JP2017176968A - Electric deionization apparatus, and production method of deionization water - Google Patents

Electric deionization apparatus, and production method of deionization water Download PDF

Info

Publication number
JP2017176968A
JP2017176968A JP2016066069A JP2016066069A JP2017176968A JP 2017176968 A JP2017176968 A JP 2017176968A JP 2016066069 A JP2016066069 A JP 2016066069A JP 2016066069 A JP2016066069 A JP 2016066069A JP 2017176968 A JP2017176968 A JP 2017176968A
Authority
JP
Japan
Prior art keywords
chamber
water
exchange resin
ion exchange
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016066069A
Other languages
Japanese (ja)
Other versions
JP6728876B2 (en
Inventor
佐藤 伸
Shin Sato
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016066069A priority Critical patent/JP6728876B2/en
Publication of JP2017176968A publication Critical patent/JP2017176968A/en
Application granted granted Critical
Publication of JP6728876B2 publication Critical patent/JP6728876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PROBLEM TO BE SOLVED: To provide an electric deionization apparatus that keeps a sufficient boron removal capacity with even a small number of cells in a desalination chamber, and a production method of deionization water using the electric deionization apparatus.SOLUTION: In an electric deionization apparatus, ion exchange membranes 13, 14 partition a space between an anode 11 and a cathode 12 into a concentration chamber 15 and a desalination chamber 16. Concentrated water is introduced into the concentration chamber and raw water is introduced into the desalination chamber 16 as water to be treated and taken out as product water. A part of the product water is introduced into the concentration chamber 15 as concentrated water in the counterflow direction to the flow in the desalination chamber 16. The desalination chamber 16 has a thickness of 10-20 mm, while an ion exchange resin packed in the desalination chamber 16 has an average particle diameter of 0.2-0.3 mm.SELECTED DRAWING: Figure 1

Description

本発明は、被処理水中のホウ素を高度に除去することができる電気脱イオン装置と、この電気脱イオン装置を用いた脱イオン水の製造方法に関する。   The present invention relates to an electrodeionization apparatus capable of highly removing boron in water to be treated and a method for producing deionized water using the electrodeionization apparatus.

従来、市水、地下水、工水等の原水から超純水を製造する超純水製造装置は、基本的に、前処理装置、一次純水製造装置及び二次純水製造装置から構成される。このうち、前処理装置は、凝集、浮上、濾過、除濁膜装置等で構成される。一次純水製造装置は、活性炭吸着塔、紫外線(UV)酸化装置、化学的酸化装置、脱気装置等のうちの1種又は2種以上の装置と、脱塩装置とで構成され、このうち脱塩装置は、逆浸透(RO)膜分離装置、電気脱イオン装置、イオン交換装置(混床式イオン交換装置ないしはイオン交換純水装置)の1種或いは2種以上の組み合わせにより構成される。また、二次純水製造装置は、一次純水製造装置と同様な装置単位を適宜組み合わせたものであり、一般的には、低圧UV酸化装置、混床式イオン交換装置及び限外濾過(UF)膜分離装置で構成される。   Conventionally, an ultrapure water production apparatus that produces ultrapure water from raw water such as city water, groundwater, and industrial water basically includes a pretreatment apparatus, a primary pure water production apparatus, and a secondary pure water production apparatus. . Among these, the pretreatment device is composed of agglomeration, levitation, filtration, a turbidity removal membrane device and the like. The primary pure water production apparatus is composed of one or more of activated carbon adsorption tower, ultraviolet (UV) oxidizer, chemical oxidizer, degasser, and the like, and a demineralizer. The desalting apparatus is constituted by one or a combination of two or more of a reverse osmosis (RO) membrane separation apparatus, an electrodeionization apparatus, and an ion exchange apparatus (mixed bed ion exchange apparatus or ion exchange pure water apparatus). The secondary pure water production apparatus is a combination of the same apparatus units as those of the primary pure water production apparatus. Generally, a low pressure UV oxidation apparatus, a mixed bed ion exchange apparatus, and an ultrafiltration (UF) ) Consists of a membrane separator.

これらの各装置単位において、原水の脱塩は、RO膜分離装置、電気脱イオン装置及び混床式イオン交換装置で行われる。また、原水中の微粒子の除去は、RO膜分離装置及びUF膜分離装置で行われ、TOC成分の除去は、RO膜分離装置、イオン交換純水装置、低圧UV酸化装置で行われる。   In each of these apparatus units, the raw water is desalted by an RO membrane separation apparatus, an electrodeionization apparatus, and a mixed bed ion exchange apparatus. The removal of fine particles in the raw water is performed by the RO membrane separation device and the UF membrane separation device, and the removal of the TOC component is performed by the RO membrane separation device, the ion-exchange pure water device, and the low-pressure UV oxidation device.

近年、超純水製造において、ホウ素については、例えば1ppt以下という厳しい水質が求められるようになってきている。   In recent years, in the production of ultrapure water, strict water quality of, for example, 1 ppt or less has been demanded for boron.

