JP2017175349A - 撮像装置、その制御方法及びプログラム - Google Patents
撮像装置、その制御方法及びプログラム Download PDFInfo
- Publication number
- JP2017175349A JP2017175349A JP2016058493A JP2016058493A JP2017175349A JP 2017175349 A JP2017175349 A JP 2017175349A JP 2016058493 A JP2016058493 A JP 2016058493A JP 2016058493 A JP2016058493 A JP 2016058493A JP 2017175349 A JP2017175349 A JP 2017175349A
- Authority
- JP
- Japan
- Prior art keywords
- imaging
- image
- weighting
- subject
- object scene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 177
- 238000000034 method Methods 0.000 title claims description 24
- 238000001514 detection method Methods 0.000 claims abstract description 138
- 230000003287 optical effect Effects 0.000 claims description 26
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 24
- 230000004075 alteration Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 14
- 238000005375 photometry Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 239000000203 mixture Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000004304 visual acuity Effects 0.000 description 9
- 201000009310 astigmatism Diseases 0.000 description 8
- 239000003086 colorant Substances 0.000 description 7
- 238000013500 data storage Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 230000011514 reflex Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000004983 Polymer Dispersed Liquid Crystal Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/667—Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/10—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
- H04N23/12—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/61—Control of cameras or camera modules based on recognised objects
- H04N23/611—Control of cameras or camera modules based on recognised objects where the recognised objects include parts of the human body
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/67—Focus control based on electronic image sensor signals
- H04N23/673—Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/71—Circuitry for evaluating the brightness variation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/73—Circuitry for compensating brightness variation in the scene by influencing the exposure time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/75—Circuitry for compensating brightness variation in the scene by influencing optical camera components
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/95—Computational photography systems, e.g. light-field imaging systems
- H04N23/951—Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/50—Control of the SSIS exposure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/50—Control of the SSIS exposure
- H04N25/51—Control of the gain
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/61—Noise processing, e.g. detecting, correcting, reducing or removing noise the noise originating only from the lens unit, e.g. flare, shading, vignetting or "cos4"
- H04N25/611—Correction of chromatic aberration
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Color Television Image Signal Generators (AREA)
- Studio Devices (AREA)
- Exposure Control For Cameras (AREA)
- Focusing (AREA)
- Details Of Cameras Including Film Mechanisms (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
【課題】被写体検出精度の低下を抑制することを目的とする。
【解決手段】本発明の撮像装置は、被写界の像を表す画像データから被写体を検出する撮像装置であって、被写界の像を受光して2種以上の波長域を検知する撮像面を備え、被写界の像の信号を出力する撮像手段122と、被写界の像の中で定められる高解像方向に応じて、結像性能が高い波長域について、結像性能が低い波長域よりも強い重みづけを行って、撮像手段が出力する信号に基づいて画像データを生成する生成手段と、を備えることを特徴とする。
【選択図】図3
【解決手段】本発明の撮像装置は、被写界の像を表す画像データから被写体を検出する撮像装置であって、被写界の像を受光して2種以上の波長域を検知する撮像面を備え、被写界の像の信号を出力する撮像手段122と、被写界の像の中で定められる高解像方向に応じて、結像性能が高い波長域について、結像性能が低い波長域よりも強い重みづけを行って、撮像手段が出力する信号に基づいて画像データを生成する生成手段と、を備えることを特徴とする。
【選択図】図3
Description
本発明は、被写体を検出する撮像装置、その制御方法及びプログラムに関する。
近年、被写界中に存在する人物等の被写体を検出し、該被写体に自動的に撮影レンズの焦点調節が可能な撮像装置が多く製品化されている。
被写体検出は、CMOSやCCD等からなる撮像素子の情報に基づいて行うものが一般的である。その一方で、近年では、一眼レフカメラにおいて、被写界の輝度を測定するための測光センサにCMOSやCCD等からなる撮像素子を採用し、輝度を測定するためだけでなく、人物の顔等の検出を行うものが製品化されている。検出結果の情報を周知の位相差検出方式の焦点検出手段に送ることで、被写体に対して自動的に撮影レンズの焦点調節が可能となる。
被写体検出は、CMOSやCCD等からなる撮像素子の情報に基づいて行うものが一般的である。その一方で、近年では、一眼レフカメラにおいて、被写界の輝度を測定するための測光センサにCMOSやCCD等からなる撮像素子を採用し、輝度を測定するためだけでなく、人物の顔等の検出を行うものが製品化されている。検出結果の情報を周知の位相差検出方式の焦点検出手段に送ることで、被写体に対して自動的に撮影レンズの焦点調節が可能となる。
しかしながら、カメラサイズやコストの観点から、測光センサ上に結像させる測光用の光学素子(測光用レンズ)を撮影レンズのように複数枚のレンズで構成して、色収差等を十分に抑制した結像性能を持たせることは困難である。
したがって、測光用の光学素子及び測光センサを用いて被写体検出を行う場合、結像性能が低下してしまうことがあり、いかにして被写体検出の性能を向上させるかが課題となっている。
したがって、測光用の光学素子及び測光センサを用いて被写体検出を行う場合、結像性能が低下してしまうことがあり、いかにして被写体検出の性能を向上させるかが課題となっている。
