JP2017177587A - Thermal print head and thermal printer - Google Patents

Thermal print head and thermal printer Download PDF

Info

Publication number
JP2017177587A
JP2017177587A JP2016069409A JP2016069409A JP2017177587A JP 2017177587 A JP2017177587 A JP 2017177587A JP 2016069409 A JP2016069409 A JP 2016069409A JP 2016069409 A JP2016069409 A JP 2016069409A JP 2017177587 A JP2017177587 A JP 2017177587A
Authority
JP
Japan
Prior art keywords
heating resistors
scanning direction
main scanning
heating
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016069409A
Other languages
Japanese (ja)
Inventor
智法 鈴木
Tomonori Suzuki
智法 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Hokuto Electronics Corp
Original Assignee
Toshiba Hokuto Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Hokuto Electronics Corp filed Critical Toshiba Hokuto Electronics Corp
Priority to JP2016069409A priority Critical patent/JP2017177587A/en
Publication of JP2017177587A publication Critical patent/JP2017177587A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To form high-quality images on a recording medium.SOLUTION: A thermal print head includes: substrates 26, 27; a plurality of heating resistors 12 disposed on one surface of the substrates 26, 27 in a main scanning direction S1 side by side; a plurality of control elements 8 disposed side by side on one surface of the substrates 26, 27 in the main scanning direction S1 with a pitch different from a pitch in a disposition range of the prescribed number of heating resistors 12; and a plurality of individual wiring electrodes 14 disposed between the plurality of heating resistors 12 and the plurality of control elements 8 on one surface of the substrates 26, 27, and connecting the plurality of heating resistors 12 and the plurality of control elements 8. The plurality of heating resistors 12 are subjected to correction processing for correcting resistance values of the heating resistors in accordance with wire resistance values of the plurality of individual wiring electrodes 14, and thereby, at the time of image formation, heat can be generated while making a heat generation amount almost constant regardless of unevenness of the value of current flowing in the plurality of heating resistors 12, so that high-quality images can be formed on a recording medium P.SELECTED DRAWING: Figure 10

Description

本発明は、サーマルプリントヘッド、及び当該サーマルプリントヘッドが設けられるサーマルプリンタに関するものである。   The present invention relates to a thermal print head and a thermal printer provided with the thermal print head.

サーマルプリントヘッドは、主走査方向に沿った発熱領域に配列された複数の発熱抵抗体を発熱させ、これら複数の発熱抵抗体の熱により感熱記録紙等の記録媒体に文字や図形等の画像を形成する出力用デバイスである。そしてサーマルプリントヘッドは、バーコードプリンタ、デジタル製版機、ビデオプリンタ、イメージャ、シールプリンタ等のサーマルプリンタ(すなわち記録機器)に広く利用されている。   The thermal print head generates heat from a plurality of heating resistors arranged in a heat generating area along the main scanning direction, and images of characters, figures, etc. are recorded on a recording medium such as thermal recording paper by the heat of the plurality of heating resistors. This is an output device to be formed. Thermal print heads are widely used in thermal printers (that is, recording devices) such as barcode printers, digital plate-making machines, video printers, imagers, and seal printers.

一般的なサーマルプリントヘッドとしては、例えば主走査方向に沿って隣接する2個の発熱抵抗体により画像の1画素を形成するものがある。係るサーマルプリントヘッドは、主走査方向に長い放熱板の一面に、回路基板及びヘッド基板が主走査方向と直交する副走査方向に沿って並べて配置されている。   As a general thermal print head, for example, there is one in which one pixel of an image is formed by two heating resistors adjacent in the main scanning direction. In such a thermal print head, a circuit board and a head substrate are arranged side by side along a sub-scanning direction orthogonal to the main scanning direction on one surface of a heat sink long in the main scanning direction.

ヘッド基板の一面には、副走査方向に長い複数の発熱抵抗体とコ字状の複数の折返電極とが主走査方向へ並べて配置され、主走査方向に沿って隣接する2個の発熱抵抗体毎に、これらの一端部同士が折返電極を介して接続されている。   On one surface of the head substrate, a plurality of heating resistors long in the sub-scanning direction and a plurality of U-shaped folded electrodes are arranged side by side in the main scanning direction, and two heating resistors adjacent in the main scanning direction are arranged. Each one of these end portions is connected to each other via a folded electrode.

またヘッド基板の一面には、線状の複数の個別配線電極及び線状の複数の共通配線電極が主走査方向へ順次交互に配置されると共に、主走査方向に長い帯状の複数の共通帯状電極が当該主走査方向へ並べて配置されている。そしてヘッド基板は、2個の発熱抵抗体毎に、一方の発熱抵抗体の他端部に個別配線電極の一端部が接続されると共に、他方の発熱抵抗体の他端部が共通配線電極を介して対応する共通帯状電極に接続されている。   Also, on one surface of the head substrate, a plurality of linear individual wiring electrodes and a plurality of linear common wiring electrodes are alternately arranged in the main scanning direction one after another, and a plurality of strip-shaped common band electrodes that are long in the main scanning direction. Are arranged in the main scanning direction. In the head substrate, one end of the individual wiring electrode is connected to the other end of one heating resistor for every two heating resistors, and the other end of the other heating resistor is connected to the common wiring electrode. To the corresponding common strip electrode.

これによりヘッド基板は、複数の発熱抵抗体と、これら種々の電極とにより、それぞれ2個の発熱抵抗体を有する複数の発熱素子が形成されている。そしてヘッド基板は、複数の発熱素子において2個の発熱抵抗体の折返電極と個別配線電極及び共通配線電極との間の部分が通電によって発熱する発熱部となり、これら複数の発熱部が順に並ぶ主走査方向に沿った帯状の領域が発熱領域になっている。   Thus, the head substrate is formed with a plurality of heating elements each having two heating resistors by the plurality of heating resistors and these various electrodes. In the head substrate, in a plurality of heating elements, a portion between the folded electrode of the two heating resistors, the individual wiring electrode, and the common wiring electrode becomes a heating portion that generates heat by energization, and the plurality of heating portions are arranged in order. A belt-like region along the scanning direction is a heat generating region.

回路基板の一面には、それぞれ複数の発熱素子のスイッチング機能を有する複数の駆動用IC(Integrated Circuit)が主走査方向へ並べて配置されると共に、外部電源接続用の複数のマイナス電極とが配置されている。また回路基板一面には、複数の駆動用IC各々の両脇に外部電源接続用の一対のプラス電極が配置されている。そして回路基板は、複数の駆動用ICが複数のボンディングワイヤを介して対応する複数の個別配線電極の他端部及び複数のマイナス電極に接続されると共に、駆動用IC毎の一対のプラス電極が一対のボンディングワイヤを介して対応する共通帯状電極の両端部に接続されている。   On one surface of the circuit board, a plurality of driving ICs (Integrated Circuits) each having a switching function of a plurality of heating elements are arranged in the main scanning direction, and a plurality of negative electrodes for connecting an external power source are arranged. ing. In addition, a pair of positive electrodes for connecting an external power source is disposed on both sides of each of the plurality of driving ICs on one surface of the circuit board. In the circuit board, a plurality of driving ICs are connected to the other end portions of a plurality of corresponding individual wiring electrodes and a plurality of minus electrodes via a plurality of bonding wires, and a pair of plus electrodes for each driving IC is provided. It is connected to both ends of the corresponding common strip electrode via a pair of bonding wires.

これによりサーマルプリントヘッドは、画像形成時、外部電源から共通帯状電極の両端部に電圧が印加された状態で駆動用ICがオン動作すると、共通帯状電極の両端部から中央部へ電流が流れると共に、その電流が共通配線電極を介して2個の発熱抵抗体へ順に流れて発熱部を発熱させる。   As a result, in the thermal print head, when the driving IC is turned on in a state where a voltage is applied from the external power supply to both ends of the common strip electrode during image formation, current flows from both ends of the common strip electrode to the center portion. The current flows in sequence to the two heat generating resistors through the common wiring electrode to cause the heat generating portion to generate heat.

ただしサーマルプリントヘッドでは、共通帯状電極の抵抗値が比較的大きいと、その共通帯状電極において両端部から中央部へ電流が流れた際、いわゆるコモンドロップと呼ばれる電圧降下が生じる。そして共通帯状電極に生じる電圧降下は、その共通帯状電極の両端部よりも中央部ほど大きい。   However, in the thermal print head, when the resistance value of the common strip electrode is relatively large, a voltage drop called a so-called common drop occurs when a current flows from both ends to the central portion of the common strip electrode. And the voltage drop which arises in a common strip | belt-shaped electrode is larger in the center part than the both ends of the common strip | belt-shaped electrode.

このためサーマルプリントヘッドでは、共通帯状電極に電圧降下が生じると、これに起因して共通帯状電極から各発熱抵抗体に流れる電流の値がばらついて各発熱部の発熱量がばらつき、その結果、記録媒体に形成する画像に濃度のムラである印刷ムラが生じる。よって従来のサーマルプリントヘッドは、共通帯状電極を比較的厚くして抵抗値を小さくし、共通帯状電極の両端部から中央部へ電流が流れる際に生じる電圧降下を低減させていた(例えば特許文献1参照)。   For this reason, in the thermal print head, when a voltage drop occurs in the common strip electrode, the value of the current flowing from the common strip electrode to each heating resistor varies due to this, and the amount of heat generated in each heating section varies, and as a result, Printing unevenness, which is density unevenness, occurs in an image formed on a recording medium. Therefore, the conventional thermal print head has a common strip electrode that is relatively thick to reduce the resistance value, thereby reducing the voltage drop that occurs when current flows from both ends of the common strip electrode to the center (for example, Patent Documents). 1).

特開2006−95943公報(第5頁、第6頁、図1、図3)JP 2006-95943 A (page 5, page 6, FIG. 1, FIG. 3)

ところで近年では、例えば画像の形成に使用可能な記録媒体のサイズが比較的小さいサーマルプリントヘッドをヘッドユニットとし、複数のヘッドユニットを主走査方向へ順に並べて連結することで、サイズの比較的大きい記録媒体に画像が形成可能に構成された長尺型と呼ばれるサーマルプリントヘッドがある。   By the way, in recent years, for example, a thermal print head having a relatively small size of a recording medium that can be used for image formation is used as a head unit, and a plurality of head units are sequentially arranged in the main scanning direction and connected to each other, thereby recording a relatively large size. There is a thermal print head called a long type configured so that an image can be formed on a medium.

係るサーマルプリントヘッドは、例えば副走査方向へ徐々に幅を狭める台形状に形成された1又は複数の第1ヘッドユニットを有している。またサーマルプリントヘッドは、副走査方向へ徐々に幅を広げる逆台形状に形成され、複数の発熱抵抗体の配置位置を第1ヘッドユニットの複数の発熱抵抗体の配置位置より副走査方向へずらした1又は複数の第2ヘッドユニットも有している。   Such a thermal print head has, for example, one or a plurality of first head units formed in a trapezoidal shape whose width gradually decreases in the sub-scanning direction. The thermal print head is formed in an inverted trapezoidal shape that gradually widens in the sub-scanning direction, and the arrangement positions of the plurality of heating resistors are shifted in the sub-scanning direction from the arrangement positions of the plurality of heating resistors of the first head unit. One or more second head units are also included.

そしてサーマルプリントヘッドは、これら第1ヘッドユニット及び第2ヘッドユニットを主走査方向へ順次交互に並べて連結することで、複数の発熱抵抗体の主走査方向のピッチをユニット内及びユニット境界部分にかかわらずにほぼ等しくしている。これによりサーマルプリントヘッドでは、記録媒体に画像を形成した際、当該画像に絵柄の切り離しや重なり等が生じることを防止している。   The thermal print head connects the first head unit and the second head unit alternately and sequentially in the main scanning direction so that the pitch of the plurality of heating resistors in the main scanning direction is applied to the inside of the unit and the unit boundary portion. Almost equal. Thus, in the thermal print head, when an image is formed on a recording medium, the image is prevented from being separated or overlapped.

ところがサーマルプリントヘッドの第2ヘッドユニットは、逆台形状に形成されているため、複数の発熱抵抗体を配置する部分の主走査方向の幅に比して、複数の駆動用ICを配置する部分の主走査方向の幅が狭くなっている。このため第2ヘッドユニットでは、複数の駆動用ICが、これらに接続される所定の個数毎の発熱抵抗体の配置範囲のピッチよりも狭いピッチで並べて配置されている。   However, since the second head unit of the thermal print head is formed in an inverted trapezoidal shape, a portion where a plurality of driving ICs are arranged as compared with a width in the main scanning direction of a portion where a plurality of heating resistors are arranged. The width in the main scanning direction is narrow. For this reason, in the second head unit, a plurality of driving ICs are arranged side by side at a pitch narrower than the pitch of the arrangement range of the heating resistors for each predetermined number connected to them.