従来、RO膜分離装置と電気脱イオン装置との組み合わせにおいて、ホウ素除去率の高い電気脱イオン装置(例えば栗田工業(株)製「KCDI−UPz」等)も提案されているが、このような高性能の電気脱イオン装置であっても、そのホウ素除去率は99.9%程度である。このため、例えば、ホウ素濃度20ppb程度の被処理水をRO膜分離装置で処理してホウ素濃度10ppb程度のRO透過水を得、これをホウ素除去率99.9%の電気脱イオン装置で処理しても、得られる処理水(脱イオン水)のホウ素濃度は10pptにしかならず、ホウ素濃度1ppt以下の処理水を得ることはできない。   Conventionally, in a combination of an RO membrane separation device and an electrodeionization device, an electrodeionization device having a high boron removal rate (for example, “KCDI-UPz” manufactured by Kurita Kogyo Co., Ltd.) has been proposed. Even a high-performance electrodeionization apparatus has a boron removal rate of about 99.9%. For this reason, for example, treated water with a boron concentration of about 20 ppb is treated with an RO membrane separator to obtain RO permeated water with a boron concentration of about 10 ppb, and this is treated with an electrodeionization device with a boron removal rate of 99.9%. However, the boron concentration of the treated water (deionized water) obtained is only 10 ppt, and treated water having a boron concentration of 1 ppt or less cannot be obtained.

一般的な電気脱イオン装置は、陰極と陽極との間に複数のカチオン交換膜とアニオン交換膜とを交互に配列することにより、濃縮室と脱塩室とを交互に形成し、脱塩室にイオン交換樹脂を充填してなり、更に濃縮室にもイオン交換樹脂が充填されたものも提供されている。   A general electrodeionization apparatus is configured by alternately forming a plurality of cation exchange membranes and anion exchange membranes between a cathode and an anode, thereby alternately forming a concentration chamber and a desalting chamber. There are also provided those in which the ion exchange resin is filled and the concentration chamber is also filled with the ion exchange resin.

電気脱イオン装置において、ホウ素除去率の向上のためには、脱塩室の厚さは小さい方が有利である。特許文献1には、脱塩室の厚さを5mm以下とした、ホウ素除去率の高い電気脱イオン装置が記載されている。   In the electrodeionization apparatus, it is advantageous to reduce the thickness of the demineralization chamber in order to improve the boron removal rate. Patent Document 1 describes an electrodeionization apparatus with a high boron removal rate in which the thickness of the demineralization chamber is 5 mm or less.

従来の電気脱イオン装置において、脱塩室、更には濃縮室に充填されるイオン交換樹脂は、粒径500〜600μm程度のものであり、また、多くの場合、粒径の均一性についての考慮はなされていない。   In a conventional electrodeionization apparatus, the ion exchange resin filled in the demineralization chamber and further the concentration chamber has a particle size of about 500 to 600 μm, and in many cases, consideration is given to the uniformity of the particle size. Has not been made.

例えば、特許文献2の実施例では、電気脱イオン装置の脱塩室にアニオン交換樹脂として三菱化学(株)製「ダイヤイオン(登録商標)SA10A」(平均粒径540μm)と、カチオン交換樹脂として三菱化学(株)製「ダイヤイオン(登録商標)SK1B」(平均粒径620μm)を充填している。   For example, in the example of Patent Document 2, “Diaion (registered trademark) SA10A” (average particle size: 540 μm) manufactured by Mitsubishi Chemical Corporation as an anion exchange resin in the demineralization chamber of an electrodeionization apparatus and a cation exchange resin Filled with “Diaion (registered trademark) SK1B” (average particle size: 620 μm) manufactured by Mitsubishi Chemical Corporation.

特許文献3には、脱塩室に、粒径が異なる複数の均一粒径を有するイオン交換樹脂粒子群の混合物であって、最大の均一粒径を有するイオン交換樹脂粒子群の粒径が、最小の均一粒径を有するイオン交換樹脂粒子群の粒径の1.5倍以上であるものが充填された脱イオン水製造装置が提案されており、最小の均一粒径を有するイオン交換樹脂粒子群の粒径が30〜600μmであるとされているが、実施例で具体的に用いたイオン交換樹脂は、平均粒径が630μmのカチオン交換樹脂と、平均粒径220μmのカチオン交換樹脂と、平均粒径575μmのアニオン交換樹脂の25/22.5/52.5(重量比)の混合物である。   Patent Document 3 discloses a mixture of ion exchange resin particle groups having a plurality of uniform particle diameters having different particle diameters in the desalting chamber, and the particle diameter of the ion exchange resin particle group having the largest uniform particle diameter is An apparatus for producing deionized water filled with particles having a particle diameter of 1.5 times or more of the ion exchange resin particle group having the smallest uniform particle diameter has been proposed, and the ion exchange resin particles having the smallest uniform particle diameter Although the particle size of the group is said to be 30 to 600 μm, the ion exchange resin specifically used in the examples includes a cation exchange resin having an average particle size of 630 μm, a cation exchange resin having an average particle size of 220 μm, This is a 25 / 22.5 / 52.5 (weight ratio) mixture of anion exchange resins having an average particle size of 575 μm.