例えば特許文献1は、光学系の温度変化による画質の劣化を抑えることを目的として、温度変化による光学系の結像状態の変化をR,G,Bの各原色信号に対する重みWr,Wg,Wbに変換して画像処理部に予め記憶しておく。そして、温度測定素子の出力に応答して重みWr,Wg,Wbを適宜設定し、収差補正を行う構成が開示されている。
特許文献1に開示された従来技術は、温度変化による光学系の結像状態の変化のみを対象としている。
しかしながら、測光センサには、常温で使われる場合等、温度変化が生じていない場合であっても、像面湾曲や非点収差等の、解像力の劣化の要因となる収差が発生した状態となっている。
しかしながら、測光センサには、常温で使われる場合等、温度変化が生じていない場合であっても、像面湾曲や非点収差等の、解像力の劣化の要因となる収差が発生した状態となっている。
本発明は上記のような点に鑑みてなされたものであり、被写体検出精度の低下を抑制することを目的とする。
本発明の撮像装置は、被写界の像を表す画像データから被写体を検出する撮像装置であって、前記被写界の像を受光して2種以上の波長域を検知する撮像面を備え、前記被写界の像の信号を出力する撮像手段と、前記被写界の像の中で定められる高解像方向に応じて、結像性能が高い前記波長域について、結像性能が低い前記波長域よりも強い重みづけを行って、前記撮像手段が出力する信号に基づいて前記画像データを生成する生成手段と、を備えることを特徴とする。
本発明によれば、波長域に対する重みづけを可変にして画像データを生成するようにしたので、被写体検出精度の低下を抑制できる。
以下、添付図面を参照して、本発明の好適な実施形態について説明する。
まず、図1を参照して、本実施形態に係る一眼レフカメラについて説明する。図1は、本実施形態に係る一眼レフカメラ内部の概略構成を示す図である。なお、一眼レフカメラは撮像装置の一例である。また、以降では、本実施形態に係る一眼レフカメラを、単に本実施形態のカメラと呼ぶ。
101は、CPU(中央演算処理装置)であり、本カメラの動作を制御する。
105は、撮影レンズ105a及びレンズ制御部106を含むレンズユニットであり、撮影被写界光を撮像センサ107上に結像させる。なお、図1では撮影レンズ105aを便宜的に1枚のレンズで表現するが、実際には複数のレンズから成り立っており、レンズを動かすことで焦点位置を調整することができる。
レンズ制御部106は、CPU101からの指示により、撮影時にレンズユニット105内の絞りやピント位置の調整等を行う。
まず、図1を参照して、本実施形態に係る一眼レフカメラについて説明する。図1は、本実施形態に係る一眼レフカメラ内部の概略構成を示す図である。なお、一眼レフカメラは撮像装置の一例である。また、以降では、本実施形態に係る一眼レフカメラを、単に本実施形態のカメラと呼ぶ。
101は、CPU(中央演算処理装置)であり、本カメラの動作を制御する。
105は、撮影レンズ105a及びレンズ制御部106を含むレンズユニットであり、撮影被写界光を撮像センサ107上に結像させる。なお、図1では撮影レンズ105aを便宜的に1枚のレンズで表現するが、実際には複数のレンズから成り立っており、レンズを動かすことで焦点位置を調整することができる。
レンズ制御部106は、CPU101からの指示により、撮影時にレンズユニット105内の絞りやピント位置の調整等を行う。
107は、CMOSやCCD等からなる撮像素子を含む撮像センサである。111は半透過ミラーである主ミラー、112はサブミラーであり、主ミラー111を透過した一部の光束はサブミラー112を通じて焦点検出ユニット119に導かれる。113はフォーカルプレーンシャッタである。115は外部表示部である。
116は、焦点検出板(以下、ピント板という)であり、レンズユニット105の撮像センサ107の結像面と等価の結像面に置かれ、被写界の像は主ミラー111で反射され、ピント板116上に1次結像させる。撮影者はこの被写界の像をペンタプリズム120、接眼レンズ123を通じて見ることができる、いわゆるTTL方式の光学ファインダ構成となっている。
117は、ファインダ視野枠であり、被写体光束の周辺部を遮光することによって撮像センサ107により撮像される領域(撮像領域)を撮影者に視認させるためのものである。114は、高分子分散液晶(以降、PN液晶と称する)パネルであり、焦点検出ユニット119による焦点検出動作の状態表示や焦点検出領域を、光学ファインダを覗いている撮影者に知らしめるためのものである。118は、ファインダ内表示部であり、導光プリズム、ペンタプリズム120、接眼レンズ123を介して、絞り値やシャッタ速度等、カメラの各種撮影情報を撮影者に知らしめるためのものである。
117は、ファインダ視野枠であり、被写体光束の周辺部を遮光することによって撮像センサ107により撮像される領域(撮像領域)を撮影者に視認させるためのものである。114は、高分子分散液晶(以降、PN液晶と称する)パネルであり、焦点検出ユニット119による焦点検出動作の状態表示や焦点検出領域を、光学ファインダを覗いている撮影者に知らしめるためのものである。118は、ファインダ内表示部であり、導光プリズム、ペンタプリズム120、接眼レンズ123を介して、絞り値やシャッタ速度等、カメラの各種撮影情報を撮影者に知らしめるためのものである。
126は測光用プリズム、121は測光用レンズ、122は測光用の撮像素子(以下、測光センサという)である。ピント板116に結像された被写界の像の光路を測光用プリズム126により折り曲げて変更し、該被写界の像を測光用レンズ121により測光センサ122上に2次結像させる。測光用レンズ121及び測光センサ122については後に詳しく説明する。なお、測光センサ122は本発明の撮像手段の一例である。また、測光用プリズム126は本発明の変更手段の一例である。
姿勢検出部127は、加速度センサ等からなり、カメラの姿勢を検出する。なお、姿勢検出部127は本発明の検知手段の一例である。
姿勢検出部127は、加速度センサ等からなり、カメラの姿勢を検出する。なお、姿勢検出部127は本発明の検知手段の一例である。
119は、焦点検出ユニットであり、周知の位相差検出方式の焦点検出動作を行い、被写体に対して自動的にレンズユニット105を焦点位置に駆動する、いわゆるAF(オートフォーカシング)動作を行う。焦点検出動作は、一般的に複数の領域で検出動作が可能であり、本実施形態では、図2に示すように、撮像範囲の中央、上下左右に19点の焦点検出領域124が配置される。
このように焦点検出領域が複数ある場合、撮影者が焦点検出領域を選択する方式が2種類ある(いわゆる任意選択と自動選択)。任意選択とは、撮影者が撮影範囲内のピントを合わせたい位置に対応する1つの焦点検出領域を任意に選択するものである。また、自動選択とは、各焦点検出領域の焦点状態の検出結果から所定のアルゴリズムに則り、焦点検出領域が自動的に選択されるものである。自動選択時の焦点検出動作として一般的なものは、各焦点検出領域において算出したデフォーカス量から、各焦点検出領域の中で最も撮影者(カメラ)に近い被写体や明暗差(コントラスト)が高い被写体にレンズユニット105の焦点位置合わせを行う。この自動選択動作を、通常の自動選択動作と呼ぶ。また、自動選択時の焦点検出動作の一つとして、後述する被写体検出結果に基づき、被写界中に人物がいる場合は、該人物の顔位置に対応する焦点検出領域のデフォーカス量に基づき、レンズユニット105のピント位置合わせを行うものがある。この被写体検出結果に基づく自動選択動作を、被写体検出優先自動選択動作と呼ぶ。
このように焦点検出領域が複数ある場合、撮影者が焦点検出領域を選択する方式が2種類ある(いわゆる任意選択と自動選択)。任意選択とは、撮影者が撮影範囲内のピントを合わせたい位置に対応する1つの焦点検出領域を任意に選択するものである。また、自動選択とは、各焦点検出領域の焦点状態の検出結果から所定のアルゴリズムに則り、焦点検出領域が自動的に選択されるものである。自動選択時の焦点検出動作として一般的なものは、各焦点検出領域において算出したデフォーカス量から、各焦点検出領域の中で最も撮影者(カメラ)に近い被写体や明暗差(コントラスト)が高い被写体にレンズユニット105の焦点位置合わせを行う。この自動選択動作を、通常の自動選択動作と呼ぶ。また、自動選択時の焦点検出動作の一つとして、後述する被写体検出結果に基づき、被写界中に人物がいる場合は、該人物の顔位置に対応する焦点検出領域のデフォーカス量に基づき、レンズユニット105のピント位置合わせを行うものがある。この被写体検出結果に基づく自動選択動作を、被写体検出優先自動選択動作と呼ぶ。
次に、図2を参照して、ファインダ視野枠117と、19点の焦点検出領域124及び測光領域125との関係を説明する。図2は、ファインダ視野枠117と、19点の焦点検出領域124及び測光領域125との関係を示す図である。ファインダ視野枠117内には、PN液晶パネル114によって19点の焦点検出領域124が表示される。例えば19点のうちの1点の焦点検出領域124を任意選択した状態では、対応する焦点検出領域124のみが表示され、他の18点の焦点検出領域124は非表示となり、撮影者は選択した焦点検出領域124のみを視認することとなる。
次に、図3を参照して、本実施形態に係るカメラの構成を説明する。図3は、本実施形態に係るカメラの概略構成を示すブロック図である。なお、既に説明した構成要素には同一の符号を付し、その説明は省略する。
CPU101の内部には、不揮発性メモリであるEEPROM101aが構成される。CPU101には、ROM102、RAM103、データ格納部104、撮像センサ制御部108、画像処理部109、表示制御部110、フォーカルプレーンシャッタ113が接続される。CPU101には、さらに、測光センサ122、レンズ制御部106、焦点検出ユニット119、姿勢検出部127、レリーズSW140、DC/DCコンバータ142が接続される。画像処理部109には、撮像センサ制御部108及び撮像センサ107が接続される。本実施形態では、撮像センサ107は有効画素数約1000万画素(3888×2592)を有している。表示制御部110には外部表示部115が接続される。なお、EEPROM101aは本発明の記憶手段の一例である。