その結果、第2ヘッドユニットでは、駆動用IC毎に、対応する所定の本数の個別配線電極及び所定の本数の共通配線電極各々の長さと共に抵抗値(以下、これを配線抵抗値とも呼ぶ)が異なっている。よって第2ヘッドユニットでは、個々の共通帯状電極を比較的厚くして抵抗値を小さくしても、画像形成時、複数の個別配線電極及び複数の共通配線電極の配線抵抗値のばらつきに起因して複数の発熱抵抗体に流れる電流がばらつき、複数の発熱部の発熱量がばらつく。このためサーマルプリントヘッドでは、記録媒体に画像を印刷ムラが生じて、高品質には形成し難いという問題があった。   As a result, in the second head unit, for each driving IC, a resistance value (hereinafter also referred to as a wiring resistance value) along with the lengths of the corresponding predetermined number of individual wiring electrodes and the predetermined number of common wiring electrodes. Are different. Therefore, in the second head unit, even if each common strip electrode is made relatively thick and the resistance value is made small, it is caused by variations in the wiring resistance values of the plurality of individual wiring electrodes and the plurality of common wiring electrodes during image formation. Thus, the current flowing through the plurality of heating resistors varies, and the amount of heat generated by the plurality of heating portions varies. For this reason, the thermal print head has a problem in that an image is printed unevenly on a recording medium, and it is difficult to form a high quality image.

よって本発明は、記録媒体に高品質な画像を形成し得るサーマルプリントヘッド及びサーマルプリンタを提案するものである。   Therefore, the present invention proposes a thermal print head and a thermal printer that can form a high-quality image on a recording medium.

かかる課題を解決するため本発明においては、基板と、基板の一面に主走査方向へ並べて配置される複数の発熱抵抗体と、それぞれ所定の個数の発熱抵抗体が接続可能で、基板の一面に主走査方向へ、所定の個数の発熱抵抗体の配置範囲のピッチとは異なるピッチで並べて配置される複数の制御素子と、基板の一面の複数の発熱抵抗体と複数の制御素子との間に配置され、複数の発熱抵抗体と複数の制御素子とを接続する複数の個別配線電極とを設け、複数の発熱抵抗体に、複数の個別配線電極の配線抵抗値に応じて、発熱体抵抗値を補正する補正処理を施した。   In order to solve such problems, in the present invention, a substrate, a plurality of heating resistors arranged side by side in the main scanning direction on one surface of the substrate, and a predetermined number of heating resistors can be connected to each other on one surface of the substrate. Between the plurality of control elements arranged in a different pitch from the pitch of the arrangement range of the predetermined number of heating resistors in the main scanning direction, and between the plurality of heating resistors and the plurality of control elements on one surface of the substrate A plurality of individual wiring electrodes that are arranged and connect the plurality of heating resistors and the plurality of control elements, and the plurality of heating resistors have a heating element resistance value according to the wiring resistance values of the plurality of individual wiring electrodes. Correction processing was performed to correct.

従って本発明では、画像形成時、複数の発熱抵抗体を流れる電流の値のばらつきによらずに発熱量をほぼ一定にして発熱させることができる。   Therefore, according to the present invention, during image formation, heat can be generated with the heat generation amount substantially constant regardless of variations in the value of the current flowing through the plurality of heating resistors.

本発明によれば、基板と、基板の一面に主走査方向へ並べて配置される複数の発熱抵抗体と、それぞれ所定の個数の発熱抵抗体が接続可能で、基板の一面に主走査方向へ、所定の個数の発熱抵抗体の配置範囲のピッチとは異なるピッチで並べて配置される複数の制御素子と、基板の一面の複数の発熱抵抗体と複数の制御素子との間に配置され、複数の発熱抵抗体と複数の制御素子とを接続する複数の個別配線電極とを設け、複数の発熱抵抗体に、複数の個別配線電極の配線抵抗値に応じて、発熱体抵抗値を補正する補正処理を施したことにより、画像形成時、複数の発熱抵抗体を流れる電流の値のばらつきによらずに発熱量をほぼ一定にして発熱させることができ、かくして記録媒体に高品質な画像を形成し得るサーマルプリントヘッド及びサーマルプリンタを実現することができる。   According to the present invention, a substrate, a plurality of heating resistors arranged side by side in the main scanning direction on one surface of the substrate, and a predetermined number of heating resistors can be connected to each other. A plurality of control elements arranged side by side with a pitch different from the pitch of the arrangement range of the predetermined number of heating resistors, and arranged between the plurality of heating resistors and the plurality of control elements on one surface of the substrate, A correction process for providing a plurality of individual wiring electrodes for connecting the heating resistor and the plurality of control elements, and correcting the heating element resistance value according to the wiring resistance values of the plurality of individual wiring electrodes on the plurality of heating resistors. As a result, it is possible to generate heat with an almost constant heating value regardless of variations in the value of current flowing through a plurality of heating resistors during image formation, thus forming a high-quality image on a recording medium. Thermal print head to obtain and It can be realized over circle printer.

本発明の実施の形態に係る長尺型のサーマルプリントヘッドの構成を示す上面図である。It is a top view which shows the structure of the elongate thermal print head which concerns on embodiment of this invention. 本発明の実施の形態に係る長尺型のサーマルプリントヘッドの構成を示す部分断面図である。It is a fragmentary sectional view which shows the structure of the elongate type thermal print head which concerns on embodiment of this invention. 本発明の実施の形態に係る第1ヘッド基板及び第2ヘッド基板の構成を示す部分上面図である。It is a partial top view which shows the structure of the 1st head substrate and 2nd head substrate which concern on embodiment of this invention. 本発明の実施の形態に係る第1ヘッドユニット及び第2ヘッドユニットの構成を示す部分上面図である。It is a partial top view which shows the structure of the 1st head unit which concerns on embodiment of this invention, and a 2nd head unit. 本発明の実施の形態に係る長尺型のサーマルプリントヘッドが設けられたサーマルプリンタの構成を示す部分断面図である。1 is a partial cross-sectional view showing a configuration of a thermal printer provided with a long thermal print head according to an embodiment of the present invention. 第1ヘッドユニットの構成を示す上面図である。It is a top view which shows the structure of a 1st head unit. 第1ヘッドユニットの複数の発熱抵抗体に施す発熱体抵抗値の補正処理の説明に供する特性曲線図である。It is a characteristic curve figure with which it uses for description of the correction | amendment process of the heating element resistance value performed to the several heating resistor of a 1st head unit. 第2ヘッドユニットの構成を示す上面図である。It is a top view which shows the structure of a 2nd head unit. 第2ヘッドユニットの複数の配線電極の配線抵抗値の説明に供する特性曲線図である。It is a characteristic curve figure with which it uses for description of the wiring resistance value of the some wiring electrode of a 2nd head unit. 第2ヘッドユニットの複数の発熱抵抗体に施す発熱体抵抗値の補正処理の説明に供する特性曲線図である。It is a characteristic curve figure with which it uses for description of the correction | amendment process of the heating element resistance value performed to the several heating resistor of a 2nd head unit. 本発明の他の実施の形態に係るサーマルプリントヘッドの構成を示す上面図である。It is a top view which shows the structure of the thermal print head which concerns on other embodiment of this invention.

本発明に係るサーマルプリントヘッド及びサーマルプリンタの実施の形態を、図1乃至図5を参照して説明する。因みに図2は、図1のV1−V1矢視断面図である。なお本実施の形態は単なる例示であり、本発明はこれに限定されない。   Embodiments of a thermal print head and a thermal printer according to the present invention will be described with reference to FIGS. Incidentally, FIG. 2 is a cross-sectional view taken along the line V1-V1 of FIG. Note that this embodiment is merely an example, and the present invention is not limited to this.

図1乃至図4に示すように、サーマルプリントヘッド1は、サイズの比較的大きい記録媒体に画像が形成可能な主走査方向S1に長い長尺型であり、主走査方向S1へ順次交互に並べて配置される例えば2個の第1ヘッドユニット2及び1個の第2ヘッドユニット3を有している。因みに第1ヘッドユニット2及び第2ヘッドユニット3は、これら単体でもサーマルプリントヘッドとして機能し得るものである。   As shown in FIGS. 1 to 4, the thermal print head 1 is a long type that is long in the main scanning direction S1 that can form an image on a relatively large recording medium, and is alternately arranged in the main scanning direction S1. For example, two first head units 2 and one second head unit 3 are arranged. Incidentally, the 1st head unit 2 and the 2nd head unit 3 can function as a thermal print head by these single units.

第1ヘッドユニット2は、例えば全体が、主走査方向S1に長く、かつ主走査方向S1と直交する副走査方向S2へ徐々に幅を狭める台形状に形成されている。そして第1ヘッドユニット2は、第1放熱板5、第1ヘッド基板6、第1回路基板7及び複数の駆動用IC8を有している。第1放熱板5は、アルミニウム等の放熱性の良い金属により台形状に形成され、一面に第1回路基板7及び第1ヘッド基板6が副走査方向S2へ順に並べて配置されている。   The first head unit 2 is, for example, formed in a trapezoidal shape that is long in the main scanning direction S1 and gradually narrows in the sub-scanning direction S2 perpendicular to the main scanning direction S1. The first head unit 2 includes a first heat radiating plate 5, a first head substrate 6, a first circuit substrate 7, and a plurality of driving ICs 8. The first heat radiating plate 5 is formed in a trapezoidal shape from a metal having good heat radiating properties such as aluminum, and the first circuit board 7 and the first head substrate 6 are arranged in order in the sub-scanning direction S2 on one surface.

第1ヘッド基板6は、Al等のセラミックにより台形状に形成された支持基板10を有し、当該支持基板10の一面にSiO等のガラス膜でなるグレーズ層11が配置されている。グレーズ層11の一面には、副走査方向S2のヘッド基板一端部に、当該副走査方向S2に長い複数の発熱抵抗体12が主走査方向S1へ所定のピッチで配置されている。 The first head substrate 6 has a support substrate 10 formed in a trapezoidal shape by a ceramic such as Al 2 O 3 , and a glaze layer 11 made of a glass film such as SiO 2 is disposed on one surface of the support substrate 10. Yes. On one surface of the glaze layer 11, a plurality of heating resistors 12 that are long in the sub-scanning direction S2 are arranged at a predetermined pitch in the main scanning direction S1 at one end of the head substrate in the sub-scanning direction S2.

またグレーズ層11の一面には、複数の発熱抵抗体12の副走査方向S2に、コ字状の複数の折返電極13が主走査方向S1へ所定のピッチで並べて配置されている。これにより第1ヘッド基板6は、主走査方向S1に沿って隣接する2個の発熱抵抗体12毎に、これらの副走査方向S2の一端部同士が折返電極13を介して接続され、当該2個の発熱抵抗体12により画像の1画素を形成するように構成されている。   Further, on one surface of the glaze layer 11, a plurality of U-shaped folded electrodes 13 are arranged at a predetermined pitch in the main scanning direction S1 in the sub-scanning direction S2 of the plurality of heating resistors 12. As a result, the first head substrate 6 is connected to the two heating resistors 12 adjacent to each other in the main scanning direction S1 through the folded electrode 13 at one end in the sub-scanning direction S2. One heating resistor 12 forms one pixel of the image.

またグレーズ層11の一面には、複数の発熱抵抗体12の副走査方向S2とは逆の副走査反対方向に、当該副走査反対方向のヘッド基板他端部へ延びる線状の複数の個別配線電極14及び線状の複数の共通配線電極15が主走査方向S1へ順次交互に配置されている。さらにグレーズ層11の一面には、ヘッド基板他端近傍に、主走査方向S1に長い帯状の複数の共通帯状電極16が主走査方向S1へ所定のピッチで並べて配置されている。   Further, on one surface of the glaze layer 11, a plurality of linear individual wirings extending to the other end of the head substrate in the sub-scanning direction opposite to the sub-scanning direction S2 opposite to the sub-scanning direction S2 of the plurality of heating resistors 12. The electrodes 14 and the plurality of linear common wiring electrodes 15 are alternately arranged in the main scanning direction S1. Further, on one surface of the glaze layer 11, a plurality of strip-like common strip electrodes 16 that are long in the main scanning direction S1 are arranged in the main scanning direction S1 at a predetermined pitch in the vicinity of the other end of the head substrate.

そして第1ヘッド基板6は、例えば主走査方向S1に沿って隣接する2個の発熱抵抗体12毎に、一方の発熱抵抗体12の副走査反対方向の他端部に個別配線電極14の一端部が接続され、当該個別配線電極14の他端部が、対応する共通帯状電極16の近傍まで引き回されている。また第1ヘッド基板6は、主走査方向S1に沿って隣接する2個の発熱抵抗体12毎に、他方の発熱抵抗体12の副走査反対方向の他端部が共通配線電極15を介して、対応する共通帯状電極16に接続されている。   The first head substrate 6 has one end of the individual wiring electrode 14 at the other end of the one heating resistor 12 in the sub-scanning direction, for example, every two heating resistors 12 adjacent along the main scanning direction S1. Are connected, and the other end of the individual wiring electrode 14 is routed to the vicinity of the corresponding common strip electrode 16. In the first head substrate 6, the other heating element 12 in the sub-scanning opposite direction of the other heating resistor 12 is provided via the common wiring electrode 15 for every two heating resistors 12 adjacent along the main scanning direction S 1. , Are connected to corresponding common strip electrodes 16.