特開2011−110515号公報JP 2011-110515 A 特開2001−113281号公報JP 2001-113281 A 特開平10−258289号公報Japanese Patent Laid-Open No. 10-258289

本発明は、脱塩室のセル数を少なくしても十分なホウ素除去性能を有する電気脱イオン装置と、この電気脱イオン装置を用いた脱イオン水の製造方法を提供することを課題とする。   An object of the present invention is to provide an electrodeionization apparatus having sufficient boron removal performance even if the number of cells in the desalination chamber is reduced, and a method for producing deionized water using the electrodeionization apparatus. .

本発明の電気脱イオン装置は、陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画され、濃縮水が該濃縮室に流通され、原水が被処理水として脱塩室に流通され、生産水として取り出され、生産水の一部が濃縮水として濃縮室に脱塩室の流れ方向と向流方向に流通される電気脱イオン装置において、該脱塩室の厚さが10〜20mmであり、該脱塩室に充填されるイオン交換樹脂の平均直径が0.2〜0.3mmであることを特徴とするものである。   In the electrodeionization apparatus of the present invention, a concentration chamber and a desalination chamber are partitioned by an ion exchange membrane between an anode and a cathode, concentrated water is circulated to the concentration chamber, and raw water is treated as desalting chamber. In the deionization apparatus in which a part of the production water is circulated in the concentration chamber as concentrated water in the flow direction and the counterflow direction of the demineralization chamber. It is 10-20 mm, The average diameter of the ion exchange resin with which this desalination chamber is filled is 0.2-0.3 mm, It is characterized by the above-mentioned.

本発明の脱イオン水の製造方法は、この電気脱イオン装置を用いて脱イオン水を製造する。   The method for producing deionized water of the present invention produces deionized water using this electrodeionization device.

本発明の電気脱イオン装置では、脱塩室の厚さを10〜20mmと大きくしている。これにより、アニオン交換膜やカチオン交換膜の枚数が少なくなり、電気脱イオン装置の構成コストが安価となる。ただし、脱塩室の厚さを大きくすると、ホウ素除去効率が低下する。そこで、本発明では、イオン交換樹脂として平均粒径が0.2〜0.3mmと小さいものを用い、ホウ素除去効率を確保する。従って、本発明によると、装置構成コストが低く、しかも十分なホウ素除去能力を有した電気脱イオン装置が提供される。   In the electrodeionization apparatus of the present invention, the thickness of the demineralization chamber is increased to 10 to 20 mm. Thereby, the number of anion exchange membranes and cation exchange membranes is reduced, and the configuration cost of the electrodeionization apparatus is reduced. However, if the thickness of the desalting chamber is increased, the boron removal efficiency decreases. Therefore, in the present invention, an ion exchange resin having an average particle size as small as 0.2 to 0.3 mm is used to ensure boron removal efficiency. Therefore, according to the present invention, an electrodeionization apparatus having a low apparatus construction cost and having a sufficient boron removal capability is provided.

なお、平均粒径が小さいイオン交換樹脂を用いると、イオン交換樹脂の表面積が大きくなるため、電気抵抗が小さくなり、印加電圧を低くしても電流が確保される(即ち、同電流で運転するための必要電圧が低下する)ようになるので、電力コストを低減することができる。   When an ion exchange resin having a small average particle size is used, the surface area of the ion exchange resin is increased, so that the electric resistance is reduced and a current is ensured even when the applied voltage is lowered (that is, the operation is performed with the same current). Therefore, the power cost can be reduced.

実施の形態に係る電気脱イオン装置の模式的な断面図である。It is typical sectional drawing of the electrodeionization apparatus which concerns on embodiment.

図1は本発明の実施の形態を示す電気脱イオン装置の模式的な断面図である。この電気脱イオン装置は、電極(陽極11、陰極12)の間に複数のアニオン交換膜(A膜)13及びカチオン交換膜(C膜)14を交互に配列して濃縮室15と脱塩室16とを交互に形成したものであり、脱塩室16には、平均粒径0.2〜0.3mmのイオン交換樹脂が充填されている。   FIG. 1 is a schematic cross-sectional view of an electrodeionization apparatus showing an embodiment of the present invention. In this electrodeionization apparatus, a plurality of anion exchange membranes (A membranes) 13 and cation exchange membranes (C membranes) 14 are alternately arranged between electrodes (anode 11 and cathode 12), and a concentrating chamber 15 and a desalting chamber. 16 are alternately formed, and the desalting chamber 16 is filled with an ion exchange resin having an average particle diameter of 0.2 to 0.3 mm.