CPU101の内部には、不揮発性メモリであるEEPROM101aが構成される。CPU101には、ROM102、RAM103、データ格納部104、撮像センサ制御部108、画像処理部109、表示制御部110、フォーカルプレーンシャッタ113が接続される。CPU101には、さらに、測光センサ122、レンズ制御部106、焦点検出ユニット119、姿勢検出部127、レリーズSW140、DC/DCコンバータ142が接続される。画像処理部109には、撮像センサ制御部108及び撮像センサ107が接続される。本実施形態では、撮像センサ107は有効画素数約1000万画素(3888×2592)を有している。表示制御部110には外部表示部115が接続される。なお、EEPROM101aは本発明の記憶手段の一例である。
CPU101は、ROM102に記憶された制御プログラムに基づいて各種制御を行う。これらの制御の中には、次のような処理が含まれる。例えば画像処理部109から出力された撮影画像信号を読み込み、RAM103に転送する処理である。また、RAM103から表示制御部110にデータを転送する処理である。また、画像データをJPEG圧縮してファイル形式でデータ格納部104に格納する処理である。CPU101は、撮像センサ制御部108、画像処理部109、表示制御部110等に対してデータ取り込み画素数やデジタル画像処理の変更指示を行う。
焦点検出ユニット119は、焦点検出用の一対のラインCCDセンサを含んでおり、該ラインセンサから得た電圧をA/D変換し、CPU101に送る。CPU101の制御下で、焦点検出ユニット119は、ラインセンサの蓄積時間とAGC(オートゲインコントロール)の制御も行う。
また、CPU101は、被写体検出動作時及び露出制御動作時の測光センサ122の制御を行う。測光センサ122のアナログ電気信号は、CPU101によってA/D変換が行われ、各々8ビットのデジタル信号となる。CPU101は、測光センサ122から取得した、640×480画素(約30万画素)ベイヤーもしくはストライプ配列されたR,G,B各色のアナログ信号に対して、A/D変換を行ってデジタル信号として、一旦RAM103に保存する。デジタル信号として保存された測光センサ122の出力に基づいて、CPU101は、輝度信号や被写体検出用の信号の作成を行い、後述する被写体検出動作や露出制御動作を行う。
また、CPU101は、レリーズSW140の操作に伴う撮影動作の指示や、各素子への電源の供給をコントロールするための制御信号をDC/DCコンバータ142に対して出力する。
また、CPU101は、被写体検出動作時及び露出制御動作時の測光センサ122の制御を行う。測光センサ122のアナログ電気信号は、CPU101によってA/D変換が行われ、各々8ビットのデジタル信号となる。CPU101は、測光センサ122から取得した、640×480画素(約30万画素)ベイヤーもしくはストライプ配列されたR,G,B各色のアナログ信号に対して、A/D変換を行ってデジタル信号として、一旦RAM103に保存する。デジタル信号として保存された測光センサ122の出力に基づいて、CPU101は、輝度信号や被写体検出用の信号の作成を行い、後述する被写体検出動作や露出制御動作を行う。
また、CPU101は、レリーズSW140の操作に伴う撮影動作の指示や、各素子への電源の供給をコントロールするための制御信号をDC/DCコンバータ142に対して出力する。
RAM103は、画像展開エリア103a、ワークエリア103b、VRAM103c、一時退避エリア103dを備える。画像展開エリア103aは、画像処理部109から送られてきた撮影画像(YUVデジタル信号)やデータ格納部104から読み出されたJPEG圧縮画像データを一時的に格納するためのテンポラリバッファとして使用される。また、画像展開エリア103aは、画像圧縮処理、解凍処理のための画像専用ワークエリアとして使用される。ワークエリア103bは、各種プログラムのためのワークエリアである。VRAM103cは、外部表示部115に表示する表示データを格納するVRAMとして使用される。一時退避エリア103dは、各種データを一時退避させるためのエリアである。
データ格納部104は、CPU101によりJPEG圧縮された撮影画像データ、或いはアプリケーションより参照される各種付属データ等をファイル形式で格納しておくためのフラッシュメモリである。なお、データ格納部104はフラッシュメモリ以外の記憶装置であってもよい。
データ格納部104は、CPU101によりJPEG圧縮された撮影画像データ、或いはアプリケーションより参照される各種付属データ等をファイル形式で格納しておくためのフラッシュメモリである。なお、データ格納部104はフラッシュメモリ以外の記憶装置であってもよい。
撮像センサ107は、レンズユニット105によって投影された撮影画像を光電変換処理し、アナログ電気信号に変換する。撮像センサ107は、CPU101からの解像度変換指示に従って、水平方向及び垂直方向の間引き画素データの出力が可能である。
撮像センサ制御部108は、撮像センサ107に転送クロック信号やシャッタ信号を供給するためのタイミングジェネレータ、及び、センサ出力信号のノイズ除去やゲイン処理を行うための回路を含んでいる。撮像センサ制御部108は、さらに、アナログ信号を10ビットデジタル信号に変換するためのA/D変換回路、CPU101からの解像度変換指示に従って画素間引き処理を行うための回路等を含んでいる。
画像処理部109は、撮像センサ制御部108から出力された10ビットデジタル信号をガンマ変換、色空間変換、ホワイトバランス、AE、フラッシュ補正等の画像処理を行い、YUV(4:2:2)フォーマットの8ビットデジタル信号出力を行う。
撮像センサ制御部108は、撮像センサ107に転送クロック信号やシャッタ信号を供給するためのタイミングジェネレータ、及び、センサ出力信号のノイズ除去やゲイン処理を行うための回路を含んでいる。撮像センサ制御部108は、さらに、アナログ信号を10ビットデジタル信号に変換するためのA/D変換回路、CPU101からの解像度変換指示に従って画素間引き処理を行うための回路等を含んでいる。
画像処理部109は、撮像センサ制御部108から出力された10ビットデジタル信号をガンマ変換、色空間変換、ホワイトバランス、AE、フラッシュ補正等の画像処理を行い、YUV(4:2:2)フォーマットの8ビットデジタル信号出力を行う。
表示制御部110は、外部表示部115による表示を制御する。表示制御部110は、画像処理部109から転送されたYUVデジタル画像データ、或いはデータ格納部104中の画像ファイルに対してJPEGの解凍を行ったYUVデジタル画像データを受け取る。そして、RGBデジタル信号へ変換した後、外部表示部115に出力する。外部表示部115は、撮像センサ107で撮像された画像を縦横各々間引き処理された画像を表示することのできるTFTカラー液晶である。また、表示制御部110は、PN液晶パネル114の駆動を行い、ファインダ内表示部118による表示を制御する。
電池141は、リチャージャブルの2次電池又は乾電池である。DC/DCコンバータ142は、電池141からの電源供給を受け、昇圧、レギュレーションを行うことにより複数の電源を作り出し、CPU101を初めとする各素子に必要な電圧の電源を供給する。DC/DCコンバータ142は、CPU101からの制御信号により、各々の電圧供給の開始、停止を制御できるようになっている。
電池141は、リチャージャブルの2次電池又は乾電池である。DC/DCコンバータ142は、電池141からの電源供給を受け、昇圧、レギュレーションを行うことにより複数の電源を作り出し、CPU101を初めとする各素子に必要な電圧の電源を供給する。DC/DCコンバータ142は、CPU101からの制御信号により、各々の電圧供給の開始、停止を制御できるようになっている。
次に、測光用の光学素子(測光用レンズ121及び測光用プリズム126)及び測光センサ122を用いて、被写界の輝度を測定する測光手段について説明する。後述するように測光用の光学素子及び測光センサ122を用いて被写体検出を行うことから、測光用レンズ121の結像性能は良好なものが求められる。しかし、カメラサイズやコストの観点から、本実施形態では、測光用レンズ121は1枚のレンズで構成される。測光用レンズ121の結像性能等に関しては、後に詳細な説明を行う。
測光センサ122は、被写界の像を受光して少なくとも2種以上の波長域に感度を持ちこの波長域を検知する撮像面を備え、検知した結果に応じて、それぞれの波長域についての信号を出力する。本実施形態の測光センサ122が検知する波長域は、R,G,Bの3原色である。測光センサ122は、例えば、画素ピッチが約6umの横640×縦480画素の高画素のCCDであって、ベイヤーもしくはストライプ配列にR,G,Bの3色のカラーフィルターが画素上に配置される。測光センサ122が出力する信号に対して、CPU101又は画像処理部109がYUV変換処理を行うことで、CPU101は被写界の輝度信号及び色差信号が取得可能であり、露出制御値演算に用いられる。また、CPU101は、測光センサ122が出力する信号に対して、適宜R,G,Bの各原色信号に対する重みを変更して合成し、被写体検出を行う。
測光センサ122は、被写界の像を受光して少なくとも2種以上の波長域に感度を持ちこの波長域を検知する撮像面を備え、検知した結果に応じて、それぞれの波長域についての信号を出力する。本実施形態の測光センサ122が検知する波長域は、R,G,Bの3原色である。測光センサ122は、例えば、画素ピッチが約6umの横640×縦480画素の高画素のCCDであって、ベイヤーもしくはストライプ配列にR,G,Bの3色のカラーフィルターが画素上に配置される。測光センサ122が出力する信号に対して、CPU101又は画像処理部109がYUV変換処理を行うことで、CPU101は被写界の輝度信号及び色差信号が取得可能であり、露出制御値演算に用いられる。また、CPU101は、測光センサ122が出力する信号に対して、適宜R,G,Bの各原色信号に対する重みを変更して合成し、被写体検出を行う。
測光用レンズ121は、例えば結像倍率0.15倍のレンズである。測光用レンズ121が観察可能な領域を測光領域125と呼ぶと、測光領域125は、図2に示すように、ファインダ視野枠117より少し内側に位置する。測光領域125は、測光時には横20×縦20の粗い分割(1領域は32×24画素となる)で区切られ、400画素の低画素のセンサとして用いる。横20×縦20の領域内の測光センサ122のRGBセンサ出力値を測光領域125内で一律に設定された重み付け係数を用いて重み付け演算することで輝度値を算出した後、各々の領域の和や平均値から被写界の輝度の検出が可能となっている。