これにより第1ヘッド基板6は、複数の発熱抵抗体12と、これら種々の電極(すなわち複数の折返電極13、複数の個別配線電極14、複数の共通配線電極15及び複数の共通帯状電極16)とにより、それぞれ2個の発熱抵抗体12を有する複数の発熱素子が形成されている。そして第1ヘッド基板6は、複数の発熱素子において2個の発熱抵抗体12の折返電極13と個別配線電極14及び共通配線電極15との間の部分が通電によって発熱する発熱部となり、これら複数の発熱部が順に並ぶ主走査方向S1に沿った帯状の領域が発熱領域17になっている。   Thus, the first head substrate 6 includes a plurality of heating resistors 12 and these various electrodes (that is, a plurality of folded electrodes 13, a plurality of individual wiring electrodes 14, a plurality of common wiring electrodes 15, and a plurality of common strip electrodes 16). Thus, a plurality of heating elements each having two heating resistors 12 are formed. In the first head substrate 6, in the plurality of heating elements, the portion between the folded electrode 13 of the two heating resistors 12, the individual wiring electrode 14, and the common wiring electrode 15 becomes a heat generating portion that generates heat by energization. A belt-like region along the main scanning direction S1 in which the heat generating portions are sequentially arranged is a heat generating region 17.

またグレーズ層11の一面には、複数の発熱抵抗体12と、これら複数の電極とを覆う保護膜18が形成されている。そして第1ヘッド基板6は、第1放熱板5の一面の副走査方向S2の一端部に、両面テープ又はシリコン樹脂等の熱可塑性の樹脂である接着剤19を介して支持基板10の他面が接着されている。   A protective film 18 is formed on one surface of the glaze layer 11 to cover the plurality of heating resistors 12 and the plurality of electrodes. The first head substrate 6 is attached to the other surface of the support substrate 10 at one end portion in the sub-scanning direction S2 on one surface of the first heat radiating plate 5 via an adhesive 19 that is a thermoplastic resin such as double-sided tape or silicon resin. Is glued.

第1回路基板7は、例えば台形状のセラミック板に台形状のフレキシブル基板が貼着されて形成されている。そして第1回路基板7は、第1放熱板5の一面において副走査反対方向の他端部に接着剤19を介して他面が接着されている。因みに第1回路基板7は、外部の制御回路や外部電源と接続して制御信号や駆動電力を入力するコネクタ(図示せず)が実装されている。   The first circuit board 7 is formed, for example, by attaching a trapezoidal flexible substrate to a trapezoidal ceramic plate. The first surface of the first circuit board 7 is bonded to the other end of the first heat radiating plate 5 in the direction opposite to the sub-scanning direction via an adhesive 19. Incidentally, the first circuit board 7 is mounted with a connector (not shown) that is connected to an external control circuit or an external power source and inputs a control signal and driving power.

また複数の駆動用IC8は、それぞれ複数の発熱素子を個別に制御可能(すなわち所定の個数の発熱抵抗体12を2個毎に制御可能)なスイッチング機能を有する制御素子である。そして第1回路基板7の一面には、副走査方向S2の回路基板一端部(すなわち第1ヘッド基板6との境界部分)に、複数の駆動用IC8が主走査方向S1へ所定のピッチで並べて配置されている。   The plurality of driving ICs 8 are control elements each having a switching function capable of individually controlling a plurality of heating elements (that is, controlling a predetermined number of heating resistors 12 every two). On one surface of the first circuit board 7, a plurality of driving ICs 8 are arranged at a predetermined pitch in the main scanning direction S1 at one end of the circuit board in the sub-scanning direction S2 (that is, at the boundary with the first head substrate 6). Has been placed.

また第1回路基板7の一面には、複数の駆動用IC8各々の近傍に、外部電源のマイナス端子への接続用の複数のマイナス電極(図示せず)や駆動用IC8の制御端子(図示せず)が配置されている。さらに第1回路基板7の一面には、複数の駆動用IC8各々の両脇に外部電源のプラス端子への接続用の一対のプラス電極20が配置されている。   Further, on one surface of the first circuit board 7, there are a plurality of negative electrodes (not shown) for connection to a negative terminal of an external power source and a control terminal (not shown) in the vicinity of each of the plurality of driving ICs 8. ) Is arranged. Further, on one surface of the first circuit board 7, a pair of plus electrodes 20 for connection to a plus terminal of an external power source are arranged on both sides of each of the plurality of driving ICs 8.

よって第1回路基板7は、複数の駆動用IC8がそれぞれ複数のボンディングワイヤ21、22を介して、対応する複数の個別配線電極14の他端部、複数のマイナス電極及び制御端子に接続されている。また第1回路基板7は、駆動用IC8毎の一対のプラス電極20が一対のボンディングワイヤ23を介して、対応する共通帯状電極16の両端部に接続されている。そして複数の駆動用IC8は、複数のボンディングワイヤ21乃至23と共に第1ヘッド基板6の一面及び第1回路基板7の一面の境界部分に、エポキシ樹脂からなる封止体24によって封止されている。   Therefore, the first circuit board 7 includes a plurality of driving ICs 8 connected to the other ends of the corresponding plurality of individual wiring electrodes 14, a plurality of minus electrodes, and a control terminal via a plurality of bonding wires 21 and 22, respectively. Yes. In the first circuit board 7, a pair of plus electrodes 20 for each driving IC 8 is connected to both ends of the corresponding common strip electrode 16 through a pair of bonding wires 23. The plurality of driving ICs 8 are sealed together with a plurality of bonding wires 21 to 23 at a boundary portion between one surface of the first head substrate 6 and one surface of the first circuit substrate 7 by a sealing body 24 made of epoxy resin. .

一方、第2ヘッドユニット3は、例えば全体が、主走査方向S1に長く、かつ副走査方向S2へ徐々に幅を広げる逆台形状に形成されている。そして第2ヘッドユニット3は、第2放熱板25、第2ヘッド基板26、第2回路基板27及び複数の駆動用IC8を有し、第1ヘッドユニット2と形状は異なるものの、基本的には当該第1ヘッドユニット2とほぼ同様に構成されている。   On the other hand, the second head unit 3 is, for example, formed in an inverted trapezoidal shape that is long in the main scanning direction S1 and gradually widens in the sub-scanning direction S2. The second head unit 3 includes a second heat radiating plate 25, a second head substrate 26, a second circuit substrate 27, and a plurality of driving ICs 8. Although the shape is different from that of the first head unit 2, basically, The configuration is almost the same as that of the first head unit 2.

すなわち第2放熱板25は、アルミニウム等の放熱性の良い金属により逆台形状に形成され、一面に第2回路基板27及び第2ヘッド基板26が副走査方向S2へ順に並べて配置されている。   That is, the second heat radiating plate 25 is formed in an inverted trapezoidal shape with a metal having good heat radiating properties such as aluminum, and the second circuit board 27 and the second head substrate 26 are arranged in order in the sub-scanning direction S2 on one surface.

また第2ヘッド基板26は、Al等のセラミックにより逆台形状に形成された支持基板(図示せず)の一面にSiO等のガラス膜でなるグレーズ層(図示せず)が配置されている。ただしグレーズ層の一面には、ヘッド基板一端部において第1ヘッド基板6の複数の発熱抵抗体12の配置位置よりも副走査方向S2寄りに、第1ヘッド基板6の場合と同様の複数の発熱抵抗体12が主走査方向S1へ所定のピッチで配置されている。 The second head substrate 26 has a glaze layer (not shown) made of a glass film such as SiO 2 on one surface of a support substrate (not shown) formed in a reverse trapezoidal shape with ceramics such as Al 2 O 3. Has been. However, on one surface of the glaze layer, a plurality of heat generation similar to the case of the first head substrate 6 is provided at one end of the head substrate closer to the sub-scanning direction S2 than the arrangement position of the plurality of heating resistors 12 of the first head substrate 6. Resistors 12 are arranged at a predetermined pitch in the main scanning direction S1.

またグレーズ層の一面には、複数の発熱抵抗体12の副走査方向S2に、第1ヘッド基板6の場合と同様の複数の折返電極13が主走査方向S1へ所定のピッチで並べて配置されている。これにより第2ヘッド基板26も、主走査方向S1に沿って隣接する2個の発熱抵抗体12毎に、これらの副走査方向S2の一端部同士が折返電極13を介して接続され、当該2個の発熱抵抗体12により画像の1画素を形成するように構成されている。   Further, on one surface of the glaze layer, a plurality of folded electrodes 13 similar to the case of the first head substrate 6 are arranged in a predetermined pitch in the main scanning direction S1 in the sub-scanning direction S2 of the plurality of heating resistors 12. Yes. As a result, the second head substrate 26 is also connected to the two heating resistors 12 adjacent to each other along the main scanning direction S1 through the folded electrode 13 at one end in the sub-scanning direction S2. One heating resistor 12 forms one pixel of the image.

またグレーズ層の一面には、複数の発熱抵抗体12の副走査反対方向に、第1ヘッド基板6の場合と同様の複数の個別配線電極14及び複数の共通配線電極15が主走査方向S1へ順次交互に配置されている。さらにグレーズ層の一面には、ヘッド基板他端近傍に、第1ヘッド基板6の場合と同様の複数の共通帯状電極16が主走査方向S1へ所定のピッチで並べて配置されている。   Further, on one surface of the glaze layer, a plurality of individual wiring electrodes 14 and a plurality of common wiring electrodes 15 similar to the case of the first head substrate 6 are provided in the main scanning direction S1 in the direction opposite to the sub scanning of the plurality of heating resistors 12. They are arranged alternately one after another. Further, on one surface of the glaze layer, a plurality of common strip electrodes 16 similar to the case of the first head substrate 6 are arranged in the main scanning direction S1 at a predetermined pitch near the other end of the head substrate.

そして第2ヘッド基板26は、例えば主走査方向S1に沿って隣接する2個の発熱抵抗体12毎に、一方の発熱抵抗体12の他端部に個別配線電極14の一端部が接続され、当該個別配線電極14の他端部が、対応する共通帯状電極16の近傍まで引き回されている。また第2ヘッド基板26は、主走査方向S1に沿って隣接する2個の発熱抵抗体12毎に、他方の発熱抵抗体12の他端部が共通配線電極15を介して、対応する共通帯状電極16に接続されている。   The second head substrate 26 has one end of the individual wiring electrode 14 connected to the other end of one heating resistor 12, for example, every two heating resistors 12 adjacent along the main scanning direction S1, The other end of the individual wiring electrode 14 is routed to the vicinity of the corresponding common strip electrode 16. Further, the second head substrate 26 has a common belt-like shape in which the other end of the other heating resistor 12 passes through the common wiring electrode 15 for every two heating resistors 12 adjacent along the main scanning direction S1. It is connected to the electrode 16.

これにより第2ヘッド基板26も、複数の発熱抵抗体12と、これら種々の電極とにより、それぞれ2個の発熱抵抗体12を有する複数の発熱素子が形成されている。そして第2ヘッド基板26も、複数の発熱素子において2個の発熱抵抗体12の折返電極13と個別配線電極14及び共通配線電極15との間の部分が通電によって発熱する発熱部となり、これら複数の発熱部が順に並ぶ主走査方向S1に沿った帯状の領域が発熱領域28になっている。   Accordingly, the second head substrate 26 also includes a plurality of heating elements each having two heating resistors 12 by the plurality of heating resistors 12 and these various electrodes. The second head substrate 26 also has a plurality of heat generating elements where the portions between the folded electrodes 13 of the two heat generating resistors 12 and the individual wiring electrodes 14 and the common wiring electrode 15 generate heat when energized. A belt-like region along the main scanning direction S1 in which the heat generating portions are arranged in sequence is a heat generating region 28.

またグレーズ層の一面には、複数の発熱抵抗体12と、これら複数の電極とを覆う保護膜(図示せず)が形成されている。そして第2ヘッド基板26は、第2放熱板25の一面の副走査方向S2の一端部に、両面テープ又はシリコン樹脂等の熱可塑性の樹脂である接着剤(図示せず)を介して支持基板の他面が接着されている。   Further, a protective film (not shown) that covers the plurality of heating resistors 12 and the plurality of electrodes is formed on one surface of the glaze layer. The second head substrate 26 is supported on one end of the second heat radiating plate 25 in the sub-scanning direction S2 via an adhesive (not shown) made of thermoplastic resin such as double-sided tape or silicone resin. The other side is glued.

第2回路基板27は、逆台形状のセラミック板に逆台形状のフレキシブル基板が貼着されて形成され、第1放熱板5の一面において副走査反対方向の他端部に接着剤を介して他面が接着されている。因みに第2回路基板27も、外部の制御回路や外部電源と接続して制御信号や駆動電力を入力するコネクタ(図示せず)が実装されている。   The second circuit board 27 is formed by adhering an inverted trapezoidal flexible substrate to an inverted trapezoidal ceramic plate, and an adhesive is provided on the other surface of the first heat dissipating plate 5 in the sub-scanning opposite direction. The other side is bonded. Incidentally, the second circuit board 27 is also mounted with a connector (not shown) that is connected to an external control circuit and an external power source and inputs a control signal and driving power.