また、濃縮室15と、陽極室17及び陰極室18にも、イオン交換体、活性炭又は金属等の電気導電体が充填されている。   The concentration chamber 15, the anode chamber 17, and the cathode chamber 18 are also filled with an electric conductor such as an ion exchanger, activated carbon, or metal.

原水は脱塩室16の入口側から導入され、脱塩室16の出口側から生産水が取り出される。この生産水の一部は、濃縮室15に脱塩室16の通水方向とは逆方向に向流一過式で通水され、濃縮室15の流出水は系外へ排出される。即ち、この電気脱イオン装置では、濃縮室15と脱塩室16とが交互に並設され、脱塩室16の生産水取り出し側に濃縮室15の流入口が設けられており、脱塩室16の原水流入側に濃縮室15の流出口が設けられている。また、生産水の一部は陽極室17の入口側に送給され、陽極室17の流出水は、陰極室18の入口側へ送給され、陰極室18の流出水は排水として系外へ排出される。   Raw water is introduced from the inlet side of the desalting chamber 16, and product water is taken out from the outlet side of the desalting chamber 16. A part of this product water is passed through the concentrating chamber 15 in a counter-current and transient manner in the direction opposite to the water passing direction of the desalting chamber 16, and the outflow water of the concentrating chamber 15 is discharged out of the system. That is, in this electric deionization apparatus, the concentrating chambers 15 and the desalting chambers 16 are alternately arranged in parallel, and the inlet of the concentrating chamber 15 is provided on the product water take-out side of the desalting chamber 16. An outlet of the concentrating chamber 15 is provided on the 16 raw water inflow side. A part of the production water is sent to the inlet side of the anode chamber 17, the effluent water of the anode chamber 17 is fed to the inlet side of the cathode chamber 18, and the effluent water of the cathode chamber 18 is discharged out of the system as drainage. Discharged.

このように、濃縮室15に生産水を脱塩室16と向流一過式で通水することにより、生産水取り出し側ほど濃縮室15内の濃縮水の濃度が低いものとなり、濃度拡散による脱塩室16への影響が小さくなり、ホウ素等のイオンの除去率を高めることができる。   In this way, by passing the production water through the concentration chamber 15 in a counter-current and transient manner with the desalination chamber 16, the concentration of the concentrated water in the concentration chamber 15 becomes lower toward the production water take-out side, which is caused by concentration diffusion. The influence on the desalting chamber 16 is reduced, and the removal rate of ions such as boron can be increased.

この電気脱イオン装置では、脱塩室16の厚さを10〜20mmと大きくしている。これにより、アニオン交換膜やカチオン交換膜の枚数が少なくなり、電気脱イオン装置の構成コストが安価となる。ただし、脱塩室16の厚さを大きくすると、ホウ素除去効率が低下するが、それを補うために、イオン交換樹脂として平均粒径が0.2〜0.3mmと小さいものを用い、ホウ素除去効率を確保する。なお、イオン交換樹脂として平均粒径の小さいものを用いると、イオンの表面積が大きくなるため、電気抵抗が小さくなり、印加電圧を低くしても、電流が確保されるようになるので、電力コストを低減することができる。なお、脱塩室の数は、10〜100特に40〜60程度が好ましい。   In this electrodeionization apparatus, the thickness of the demineralization chamber 16 is increased to 10 to 20 mm. Thereby, the number of anion exchange membranes and cation exchange membranes is reduced, and the configuration cost of the electrodeionization apparatus is reduced. However, when the thickness of the desalting chamber 16 is increased, the boron removal efficiency decreases. To compensate for this, an ion exchange resin having a small average particle size of 0.2 to 0.3 mm is used to remove boron. Ensure efficiency. If an ion exchange resin having a small average particle diameter is used, the surface area of ions increases, so the electric resistance decreases, and even when the applied voltage is reduced, the current is secured, so the power cost Can be reduced. The number of desalting chambers is preferably about 10 to 100, especially about 40 to 60.

脱塩室16に被処理水を上下方向に通水する場合、脱塩室16のイオン交換樹脂充填高さは40〜80mmであり、幅は30〜60mmであることが好ましい。なお、電流値は10〜20Aとすることが高いホウ素除去率とするためには好ましい。   When water to be treated is passed through the desalting chamber 16 in the vertical direction, the ion exchange resin filling height of the desalting chamber 16 is preferably 40 to 80 mm, and the width is preferably 30 to 60 mm. The current value is preferably 10 to 20 A in order to obtain a high boron removal rate.

なお、このイオン交換樹脂の平均粒径は、篩を用いることにより測定することもできるが、イオン交換樹脂メーカーのカタログ値を採用するのが好ましい。   In addition, although the average particle diameter of this ion exchange resin can also be measured by using a sieve, it is preferable to adopt the catalog value of the ion exchange resin manufacturer.