測光センサ122から得られた横20×縦20分割分の被写界輝度値に対して、主要被写体に適正な露光を行うため、選択された焦点検出領域124を中心とした所定の重み付け演算によって露出制御値が算出される。露出制御動作は、算出された露出制御値に基づいて、レンズユニット105内の不図示の開口絞りの制御値及びフォーカルプレーンシャッタ113のシャッタ速度制御値を設定する。該制御値によって、被写体に対して適正な光量が撮像センサ107に到達し、所望の明るさの写真を撮影することができる。
測光センサ122から得られた横20×縦20分割分の被写界輝度値に対して、主要被写体に適正な露光を行うため、選択された焦点検出領域124を中心とした所定の重み付け演算によって露出制御値が算出される。露出制御動作は、算出された露出制御値に基づいて、レンズユニット105内の不図示の開口絞りの制御値及びフォーカルプレーンシャッタ113のシャッタ速度制御値を設定する。該制御値によって、被写体に対して適正な光量が撮像センサ107に到達し、所望の明るさの写真を撮影することができる。
本実施形態のカメラにはレリーズSW140が設けられており、その押込量によって第一段階(半押し)と第二段階(全押し)の検知が可能となっている。以下、レリーズSW140の第一段階をSW1、第二段階をSW2と記す。レリーズSW140の動作としては、撮影者がSW1まで押し込むと、焦点検出動作と露出制御動作が行われ、レンズユニット105のAF動作とカメラの露出制御値の設定が行われる。続けて、SW2まで押し込むと、主ミラー111がレンズユニット105の光束外に退避し、露出制御動作で設定された値に従い、レンズユニット105の絞り値とフォーカルプレーンシャッタ113のシャッタ速度が制御される。入射した被写体光束は、撮像センサ107により光電変換処理される。その後、撮影済み画像として記録メディアに記録されるとともに、外部表示部115に撮影画像の表示がなされる。このレリーズSW140の押し込みによる焦点検出動作、露出制御動作及びその後の画像の記録までの動作が基本的な撮影動作となる。
次に、測光用の光学素子及び測光センサ122を用いて、被写界中の被写体を検出する被写体検出手段について説明する。被写体検出は、測光センサ122の出力を用いて行われるため、測光領域125が被写体検出範囲となる。被写体検出動作時は被写体を細かく認識させるため、測光領域125を上記のように測光時の横20×縦20の粗い分割で扱うのではなく、測光センサ122を横640×縦480画素(約30万画素)高画素の画像センサとして用いる。
本実施形態では、被写体検出の対象として、主に人物の顔を検知するものとして説明する。人物の顔を検出する手法としては、目や鼻、口等、顔の特徴部を抽出して顔か否かを判定する手法等、様々なものがあるが、本実施形態では、測光センサ122から得られた被写体検出用の情報から顔の特徴部を抽出し、顔検出を行うものとする。なお、本発明は被写体検出の対象や手法は限定されるものではなく、被写体検出用の情報を用いて被写体検出を行うものであればよい。
本実施形態では、被写体検出の対象として、主に人物の顔を検知するものとして説明する。人物の顔を検出する手法としては、目や鼻、口等、顔の特徴部を抽出して顔か否かを判定する手法等、様々なものがあるが、本実施形態では、測光センサ122から得られた被写体検出用の情報から顔の特徴部を抽出し、顔検出を行うものとする。なお、本発明は被写体検出の対象や手法は限定されるものではなく、被写体検出用の情報を用いて被写体検出を行うものであればよい。
次に、図4を参照して、測光用レンズ121で生じる軸上色収差及び非点収差について説明する。測光用レンズ121を用いて被写体検出を行うことから、測光用レンズ121の結像性能は高いほど、より細かい被写体を検出することが可能となる。しかしながら、測光用レンズ121は上記のようにカメラサイズやコストの観点から1枚のレンズで構成されるため、軸上色収差や非点収差といった収差が発生する。
まず、図4(a)を参照して、軸上色収差について説明する。図4(a)は、軸上色収差の図である。軸上色収差は、光の波長による屈折率の違いにより、結像位置が光の波長に応じて測光用レンズ121の光軸401の方向にずれる収差である。
図4(a)に示すFr,Fg,Fbは、それぞれ、像高が0の領域におけるRの主波長の結像位置,Gの主波長の結像位置,Bの主波長の結像位置である。また、波長の長さはB<G<Rであり、測光用レンズ121は波長が短い光線ほど屈折率が高い特徴を有する。したがって、Bの主波長の結像位置Fbは、Gの主波長の結像位置Fgよりも測光用レンズ121に近い位置となる。また、Rの主波長の結像位置Frは、Gの主波長の結像位置Fgよりも測光用レンズ121から遠い位置となる。
図4(a)に示すFr,Fg,Fbは、それぞれ、像高が0の領域におけるRの主波長の結像位置,Gの主波長の結像位置,Bの主波長の結像位置である。また、波長の長さはB<G<Rであり、測光用レンズ121は波長が短い光線ほど屈折率が高い特徴を有する。したがって、Bの主波長の結像位置Fbは、Gの主波長の結像位置Fgよりも測光用レンズ121に近い位置となる。また、Rの主波長の結像位置Frは、Gの主波長の結像位置Fgよりも測光用レンズ121から遠い位置となる。
次に、図4(b)を参照して、非点収差について説明する。図4(b)は、非点収差の図である。非点収差は、測光用レンズ121の光軸401に垂直な方向(測光センサ122の撮像面に平行な方向)に応じて結像位置が光軸401と平行な方向にずれる収差である。
FgV1は、像高が0の領域におけるGの主波長のV方向の結像位置である。FgH1は、像高が0の領域におけるGの主波長のH方向の結像位置である。FgV2は、像高がhの領域におけるGの主波長のV方向の結像位置である。FgH2は、像高がhの領域におけるGの主波長のH方向の結像位置である。なお、V方向は図2に示すファインダ視野枠117の短手方向であり、H方向はファインダ視野枠117の長手方向であるものとする。
一般的に光学素子を用いた結像光学系では、像高が高い領域では、V方向(縦方向)の曲率とH方向(横方向)の曲率とが異なる。また、像高が0の領域では、V方向の曲率とH方向の曲率とが一致する。
したがって、像高が0の領域では、結像位置FgV1と結像位置FgH1とが一致する。また、像高が高い領域の例である像高がhの領域では、結像位置FgV2と結像位置FgH2とは光軸401と平行な方向にずれる。
FgV1は、像高が0の領域におけるGの主波長のV方向の結像位置である。FgH1は、像高が0の領域におけるGの主波長のH方向の結像位置である。FgV2は、像高がhの領域におけるGの主波長のV方向の結像位置である。FgH2は、像高がhの領域におけるGの主波長のH方向の結像位置である。なお、V方向は図2に示すファインダ視野枠117の短手方向であり、H方向はファインダ視野枠117の長手方向であるものとする。
一般的に光学素子を用いた結像光学系では、像高が高い領域では、V方向(縦方向)の曲率とH方向(横方向)の曲率とが異なる。また、像高が0の領域では、V方向の曲率とH方向の曲率とが一致する。
したがって、像高が0の領域では、結像位置FgV1と結像位置FgH1とが一致する。また、像高が高い領域の例である像高がhの領域では、結像位置FgV2と結像位置FgH2とは光軸401と平行な方向にずれる。
次に、図4(c)を参照して、像高がhの領域における、R,G,Bの各主波長のV方向の結像位置について説明する。図4(c)は、像高がhの領域における、R,G,Bの各主波長のV方向の結像位置を示す図である。
FrV2は、像高がhの領域におけるRの主波長のV方向の結像位置である。FgV2は、図4(b)と同様に、像高がhの領域におけるGの主波長のV方向の結像位置である。FbV2は、像高がhの領域におけるBの主波長のV方向の結像位置である。
図4(c)に示すように、結像位置FrV2、FgV2、FbV2は、光軸401と平行な方向にずれており、結像位置FbV2が測光用レンズ121に最も近く、結像位置FrV2が測光用レンズ121から最も遠い。
FrV2は、像高がhの領域におけるRの主波長のV方向の結像位置である。FgV2は、図4(b)と同様に、像高がhの領域におけるGの主波長のV方向の結像位置である。FbV2は、像高がhの領域におけるBの主波長のV方向の結像位置である。
図4(c)に示すように、結像位置FrV2、FgV2、FbV2は、光軸401と平行な方向にずれており、結像位置FbV2が測光用レンズ121に最も近く、結像位置FrV2が測光用レンズ121から最も遠い。
次に、図4(d)を参照して、像高がhの領域における、R,G,Bの各主波長のH方向の結像位置について説明する。図4(d)は、像高がhの領域における、R,G,Bの各主波長のH方向の結像位置を示す図である。
FrH2は、像高がhの領域におけるRの主波長のH方向の結像位置である。FgH2は、図4(b)と同様に、像高がhの領域におけるGの主波長のH方向の結像位置である。FbH2は、像高がhの領域におけるBの主波長のH方向の結像位置である。
図4(d)に示すように、結像位置FrH2、FgH2、FbH2は、光軸401と平行な方向にずれており、結像位置FbH2が測光用レンズ121に最も近く、結像位置FrH2が測光用レンズ121から最も遠い。
FrH2は、像高がhの領域におけるRの主波長のH方向の結像位置である。FgH2は、図4(b)と同様に、像高がhの領域におけるGの主波長のH方向の結像位置である。FbH2は、像高がhの領域におけるBの主波長のH方向の結像位置である。
図4(d)に示すように、結像位置FrH2、FgH2、FbH2は、光軸401と平行な方向にずれており、結像位置FbH2が測光用レンズ121に最も近く、結像位置FrH2が測光用レンズ121から最も遠い。
図4(c)及び図4(d)から分かるように、結像位置FrV2と結像位置FrH2とは一致せず、結像位置FrV2は結像位置FrH2より測光用レンズ121に近い位置になる。同様に、結像位置FgV2と結像位置FgH2とは一致せず、結像位置FgV2は結像位置FgH2より測光用レンズ121に近い位置になる。また、結像位置FbV2と結像位置FbH2とは一致せず、結像位置FbV2は結像位置FbH2より測光用レンズ121に近い位置になる。