そして第2回路基板27の一面には、第2回路基板27の場合と同様に、副走査方向S2の回路基板一端部(すなわち第2ヘッド基板26との境界部分)に、複数の駆動用IC8が主走査方向S1へ所定のピッチで並べて配置されている。また第2回路基板27の一面には、複数の駆動用IC8各々の近傍に複数のマイナス電極(図示せず)や制御端子(図示せず)が配置されている。さらに第2回路基板27の一面には、複数の駆動用IC8各々の両脇に一対のプラス電極20が配置されている。   Similarly to the case of the second circuit board 27, a plurality of driving ICs 8 are provided on one surface of the second circuit board 27 at one end of the circuit board in the sub-scanning direction S2 (that is, at the boundary with the second head substrate 26). Are arranged at a predetermined pitch in the main scanning direction S1. A plurality of minus electrodes (not shown) and control terminals (not shown) are arranged on one surface of the second circuit board 27 in the vicinity of each of the plurality of driving ICs 8. Further, on one surface of the second circuit board 27, a pair of plus electrodes 20 are arranged on both sides of each of the plurality of driving ICs 8.

よって第2回路基板27も、複数の駆動用IC8がそれぞれ複数のボンディングワイヤ21、22を介して、対応する複数の個別配線電極14の他端部、複数のマイナス電極及び制御端子に接続されている。また第2回路基板27は、駆動用IC8毎の一対のプラス電極20が一対のボンディングワイヤ23を介して、対応する共通帯状電極16の両端部に接続されている。そして複数の駆動用IC8は、複数のボンディングワイヤ21乃至23と共に第2ヘッド基板26の一面及び第2回路基板27の一面の境界部分に、エポキシ樹脂からなる封止体29によって封止されている。   Therefore, also in the second circuit board 27, the plurality of driving ICs 8 are connected to the other end portions of the corresponding individual wiring electrodes 14, the plurality of minus electrodes, and the control terminals through the plurality of bonding wires 21 and 22, respectively. Yes. In the second circuit board 27, a pair of plus electrodes 20 for each driving IC 8 is connected to both ends of the corresponding common strip electrode 16 through a pair of bonding wires 23. The plurality of driving ICs 8 are sealed together with a plurality of bonding wires 21 to 23 at a boundary portion between one surface of the second head substrate 26 and one surface of the second circuit substrate 27 by a sealing body 29 made of epoxy resin. .

そしてサーマルプリントヘッド1は、例えばサーマルプリンタ40に着脱可能なヘッドフレーム(図示せず)に第1ヘッドユニット2及び第2ヘッドユニット3が、主走査方向S1へ順次交互に並べられ、互いの対向する側面を近接又は接触させて個別に取り付けられている。すなわちサーマルプリントヘッド1は、ヘッドフレームに第1ヘッドユニット2及び第2ヘッドユニット3がそれぞれねじ等の取付具(図示せず)によって個別に固定して取り付けられ、全体が長尺型となるように組み立てられている。   In the thermal print head 1, for example, the first head unit 2 and the second head unit 3 are alternately arranged in the main scanning direction S1 on a head frame (not shown) that can be attached to and detached from the thermal printer 40, and face each other. The side surfaces to be touched are close to each other or are in contact with each other. That is, the thermal print head 1 has the first head unit 2 and the second head unit 3 fixed to the head frame individually by means of attachments such as screws (not shown) and attached to the head frame so that the whole becomes a long type. Is assembled.

これによりサーマルプリントヘッド1は、ヘッドフレームに第1ヘッドユニット2及び第2ヘッドユニット3が、互いの発熱領域17、28を主走査方向S1と平行にして副走査方向S2に対して極力近づけ、かつ主走査方向S1における複数の発熱抵抗体12のピッチを第1ヘッド基板6及び第2ヘッド基板26内と、これらの境界部分とにかかわらずにほぼ等しくして固定されている。このようにしてサーマルプリントヘッド1は、第1ヘッドユニット2及び第2ヘッドユニット3が高精度に連結されている。   Thereby, in the thermal print head 1, the first head unit 2 and the second head unit 3 are brought closer to the head frame as much as possible in the sub-scanning direction S2 with the heat generation regions 17 and 28 parallel to the main scanning direction S1. In addition, the pitch of the plurality of heating resistors 12 in the main scanning direction S1 is fixed to be substantially equal in the first head substrate 6 and the second head substrate 26 regardless of their boundary portions. Thus, the thermal print head 1 has the first head unit 2 and the second head unit 3 connected with high accuracy.

そして図5に示すように、サーマルプリントヘッド1は、第1ヘッドユニット2及び第2ヘッドユニット3が固定されたヘッドフレーム(図示せず)と共にサーマルプリンタ40に取り付けられている。サーマルプリンタ40は、プラテンローラ41がローラ軸42を主走査方向S1と平行にし、外周面をサーマルプリントヘッド1の発熱領域17、28に接触させた状態で、当該ローラ軸42を中心にして回転可能に設けられている。   As shown in FIG. 5, the thermal print head 1 is attached to a thermal printer 40 together with a head frame (not shown) to which the first head unit 2 and the second head unit 3 are fixed. The thermal printer 40 rotates around the roller shaft 42 with the platen roller 41 having the roller shaft 42 parallel to the main scanning direction S1 and the outer peripheral surface being in contact with the heat generating regions 17 and 28 of the thermal print head 1. It is provided as possible.

そしてサーマルプリンタ40は、画像形成時、プラテンローラ41の回転により、当該プラテンローラ41と発熱領域17、28との間に記録媒体Pを挟み込んで副走査方向S2に沿うような媒体搬送方向へ送る。このときサーマルプリンタ40は、外部電源(図示せず)によりサーマルプリントヘッド1の複数の共通帯状電極16各々の両端部に電圧を印加した状態で複数の駆動用IC8を適宜オン動作させる。   Then, the thermal printer 40 sandwiches the recording medium P between the platen roller 41 and the heat generation areas 17 and 28 by the rotation of the platen roller 41 during image formation, and sends it in the medium conveyance direction along the sub-scanning direction S2. . At this time, the thermal printer 40 appropriately turns on the plurality of driving ICs 8 with a voltage applied to both ends of each of the plurality of common strip electrodes 16 of the thermal print head 1 by an external power source (not shown).

これによりサーマルプリンタ40は、サーマルプリントヘッド1において複数の共通帯状電極16各々の両端部から中央部へ電流を流すと共に、その電流を複数の共通配線電極15から2個毎の発熱抵抗体12、複数の個別配線電極14、複数の駆動用IC8を順次介して外部電源へ流して、これら2個の発熱抵抗体12毎の発熱部を発熱させる。このようにしてサーマルプリンタ40は、プラテンローラ41により記録媒体Pを発熱領域17、28に接触させて媒体搬送方向へ搬送しながら、サーマルプリントヘッド1の2個の発熱抵抗体12毎の発熱部を選択的に発熱させることで、記録媒体Pの表面に所望の画像を形成する。   As a result, the thermal printer 40 causes a current to flow from both ends of each of the plurality of common strip electrodes 16 to the central portion in the thermal print head 1, and the current is passed from the plurality of common wiring electrodes 15 to every two heating resistors 12, The plurality of individual wiring electrodes 14 and the plurality of driving ICs 8 are sequentially passed to an external power source, and the heat generating portions of the two heat generating resistors 12 are heated. In this way, the thermal printer 40 has the heating part for each of the two heating resistors 12 of the thermal print head 1 while the recording medium P is brought into contact with the heating areas 17 and 28 by the platen roller 41 and is conveyed in the medium conveying direction. By selectively generating heat, a desired image is formed on the surface of the recording medium P.

ところでサーマルプリントヘッド1に設けられる複数の駆動用IC8は、何れも等しい所定の個数の発熱抵抗体12と接続可能で、同一の長方形状に形成されている。また複数の駆動用IC8は、例えばIC長手方向に沿った端面の長さが、1個の駆動用IC8に接続される所定の個数の発熱抵抗体12の配置範囲の主走査方向S1の長さよりも短い所定の長さに選定されている。   By the way, the plurality of driving ICs 8 provided in the thermal print head 1 can be connected to an equal predetermined number of heating resistors 12 and are formed in the same rectangular shape. Further, the plurality of driving ICs 8 have, for example, the length of the end surface along the IC longitudinal direction that is longer than the length in the main scanning direction S1 of the arrangement range of the predetermined number of heating resistors 12 connected to one driving IC 8. Also, a short predetermined length is selected.

そして複数の駆動用IC8は、第1回路基板7の一面及び第2回路基板27の一面に、それぞれIC長手方向を主走査方向S1と平行にし、当該主走査方向S1へ所定のピッチ(以下、これをICピッチとも呼ぶ)で並べて配置されている。因みにICピッチは、複数の駆動用IC8各々のIC長手方向の中心位置(以下、これをIC中心位置とも呼ぶ)の間隔である。なお以下の説明では、1個の駆動用IC8に接続される所定の個数の発熱抵抗体12をまとめてIC単位発熱抵抗体とも呼び、当該IC単位発熱抵抗体の主走査方向S1に沿った配置範囲をIC単位抵抗体配置範囲とも呼ぶ。   The plurality of driving ICs 8 are arranged on one surface of the first circuit board 7 and one surface of the second circuit board 27 so that the IC longitudinal direction is parallel to the main scanning direction S1, and a predetermined pitch (hereinafter, referred to as the main scanning direction S1). (This is also referred to as an IC pitch). Incidentally, the IC pitch is an interval between the center positions of the plurality of driving ICs 8 in the IC longitudinal direction (hereinafter also referred to as IC center positions). In the following description, a predetermined number of heating resistors 12 connected to one driving IC 8 are collectively referred to as an IC unit heating resistor, and the IC unit heating resistors are arranged along the main scanning direction S1. The range is also called an IC unit resistor arrangement range.

またサーマルプリントヘッド1に設けられる複数の共通帯状電極16は、その個数が駆動用IC8の個数と同数であり、主走査方向S1の長さが駆動用IC8の端面の長さよりも僅かに長い所定の長さに選定されている。そして複数の共通帯状電極16は、第1ヘッド基板6の一面及び第2ヘッド基板26の一面に、主走査方向S1へICピッチで並べて配置されることで、中央部を1個の駆動用IC8の端面と対向させると共に、両端部を当該1個の駆動用IC8の両脇の一対のプラス電極20と対向させている。   The number of common strip electrodes 16 provided in the thermal print head 1 is the same as the number of driving ICs 8, and the length in the main scanning direction S 1 is slightly longer than the length of the end face of the driving IC 8. The length is selected. The plurality of common strip-like electrodes 16 are arranged on one surface of the first head substrate 6 and one surface of the second head substrate 26 so as to be arranged at an IC pitch in the main scanning direction S1, so that the central portion is one driving IC 8. Both end portions are opposed to a pair of plus electrodes 20 on both sides of the one driving IC 8.

そのうえで複数のIC単位発熱抵抗体は、それぞれ所定の本数の個別配線電極14を介して1個の駆動用IC8に接続されると共に、所定の本数の共通配線電極15を介して当該1個の駆動用IC8と対向する1個の共通帯状電極16に接続されている。因みに以下の説明では、個別配線電極14及び共通配線電極15を特に区別する必要がない場合、これらを配線電極とも呼ぶ。また以下の説明では、IC単位発熱抵抗体を1個の駆動用IC8及び1個の共通帯状電極16に接続する所定の本数の個別配線電極14及び所定の本数の共通配線電極15をまとめてIC単位配線電極とも呼ぶ。   In addition, each of the plurality of IC unit heating resistors is connected to one driving IC 8 via a predetermined number of individual wiring electrodes 14, and the one driving unit via a predetermined number of common wiring electrodes 15. It is connected to one common strip electrode 16 facing the IC 8 for use. Incidentally, in the following description, when it is not necessary to distinguish the individual wiring electrode 14 and the common wiring electrode 15, these are also referred to as wiring electrodes. In the following description, a predetermined number of individual wiring electrodes 14 and a predetermined number of common wiring electrodes 15 that connect an IC unit heating resistor to one driving IC 8 and one common strip electrode 16 are integrated into an IC. It is also called a unit wiring electrode.

ただしサーマルプリントヘッド1では、従来のサーマルプリントヘッドとは異なり、第1ヘッド基板6及び第2ヘッド基板26において複数の共通帯状電極16が例えば複数の共通配線電極15の厚みとほぼ等しい厚みを有するように比較的薄く形成されている。このため複数の共通帯状電極16は、それぞれ抵抗値(以下、これを帯状電極抵抗値とも呼ぶ)が比較的大きくなっている。   However, in the thermal print head 1, unlike the conventional thermal print head, in the first head substrate 6 and the second head substrate 26, the plurality of common strip electrodes 16 have a thickness substantially equal to the thickness of the plurality of common wiring electrodes 15, for example. So as to be relatively thin. For this reason, each of the plurality of common strip electrodes 16 has a relatively large resistance value (hereinafter also referred to as a strip electrode resistance value).

