of ΔN is constant.
本発明の目的は、上述した事情に鑑みてなされたものであり、光ファイバ母材の軸方向の成長速度を一定にし、かつΔNの変動を抑えることで、光ファイバの特性を安定化することができる光ファイバ母材の製造方法を提供することにある。 The object of the present invention has been made in view of the above-described circumstances, and stabilizes the characteristics of an optical fiber by making the growth rate in the axial direction of the optical fiber preform constant and suppressing the fluctuation of ΔN. An object of the present invention is to provide a method for manufacturing an optical fiber preform capable of satisfying the requirements.
上記課題を解決することができる本発明に係る光ファイバ母材の製造方法は、原料ガス、可燃性ガス及び助燃性ガスを供給してガラス微粒子を生成し、該ガラス微粒子を堆積させてガラス微粒子堆積体を製造する光ファイバ母材の製造方法であって、前記ガラス微粒子堆積体の軸方向の成長速度が一定となるように前記可燃性ガスの供給流量を制御し、かつ該可燃性ガスの供給流量に比例するように屈折率を調整する添加剤の供給流量を制御することを特徴としている。 The method for manufacturing an optical fiber preform according to the present invention capable of solving the above-described problem is a method for producing glass fine particles by supplying a raw material gas, a combustible gas, and an auxiliary combustible gas, and depositing the glass fine particles to produce glass fine particles An optical fiber preform manufacturing method for manufacturing a deposit, wherein the flow rate of the combustible gas is controlled so that the axial growth rate of the glass particulate deposit is constant, and the combustible gas The supply flow rate of the additive that adjusts the refractive index so as to be proportional to the supply flow rate is controlled.
このように構成された光ファイバ母材の製造方法によれば、光ファイバ母材の軸方向の成長速度が一定になるように可燃性ガスの供給流量を制御するとともに、可燃性ガスの供給流量に比例するように添加剤(例えば、GeCl4)の供給流量を制御することで、光ファイバ母材の軸方向のΔNの変動を抑えることができ、光ファイバ特性の安定化を図ることができる。 According to the optical fiber preform manufacturing method configured as described above, the supply flow rate of the combustible gas is controlled so that the axial growth rate of the optical fiber preform is constant, and the supply flow rate of the combustible gas By controlling the supply flow rate of the additive (for example, GeCl 4 ) so as to be proportional to the fluctuation of ΔN in the axial direction of the optical fiber preform, it is possible to stabilize the optical fiber characteristics. .
本発明に係る光ファイバ母材の製造方法によれば、光ファイバ母材の軸方向の成長速度を一定にし、かつΔNの変動を抑えることで、光ファイバの特性を安定化することができる。 According to the method for manufacturing an optical fiber preform according to the present invention, the characteristics of the optical fiber can be stabilized by making the growth rate in the axial direction of the optical fiber preform constant and suppressing the variation of ΔN.
以下、本発明の一実施形態である光ファイバ母材の製造方法について図面を参照して説明する。 Hereinafter, a method for manufacturing an optical fiber preform according to an embodiment of the present invention will be described with reference to the drawings.