次に、結像性能と結像距離との関係について説明する。結像距離とは、結像位置と測光センサ122の撮像面との距離のことである。結像距離が短いほど、結像位置が測光センサ122の撮像面に近くなるため、結像性能が高くなる。したがって、結像距離が0、すなわち、結像位置が測光センサ122の撮像面上に位置する色が最も結像性能が高くなる。
図4(c)に示す例では、像高がhの領域におけるV方向に関して、Rの結像距離が最も短く、次にGの結像距離が短く、Bの結像距離が最も長い。したがって、像高がhの領域におけるV方向に関して、Rが最も結像性能が高く、次にGの結像性能が高く、Bの結像性能が最も低い。
図4(d)に示す例では、像高がhの領域におけるH方向に関して、Gの結像距離が最も短く、次にBの結像距離が短く、Rの結像距離が最も長い。したがって、像高がhの領域におけるH方向に関して、Gが最も結像性能が高く、次にBの結像性能が高く、Rの結像性能が最も低い。
図4(c)に示す例では、像高がhの領域におけるV方向に関して、Rの結像距離が最も短く、次にGの結像距離が短く、Bの結像距離が最も長い。したがって、像高がhの領域におけるV方向に関して、Rが最も結像性能が高く、次にGの結像性能が高く、Bの結像性能が最も低い。
図4(d)に示す例では、像高がhの領域におけるH方向に関して、Gの結像距離が最も短く、次にBの結像距離が短く、Rの結像距離が最も長い。したがって、像高がhの領域におけるH方向に関して、Gが最も結像性能が高く、次にBの結像性能が高く、Rの結像性能が最も低い。
次に、被写体検出用の画像データについて説明する。被写体検出用の画像データは、被写界内の人物の検出のために使われる。被写体検出用の画像データは、測光センサ122が出力するR,G,Bのそれぞれの信号を所定の比率で合成した輝度画像データ(輝度信号画像)である。被写体検出用の画像データは、解像力が高いほど被写体の特徴部を抽出しやすくなる。
次に、測光センサ122と測光用レンズ121との位置関係について説明する。
輝度信号を作成するときには、測光センサ122の有するGの信号に重み付けを行って演算を行うのが一般的である。そこで、測光センサ122の中心部に測光用レンズ121のGの結像位置Fgが一致するように、測光センサ122と測光用レンズ121との位置関係が不図示の保持部材等によって保たれているものとする。
次に、測光センサ122と測光用レンズ121との位置関係について説明する。
輝度信号を作成するときには、測光センサ122の有するGの信号に重み付けを行って演算を行うのが一般的である。そこで、測光センサ122の中心部に測光用レンズ121のGの結像位置Fgが一致するように、測光センサ122と測光用レンズ121との位置関係が不図示の保持部材等によって保たれているものとする。
次に、被写体検出用の画像データの生成方法について説明する。被写体を検出する際は、被写体の特徴部を検出する。したがって、被写体検出用の画像データでは、被写体の特徴部がよりよく解像されている必要がある。
本実施形態では被写体を人物の顔とするため、被写体の特徴部は目や口等となる。目や口のパターンは一般的に横長である。したがって、被写体検出用の画像データは、顔の縦方向について解像力が高い程、被写体の検出の精度が高くなるといえる。
このような考え方から、被写体検出用の画像データは、被写界の像の中の方向のうち高解像にする方向である高解像方向を定め、高解像方向について解像力が高まるように生成される。被写体が人物の顔の場合は、顔の縦方向が高解像方向となるようにする。
本実施形態では被写体を人物の顔とするため、被写体の特徴部は目や口等となる。目や口のパターンは一般的に横長である。したがって、被写体検出用の画像データは、顔の縦方向について解像力が高い程、被写体の検出の精度が高くなるといえる。
このような考え方から、被写体検出用の画像データは、被写界の像の中の方向のうち高解像にする方向である高解像方向を定め、高解像方向について解像力が高まるように生成される。被写体が人物の顔の場合は、顔の縦方向が高解像方向となるようにする。
次に、図5(a)を参照して、カメラ姿勢が正位置の場合の被写体検出用の画像データの生成方法について説明する。図5(a)は、カメラ姿勢を正位置にしたときのファインダ視野枠117の図である。なお、正位置とは、被写界の像における重力の方向(鉛直方向)がファインダ視野枠117の短手方向になるようなカメラの姿勢のことである。
図5(a)では、ファインダ視野枠117に被写界の像が表示されている。この被写界の像では、図4(b)〜(d)に示した像高がhの領域に人物がいる。図5(a)に示すように、カメラ姿勢が正位置の場合、人物の顔の縦方向が鉛直方向に等しくなるように撮影されることが多いと考えられる。したがって、カメラ姿勢が正位置の場合、高解像方向を顔の縦方向であるV方向にして、V方向の解像力が高い被写体検出用の画像データを生成する。
図5(a)では、ファインダ視野枠117に被写界の像が表示されている。この被写界の像では、図4(b)〜(d)に示した像高がhの領域に人物がいる。図5(a)に示すように、カメラ姿勢が正位置の場合、人物の顔の縦方向が鉛直方向に等しくなるように撮影されることが多いと考えられる。したがって、カメラ姿勢が正位置の場合、高解像方向を顔の縦方向であるV方向にして、V方向の解像力が高い被写体検出用の画像データを生成する。
すなわち、図5(a)の構図では、V方向の結像性能が高い色に重みづけをかけて被写体検出用の画像データを生成することで、V方向の解像力が高い被写体検出用の画像データを生成でき、被写体検出精度を高められる。したがって、例えば、像高がhの領域では、本実施形態のカメラは、上記のように、V方向の結像性能が最も高いRについて最も強い重みづけを行って被写体検出用の画像データを生成する。
次に、図5(b)を参照して、カメラ姿勢が縦位置の場合の被写体検出用の画像データの生成方法について説明する。図5(b)は、カメラ姿勢を縦位置にしたときのファインダ視野枠117の図である。なお、縦位置とは、被写界の像における鉛直方向がファインダ視野枠117の長手方向になるようなカメラの姿勢のことである。
図5(b)では、ファインダ視野枠117に被写界の像が表示されている。この被写界の像では、図4(b)〜(d)に示した像高がhの領域に人物がいる。図5(b)に示すように、カメラ姿勢が縦位置の場合、人物の顔の縦方向が鉛直方向に等しくなるように撮影されることが多いと考えられる。したがって、カメラ姿勢が縦位置の場合、高解像方向を顔の縦方向であるH方向にして、H方向の解像力が高い被写体検出用の画像データを生成する。
図5(b)では、ファインダ視野枠117に被写界の像が表示されている。この被写界の像では、図4(b)〜(d)に示した像高がhの領域に人物がいる。図5(b)に示すように、カメラ姿勢が縦位置の場合、人物の顔の縦方向が鉛直方向に等しくなるように撮影されることが多いと考えられる。したがって、カメラ姿勢が縦位置の場合、高解像方向を顔の縦方向であるH方向にして、H方向の解像力が高い被写体検出用の画像データを生成する。
すなわち、図5(b)の構図では、H方向の結像性能が高い色に重みづけをかけて被写体検出用の画像データを生成することで、H方向の解像力が高い被写体検出用の画像データを生成でき、被写体検出精度を高められる。したがって、例えば、像高がhの領域では、本実施形態のカメラは、上記のように、H方向の結像性能が最も高いGについて、最も強い重みづけを行って被写体検出用の画像データを生成する。
このように、被写体検出用の画像データは、図5(a)の構図ではV方向、図5(b)の構図ではH方向の解像力が高い程、被写体検出精度は高くなるといえる。
仮に、図4(b)〜(d)に示す像高がhの領域について、図5(a)の構図及び図5(b)の構図の両方の場合で、Gについて最も強い重みづけを行って被写体検出用の画像データを生成したとする。このとき、図4(c)及び(d)に示すように、GのH方向の結像距離(結像位置FgH2と測光センサ122の撮像面との距離)は、GのV方向の結像距離(結像位置FgV2と測光センサ122の撮像面との距離)より短い。よって、GのH方向の解像力はGのV方向の解像力より高い。したがって、図5(b)の構図の被写体検出精度は、図5(a)の構図の被写体検出精度より高くなる。
仮に、図4(b)〜(d)に示す像高がhの領域について、図5(a)の構図及び図5(b)の構図の両方の場合で、Gについて最も強い重みづけを行って被写体検出用の画像データを生成したとする。このとき、図4(c)及び(d)に示すように、GのH方向の結像距離(結像位置FgH2と測光センサ122の撮像面との距離)は、GのV方向の結像距離(結像位置FgV2と測光センサ122の撮像面との距離)より短い。よって、GのH方向の解像力はGのV方向の解像力より高い。したがって、図5(b)の構図の被写体検出精度は、図5(a)の構図の被写体検出精度より高くなる。
ここまでの説明から分かるように、本実施形態のカメラは、カメラの姿勢に応じて、解像力の高い被写体検出用の画像データが生成されるように、測光センサ122の色の出力に重みづけを行う。したがって、カメラの姿勢によらず、被写体、特に人物の検出精度を向上させることが可能となる。
次に、カメラの姿勢の検出について説明する。姿勢検出部127は、重力を測定することにより、姿勢検出部127が取り付けられた筐体の傾きを検出できる。本実施形態では、姿勢検出部127の出力から、撮影者の意図等によってカメラの姿勢が変更されたときに、カメラの姿勢が、図5(a)を参照して説明した正位置か、図5(b)を参照して説明した縦位置かを判定できる。
CPU101は、姿勢検出部127の出力に基づいて高解像方向を定め、高解像方向の解像力が高くなるように被写体検出用の画像データを生成することで、カメラの姿勢によらずに、被写体検出精度の向上が見込める。
CPU101は、姿勢検出部127の出力に基づいて高解像方向を定め、高解像方向の解像力が高くなるように被写体検出用の画像データを生成することで、カメラの姿勢によらずに、被写体検出精度の向上が見込める。
次に、重みづけテーブル701について説明する。図4を参照して説明したように、測光用レンズ121はV方向の結像位置とH方向の結像位置とが異なる非点収差を有する。したがって、撮影者の意図等によってカメラの姿勢が変更されたときに、カメラの姿勢に基づいて定められた高解像方向に応じて各色の重みづけを変更して、被写体検出用の画像データを生成することが重要である。