よって共通帯状電極16には、画像形成時、両端部から中央部へ電流が流れると、その両端部から中央部へかけて電圧の値が徐々に減少する電圧降下(コモンドロップ)が生じる。その結果、IC単位発熱抵抗体では、共通帯状電極16から所定の本数の共通配線電極15を介して所定の個数の発熱抵抗体12に流れる電流の値が、主走査方向S1の両端部に位置する発熱抵抗体12から中央部に位置する発熱抵抗体12にかけて徐々に小さくなる。   Therefore, when a current flows from both ends to the center during image formation, a voltage drop (common drop) in which the voltage value gradually decreases from the both ends to the center is generated in the common strip electrode 16. As a result, in the IC unit heating resistor, the value of the current flowing from the common strip electrode 16 to the predetermined number of heating resistors 12 via the predetermined number of common wiring electrodes 15 is located at both ends in the main scanning direction S1. The heating resistor 12 gradually decreases from the heating resistor 12 to the heating resistor 12 located in the center.

そしてIC単位発熱抵抗体では、発熱抵抗体12に流れる電流の値が小さいほど発熱部の発熱量が少なくなる。すなわちIC単位発熱抵抗体では、主走査方向S1の両端部に位置する発熱抵抗体12から中央部に位置する発熱抵抗体12にかけて、発熱部の発熱量が徐々に小さくなる。   In the IC unit heating resistor, the smaller the value of the current flowing through the heating resistor 12, the smaller the amount of heat generated by the heating section. That is, in the IC unit heat generating resistor, the heat generation amount of the heat generating portion gradually decreases from the heat generating resistor 12 positioned at both ends in the main scanning direction S1 to the heat generating resistor 12 positioned at the central portion.

このためサーマルプリントヘッド1では、第1ヘッドユニット2及び第2ヘッドユニット3の製造時、複数の発熱抵抗体12に対して、いわゆるビットトリミングと呼ばれる発熱体抵抗値の補正処理を施している。これによりサーマルプリントヘッド1では、画像形成時、複数の発熱抵抗体12に流れる電流の値によらず、複数の発熱部の発熱量をほぼ一定にしている。   For this reason, in the thermal print head 1, when the first head unit 2 and the second head unit 3 are manufactured, a heating element resistance correction process called so-called bit trimming is performed on the plurality of heating resistors 12. As a result, in the thermal print head 1, during the image formation, the heat generation amount of the plurality of heat generating portions is made substantially constant regardless of the value of the current flowing through the plurality of heat generating resistors 12.

実際、図6に示すように、第1ヘッドユニット2は、全体が台形状に形成されている。従って第1ヘッドユニット2では、第1ヘッド基板6の複数の発熱抵抗体12が配置されるヘッド基板一端部の主走査方向S1の幅に比して、第1回路基板7の複数の駆動用IC8が配置される回路基板一端部の主走査方向S1の幅が広くなっている。   Actually, as shown in FIG. 6, the first head unit 2 is entirely formed in a trapezoidal shape. Therefore, in the first head unit 2, the plurality of driving circuits for the first circuit board 7 are compared with the width in the main scanning direction S1 at one end portion of the head board on which the plurality of heating resistors 12 of the first head board 6 are arranged. The width in the main scanning direction S1 of one end portion of the circuit board on which the IC 8 is arranged is wide.

よって第1回路基板7の一面には、例えば複数の駆動用IC8が、複数のIC単位抵抗体配置範囲AR1(すなわちIC単位発熱抵抗体)の主走査方向S1のピッチ(以下、これをIC単位抵抗体ピッチとも呼ぶ)と等しいICピッチで並べて配置されている。因みにIC単位抵抗体ピッチは、複数のIC単位抵抗体配置範囲AR1(すなわちIC単位発熱抵抗体)各々の主走査方向S1の中心位置(以下、これをIC単位抵抗体中心位置とも呼ぶ)の間隔である。   Therefore, on one surface of the first circuit board 7, for example, a plurality of driving ICs 8 have a pitch in the main scanning direction S1 of the plurality of IC unit resistor arrangement ranges AR1 (that is, IC unit heating resistors) (hereinafter referred to as IC units). Are also arranged side by side with an IC pitch equal to the resistor pitch). Incidentally, the IC unit resistor pitch is the interval between the center positions of the plurality of IC unit resistor arrangement ranges AR1 (that is, IC unit heating resistors) in the main scanning direction S1 (hereinafter also referred to as IC unit resistor center positions). It is.

より具体的には、第1回路基板7の一面に複数の駆動用IC8が、個々のIC単位抵抗体中心位置を通る副走査方向S2と平行な中心仮想線L1上にそれぞれ個々のIC中心位置を一致させて配置されている。このため複数のIC単位配線電極は、何れも中心仮想線L1付近に位置する配線電極の長さが最も短くなっている。   More specifically, a plurality of driving ICs 8 on one surface of the first circuit board 7 are individually centered on the virtual center line L1 parallel to the sub-scanning direction S2 passing through the center position of each IC unit resistor. Are arranged to match. For this reason, the plurality of IC unit wiring electrodes all have the shortest wiring electrodes located near the central virtual line L1.

また複数のIC単位配線電極は、何れも配線電極の位置が中心仮想線L1から主走査方向S1へずれる毎、また主走査方向S1とは逆の主走査反対方向へずれる毎に、これら配線電極の長さが徐々に長くなるものの、中心仮想線L1に対して線対象な位置の配線電極の長さは等しくなっている。   Each of the plurality of IC unit wiring electrodes has a wiring electrode position shifted from the central imaginary line L1 in the main scanning direction S1 and each time the wiring electrode position is shifted in the main scanning direction opposite to the main scanning direction S1. However, the length of the wiring electrode at the line target position is equal to the central virtual line L1.

ところでサーマルプリントヘッド1では、個々の発熱抵抗体12の発熱体抵抗値が例えば数千[Ω]程度であるのに対して、個々の配線電極の配線抵抗値は数十[Ω]程度と比較的小さい。そして第1ヘッドユニット2の複数のIC単位配線電極では、何れも中央部から両端部にかけて配線電極の長さが徐々に長くなることで、これに伴い配線抵抗値も徐々に大きくなっている。   By the way, in the thermal print head 1, while the heating element resistance value of each heating resistor 12 is about several thousand [Ω], for example, the wiring resistance value of each wiring electrode is compared with about several tens [Ω]. Small. In each of the plurality of IC unit wiring electrodes of the first head unit 2, the length of the wiring electrode gradually increases from the central portion to both ends, and accordingly, the wiring resistance value gradually increases.

ただし複数のIC単位配線電極では、何れも複数の配線電極の配線抵抗値の最小値及び最大値の差が数[Ω]程度と格段的に小さくなっている。すなわち第1ヘッドユニット2では、IC単位配線電極毎に複数の配線電極の配線抵抗値がばらつくものの、これら複数の配線電極の配線抵抗値のばらつきは、複数の発熱抵抗体12に流れる電流の値への影響を無視し得る程度になっている。   However, in each of the plurality of IC unit wiring electrodes, the difference between the minimum value and the maximum value of the wiring resistance values of the plurality of wiring electrodes is remarkably reduced to about several [Ω]. That is, in the first head unit 2, the wiring resistance values of the plurality of wiring electrodes vary for each IC unit wiring electrode, but the variation in the wiring resistance values of the plurality of wiring electrodes is the value of the current flowing through the plurality of heating resistors 12. The effect on the environment is negligible.

このため図7に示すように、第1ヘッドユニット2の複数の発熱抵抗体12の発熱体抵抗値を補正する補正処理では、まず所定の抵抗測定器により複数の発熱抵抗体12の発熱体抵抗値(図7の特性曲線A)を測定する。また発熱体抵抗値の補正処理では、抵抗測定器により複数の共通帯状電極16の帯状電極抵抗値を測定すると共に、その帯状電極抵抗値に基づき、これら複数の共通帯状電極16の通電時の電圧降下量を算出する。   Therefore, as shown in FIG. 7, in the correction process for correcting the heating element resistance values of the plurality of heating resistors 12 of the first head unit 2, first, the heating element resistances of the plurality of heating resistors 12 are measured by a predetermined resistance measuring instrument. The value (characteristic curve A in FIG. 7) is measured. Further, in the heating element resistance correction process, the strip electrode resistance values of the plurality of common strip electrodes 16 are measured by a resistance measuring device, and the voltage at the time of energization of the plurality of common strip electrodes 16 is determined based on the strip electrode resistance values. Calculate the amount of descent.

さらに発熱体抵抗値の補正処理では、これら発熱体抵抗値及び電圧降下量に基づき、複数の発熱抵抗体12各々について発熱体抵抗値の補正の目標値となる目標抵抗値(図7の特性曲線B)を求める。なお発熱体抵抗値の補正処理では、複数の共通帯状電極16各々の電圧降下に応じてIC単位発熱抵抗体毎に目標抵抗値がほぼ等しいものとなり、実際にIC単位発熱抵抗体毎の所定の個数の発熱抵抗体12の目標抵抗値は主走査方向S1の中央部から両端部にかけて2次関数的に徐々に大きくなっている。   Further, in the heating element resistance value correction process, based on these heating element resistance values and voltage drop amounts, target resistance values (characteristic curves in FIG. 7) that are target values for correction of heating element resistance values for each of the plurality of heating resistor elements 12 are obtained. B). In the heating element resistance correction process, the target resistance value is substantially equal for each IC unit heating resistor in accordance with the voltage drop of each of the plurality of common strip electrodes 16, and actually a predetermined value for each IC unit heating resistor is set. The target resistance values of the number of heating resistors 12 gradually increase in a quadratic function from the center to both ends in the main scanning direction S1.

そして発熱体抵抗値の補正処理では、複数の発熱抵抗体12各々の目標抵抗値に応じて、これら複数の発熱抵抗体12をそれぞれ例えば抵抗値補正パルスを所望の回数ずつ印加して結晶化させる。因みに抵抗値補正パルスは、パルス幅が比較的短く、かつ振幅(すなわち電圧値)が比較的大きいパルスである。   In the heating element resistance value correction process, according to the target resistance value of each of the plurality of heating resistors 12, the plurality of heating resistors 12 are crystallized by applying, for example, a resistance value correction pulse for each desired number of times. . Incidentally, the resistance value correction pulse is a pulse having a relatively short pulse width and a relatively large amplitude (that is, a voltage value).

これにより発熱体抵抗値の補正処理では、第1ヘッドユニット2の複数の発熱抵抗体12の発熱体抵抗値を目標抵抗値となるように補正した。すなわち発熱体抵抗値の補正処理では、例えば複数の発熱抵抗体12の形成時の発熱体抵抗値が比較的ばらついているため、これら複数の発熱抵抗体12の発熱体抵抗値を全体的に低下させつつ、共通帯状電極16の電圧降下量を考慮してIC単位発熱抵抗体毎に2次関数的な分布となるように補正した。   Thus, in the heating element resistance value correction process, the heating element resistance values of the plurality of heating resistors 12 of the first head unit 2 are corrected to the target resistance value. That is, in the heating element resistance value correction process, for example, since the heating element resistance values at the time of formation of the plurality of heating resistors 12 are relatively varied, the heating element resistance values of the plurality of heating resistors 12 are reduced as a whole. In consideration of the voltage drop amount of the common strip electrode 16, the distribution was corrected so as to have a quadratic function for each IC unit heating resistor.

一方、図8に示すように、第2ヘッドユニット3は、全体が逆台形状に形成されている。従って第2ヘッドユニット3では、第2ヘッド基板26の複数の発熱抵抗体12が配置されるヘッド基板一端部の主走査方向S1の幅に比して、第2回路基板27の複数の駆動用IC8が配置される回路基板一端部の主走査方向S1の幅が狭くなっている。よって第2回路基板27の一面には、例えば複数の駆動用IC8が、IC単位抵抗体ピッチよりも狭いICピッチで(すなわちICピッチをIC単位抵抗体ピッチとは異ならせて)並べて配置されている。   On the other hand, as shown in FIG. 8, the entire second head unit 3 is formed in an inverted trapezoidal shape. Therefore, in the second head unit 3, the plurality of driving circuits for the second circuit board 27 are compared with the width in the main scanning direction S1 at one end of the head board on which the plurality of heating resistors 12 of the second head board 26 are arranged. The width in the main scanning direction S1 of one end of the circuit board on which the IC 8 is arranged is narrow. Therefore, on one surface of the second circuit board 27, for example, a plurality of driving ICs 8 are arranged side by side with an IC pitch narrower than the IC unit resistor pitch (that is, the IC pitch is different from the IC unit resistor pitch). Yes.