平均粒径が0.2〜0.3mmの小粒径のイオン交換樹脂を用いると、同一量のイオン交換樹脂に対して、ホウ素の吸着除去に関与するイオン交換樹脂の表面積が大きくなり、イオン交換樹脂に吸着されたホウ素がイオン交換樹脂の表面を伝わって濃縮室に排出される効率が大きく向上する。   When an ion exchange resin having a small particle size with an average particle size of 0.2 to 0.3 mm is used, the surface area of the ion exchange resin involved in the adsorption removal of boron is increased with respect to the same amount of ion exchange resin. The efficiency with which the boron adsorbed on the exchange resin is transferred to the concentration chamber through the surface of the ion exchange resin is greatly improved.

脱塩室16に充填するイオン交換樹脂の平均粒径が0.3mmを超えると、小粒径のイオン交換樹脂を用いることによる本発明の効果を十分に得ることができない。一方、平均粒径が0.2mmより小さいイオン交換樹脂は、取り扱い性や通水抵抗の面で好ましくない場合がある。   When the average particle diameter of the ion exchange resin filled in the desalting chamber 16 exceeds 0.3 mm, the effect of the present invention by using the ion exchange resin having a small particle diameter cannot be sufficiently obtained. On the other hand, an ion exchange resin having an average particle size of less than 0.2 mm may not be preferable in terms of handleability and water resistance.

脱塩室16には、通常、イオン交換樹脂として、アニオン交換樹脂とカチオン交換樹脂の混合樹脂が充填される。従って、このアニオン交換樹脂とカチオン交換樹脂のそれぞれが前述の平均粒径を満たすことが好ましい。   The desalting chamber 16 is usually filled with a mixed resin of an anion exchange resin and a cation exchange resin as an ion exchange resin. Therefore, it is preferable that each of the anion exchange resin and the cation exchange resin satisfy the aforementioned average particle diameter.

脱塩室16に充填するアニオン交換樹脂とカチオン交換樹脂の混合樹脂の混合割合は、アニオン交換樹脂:カチオン交換樹脂=60〜90:40〜10、特に60〜80:40〜20(乾燥重量比)の範囲であることが好ましい。脱塩室16に充填される混合樹脂は、上記の混合割合の範囲おいて、すべての箇所において同一であってもよく、脱塩室16の通水方向の入口側と出口側で異なっていてもよい。例えば、脱塩室16の通水方向の入口側(上流側)の通水流路の長さのうち1/2〜1/3の領域においては、アニオン交換樹脂:カチオン交換樹脂=70〜80:30〜20(乾燥重量比)の混合樹脂を充填し、その他の箇所(出口側の箇所)にはアニオン交換樹脂:カチオン交換樹脂=40〜60:60〜40、好ましくは50〜60:50〜40(乾燥重量比)の混合樹脂を充填してもよい。このようにすることで、入口側でアニオンが効果的に除去され、アルカリ雰囲気となるので、炭酸、シリカ、ホウ素がよりイオン化しやすくなり、電気脱イオン装置で除去されやすくなる。   The mixing ratio of the mixed resin of the anion exchange resin and the cation exchange resin to be filled in the desalting chamber 16 is anion exchange resin: cation exchange resin = 60 to 90:40 to 10, particularly 60 to 80:40 to 20 (dry weight ratio). ) Is preferable. The mixed resin filled in the desalting chamber 16 may be the same in all locations within the range of the mixing ratio described above, and is different between the inlet side and the outlet side of the desalting chamber 16 in the water flow direction. Also good. For example, in the region of 1/2 to 1/3 of the length of the water passage on the inlet side (upstream side) in the water passage direction of the desalting chamber 16, anion exchange resin: cation exchange resin = 70 to 80: 30 to 20 (dry weight ratio) of the mixed resin is filled, and the other part (exit side part) is anion exchange resin: cation exchange resin = 40 to 60:60 to 40, preferably 50 to 60:50 to A mixed resin of 40 (dry weight ratio) may be filled. By doing so, anions are effectively removed on the inlet side and an alkaline atmosphere is formed, so that carbonic acid, silica, and boron are more easily ionized, and are easily removed by an electrodeionization apparatus.

本発明の電気脱イオン装置は、高いホウ素除去率を実現するために、濃縮室15にもイオン交換樹脂を充填することが好ましく、この場合、濃縮室15に充填するイオン交換樹脂もまた、脱塩室16に充填するイオン交換樹脂と同様の理由から、平均粒径0.2〜0.3mmのイオン交換樹脂であることが好ましい。   In the electrodeionization apparatus of the present invention, in order to achieve a high boron removal rate, the concentration chamber 15 is preferably filled with an ion exchange resin. In this case, the ion exchange resin filled in the concentration chamber 15 is also dehydrated. For the same reason as the ion exchange resin filled in the salt chamber 16, an ion exchange resin having an average particle size of 0.2 to 0.3 mm is preferable.