本実施形態は、カメラの姿勢に応じて各色の重みづけを変更するために、各色の重みづけの情報が格納された重みづけテーブル701を使用する。重みづけテーブル701には、第1重みづけテーブル701Aと第2重みづけテーブル701Bとがある。CPU101は、カメラの姿勢に応じて使用する重みづけテーブル701を変えることで、カメラの姿勢に応じて各色の重みづけを変更して、被写体検出用の画像データを生成する。具体的には、カメラの姿勢が正位置であり、高解像方向がV方向のとき、第1重みづけテーブル701Aが使われる。カメラの姿勢が縦位置であり、高解像方向がH方向のとき、第2重みづけテーブル701Bが使われる。それぞれの重みづけテーブル701は、領域601ごとの各色の重みづけの情報を格納する。
第1重みづけテーブル701A及び第2重みづけテーブル701Bは、例えばCPU101内のEEPROM101a内に記憶される。
本実施形態は、カメラの姿勢に応じて各色の重みづけを変更するために、各色の重みづけの情報が格納された重みづけテーブル701を使用する。重みづけテーブル701には、第1重みづけテーブル701Aと第2重みづけテーブル701Bとがある。CPU101は、カメラの姿勢に応じて使用する重みづけテーブル701を変えることで、カメラの姿勢に応じて各色の重みづけを変更して、被写体検出用の画像データを生成する。具体的には、カメラの姿勢が正位置であり、高解像方向がV方向のとき、第1重みづけテーブル701Aが使われる。カメラの姿勢が縦位置であり、高解像方向がH方向のとき、第2重みづけテーブル701Bが使われる。それぞれの重みづけテーブル701は、領域601ごとの各色の重みづけの情報を格納する。
第1重みづけテーブル701A及び第2重みづけテーブル701Bは、例えばCPU101内のEEPROM101a内に記憶される。
重みづけテーブル701の詳細を説明するにあたり、まず、図6を参照して、被写界の像の領域について説明する。図6は、被写界の像の領域601を示す図である。図6に示すように、本実施形態のカメラでは、測光領域125が所定の仮想的な領域601に分割されている。本実施形態では、測光領域125は、V方向に7分割、H方向に7分割され、全体で49分割されているものとする。なお、図5等に示されるように、測光領域125には被写界の像が表されるため、測光領域125の仮想的な領域601は、被写界の像における仮想的な領域601といえる。
次に、図7を参照して重みづけテーブル701について説明する。図7(a)は、領域601のそれぞれに識別記号を割り当てた図である。図7(b)は、第1重みづけテーブル701Aの図である。図7(c)は、第2重みづけテーブル701Bの図である。なお、以降では、識別番号SNNが割り当てられた領域をSNN領域601と呼ぶ。
光学系の収差は光軸に対して回転対象である。本実施形態では、S41領域601が光軸401に対応する領域601とする。すると、S41領域601に対して回転対象な位置にある領域601は、光学的に等価であり、各色の重みづけの情報を同一のものにできる。図7(a)では、S41領域601に対して回転対象な位置にある領域601は、同じ識別番号を割り当てている。同じ識別番号が割り当てられた領域601は、各色の重みづけの情報が同一である。したがって、重みづけの情報は、各色について、図7(a)に示すように、S11領域601からS44領域601までの計16種類が必要となる。
光学系の収差は光軸に対して回転対象である。本実施形態では、S41領域601が光軸401に対応する領域601とする。すると、S41領域601に対して回転対象な位置にある領域601は、光学的に等価であり、各色の重みづけの情報を同一のものにできる。図7(a)では、S41領域601に対して回転対象な位置にある領域601は、同じ識別番号を割り当てている。同じ識別番号が割り当てられた領域601は、各色の重みづけの情報が同一である。したがって、重みづけの情報は、各色について、図7(a)に示すように、S11領域601からS44領域601までの計16種類が必要となる。
重みづけテーブル701は、測光センサ122が測光用レンズ121に対して図4(a)のような位置関係にあるときの、重みづけテーブルの例である。第1重みづけテーブル701A及び第2重みづけテーブル701Bには、各色の重みづけの情報として、各色の重みづけ係数が格納される。重みづけ係数が大きいほど強い重みづけが行われることを表す。重みづけ係数Wr、Wg、Wbは、それぞれ、被写体検出用の画像データ生成時の測光センサ122のR,G,Bの各原色の信号にかける重みづけ係数である。CPU101は、測光センサ122のR,G,Bの各原色の信号に、重みづけテーブル701から取得した重みづけ係数Wr,Wg,Wbをかけて輝度画像データを生成して、被写体検出用の画像データとする。
重みづけテーブル701に格納される重みづけ係数Wr,Wg,Wbは、次のような考え方で定められる。すなわち、それぞれの領域601において、事前に定められた高解像方向についての結像性能が最も高い色の重みづけ係数を、他の色の重みづけ係数より大きくする。また、それぞれの領域601において、事前に定められた高解像方向についての結像性能が2番目に高い色の重みづけ係数を、結像性能が最も低い色の重みづけ係数より大きくする。
例えば、光軸401の近傍であるS41領域601では、上記のように、カメラの姿勢が正位置でも縦位置でも、Gの結像位置が測光センサ122の撮像面の中心と一致するため、Gの結像性能がB及びRの結像性能より高い。したがって、第1重みづけテーブル701A及び第2重みづけテーブル701Bでは、S41領域601において、Gの重みづけ係数Wgが、他の色の重みづけ係数Wr及びWbより大きい。
また、光軸401の近傍であるS41領域601では、上記のように、H方向とV方向とで結像位置の差異がないため、第1重みづけテーブル701A及び第2重みづけテーブル701BにおけるS41領域601の重みづけ係数Wr,Wg,Wbは同一になる。
また、光軸401の近傍であるS41領域601では、上記のように、H方向とV方向とで結像位置の差異がないため、第1重みづけテーブル701A及び第2重みづけテーブル701BにおけるS41領域601の重みづけ係数Wr,Wg,Wbは同一になる。
次に、図4(b)〜(d)や図5で示した像高がhの領域の例について説明する。像高がhの領域に対応する領域601は、S44領域601である。
図5(a)の構図では、高解像方向がV方向である。したがって、V方向の結像性能が高い色の重みづけ係数を大きくする。具体的には、S44領域601のV方向において、Rの結像性能が最も高く、次にGの結像性能が高く、Bの結像性能が最も低い。したがって、高解像方向がV方向の場合に使われる第1重みづけテーブル701AのS44領域601では、重みづけ係数Wrが最も大きく、次に重みづけ係数Wgが大きく、重みづけ係数Wbが最も小さい。
図5(b)の構図では、高解像方向がH方向である。したがって、H方向の結像性能が高い色の重みづけ係数を大きくする。具体的には、S44領域601のH方向において、Gの結像性能が最も高く、次にBの結像性能が高く、Rの結像性能が最も低い。したがって、高解像方向がH方向の場合に使われる第2重みづけテーブル701BのS44領域601では、重みづけ係数Wgが最も大きく、次に重みづけ係数Wbが大きく、重みづけ係数Wrが最も小さい。
なお、第2重みづけテーブル701Bにおいて、S44領域601の重みづけ係数Wgは、中央部であるS41領域601の重みづけ係数Wgより若干小さい。また、S44領域601のH方向ではS41領域601と比較してBの結像性能が少し高く、第2重みづけテーブル701Bにおいて、S44領域601の重みづけ係数Wbは、S41領域601の重みづけ係数Wbより大きい。
図5(a)の構図では、高解像方向がV方向である。したがって、V方向の結像性能が高い色の重みづけ係数を大きくする。具体的には、S44領域601のV方向において、Rの結像性能が最も高く、次にGの結像性能が高く、Bの結像性能が最も低い。したがって、高解像方向がV方向の場合に使われる第1重みづけテーブル701AのS44領域601では、重みづけ係数Wrが最も大きく、次に重みづけ係数Wgが大きく、重みづけ係数Wbが最も小さい。
図5(b)の構図では、高解像方向がH方向である。したがって、H方向の結像性能が高い色の重みづけ係数を大きくする。具体的には、S44領域601のH方向において、Gの結像性能が最も高く、次にBの結像性能が高く、Rの結像性能が最も低い。したがって、高解像方向がH方向の場合に使われる第2重みづけテーブル701BのS44領域601では、重みづけ係数Wgが最も大きく、次に重みづけ係数Wbが大きく、重みづけ係数Wrが最も小さい。
なお、第2重みづけテーブル701Bにおいて、S44領域601の重みづけ係数Wgは、中央部であるS41領域601の重みづけ係数Wgより若干小さい。また、S44領域601のH方向ではS41領域601と比較してBの結像性能が少し高く、第2重みづけテーブル701Bにおいて、S44領域601の重みづけ係数Wbは、S41領域601の重みづけ係数Wbより大きい。
なお、本実施形態では、上記のように、重みづけテーブル701を使って領域601ごとに重みづけ係数が定められる。しかし、重みづけテーブル701を使わずに、像高から重みづけ係数を算出できる関数を使ってもよい。このとき、例えば、関数は高解像方向ごとに用意される。また、高解像方向に基づいて、被写界の像の全体に一律に重みづけ係数を定めてもよい。
次に、図8を参照して、本実施形態のカメラの動作について説明する。図8は、本実施形態のカメラの撮影処理のフローチャートである。
ステップS300において、本実施形態のカメラは、不作動状態から電源スイッチ(不図示)がONにされると、撮影動作を開始する。なお、図8のフローチャートでは、上記の撮影レンズ105の焦点検出動作として自動選択動作が選択されているものとする。
ステップS301において、CPU101は、姿勢検出部127の出力に基づいて、本実施形態のカメラの姿勢が正位置か縦位置かの検出を行う。CPU101は、正位置のとき、高解像方向がV方向であるため、第1重みづけテーブル701Aを使う決定をする。CPU101は、縦位置のとき、高解像方向がH方向であるため、第2重みづけテーブル701Bを使う決定をする。