より具体的には、第2回路基板27の一面に例えば主走査方向S1の並びの順番が真ん中となる1個の駆動用IC8は、主走査方向S1の並びの順番が真ん中となる1個のIC単位抵抗体配置範囲AR1の中心仮想線L1上にIC中心位置を一致させて配置されている。因みに以下の説明では、主走査方向S1の並びの順番が真ん中となる1個の駆動用IC8を適宜、中央駆動用IC8とも呼び、主走査方向S1の並びの順番が真ん中となる1個のIC単位抵抗体配置範囲AR1を適宜、中央IC単位抵抗体配置範囲AR1とも呼ぶ。   More specifically, for example, one driving IC 8 in which the order of arrangement in the main scanning direction S1 is in the middle on one surface of the second circuit board 27 is one in which the order of arrangement in the main scanning direction S1 is in the middle. The IC center positions are arranged on the central imaginary line L1 of the IC unit resistor arrangement range AR1. Incidentally, in the following description, one driving IC 8 in which the order of arrangement in the main scanning direction S1 is in the middle is also referred to as a central driving IC 8 as appropriate, and one IC in which the order of arrangement in the main scanning direction S1 is in the middle. The unit resistor arrangement range AR1 is also referred to as a central IC unit resistor arrangement range AR1 as appropriate.

また第2回路基板27の一面には、例えば中央駆動用IC8より主走査方向S1の複数の駆動用IC(以下これを適宜、主走査側駆動用ICとも呼ぶ)8が、中央IC単位抵抗体配置範囲AR1より主走査方向S1の複数のIC単位抵抗体配置範囲AR1の中心仮想線L1よりもIC中心位置を主走査反対方向へずらして配置されている。そして中央駆動用IC8より主走査方向S1の複数の駆動用IC8は、中央駆動用IC8から主走査方向S1へ離れるほど、主走査方向S1の複数のIC単位抵抗体配置範囲AR1の中心仮想線L1に対するIC中心位置のずらし量が大きくなっている。   Further, on one surface of the second circuit board 27, for example, a plurality of driving ICs (hereinafter also referred to as main scanning side driving ICs) 8 in the main scanning direction S1 from the central driving IC 8 are central IC unit resistors. The IC center position is shifted from the arrangement range AR1 in the direction opposite to the main scanning with respect to the central virtual line L1 of the plurality of IC unit resistor arrangement ranges AR1 in the main scanning direction S1. The plurality of driving ICs 8 in the main scanning direction S1 from the central driving IC 8 are further away from the central driving IC 8 in the main scanning direction S1, and the central virtual line L1 of the plurality of IC unit resistor arrangement ranges AR1 in the main scanning direction S1. The shift amount of the IC center position with respect to is increased.

さらに第2回路基板27の一面には、例えば中央駆動用IC8より主走査反対方向の複数の駆動用IC(以下これを適宜、主走査反対側駆動用ICとも呼ぶ)8が、中央IC単位抵抗体配置範囲AR1より主走査反対方向の複数のIC単位抵抗体配置範囲AR1の中心仮想線L1よりもIC中心位置を主走査方向S1へずらして配置されている。そして中央駆動用IC8より主走査反対方向の複数の駆動用IC8は、中央駆動用IC8から主走査反対方向へ離れるほど、主走査反対方向の複数のIC単位抵抗体配置範囲AR1の中心仮想線L1に対するIC中心位置のずらし量が大きくなっている。   Further, on one surface of the second circuit board 27, for example, a plurality of driving ICs (hereinafter also referred to as main scanning opposite side driving ICs) 8 in the direction opposite to the main scanning direction from the central driving IC 8 are provided with a central IC unit resistance. The IC center position is shifted in the main scanning direction S1 from the central virtual line L1 of the plurality of IC unit resistor arrangement ranges AR1 in the direction opposite to the main scanning from the body arrangement range AR1. The plurality of driving ICs 8 in the direction opposite to the main scanning from the central driving IC 8 are separated from the central driving IC 8 in the direction opposite to the main scanning, and the central virtual line L1 of the plurality of IC unit resistor arrangement ranges AR1 in the main scanning opposite direction. The shift amount of the IC center position with respect to is increased.

このため中央駆動用IC8に対応するIC単位配線電極は、第1ヘッドユニット2の場合と同様に、主走査方向S1の中央部から両端部へかけて配線電極の長さが徐々に長くなっている。   For this reason, the IC unit wiring electrode corresponding to the central driving IC 8 is gradually increased in length from the central portion to both ends in the main scanning direction S1 as in the case of the first head unit 2. Yes.

また複数の主走査側駆動用IC8に対応する複数のIC単位配線電極は、それぞれ例えば主走査反対方向の端に位置する配線電極の長さが最も短く、その端から配線電極の位置が主走査方向S1へずれる毎に、これら配線電極の長さが徐々に長くなっている。そして複数の主走査側駆動用IC8に対応する複数のIC単位配線電極は、主走査方向S1に位置するものほど、複数の配線電極の長さが全体的に長くなっている。   In addition, the plurality of IC unit wiring electrodes corresponding to the plurality of main scanning side driving ICs 8 have, for example, the shortest length of the wiring electrode located at the end in the opposite direction of the main scanning, and the position of the wiring electrode from the end is the main scanning. Each time the direction S1 is shifted, the lengths of these wiring electrodes are gradually increased. The plurality of IC unit wiring electrodes corresponding to the plurality of main scanning side driving ICs 8 are generally longer in the length of the plurality of wiring electrodes as they are positioned in the main scanning direction S1.

さらに複数の主走査反対側駆動用IC8に対応する複数のIC単位配線電極は、それぞれ例えば主走査方向S1の端に位置する配線電極の長さが最も短く、その端から配線電極の位置が主走査反対方向へずれる毎に、これら配線電極の長さが徐々に長くなっている。そして複数の主走査反対側駆動用IC8に対応する複数のIC単位配線電極は、主走査反対方向に位置するものほど、複数の配線電極の長さが全体的に長くなっている。   Further, each of the plurality of IC unit wiring electrodes corresponding to the plurality of driving ICs 8 on the opposite side of the main scanning has, for example, the shortest length of the wiring electrode located at the end in the main scanning direction S1, and the position of the wiring electrode from the end is the main. Each time the scanning direction shifts, the lengths of these wiring electrodes are gradually increased. The plurality of IC unit wiring electrodes corresponding to the plurality of main scanning opposite-side driving ICs 8 are generally longer in the length of the plurality of wiring electrodes as they are positioned in the opposite main scanning direction.

ところで図9に示すように、中央駆動用IC8に対応するIC単位配線電極は、主走査方向S1の中央部から両端部へかけて配線電極の長さと共に配線抵抗値が徐々に大きくなるものの、これら配線抵抗値の最小値及び最大値の差は数[Ω]程度と格段的に小さい。これに対して複数の主走査側駆動用IC8に対応する複数のIC単位配線電極は、何れも主走査反対方向の端から主走査方向S1へ離れて位置する配線電極ほど配線抵抗値が大きくなっている。また複数の主走査反対側駆動用IC8に対応する複数のIC単位配線電極は、それぞれ主走査方向S1の端から主走査反対方向へ離れて位置する配線電極ほど配線抵抗値が大きくなっている。   By the way, as shown in FIG. 9, the IC unit wiring electrode corresponding to the central driving IC 8 has a wiring resistance value that gradually increases with the length of the wiring electrode from the center to both ends in the main scanning direction S1, The difference between the minimum value and the maximum value of these wiring resistance values is as small as several [Ω]. On the other hand, the wiring resistance values of the plurality of IC unit wiring electrodes corresponding to the plurality of main scanning side driving ICs 8 increase as the wiring electrodes are positioned away from the end in the main scanning opposite direction in the main scanning direction S1. ing. Also, the wiring resistance values of the plurality of IC unit wiring electrodes corresponding to the plurality of main scanning opposite side driving ICs 8 are larger as the wiring electrodes are located away from the end in the main scanning direction S1 in the main scanning opposite direction.

ただし複数の主走査側駆動用IC8に対応する複数のIC単位配線電極は、主走査方向S1に位置するものほど複数の配線電極の配線抵抗値が全体的に大きくなっている。実際に、これらのうち主走査方向S1の端に位置するIC単位配線電極は、中央駆動用IC8に対応するIC単位配線電極に比して、複数の配線電極の配線抵抗値が全体的に50[Ω]程度まで大きくなっている。   However, as for the plurality of IC unit wiring electrodes corresponding to the plurality of main scanning side driving ICs 8, the wiring resistance values of the plurality of wiring electrodes generally increase as they are positioned in the main scanning direction S1. Actually, among these, the IC unit wiring electrode located at the end in the main scanning direction S1 has an overall wiring resistance value of 50 as compared with the IC unit wiring electrode corresponding to the central driving IC 8. It has increased to about [Ω].

また複数の主走査反対側駆動用IC8に対応する複数のIC単位配線電極は、主走査反対方向に位置するものほど、複数の配線電極の配線抵抗値が全体的に大きくなっている。実際に、これらのうち主走査反対方向の端に位置するIC単位配線電極は、中央駆動用IC8に対応するIC単位配線電極に比して、複数の配線電極の配線抵抗値が全体的に50[Ω]程度まで大きくなっている。   In addition, the plurality of IC unit wiring electrodes corresponding to the plurality of main scanning opposite side driving ICs 8 are located in the opposite direction of the main scanning, and the wiring resistance values of the plurality of wiring electrodes generally increase. Actually, among these, the IC unit wiring electrode positioned at the end in the main scanning opposite direction has a wiring resistance value of the plurality of wiring electrodes as a whole as compared with the IC unit wiring electrode corresponding to the central driving IC 8. It has increased to about [Ω].

そして第2ヘッドユニット3では、このようにIC単位配線電極毎の複数の配線電極の配線抵抗値が50[Ω]程度の範囲でばらつくと、これら複数の配線電極の配線抵抗値のばらつきが、複数の発熱抵抗体12に流れる電流の値をばらつかせることになる。すなわち第2ヘッドユニット3では、配線電極の配線抵抗値が大きいほど、その配線電極を流れる電流の値と共に、これに接続されている発熱抵抗体12に流れる電流が低下する。   In the second head unit 3, when the wiring resistance value of the plurality of wiring electrodes for each IC unit wiring electrode varies in the range of about 50 [Ω], the variation in the wiring resistance values of the plurality of wiring electrodes is as follows. The value of the current flowing through the plurality of heating resistors 12 varies. That is, in the second head unit 3, the larger the wiring resistance value of the wiring electrode, the lower the current flowing through the heating resistor 12 connected thereto as well as the value of the current flowing through the wiring electrode.

このため図10に示すように、第2ヘッドユニット3の複数の発熱抵抗体12の発熱体抵抗値を補正する補正処理では、まず上述した第1ヘッドユニット2の場合と同様に、複数の発熱抵抗体12の発熱体抵抗値(図10の特性曲線C)を測定する。また発熱体抵抗値の補正処理では、上述した第1ヘッドユニット2の場合と同様に、複数の共通帯状電極16の通電時の電圧降下量を算出する。   For this reason, as shown in FIG. 10, in the correction process for correcting the heating element resistance values of the plurality of heating resistors 12 of the second head unit 3, first, as in the case of the first head unit 2 described above, a plurality of heating elements are generated. The resistance value of the heating element of the resistor 12 (characteristic curve C in FIG. 10) is measured. Further, in the heating element resistance value correction process, as in the case of the first head unit 2 described above, the amount of voltage drop when the plurality of common strip electrodes 16 are energized is calculated.

さらに発熱体抵抗値の補正処理では、上述した第1ヘッドユニット2の場合と同様に、これら発熱体抵抗値及び電圧降下量に基づき、複数の発熱抵抗体12各々の目標抵抗値を求める。この場合も発熱体抵抗値の補正処理では、IC単位発熱抵抗体毎に目標抵抗値がほぼ等しいものとなり、実際にIC単位発熱抵抗体毎の所定の個数の発熱抵抗体12の目標抵抗値は主走査方向S1の中央部から両端部にかけて2次関数的に徐々に大きくなっている。   Further, in the heating element resistance correction process, as in the case of the first head unit 2 described above, the target resistance value of each of the plurality of heating resistors 12 is obtained based on the heating element resistance value and the voltage drop amount. Also in this case, in the heating element resistance value correction process, the target resistance values are substantially equal for each IC unit heating resistor, and the target resistance values of the predetermined number of heating resistors 12 for each IC unit heating resistor are actually It gradually increases in a quadratic function from the center to both ends in the main scanning direction S1.

ただし発熱体抵抗値の補正処理では、抵抗測定器によりIC単位配線電極毎に複数の配線電極の配線抵抗値を測定する。また発熱体抵抗値の補正処理では、例えば中央駆動用IC8に対応するIC単位配線電極の中央に位置する配線電極の配線抵抗値と複数の配線電極の配線抵抗値各々との差分の近似値(図10の特性曲線D)を、目標抵抗値の補正に用いる補正用配線抵抗値として求める。   However, in the heating element resistance value correction process, the wiring resistance values of a plurality of wiring electrodes are measured for each IC unit wiring electrode by a resistance measuring instrument. In the heating element resistance correction process, for example, an approximate value of a difference between the wiring resistance value of the wiring electrode located at the center of the IC unit wiring electrode corresponding to the central driving IC 8 and each of the wiring resistance values of the plurality of wiring electrodes ( A characteristic curve D) in FIG. 10 is obtained as a correction wiring resistance value used for correcting the target resistance value.