濃縮室15に充填するイオン交換樹脂もまた、アニオン交換樹脂とカチオン交換樹脂の混合樹脂が好ましい。特に、アニオン交換樹脂:カチオン交換樹脂=40〜70:60〜30、好ましくは50〜70:50〜30(乾燥重量比)の混合樹脂であることが好ましい。濃縮室15の厚さは、脱塩室の厚さと同等とすることが好ましい。   The ion exchange resin filled in the concentration chamber 15 is also preferably a mixed resin of an anion exchange resin and a cation exchange resin. In particular, a mixed resin of anion exchange resin: cation exchange resin = 40 to 70:60 to 30, preferably 50 to 70:50 to 30 (dry weight ratio) is preferable. The thickness of the concentration chamber 15 is preferably equal to the thickness of the desalting chamber.

本発明の脱イオン水の製造方法は、このような本発明の電気脱イオン装置に被処理水を通水して脱イオン処理する方法であり、好ましくは、電気脱イオン装置の脱塩室16に被処理水を通水し、処理水(脱塩室の流出水)の一部、例えば10〜30%程度を濃縮室15に、脱塩室16の通水方向と逆方向に通水することが、高いホウ素除去率を得る上で好ましい。また、その際の通水速度としては、ホウ素除去率と処理効率の面から、脱塩室16の通水LVは50〜150m/hr、濃縮室15の通水LVは10〜30m/hr程度であることが好ましい。   The method for producing deionized water of the present invention is a method in which water to be treated is passed through such an electrodeionization apparatus of the present invention for deionization treatment, and preferably, the demineralization chamber 16 of the electrodeionization apparatus. Water to be treated, and a part of the treated water (outflowing water from the desalting chamber), for example, about 10 to 30%, is passed through the concentrating chamber 15 in the direction opposite to the water passing direction of the desalting chamber 16. It is preferable to obtain a high boron removal rate. Moreover, as the water flow rate at that time, the water flow LV of the desalting chamber 16 is about 50 to 150 m / hr, and the water flow LV of the concentration chamber 15 is about 10 to 30 m / hr in terms of boron removal rate and treatment efficiency. It is preferable that

また、被処理水の通水処理時の電気脱イオン装置の電流密度は500mA/dm以上、例えば1000〜1500mA/dmとすることが好ましい。 The current density of the electrodeionization apparatus of the water passing through the treatment of the water to be treated is 500mA / dm 2 or more is preferably, for example, 1000~1500mA / dm 2.

本発明の電気脱イオン装置は、特に、純水製造装置のRO膜分離装置の後段に設ける電気脱イオン装置として好ましく用いられ、RO膜分離装置からのホウ素濃度10〜20ppb程度のRO透過水を本発明の電気脱イオン装置で処理してホウ素濃度1ppt以下の処理水を効率的に得ることができる。   The electrodeionization apparatus of the present invention is particularly preferably used as an electrodeionization apparatus provided at the subsequent stage of the RO membrane separation apparatus of the pure water production apparatus, and RO permeated water having a boron concentration of about 10 to 20 ppb from the RO membrane separation apparatus is used. By treating with the electrodeionization apparatus of the present invention, treated water having a boron concentration of 1 ppt or less can be obtained efficiently.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

[実施例1]
陽極と陰極との間に複数のアニオン交換膜とカチオン交換膜とを交互に配列して、濃縮室と脱塩室を交互に形成した電気脱イオン装置(栗田工業(株)製「KCDI−UPz−020」)を、脱塩室及び濃縮室の厚さが10mmとなるように改造し、脱塩室数=50とした。この電気脱イオン装置を脱塩室及び濃縮室の通水方向が鉛直方向となるように設置した。脱塩室及び濃縮室に、以下の通りイオン交換樹脂を充填した。脱塩室及び濃縮室のイオン交換樹脂の充填高さは60mm、幅は40mmとした。
[Example 1]
An electrodeionization apparatus (“KCDI-UPz” manufactured by Kurita Kogyo Co., Ltd.) in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between an anode and a cathode to alternately form a concentration chamber and a desalting chamber. -020 ") was modified so that the thickness of the desalting chamber and the concentration chamber was 10 mm, and the number of desalting chambers was 50. This electrodeionization apparatus was installed so that the water flow direction of the demineralization chamber and the concentration chamber was vertical. The desalting chamber and the concentration chamber were filled with an ion exchange resin as follows. The filling height of the ion exchange resin in the desalting chamber and the concentration chamber was 60 mm, and the width was 40 mm.

脱塩室には、平均粒径0.3mmのアニオン交換樹脂とカチオン交換樹脂とを、アニオン交換樹脂:カチオン交換樹脂の比率(乾燥重量比)を上部で75:25とし、下部で60:40とする混合比で充填した。   In the desalting chamber, an anion exchange resin and a cation exchange resin having an average particle size of 0.3 mm are set to an anion exchange resin: cation exchange resin ratio (dry weight ratio) of 75:25 at the top and 60:40 at the bottom. It was filled with the mixing ratio.