図1に示すように、本実施形態発明の光ファイバ母材の製造方法を実施する製造装置10は、反応容器11の上方から内部に支持棒12を吊り下げ、支持棒12の下側にダミーガラスロッド13を取り付けている。このダミーガラスロッド13にガラス微粒子が堆積してガラス微粒子堆積体14を形成する。支持棒12は、上端部を昇降装置15により把持されており、昇降装置15によって回転と共に昇降する。この昇降装置15は、制御装置16によって引き上げ速度(成長速度)が制御されている。
As shown in FIG. 1, a
反応容器11の内部下方にはコア用バーナ17およびクラッド用バーナ18が設けられており、制御装置16によって制御されるガス供給装置19から、各々バーナ17,18に供給量を制御しながら原料ガス、可燃性ガス、助燃性ガスおよび添加剤ガス(例えば、屈折率を調整するGeCl4)を供給する。
A
また、製造装置10には、ガラス微粒子堆積体14の成長速度である引き上げ速度を測定するための成長速度測定装置21が設けられている。この成長速度測定装置21には、例えば検出光であるレーザ光を発するレーザ発振器22と、このレーザ発振器22からのレーザ光を受けて制御装置16に信号を発する受光部23が設けられている。また、反応容器11の側壁中央部には排気管20が取り付けられている。
Further, the
ガラス微粒子堆積体14の製造手順は、先ず支持棒12を昇降装置15に取り付け、先端に取り付けられているガラスロッド13を反応容器11内に納める。次に、昇降装置15によってガラスロッド13を回転させながら、コア用バーナ17およびクラッド用バーナ18によってガラス微粒子をガラスロッド13に堆積させる。
In the manufacturing procedure of the glass
ガラス微粒子堆積体14の堆積状態をモニターしながら昇降装置15によりガラス微粒子堆積体14を引き上げる。このとき、引き上げ速度を成長速度測定装置21により測定して、信号を制御装置16に送信する。制御装置16では、後述するように測定される成長速度が一定となるように、可燃性ガス(例えば、H2)の供給流量を制御するとともに、この可燃性ガスの供給流量に比例するように添加剤の供給流量を制御する。
The
次に、本実施形態の光ファイバ母材の製造方法について説明する。
上述したように、本実施形態の光ファイバ母材の製造方法では、原料ガス、可燃性ガス及び助燃性ガスを供給してガラス微粒子を生成し、該ガラス微粒子を堆積させ、ガラス微粒子堆積体14の軸方向の成長速度が一定となるように、可燃性ガスであるH2の供給流量を制御する。このとき同時に、H2の供給流量に比例するように、添加剤であるGeCl4の供給流量を制御する。
Next, the manufacturing method of the optical fiber preform of this embodiment will be described.
As described above, in the method of manufacturing the optical fiber preform according to the present embodiment, the raw material gas, the combustible gas, and the auxiliary combustible gas are supplied to generate the glass fine particles, and the glass fine particles are deposited. The supply flow rate of H 2 , which is a combustible gas, is controlled so that the growth rate in the axial direction is constant. At the same time, the supply flow rate of GeCl 4 as an additive is controlled so as to be proportional to the supply flow rate of H 2 .
前述した光ファイバ母材の製造方法によれば、成長速度の変化に合わせるのではなく、ガラス微粒子堆積体14の軸方向の成長速度を一定になるようにH2の供給流量を制御するとともに、H2の供給流量に比例するようにGeCl4の供給流量を制御する。これにより、ガラス微粒子堆積体14の軸方向のΔNの変動を抑えることができ、光ファイバ特性の安定化を図ることができる。
According to the manufacturing method of the optical fiber preform described above, the H 2 supply flow rate is controlled so that the growth rate in the axial direction of the glass
GeCl4の流量の制御としては、軸方向の成長速度が上昇する兆候がある場合は、先ずH2の供給流量を増加させて成長速度の上昇を抑えて一定にする。このとき、H2の供給流量の増加に比例させてGeCl4の流量も増加させる。逆に、成長速度が低下する兆候がある場合は、H2の供給流量を減少させて成長速度の低下を抑えて一定にする。このとき、H2の供給流量の減少に比例させてGeCl4の流量も減少させる。 As a control of the flow rate of GeCl 4 , when there is a sign that the growth rate in the axial direction increases, first, the supply flow rate of H 2 is increased to suppress the increase in the growth rate and make it constant. At this time, the flow rate of GeCl 4 is also increased in proportion to the increase in the supply flow rate of H 2 . On the contrary, when there is an indication that the growth rate is lowered, the supply flow rate of H 2 is decreased to keep the growth rate from being lowered and constant. At this time, the flow rate of GeCl 4 is also decreased in proportion to the decrease in the supply flow rate of H 2 .