ステップS300において、本実施形態のカメラは、不作動状態から電源スイッチ(不図示)がONにされると、撮影動作を開始する。なお、図8のフローチャートでは、上記の撮影レンズ105の焦点検出動作として自動選択動作が選択されているものとする。
ステップS301において、CPU101は、姿勢検出部127の出力に基づいて、本実施形態のカメラの姿勢が正位置か縦位置かの検出を行う。CPU101は、正位置のとき、高解像方向がV方向であるため、第1重みづけテーブル701Aを使う決定をする。CPU101は、縦位置のとき、高解像方向がH方向であるため、第2重みづけテーブル701Bを使う決定をする。
ステップS302において、CPU101は、レリーズSW140がSW1まで押し込まれたか否かを判定する。CPU101は、レリーズSW140がSW1まで押し込まれたとき処理をステップS303に進め、押し込まれていないとき処理をステップS301に戻す。
ステップS303において、測光センサ122は、CPU101の指示に従い、蓄積を開始する。CPU101は、測光センサ122から出力されるアナログ信号をデジタル信号に変換して、VRAM103cに一時的に保存する。
ステップS303において、測光センサ122は、CPU101の指示に従い、蓄積を開始する。CPU101は、測光センサ122から出力されるアナログ信号をデジタル信号に変換して、VRAM103cに一時的に保存する。
ステップS304において、CPU101は、ステップS303でVRAM103に保存されたデジタル信号から、被写体検出用の画像データを生成する。CPU101は、ステップS301で決定した重みづけテーブル701に格納された重みづけ係数を使い、VRAM103に保存されたデジタル信号から輝度画像データを生成して、被写体検出用の画像データとする。この被写体検出用の画像データの生成は、本発明の生成手段による処理の一例である。
さらに、ステップS304において、CPU101は、生成した被写体検出用の画像データから、目や口等の顔の特徴部を抽出して、顔等の被写体を検出する。この被写体の検出は、本発明の被写体検出手段の一例である。
ステップS305において、CPU101は、被写体検出用の画像データから被写体を検出できたか否かを判定する。CPU101は、被写体を検出できたとき処理をステップS306に進め、被写体を検出できなかったとき処理をステップS307に進める。
さらに、ステップS304において、CPU101は、生成した被写体検出用の画像データから、目や口等の顔の特徴部を抽出して、顔等の被写体を検出する。この被写体の検出は、本発明の被写体検出手段の一例である。
ステップS305において、CPU101は、被写体検出用の画像データから被写体を検出できたか否かを判定する。CPU101は、被写体を検出できたとき処理をステップS306に進め、被写体を検出できなかったとき処理をステップS307に進める。
ステップS306において、CPU101は、ステップS304で検出した被写体の座標を焦点検出ユニット119に送る。焦点検出ユニット119は、被写体の座標に基づいて、被写体の近傍に対して、上記の被写体検出優先自動選択動作を行う。
ステップS307において、焦点検出ユニット119は、上記の通常の自動選択動作を行う。
ステップS308において、CPU101は、ステップS303において一時的に保存された測光センサ122の出力を20×20に分割した輝度情報を算出する。なお、この輝度情報の算出は本発明の輝度算出手段による処理の一例である。
そして、ステップS306又はステップS307において選択された焦点検出領域124に重み付けを行う等所定のアルゴリズム演算を行う。こうすることによって、CPU101は、カメラの露出値であるレンズユニット105の絞り値とフォーカルプレーンシャッタ113のシャッタ速度を算出する。そして、CPU101は、算出結果を使ってレンズユニット105の絞り値、及び、フォーカルプレーンシャッタ113のシャッタ速度を制御する。なお、この制御は本発明の制御手段による処理の一例である。
ステップS307において、焦点検出ユニット119は、上記の通常の自動選択動作を行う。
ステップS308において、CPU101は、ステップS303において一時的に保存された測光センサ122の出力を20×20に分割した輝度情報を算出する。なお、この輝度情報の算出は本発明の輝度算出手段による処理の一例である。
そして、ステップS306又はステップS307において選択された焦点検出領域124に重み付けを行う等所定のアルゴリズム演算を行う。こうすることによって、CPU101は、カメラの露出値であるレンズユニット105の絞り値とフォーカルプレーンシャッタ113のシャッタ速度を算出する。そして、CPU101は、算出結果を使ってレンズユニット105の絞り値、及び、フォーカルプレーンシャッタ113のシャッタ速度を制御する。なお、この制御は本発明の制御手段による処理の一例である。
ステップS309において、CPU101は、レリーズSW140がSW2まで押し込まれたか否かを判定する。CPU101は、レリーズSW140がSW1まで押し込まれたとき処理をステップS310に進め、押し込まれていないとき処理をステップS301に戻す。
ステップS310において、CPU101は、シャッタ制御部、絞り駆動部、撮像センサ制御部108の各々に信号を送信して、公知の撮影動作を行う。CPU101は、撮影動作の終了後、処理をステップS301に戻す。
ステップS310において、CPU101は、シャッタ制御部、絞り駆動部、撮像センサ制御部108の各々に信号を送信して、公知の撮影動作を行う。CPU101は、撮影動作の終了後、処理をステップS301に戻す。
以上のように本実施形態のカメラは、高解像方向についての結像性能が強い色について、結像性能が低い他の色よりも強い重みづけを行って、測光センサ122が出力する信号に基づいて、被写体検出用の画像データを生成する。よって、本実施形態のカメラは、高解像方向について解像力の高い被写体検出用の画像データを生成できる。したがって、被写体検出精度の低下を抑制できる。
また、人物の顔等を被写体とするとき、被写体検出用の画像データにおける所定の方向の解像力が高いことが重要である。ここで、本実施形態のカメラは、この所定の方向となる高解像方向を、姿勢検出部127が検知するカメラの姿勢に基づいて定める。したがって、被写体検出用の画像データは、人物の顔等の被写体の検出に適したものとなり、高精度に被写体検出を行うことができる。
また、人物の顔等を被写体とするとき、被写体検出用の画像データにおける所定の方向の解像力が高いことが重要である。ここで、本実施形態のカメラは、この所定の方向となる高解像方向を、姿勢検出部127が検知するカメラの姿勢に基づいて定める。したがって、被写体検出用の画像データは、人物の顔等の被写体の検出に適したものとなり、高精度に被写体検出を行うことができる。
また、本実施形態のカメラは、領域601ごとに色の重みづけを行って被写体検出用の画像データを生成する。したがって、全体にわたって高解像方向についての解像力の高い被写体検出用の画像データを生成できる。
また、本実施形態のカメラは、高解像方向に基づいて、重みづけテーブル701に含まれる重みづけ係数を使って、色ごとに重み付けを行う。したがって、本実施形態のカメラは、重みづけ係数自体を演算によって得る必要がなくなり、処理負荷が軽減される。
また、本実施形態のカメラは、測光センサ122が出力する信号に基づいて被写界の輝度が算出されて測光が行われる。すなわち、測光センサ122は、測光及び被写体検出の2つの目的に使われる。ここで、コスト等の観点から、測光用レンズ121は1枚で構成され、結像性能が必ずしも良好でないことがある。しかし、この場合でも、高解像方向について解像力の高く、被写体の検出に適した被写体検出用の画像データを生成できる。したがって、被写体検出精度の低下を抑制できる。
また、本実施形態のカメラは、高解像方向に基づいて、重みづけテーブル701に含まれる重みづけ係数を使って、色ごとに重み付けを行う。したがって、本実施形態のカメラは、重みづけ係数自体を演算によって得る必要がなくなり、処理負荷が軽減される。
また、本実施形態のカメラは、測光センサ122が出力する信号に基づいて被写界の輝度が算出されて測光が行われる。すなわち、測光センサ122は、測光及び被写体検出の2つの目的に使われる。ここで、コスト等の観点から、測光用レンズ121は1枚で構成され、結像性能が必ずしも良好でないことがある。しかし、この場合でも、高解像方向について解像力の高く、被写体の検出に適した被写体検出用の画像データを生成できる。したがって、被写体検出精度の低下を抑制できる。
(その他の実施形態)
上記の実施形態は高解像方向がV方向又はH方向であったが、これ以外の方向を高解像方向に定めることができるようにしてもよい。例えば、カメラ姿勢が傾斜位置のとき高解像方向を傾斜方向としてもよい。傾斜位置は、カメラを鉛直方向に対して例えば45度傾けた位置である。傾斜方向は、V方向及びH方向から45度傾いた方向である。高解像方向が傾斜方向のときは、例えば、傾斜方向に対応する重みづけテーブル701が使われる。
上記の実施形態は高解像方向がV方向又はH方向であったが、これ以外の方向を高解像方向に定めることができるようにしてもよい。例えば、カメラ姿勢が傾斜位置のとき高解像方向を傾斜方向としてもよい。傾斜位置は、カメラを鉛直方向に対して例えば45度傾けた位置である。傾斜方向は、V方向及びH方向から45度傾いた方向である。高解像方向が傾斜方向のときは、例えば、傾斜方向に対応する重みづけテーブル701が使われる。
本発明は、上記の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
以上、本発明を実施形態と共に説明したが、上記実施形態は本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
以上、本発明を実施形態と共に説明したが、上記実施形態は本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
101 CPU、119 焦点検出ユニット、121 測光レンズ、122 測光センサ、127 姿勢検出部
Claims (12)
- 被写界の像を表す画像データから被写体を検出する撮像装置であって、