濃縮室には、上記アニオン交換樹脂及びカチオン交換樹脂をアニオン交換樹脂:カチオン交換樹脂=60:40(乾燥重量比)の混合比で充填した。   The concentration chamber was filled with the anion exchange resin and the cation exchange resin at a mixing ratio of anion exchange resin: cation exchange resin = 60: 40 (dry weight ratio).

この電気脱イオン装置に電流値10A、電流密度1200mA/dmで電流を流し、ホウ素濃度3ppbの被処理水を、脱塩室にLV=2.5m/hrで下向流通水し、脱塩室の流出水の15%を濃縮室にLV=1.0m/hrで上向流通水し、残部を処理水として取り出した。 A current is passed through this electrodeionization apparatus at a current value of 10 A and a current density of 1200 mA / dm 2 , water to be treated having a boron concentration of 3 ppb is circulated downwardly into the desalting chamber at LV = 2.5 m / hr, and desalted. 15% of the effluent from the chamber was circulated upward into the concentration chamber at LV = 1.0 m / hr, and the remainder was taken out as treated water.

得られた処理水(脱塩室流出水)のホウ素濃度は1ppt以下であり、ホウ素除去率99.97%を達成することができた。運転電圧は100Vであった。   The obtained treated water (desalination chamber effluent) had a boron concentration of 1 ppt or less, and a boron removal rate of 99.97% could be achieved. The operating voltage was 100V.

[比較例1]
実施例1において、脱塩室及び濃縮室の厚さを5mmとし、脱塩室数を100とした。また、アニオン交換樹脂及びカチオン交換樹脂として、それぞれ粒径が0.6mmのものを用いた。これら以外は実施例1と同一の構成とされた電気脱イオン装置に、同一条件で被処理水を通水したところ、得られた処理水のホウ素濃度は実施例1と同一であった。運転電圧は140Vであった。
[Comparative Example 1]
In Example 1, the thickness of the desalting chamber and the concentration chamber was 5 mm, and the number of desalting chambers was 100. In addition, as the anion exchange resin and the cation exchange resin, those having a particle diameter of 0.6 mm were used. Except for these, the treated water was passed through the electrodeionization apparatus having the same configuration as in Example 1 under the same conditions, and the boron concentration of the obtained treated water was the same as in Example 1. The operating voltage was 140V.

以上の結果より、実施例1によると、セル数を少なくしても、ホウ素を十分に除去できることが認められた。また、実施例1によると、同電流で運転するための必要電圧が低下することも認められた。   From the above results, it was confirmed that according to Example 1, boron can be sufficiently removed even if the number of cells is reduced. Moreover, according to Example 1, it was recognized that the required voltage for driving | running with the same electric current fell.

11 陽極
12 陰極
13 アニオン交換膜
14 カチオン交換膜
15 濃縮室
16 脱塩室
11 Anode 12 Cathode 13 Anion Exchange Membrane 14 Cation Exchange Membrane 15 Concentration Chamber 16 Desalination Chamber

Claims (4)

陽極と陰極との間にイオン交換膜によって濃縮室と脱塩室とが区画され、
濃縮水が該濃縮室に流通され、原水が被処理水として脱塩室に流通され、生産水として取り出され、
生産水の一部が濃縮水として濃縮室に脱塩室の流れ方向と向流方向に流通される電気脱イオン装置において、
該脱塩室の厚さが10〜20mmであり、
該脱塩室に充填されるイオン交換樹脂の平均直径が0.2〜0.3mmであることを特徴とする電気脱イオン装置。
A concentration chamber and a desalination chamber are partitioned by an ion exchange membrane between the anode and the cathode,
Concentrated water is circulated to the concentrating chamber, raw water is circulated to the desalting chamber as treated water, taken out as production water,
In the electrodeionization apparatus in which part of the production water is circulated in the concentration chamber as the concentrated water in the flow direction and the countercurrent direction of the demineralization chamber,
The desalting chamber has a thickness of 10 to 20 mm;
An electrodeionization apparatus characterized in that the ion exchange resin filled in the desalting chamber has an average diameter of 0.2 to 0.3 mm.
請求項1において、脱塩室のイオン交換樹脂充填高さが40〜80mmであり、幅が30〜60mmであることを特徴とする電気脱イオン装置。   2. The electrodeionization apparatus according to claim 1, wherein the ion exchange resin filling height of the demineralization chamber is 40 to 80 mm and the width is 30 to 60 mm. 請求項1又は2において、脱塩室にはアニオン交換樹脂とカチオン交換樹脂との混合樹脂が充填されており、
該脱塩室内の混合樹脂中のアニオン交換樹脂の割合(乾燥重量比)は、脱塩室入口側では70〜80%であり、脱塩室出口側では40〜60%であることを特徴とする電気脱イオン装置。
In Claim 1 or 2, the desalting chamber is filled with a mixed resin of an anion exchange resin and a cation exchange resin,
The ratio (dry weight ratio) of the anion exchange resin in the mixed resin in the desalting chamber is 70 to 80% on the desalting chamber inlet side and 40 to 60% on the desalting chamber outlet side. Electrodeionization equipment.
請求項1ないし3のいずれか1項に記載の電気脱イオン装置を用いた脱イオン水の製造方法。   The manufacturing method of deionized water using the electrodeionization apparatus of any one of Claim 1 thru | or 3.
JP2016066069A 2016-03-29 2016-03-29 Electric deionization device and method for producing deionized water Active JP6728876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016066069A JP6728876B2 (en) 2016-03-29 2016-03-29 Electric deionization device and method for producing deionized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016066069A JP6728876B2 (en) 2016-03-29 2016-03-29 Electric deionization device and method for producing deionized water