具体的には、成長速度測定装置21から制御装置16に送られてくる信号に基づいて、制御装置16は、成長速度が上昇する兆候がある場合には、ガス供給装置19にH2の供給流量を増すように指令するとともに、GeCl4の供給流量もH2の供給流量に比例して増すように指令する。
Specifically, based on a signal sent from the growth
また、成長速度が減少する兆候がある場合には、ガス供給装置19にH2の供給流量を減少するように指令するとともに、GeCl4の供給流量もH2の供給流量に比例して減少するように指令する。これにより、H2の供給流量を調整しながら成長速度を一定に保ち、H2の供給流量に比例させてGeCl4の供給流量を調整することで、ガラス微粒子堆積体14の軸方向のΔNの変動を抑えることができる。
When there is an indication that the growth rate is decreasing, the
(実施例)
図2は本発明の一実施例を示すグラフである。なお、図2の縦軸は、スス付け開始時の各流量を1として、正規化した流量を示す。また、横軸は時間を示す。
本実施例は、ガラス微粒子堆積体の軸方向の成長速度が減少する(スス径が太くなる)兆候がある場合で、成長速度を一定にするように、スス付け開始からガラス微粒子堆積体の成長に伴って可燃性ガスであるH2の供給流量を徐々に減少させるように調整している。このとき、添加剤であるGeCl4の供給流量もH2の供給流量に比例させて減少させるように調整している。
これによって、ガラス微粒子堆積体の軸方向の成長速度を一定にでき、また、このような方法で製造した光ファイバ母材の、N=100(母材20本、長手方向5点で測定)のΔNのばらつき(標準偏差)を求めたところ、ΔNの変動(ばらつき)を2.89×10−3の範囲内に抑えることができた。
(Example)
FIG. 2 is a graph showing an embodiment of the present invention. In addition, the vertical axis | shaft of FIG. 2 shows the normalized flow volume by making each flow volume at the time of a sooting start into 1. In FIG. The horizontal axis indicates time.
In this example, when there is an indication that the growth rate in the axial direction of the glass fine particle deposit is decreased (soot diameter becomes thicker), the growth of the glass fine particle deposit is started from the start of soot so as to make the growth rate constant. Accordingly, the supply flow rate of H 2 , which is a combustible gas, is adjusted so as to gradually decrease. At this time, the supply flow rate of the additive, GeCl 4 , is also adjusted to decrease in proportion to the supply flow rate of H 2 .
As a result, the growth rate in the axial direction of the glass particulate deposit can be made constant, and the optical fiber preform manufactured by such a method has N = 100 (measured at 20 preforms and 5 points in the longitudinal direction). When the variation (standard deviation) of ΔN was obtained, the variation (variation) of ΔN could be suppressed within the range of 2.89 × 10 −3 .
(比較例)
図3は上記実施例に対する比較例を示すグラフである。図3も図2と同様に、縦軸はスス付け開始時の各流量を1として正規化した流量を示し、横軸は、時間を示す。この比較例では、上記実施例と同じくガラス微粒子堆積体の軸方向の成長速度が減少する(スス径が太くなる)兆候にある場合で、スス付け開始からガラス微粒子堆積体の成長に伴ってH2の供給流量を徐々に減少させるように調整している。このとき、GeCl4の供給流量は調整せずに一定であった。これによって、ガラス微粒子堆積体の軸方向の成長速度は一定にできるものの、実施例同様にN=100(母材20本、長手方向5点で測定)のΔNのばらつき(標準偏差)を求めたところ、ΔNの変動(ばらつき)は4.46×10−3と上記実施例と比較して大きく変動してしまった。
(Comparative example)
FIG. 3 is a graph showing a comparative example with respect to the above embodiment. In FIG. 3, as in FIG. 2, the vertical axis indicates the flow rate normalized with each flow rate at the start of sooting as 1, and the horizontal axis indicates time. In this comparative example, as in the case of the above example, there is a sign that the growth rate in the axial direction of the glass fine particle deposit is reduced (soot diameter becomes thicker). The supply flow rate of No. 2 is adjusted to gradually decrease. At this time, the supply flow rate of GeCl 4 was constant without adjustment. As a result, although the growth rate in the axial direction of the glass fine particle deposit can be made constant, a variation (standard deviation) in ΔN of N = 100 (measured at 20 base materials and 5 points in the longitudinal direction) was obtained as in the example. However, the variation (variation) in ΔN was 4.46 × 10 −3 , which was greatly varied as compared with the above example.