さらに発熱体抵抗値の補正処理では、例えば複数の発熱抵抗体12の目標抵抗値から、対応する配線電極の補正用配線抵抗値を減算して、これら複数の発熱抵抗体12の目標抵抗値を補正する。そして発熱体抵抗値の補正処理では、複数の発熱抵抗体12各々の補正した目標抵抗値である補正目標抵抗値(図10の特性曲線E)に応じて、これら複数の発熱抵抗体12を、それぞれ抵抗値補正パルスを所望の回数ずつ印加して結晶化させる。   Further, in the heating element resistance value correction process, for example, the correction wiring resistance value of the corresponding wiring electrode is subtracted from the target resistance value of the plurality of heating resistors 12 to obtain the target resistance value of the plurality of heating resistors 12. to correct. In the heating element resistance correction process, the plurality of heating resistors 12 are changed according to the corrected target resistance value (characteristic curve E in FIG. 10) which is the corrected target resistance value of each of the plurality of heating resistors 12. Each resistance value correction pulse is applied a desired number of times for crystallization.

これにより発熱体抵抗値の補正処理では、第2ヘッドユニット3の複数の発熱抵抗体12の発熱体抵抗値をほぼ補正目標抵抗値となるように補正した。すなわち発熱体抵抗値の補正処理では、例えば複数の発熱抵抗体12の形成時の発熱体抵抗値が比較的ばらついているため、これら複数の発熱抵抗体12の発熱体抵抗値を全体的に低下させつつ、共通帯状電極16の電圧降下量と共に複数の配線電極の配線抵抗値のばらつきを考慮してIC単位発熱抵抗体毎に2次関数的な分布となり、かつ全体的には複数の発熱抵抗体12の配置部分の中央部から両端部にかけて徐々に低下する分布となるように補正した。   Thus, in the heating element resistance value correction process, the heating element resistance values of the plurality of heating resistors 12 of the second head unit 3 are corrected so as to be substantially the corrected target resistance value. That is, in the heating element resistance value correction process, for example, since the heating element resistance values at the time of formation of the plurality of heating resistors 12 are relatively varied, the heating element resistance values of the plurality of heating resistors 12 are reduced as a whole. In consideration of the voltage drop amount of the common strip electrode 16 and the variation of the wiring resistance values of the plurality of wiring electrodes, the distribution becomes a quadratic function for each IC unit heating resistor, and the plurality of heating resistances as a whole. The distribution was corrected so as to gradually decrease from the center portion to both ends of the arrangement portion of the body 12.

このようにしてサーマルプリントヘッド1では、画像形成時に複数の発熱抵抗体12に流れる電流の値によらず、複数の発熱部の発熱量をほぼ一定にするように形成されている。特にサーマルプリントヘッド1では、第2ヘッドユニット3のように複数の配線電極の配線抵抗値のばらつきに起因して複数の発熱抵抗体12に流れる電流の値がばらついても、複数の発熱部の発熱量をほぼ一定にすることができる。   In this way, the thermal print head 1 is formed so that the amount of heat generated by the plurality of heating portions is substantially constant regardless of the value of the current flowing through the plurality of heating resistors 12 during image formation. In particular, in the thermal print head 1, even if the values of the currents flowing through the plurality of heating resistors 12 vary due to variations in the wiring resistance values of the plurality of wiring electrodes as in the second head unit 3, The calorific value can be made almost constant.

以上の構成において、サーマルプリントヘッド1では、主走査方向S1へ順次交互に並べて連結する第1ヘッドユニット2を台形状に形成すると共に、第2ヘッドユニット3を逆台形状に形成した。また第1ヘッドユニット2には、一面に複数の発熱抵抗体12を主走査方向S1へ並べて配置すると共に、複数の駆動用IC8及び複数の共通帯状電極16をそれぞれ主走査方向S1へIC単位抵抗体ピッチと等しいICピッチで並べて配置し、これら複数の発熱抵抗体12を複数の駆動用IC8及び複数の共通帯状電極16と接続する複数の配線電極を配置した。   In the above configuration, in the thermal print head 1, the first head unit 2 that is alternately arranged in the main scanning direction S <b> 1 is formed in a trapezoidal shape, and the second head unit 3 is formed in an inverted trapezoidal shape. In the first head unit 2, a plurality of heating resistors 12 are arranged on one side in the main scanning direction S1, and a plurality of driving ICs 8 and a plurality of common strip electrodes 16 are respectively provided in the main scanning direction S1 with IC unit resistances. A plurality of wiring electrodes for arranging the plurality of heating resistors 12 with the plurality of driving ICs 8 and the plurality of common strip electrodes 16 are arranged with an IC pitch equal to the body pitch.

さらに第2ヘッドユニット3には、一面に複数の発熱抵抗体12を主走査方向S1へ並べて配置すると共に、複数の駆動用IC8及び複数の共通帯状電極16をそれぞれ主走査方向S1へIC単位抵抗体ピッチとは異なるICピッチで並べて配置し、これら複数の発熱抵抗体12を複数の駆動用IC8及び複数の共通帯状電極16と接続する複数の配線電極を配置した。   Further, in the second head unit 3, a plurality of heating resistors 12 are arranged side by side in the main scanning direction S1, and a plurality of driving ICs 8 and a plurality of common strip electrodes 16 are respectively provided in the main scanning direction S1 as IC unit resistances. A plurality of wiring electrodes for arranging the plurality of heating resistors 12 with a plurality of driving ICs 8 and a plurality of common strip electrodes 16 are arranged side by side with an IC pitch different from the body pitch.

そして第1ヘッドユニット2では、複数の共通帯状電極16に通電時に生じる電圧降下に応じて、複数の発熱抵抗体12に発熱体抵抗値の補正処理を施した。また第2ヘッドユニット3では、複数の共通帯状電極16に通電時に生じる電圧降下と、複数の配線電極の配線抵抗値のばらつきとに応じて、複数の発熱抵抗体12に発熱体抵抗値の補正処理を施した。   In the first head unit 2, the heating element resistance value correction process is performed on the plurality of heating resistors 12 according to the voltage drop that occurs when the plurality of common strip electrodes 16 are energized. Further, in the second head unit 3, the heating element resistance values are corrected in the plurality of heating resistors 12 according to the voltage drop generated when the plurality of common strip electrodes 16 are energized and the variation in the wiring resistance values of the plurality of wiring electrodes. Treated.

以上の構成によれば、サーマルプリントヘッド1は、サーマルプリンタ40に設けられて画像を形成する際、複数の発熱抵抗体12に流れる電流の値のばらつきによらず複数の発熱部を、発熱量をほぼ一定にして発熱させることができる。これによりサーマルプリントヘッド1は、記録媒体Pに印刷ムラを生じさせずに高品質な画像を形成することができる。   According to the above configuration, when the thermal print head 1 is provided in the thermal printer 40 to form an image, a plurality of heat generating portions are caused to generate heat, regardless of variations in current values flowing through the plurality of heat generating resistors 12. It is possible to generate heat with substantially constant. Thereby, the thermal print head 1 can form a high-quality image without causing printing unevenness on the recording medium P.

なお上述した実施の形態においては、長尺型のサーマルプリントヘッド1の第2ヘッドユニット3において複数の発熱抵抗体12に、複数の共通帯状電極16に通電時に生じる電圧降下と複数の配線電極の配線抵抗値のばらつきとに応じて発熱体抵抗値の補正処理を施す場合について述べた。しかしながら本発明は、これに限らず、例えば図11に示すサーマルプリントヘッド50において複数の発熱抵抗体12に、第2ヘッドユニット3の場合と同様に発熱体抵抗値の補正処理を施しても良い。   In the above-described embodiment, in the second head unit 3 of the long thermal print head 1, the voltage drop generated when the plurality of heating resistors 12 are energized to the plurality of common strip electrodes 16 and the plurality of wiring electrodes. The case where the heating element resistance value correction process is performed according to the variation in the wiring resistance value has been described. However, the present invention is not limited to this. For example, in the thermal print head 50 shown in FIG. 11, the plurality of heating resistors 12 may be subjected to the heating element resistance correction process in the same manner as the second head unit 3. .

すなわち本発明は、全体が台形状(又は長方形状)のサーマルプリントヘッド50の一面に、複数の発熱抵抗体12を主走査方向S1へ並べて配置する。また本発明は、サーマルプリントヘッド50の一面に、IC長手方向に沿った端面の長さがIC単位抵抗体配置範囲の主走査方向S1の長さ以上の複数の駆動用IC51と、複数の共通帯状電極(図示せず)とをそれぞれ主走査方向S1へIC単位抵抗体ピッチとは異なるICピッチ(すなわちIC単位抵抗体ピッチよりも広いICピッチ)で並べて配置する。   That is, according to the present invention, a plurality of heating resistors 12 are arranged side by side in the main scanning direction S1 on one surface of the thermal trapezoidal (or rectangular) thermal print head 50 as a whole. The present invention also includes a plurality of driving ICs 51 having a length of an end surface along the IC longitudinal direction on one surface of the thermal print head 50 that is equal to or longer than the length of the main unit scanning direction S1 of the IC unit resistor arrangement range. Strip electrodes (not shown) are arranged in the main scanning direction S1 at an IC pitch different from the IC unit resistor pitch (that is, an IC pitch wider than the IC unit resistor pitch).

さらに本発明は、サーマルプリントヘッド50の一面に、これら複数の発熱抵抗体12を複数の駆動用IC51及び複数の共通帯状電極と接続する複数の配線電極52を配置しても良い。そして本発明は、サーマルプリントヘッド50によれば、係る構成により複数の配線電極52の長さと共に配線抵抗値がばらつくため、上述した第2ヘッドユニット3の場合と同様に複数の発熱抵抗体12に対して発熱体抵抗値の補正処理を施すことで、複数の配線電極の配線抵抗値のばらつきに起因して複数の発熱抵抗体12に流れる電流の値がばらついても、複数の発熱部の発熱量をほぼ一定にすることができる。   In the present invention, a plurality of wiring electrodes 52 that connect the plurality of heating resistors 12 to the plurality of driving ICs 51 and the plurality of common strip electrodes may be disposed on one surface of the thermal print head 50. According to the present invention, according to the thermal print head 50, the wiring resistance value varies with the lengths of the plurality of wiring electrodes 52 due to such a configuration, and therefore, the plurality of heating resistors 12 as in the case of the second head unit 3 described above. By performing the heating element resistance value correction processing on the plurality of heating portions, even if the values of the currents flowing through the plurality of heating resistors 12 vary due to variations in the wiring resistance values of the plurality of wiring electrodes, The calorific value can be made almost constant.

また上述した実施の形態においては、第2ヘッドユニット3やサーマルプリントヘッド50に設ける複数の共通帯状電極16を比較的薄く形成する場合について述べた。しかしながら本発明は、これに限らず、第2ヘッドユニット3やサーマルプリントヘッド50に設ける複数の共通帯状電極16を比較的厚く形成して帯状電極抵抗値を小さくし、通電時の電圧降下を低減させても良い。本発明は、係る構成によれば、第2ヘッドユニット3やサーマルプリントヘッド50の数の発熱抵抗体12に対して、複数の配線電極の配線抵抗値のばらつきのみに応じて発熱体抵抗値の補正処理を施すことができる。   In the above-described embodiment, the case where the plurality of common strip electrodes 16 provided in the second head unit 3 and the thermal print head 50 are formed relatively thin has been described. However, the present invention is not limited to this, and the plurality of common strip electrodes 16 provided in the second head unit 3 and the thermal print head 50 are formed relatively thick to reduce the strip electrode resistance value, thereby reducing the voltage drop during energization. You may let them. According to the present invention, with respect to the number of heating resistors 12 of the number of the second head units 3 and the thermal print heads 50, the heating element resistance values of the plurality of wiring electrodes depend only on the variation of the wiring resistance values. Correction processing can be performed.

これに加えて本発明は、例えば第2ヘッドユニット3やサーマルプリントヘッド50の一面に、複数の駆動用IC8、51を主走査方向S1へIC単位抵抗体ピッチとは異なるICピッチで並べて配置するものの、上述した共通帯状電極16よりも比較的長い共通帯状電極を1個のみ配置する。また本発明は、第2ヘッドユニット3やサーマルプリントヘッド50の一面に、複数の折返電極13は配置せずに、複数の発熱抵抗体12の一端部を1個の共通帯状電極に接続する、それぞれ長さの等しい複数の共通配線電極を配置すると共に、これら複数の発熱抵抗体12の他端部を複数の駆動用IC8、51に接続する、長さの異なる複数の個別配線電極14を配置しても良い。   In addition, in the present invention, for example, a plurality of driving ICs 8 and 51 are arranged on the one surface of the second head unit 3 or the thermal print head 50 in the main scanning direction S1 at an IC pitch different from the IC unit resistor pitch. However, only one common strip electrode that is relatively longer than the common strip electrode 16 is disposed. Further, according to the present invention, one end of the plurality of heating resistors 12 is connected to one common strip electrode without arranging the plurality of folded electrodes 13 on one surface of the second head unit 3 or the thermal print head 50. A plurality of common wiring electrodes having the same length are disposed, and a plurality of individual wiring electrodes 14 having different lengths are connected to connect the other end portions of the plurality of heating resistors 12 to the plurality of driving ICs 8 and 51. You may do it.