Publications (2)

Publication Number Publication Date
JP2017176968A true JP2017176968A (en) 2017-10-05
JP6728876B2 JP6728876B2 (en) 2020-07-22

Family

ID=60003097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016066069A Active JP6728876B2 (en) 2016-03-29 2016-03-29 Electric deionization device and method for producing deionized water

Country Status (1)

Country Link
JP (1) JP6728876B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159870A1 (en) * 2018-02-13 2019-08-22 栗田工業株式会社 Electric deionization device and method for producing deionized water
JP2019177327A (en) * 2018-03-30 2019-10-17 栗田工業株式会社 Electric deionization device, and method of producing deionized water
JP2019195755A (en) * 2018-05-08 2019-11-14 栗田工業株式会社 Electric deionization unit and method of producing deionized water
JP2020078772A (en) * 2018-11-12 2020-05-28 栗田工業株式会社 Electrodeionization device and method for producing deionized water using the same
KR20230110359A (en) 2020-12-04 2023-07-21 오르가노 가부시키가이샤 Electric deionized water production device and method for producing deionized water
JP7374400B1 (en) 2022-05-25 2023-11-06 オルガノ株式会社 Electrodeionized water production equipment and pure water production method
WO2023228606A1 (en) * 2022-05-25 2023-11-30 オルガノ株式会社 Apparatus for producing electrodeionized water, and method for producing pure water

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159870A1 (en) * 2018-02-13 2019-08-22 栗田工業株式会社 Electric deionization device and method for producing deionized water
JP2019177327A (en) * 2018-03-30 2019-10-17 栗田工業株式会社 Electric deionization device, and method of producing deionized water
JP2019195755A (en) * 2018-05-08 2019-11-14 栗田工業株式会社 Electric deionization unit and method of producing deionized water
JP2020078772A (en) * 2018-11-12 2020-05-28 栗田工業株式会社 Electrodeionization device and method for producing deionized water using the same
JP7275536B2 (en) 2018-11-12 2023-05-18 栗田工業株式会社 Electrodeionization apparatus and method for producing deionized water using the same
KR20230110359A (en) 2020-12-04 2023-07-21 오르가노 가부시키가이샤 Electric deionized water production device and method for producing deionized water
JP7374400B1 (en) 2022-05-25 2023-11-06 オルガノ株式会社 Electrodeionized water production equipment and pure water production method
WO2023228606A1 (en) * 2022-05-25 2023-11-30 オルガノ株式会社 Apparatus for producing electrodeionized water, and method for producing pure water

Also Published As

Publication number Publication date
JP6728876B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6011655B2 (en) Electrodeionization device and pure water production device
JP6728876B2 (en) Electric deionization device and method for producing deionized water
JP3794268B2 (en) Electrodeionization apparatus and operation method thereof
JP3969221B2 (en) Method and apparatus for producing deionized water
JP2011110515A (en) Method and apparatus for purifying ion exchange resin
JP7275536B2 (en) Electrodeionization apparatus and method for producing deionized water using the same
WO2004071968A1 (en) Electric deionization apparatus and method of operating the same
WO2018092395A1 (en) Electric de-ionization device and de-ionized water production method
KR20190079851A (en) Electrodeionization with excellent boron removal efficiency
JP6614266B2 (en) Electrodeionization apparatus and method for producing deionized water
JP6627943B2 (en) Pure water production method
JP6571312B2 (en) Pure water production method
JP2009208046A (en) Apparatus for producing electrodeionization water
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP4552273B2 (en) Electrodeionization equipment
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP2018001106A (en) Electrodeionization device and method for operating the same
WO2023199759A1 (en) Deionized water production device and method
JP2019195755A (en) Electric deionization unit and method of producing deionized water
JP2021037469A (en) Electric deionizing device and manufacturing method of deionized water
JP4300828B2 (en) Electrodeionization apparatus and operation method thereof
JP2022114794A (en) Electrodeionization apparatus and method for producing deionized water
JP6181510B2 (en) Pure water production equipment
WO2022118577A1 (en) Electric deionized water production apparatus and method for producing deionized water
JP2016123914A (en) Electric deionization device, and electric deionization treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6728876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150