なお、本発明の光ファイバ母材の製造方法は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所、等は本発明を達成できるものであれば任意であり、限定されない。
例えば、前述した実施形態においては、成長速度測定装置21を設けて、この成長速度測定装置21により検出された成長速度の変動の兆候に対して可燃性ガスおよび添加剤の流量調整を行ったが、原料ガスや助燃性ガスを調整して、その調整に伴って添加剤を調整することも可能である。
In addition, the manufacturing method of the optical fiber preform of the present invention is not limited to the above-described embodiment, and can be appropriately modified and improved. In addition, the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
For example, in the above-described embodiment, the growth
14 ガラス微粒子堆積体(光ファイバ母材)
14 Glass particulate deposit (optical fiber preform)
Claims (1)
前記ガラス微粒子堆積体の軸方向の成長速度が一定となるように前記可燃性ガスの供給流量を制御し、かつ該可燃性ガスの供給流量に比例するように屈折率を調整する添加剤の供給流量を制御することを特徴とする、光ファイバ母材の製造方法。
A method for producing an optical fiber preform, in which a raw material gas, a combustible gas and an auxiliary combustible gas are supplied to produce glass fine particles, and the glass fine particles are deposited to produce a glass fine particle deposit,
Supply of an additive that controls the supply flow rate of the combustible gas so that the growth rate in the axial direction of the glass particulate deposit is constant and adjusts the refractive index to be proportional to the supply flow rate of the combustible gas. A method for manufacturing an optical fiber preform, wherein the flow rate is controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010144692A JP2012006791A (en) | 2010-06-25 | 2010-06-25 | Method for producing optical fiber preform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010144692A JP2012006791A (en) | 2010-06-25 | 2010-06-25 | Method for producing optical fiber preform |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012006791A true JP2012006791A (en) | 2012-01-12 |
Family
ID=45537792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010144692A Pending JP2012006791A (en) | 2010-06-25 | 2010-06-25 | Method for producing optical fiber preform |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012006791A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013166684A (en) * | 2012-01-18 | 2013-08-29 | Sumitomo Electric Ind Ltd | Methods for manufacturing glass base material |
JP2016050152A (en) * | 2014-09-01 | 2016-04-11 | 住友電気工業株式会社 | Production method of glass preform for optical fiber |
US9630872B2 (en) | 2011-09-29 | 2017-04-25 | Sumitomo Electric Industries, Ltd. | Method for manufacturing glass-fine-particle-deposited body and method for manufacturing glass base material |
-
2010
- 2010-06-25 JP JP2010144692A patent/JP2012006791A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9630872B2 (en) | 2011-09-29 | 2017-04-25 | Sumitomo Electric Industries, Ltd. | Method for manufacturing glass-fine-particle-deposited body and method for manufacturing glass base material |
US10604439B2 (en) | 2011-09-29 | 2020-03-31 | Sumitomo Electric Industries, Ltd. | Method for manufacturing glass-fine-particle-deposited body and method for manufacturing glass base material |
JP2013166684A (en) * | 2012-01-18 | 2013-08-29 | Sumitomo Electric Ind Ltd | Methods for manufacturing glass base material |
JP2016050152A (en) * | 2014-09-01 | 2016-04-11 | 住友電気工業株式会社 | Production method of glass preform for optical fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100507622B1 (en) | Method and apparatus for fabricating an optical fiber preform in OVD | |
JP5578024B2 (en) | Manufacturing method of glass base material | |
JP2012006791A (en) | Method for producing optical fiber preform | |
JP6432220B2 (en) | Manufacturing method of glass preform for optical fiber | |
JP2005075682A (en) | Method of manufacturing porous glass preform | |
JP3741905B2 (en) | Method and apparatus for producing porous preform for optical fiber | |
JP5757196B2 (en) | Method for producing glass particulate deposit | |
JP2009167029A (en) | Method for manufacturing optical fiber | |
JP2005139042A (en) | Method of manufacturing porous glass preform | |
KR20090095247A (en) | Apparatus and method for correcting refractive index of optical fiber preform | |
JP6431349B2 (en) | Optical fiber preform manufacturing method | |
JP6790410B2 (en) | Method for manufacturing glass fine particle deposits | |
JP5087929B2 (en) | Method for producing glass particulate deposit | |
JP5603025B2 (en) | Method for producing porous preform for optical fiber | |
JP4404214B2 (en) | Manufacturing method of glass preform for optical fiber | |
JP3826839B2 (en) | Manufacturing method of glass base material | |
JP5000333B2 (en) | Method for producing porous silica glass for optical fiber | |
JP3741832B2 (en) | Dispersion shifted fiber glass preform manufacturing method | |
JP2017226569A (en) | Production method of optical fiber preform, and production method of glass fine particle deposit | |
JPH03242341A (en) | Production of porous glass preform for single-mode optical fiber | |
JP3687625B2 (en) | Manufacturing method of glass base material | |
JP4427425B2 (en) | Method and apparatus for manufacturing optical fiber preform | |
JP2005314209A (en) | Method for manufacturing porous glass preform | |
JP2006008438A (en) | Method for manufacturing optical fiber preform | |
JP2013056794A (en) | Method for manufacturing glass fine particle deposition and optical fiber glass preform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120928 |