そして本発明は、係る構成の第2ヘッドユニット3やサーマルプリントヘッド50において共通帯状電極を比較的薄く形成した場合は、複数の発熱抵抗体12に対して、共通帯状電極に通電時に生じる電圧降下と複数の個別配線電極14の配線抵抗値のばらつきとに応じて発熱体抵抗値の補正処理を施しても良い。また本発明は、係る構成の第2ヘッドユニット3やサーマルプリントヘッド50において共通帯状電極を比較的厚く形成して帯状電極抵抗値を小さくし、通電時の電圧降下を低減させた場合は、複数の発熱抵抗体12に対して、複数の個別配線電極14の配線抵抗値のばらつきに応じて発熱体抵抗値の補正処理を施しても良い。本発明は、係る構成によっても、複数の発熱部の発熱量をほぼ一定にすることができる。   In the second head unit 3 and the thermal print head 50 configured as described above, when the common strip electrode is formed relatively thin, the voltage drop generated when the common strip electrode is energized with respect to the plurality of heating resistors 12. Further, the heating element resistance value correction process may be performed according to the wiring resistance value variations of the individual wiring electrodes 14. In the second head unit 3 and the thermal print head 50 having such a configuration, the common strip electrode is formed to be relatively thick to reduce the strip electrode resistance value, thereby reducing the voltage drop during energization. The heating resistor 12 may be subjected to a correction process of the heating element resistance value according to variations in the wiring resistance values of the plurality of individual wiring electrodes 14. According to the present invention, even with such a configuration, the heat generation amounts of the plurality of heat generating portions can be made substantially constant.

さらに上述した実施の形態においては、第2ヘッドユニット3の複数の発熱抵抗体12の発熱体抵抗値を補正する補正処理において、これら複数の発熱抵抗体12各々の目標抵抗値を、配線電極毎に求めた補正用配線抵抗値を減算して補正する場合について述べた。しかしながら本発明は、これに限らず、第2ヘッドユニット3の複数の発熱抵抗体12の発熱体抵抗値を補正する補正処理において、これら複数の発熱抵抗体12各々の目標抵抗値を、配線電極毎の配線抵抗値の実測値を減算して補正しても良い。   Furthermore, in the above-described embodiment, in the correction processing for correcting the heating element resistance values of the plurality of heating resistors 12 of the second head unit 3, the target resistance value of each of the plurality of heating resistors 12 is set for each wiring electrode. The case where correction is made by subtracting the correction wiring resistance value obtained in the above has been described. However, the present invention is not limited to this, and in the correction processing for correcting the heating element resistance values of the plurality of heating resistors 12 of the second head unit 3, the target resistance value of each of the plurality of heating resistors 12 is set to the wiring electrode. You may correct | amend by subtracting the measured value of every wiring resistance value.

さらに上述した実施の形態においては、第1回路基板7の一面及び第2回路基板27の一面にそれぞれ複数の駆動用IC8を配置する場合について述べた。しかしながら本発明は、これに限らず、第1ヘッド基板6の一面及び第2ヘッド基板26の一面にそれぞれ複数の駆動用IC8を配置しても良い。   Further, in the above-described embodiment, the case where a plurality of driving ICs 8 are arranged on one surface of the first circuit board 7 and one surface of the second circuit board 27 has been described. However, the present invention is not limited to this, and a plurality of driving ICs 8 may be disposed on one surface of the first head substrate 6 and one surface of the second head substrate 26.

本発明は、デジタル製版機、ビデオプリンタ、イメージャ、シールプリンタ等のサーマルプリンタと、当該サーマルプリンタに設けられるサーマルプリントヘッドに利用することができる。   The present invention can be used for a thermal printer such as a digital plate making machine, a video printer, an imager, and a seal printer, and a thermal print head provided in the thermal printer.

1……サーマルプリントヘッド、2……第2ヘッドユニット、8、51……駆動用IC、12……発熱抵抗体、14……個別配線電極、15……共通配線電極、16……共通帯状電極、26……第2ヘッド基板、27……第2回路基板、40……サーマルプリンタ、50……第1ヘッドユニット、52……配線電極。   DESCRIPTION OF SYMBOLS 1 ... Thermal print head, 2 ... 2nd head unit, 8, 51 ... Driving IC, 12 ... Heating resistor, 14 ... Individual wiring electrode, 15 ... Common wiring electrode, 16 ... Common belt shape Electrode, 26... Second head substrate, 27... Second circuit board, 40... Thermal printer, 50.

Claims (4)

基板と、
前記基板の一面に主走査方向へ並べて配置される複数の発熱抵抗体と、
それぞれ所定の個数の前記発熱抵抗体が接続可能で、前記基板の前記一面に前記主走査方向へ、前記所定の個数の前記発熱抵抗体の配置範囲のピッチとは異なるピッチで並べて配置される複数の制御素子と、
前記基板の前記一面の複数の前記発熱抵抗体と複数の前記制御素子との間に配置され、複数の前記発熱抵抗体と複数の前記制御素子とを接続する複数の個別配線電極と
を具え、
複数の前記発熱抵抗体は、
複数の前記個別配線電極の配線抵抗値に応じて、発熱体抵抗値を補正する補正処理が施された
サーマルプリントヘッド。
A substrate,
A plurality of heating resistors arranged side by side in the main scanning direction on one surface of the substrate;
A predetermined number of the heating resistors can be connected to each other, and a plurality of the heating resistors arranged side by side at a different pitch from the pitch of the predetermined number of the heating resistors in the main scanning direction on the one surface of the substrate. A control element of
A plurality of individual wiring electrodes arranged between the plurality of heating resistors and the plurality of control elements on the one surface of the substrate, and connecting the plurality of heating resistors and the plurality of control elements;
The plurality of heating resistors are
A thermal print head subjected to a correction process for correcting the heating element resistance value according to the wiring resistance values of the plurality of individual wiring electrodes.
前記基板の前記一面に前記主走査方向へ前記制御素子の前記ピッチと等しいピッチで並べて配置される複数の共通帯状電極と、
前記基板の前記一面の複数の前記発熱抵抗体と複数の前記共通帯状電極との間に配置され、複数の前記発熱抵抗体と複数の前記共通帯状電極とを接続する複数の共通配線電極と
を具え、
複数の前記発熱抵抗体は、
複数の前記個別配線電極の配線抵抗値及び複数の前記共通配線電極の配線抵抗値に応じて、前記発熱体抵抗値を補正する補正処理が施された
請求項1に記載のサーマルプリントヘッド。
A plurality of common strip electrodes arranged on the one surface of the substrate in the main scanning direction at a pitch equal to the pitch of the control elements;
A plurality of common wiring electrodes arranged between the plurality of heating resistors and the plurality of common strip electrodes on the one surface of the substrate and connecting the plurality of heating resistors and the plurality of common strip electrodes; Prepared,
The plurality of heating resistors are
The thermal print head according to claim 1, wherein a correction process is performed to correct the heating element resistance value according to a wiring resistance value of the plurality of individual wiring electrodes and a wiring resistance value of the plurality of common wiring electrodes.
複数の前記発熱抵抗体は、
複数の前記共通帯状電極に通電時に生じる電圧降下と、複数の前記個別配線電極の配線抵抗値及び複数の前記共通配線電極の配線抵抗値とに応じて、前記発熱体抵抗値を補正する補正処理が施された
請求項2に記載のサーマルプリントヘッド。
The plurality of heating resistors are
Correction processing for correcting the heating element resistance value according to a voltage drop generated when energizing the plurality of common strip electrodes, a wiring resistance value of the plurality of individual wiring electrodes, and a wiring resistance value of the plurality of common wiring electrodes The thermal print head according to claim 2.
基板と、当該基板の一面に主走査方向へ並べて配置される複数の発熱抵抗体と、それぞれ所定の個数の当該発熱抵抗体が接続可能で、前記基板の前記一面に前記主走査方向へ、前記所定の個数の前記発熱抵抗体の配置範囲のピッチとは異なるピッチで並べて配置される複数の制御素子と、前記基板の前記一面の複数の前記発熱抵抗体と複数の前記制御素子との間に配置され、複数の前記発熱抵抗体と複数の前記制御素子とを接続する複数の個別配線電極とを有し、複数の前記発熱抵抗体に、複数の前記個別配線電極の配線抵抗値に応じて、発熱体抵抗値を補正する補正処理が施されたサーマルプリントヘッド
を具えるサーマルプリンタ。
A substrate, a plurality of heating resistors arranged side by side in the main scanning direction on one surface of the substrate, and a predetermined number of the heating resistors can be connected to each other, and the one surface of the substrate is connected to the main scanning direction in the main scanning direction. Between a plurality of control elements arranged side by side at a pitch different from the pitch of the arrangement range of the predetermined number of the heating resistors, and between the plurality of heating resistors and the plurality of control elements on the one surface of the substrate A plurality of individual wiring electrodes arranged to connect the plurality of heating resistors and the plurality of control elements, and the plurality of heating resistors according to the wiring resistance values of the plurality of individual wiring electrodes. A thermal printer that has a thermal printhead that has been subjected to correction processing to correct the heating element resistance.
JP2016069409A 2016-03-30 2016-03-30 Thermal print head and thermal printer Pending JP2017177587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069409A JP2017177587A (en) 2016-03-30 2016-03-30 Thermal print head and thermal printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069409A JP2017177587A (en) 2016-03-30 2016-03-30 Thermal print head and thermal printer

Publications (1)

Publication Number Publication Date
JP2017177587A true JP2017177587A (en) 2017-10-05

Family

ID=60003330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069409A Pending JP2017177587A (en) 2016-03-30 2016-03-30 Thermal print head and thermal printer

Country Status (1)

Country Link
JP (1) JP2017177587A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782202A (en) * 1986-12-29 1988-11-01 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for resistance adjustment of thick film thermal print heads
JPH07304200A (en) * 1994-05-10 1995-11-21 Rohm Co Ltd Thermal print head and manufacture thereof
JP2003266754A (en) * 2002-03-19 2003-09-24 Sii P & S Inc Thermal head
JP2005231169A (en) * 2004-02-19 2005-09-02 Rohm Co Ltd Thermal printing head
JP2006095943A (en) * 2004-09-30 2006-04-13 Alps Electric Co Ltd Thermal head
CN103381711A (en) * 2012-05-04 2013-11-06 山东华菱电子有限公司 Method and device for thermal printing head resistor repair

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782202A (en) * 1986-12-29 1988-11-01 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for resistance adjustment of thick film thermal print heads
US4782202B1 (en) * 1986-12-29 1994-03-08 Mitsubishi Denki Kabushiki Kaisha
JPH07304200A (en) * 1994-05-10 1995-11-21 Rohm Co Ltd Thermal print head and manufacture thereof
JP2003266754A (en) * 2002-03-19 2003-09-24 Sii P & S Inc Thermal head
JP2005231169A (en) * 2004-02-19 2005-09-02 Rohm Co Ltd Thermal printing head
JP2006095943A (en) * 2004-09-30 2006-04-13 Alps Electric Co Ltd Thermal head
CN103381711A (en) * 2012-05-04 2013-11-06 山东华菱电子有限公司 Method and device for thermal printing head resistor repair

Similar Documents

Publication Publication Date Title
US8922610B2 (en) Thermal head and thermal printer provided with same
JP6676369B2 (en) Thermal printhead and thermal printer
JP2012158034A (en) Thermal head
JP2012061711A (en) Thermal print head and thermal printer
JP2017177587A (en) Thermal print head and thermal printer
JP5489836B2 (en) Thermal head
JP4853128B2 (en) Thermal head and printing device
WO2020241581A1 (en) Thermal print head
JP5964101B2 (en) Thermal print head
JP2010125679A (en) Thermal printing head
JP2016137692A (en) Thermal head and thermal printer comprising the same
JP6875616B1 (en) Thermal head and thermal printer
JP2020179514A (en) Driver ic for thermal print head, thermal print head and wiring pattern of thermal print head
JP2014188682A (en) Thermal print head and method for producing the same
JP5260038B2 (en) Thermal print head and manufacturing method thereof
WO2021100822A1 (en) Thermal head and thermal printer
JP6422281B2 (en) Thermal head
JP6208564B2 (en) Thermal head and thermal printer
US8243112B2 (en) Recording head and recording apparatus provided with the recording head
JP2019031057A (en) Thermal print head and thermal printer
JP2009131994A (en) Thermal printing head and its manufacturing method
JP6080452B2 (en) Thermal print head and thermal printer
JP6689116B2 (en) Thermal print head and thermal printer
JP6632449B2 (en) Thermal head and thermal printer
JP6080665B2 (en) Thermal print head

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200616