前記被写界の像を受光して2種以上の波長域を検知する撮像面を備え、前記被写界の像の信号を出力する撮像手段と、
前記被写界の像の中で定められる高解像方向に応じて、結像性能が高い前記波長域について、結像性能が低い前記波長域よりも強い重みづけを行って、前記撮像手段が出力する信号に基づいて前記画像データを生成する生成手段と、を備えることを特徴とする撮像装置。 - 前記撮像装置の姿勢を検知する検知手段をさらに備え、
前記生成手段は、前記検知手段が検知する前記撮像装置の姿勢に基づいて、前記高解像方向を定めることを特徴とする請求項1に記載の撮像装置。 - 前記波長域の1つを第1波長域とし、前記第1波長域とは異なる前記波長域の1つを第2波長域とし、
前記高解像方向についての前記第1波長域の結像位置と前記撮像面との距離を第1結像距離とし、前記高解像方向についての前記第2波長域の結像位置と前記撮像面との距離を第2結像距離とすると、
前記生成手段は、前記第1結像距離の方が前記第2結像距離より短いとき、前記第1波長域の重みづけを前記第2波長域の重みづけより強くし、前記第2結像距離の方が前記第1結像距離より短いとき、前記第2波長域の重みづけを前記第1波長域の重みづけより強くすることを特徴とする請求項1又は2に記載の撮像装置。 - 前記生成手段は、前記被写界の像を構成する仮想的な複数の領域ごとに前記波長域の重みづけを行うことを特徴とする請求項1乃至3のいずれか1項に記載の撮像装置。
- 前記高解像方向ごと、及び、前記領域ごとの前記波長域の重みづけの情報を格納するテーブルを記憶する記憶手段をさらに備え、
前記生成手段は、前記高解像方向に基づいて、前記テーブルに含まれる重みづけの情報を使って、前記波長域ごとに重み付けを行うことを特徴とする請求項4に記載の撮像装置。 - 前記撮像手段は、前記被写界の輝度を測定するための測光用の撮像素子であることを特徴とする請求項1乃至5のいずれか1項に記載の撮像装置。
- 前記測光用の撮像素子で測定した前記被写界の輝度に基づいて、絞り値及びシャッタ速度の少なくともいずれかを制御する制御手段をさらに備えることを特徴とする請求項6に記載の撮像装置。
- 外部から入射した光の光路を変える変更手段と、
前記変更手段で光路が変えられた光を前記撮像手段に結像させる1枚のレンズと、をさらに備えることを特徴とする請求項1乃至7のいずれか1項に記載の撮像装置。 - 前記画像データから前記被写体の像を検出する被写体検出手段をさらに備えることを特徴とする請求項1乃至8のいずれか1項に記載の撮像装置。
- 被写界の像を表す画像データから被写体を検出する撮像装置であって、
前記被写界の像を受光して2種以上の波長域を検知する撮像面を備え、前記被写界の像の信号を出力する撮像手段と、
前記撮像装置の姿勢を検知する検知手段と、
前記検知手段が検知する前記撮像装置の姿勢に応じて、前記2種以上の波長域に重みづけを行って、前記撮像手段が出力する信号に基づいて前記画像データを生成する生成手段と、を備えることを特徴とする撮像装置。 - 被写界の像を受光して2種以上の波長域を検知する撮像面を備え、前記被写界の像の信号を出力する撮像手段を有し、前記被写界の像を表す画像データから被写体を検出する撮像装置の制御方法であって、
前記被写界の像の中で定められる高解像方向に応じて、結像性能が高い前記波長域について、結像性能が低い前記波長域よりも強い重みづけを行って、前記撮像手段が出力する信号に基づいて前記画像データを生成する生成ステップを備えることを特徴とする撮像装置の制御方法。 - 被写界の像を受光して2種以上の波長域を検知する撮像面を備え、前記被写界の像の信号を出力する撮像手段を有し、前記被写界の像を表す画像データから被写体を検出する撮像装置を制御するためのプログラムであって、
前記被写界の像の中で定められる高解像方向に応じて、結像性能が高い前記波長域について、結像性能が低い前記波長域よりも強い重みづけを行って、前記撮像手段が出力する信号に基づいて前記画像データを生成する生成ステップをコンピュータに実行させるためのプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016058493A JP2017175349A (ja) | 2016-03-23 | 2016-03-23 | 撮像装置、その制御方法及びプログラム |
US15/457,533 US10129475B2 (en) | 2016-03-23 | 2017-03-13 | Image capturing apparatus and method of controlling an image capturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016058493A JP2017175349A (ja) | 2016-03-23 | 2016-03-23 | 撮像装置、その制御方法及びプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017175349A true JP2017175349A (ja) | 2017-09-28 |
Family
ID=59898359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016058493A Pending JP2017175349A (ja) | 2016-03-23 | 2016-03-23 | 撮像装置、その制御方法及びプログラム |
Country Status (2)
Country | Link |
---|---|
US (1) | US10129475B2 (ja) |
JP (1) | JP2017175349A (ja) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3513506B2 (ja) * | 2002-02-20 | 2004-03-31 | キヤノン株式会社 | ホワイトバランス補正装置およびそれを搭載した撮像装置、及びホワイトバランス補正方法 |
US20050212950A1 (en) * | 2004-03-26 | 2005-09-29 | Chinon Kabushiki Kaisha | Focal length detecting method, focusing device, image capturing method and image capturing apparatus |
KR101594298B1 (ko) * | 2009-11-17 | 2016-02-16 | 삼성전자주식회사 | 디지털 영상 처리기에서 포커스 조정 장치 및 방법 |
JP5448800B2 (ja) * | 2009-12-25 | 2014-03-19 | キヤノン株式会社 | 撮像装置及びその制御手段 |
JP2012034130A (ja) | 2010-07-29 | 2012-02-16 | Konica Minolta Opto Inc | 撮像装置 |
JP2014078052A (ja) * | 2012-10-09 | 2014-05-01 | Sony Corp | 認証装置および方法、並びにプログラム |
-
2016
- 2016-03-23 JP JP2016058493A patent/JP2017175349A/ja active Pending
-
2017
- 2017-03-13 US US15/457,533 patent/US10129475B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US10129475B2 (en) | 2018-11-13 |
US20170280057A1 (en) | 2017-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11822211B2 (en) | Imaging optical system storing information on its aberration, imaging apparatus, and control method thereof | |
US10313578B2 (en) | Image capturing apparatus and method for controlling image capturing apparatus | |
JP5825851B2 (ja) | 撮像装置及びその制御方法 | |
US10205878B2 (en) | Image processing apparatus, image-capturing apparatus, image processing method, and non-transitory computer-readable storage medium | |
JP2014013368A (ja) | 撮像装置及びその制御方法 | |
JP2010072619A (ja) | 露出演算装置およびカメラ | |
CN105991910B (zh) | 摄像设备及其控制方法 | |
JP2016200629A (ja) | 撮像装置、その制御方法及びプログラム | |
JP2014206711A (ja) | 撮像装置およびその制御方法 | |
JP2004212891A (ja) | 電子カメラ | |
JP6587402B2 (ja) | 撮像装置、その制御方法及びプログラム | |
JP2019020508A (ja) | 撮像装置、その制御方法、および制御プログラム | |
JP2014197141A (ja) | 撮像装置 | |
JP2017175349A (ja) | 撮像装置、その制御方法及びプログラム | |
JP2007028163A (ja) | 電子カメラの表示装置 | |
JP2009017093A (ja) | 画像認識装置、焦点調節装置および撮像装置 | |
JP2019101106A (ja) | 撮像装置及びその制御方法 | |
JP2010122358A (ja) | オートフォーカス装置、オートフォーカス方法及び撮像装置 | |
JP2015233256A (ja) | 電子機器 | |
JP2016173437A (ja) | 測光装置 | |
JP2016103682A (ja) | 光学機器の水準器 | |
JP2019193175A (ja) | 撮像装置 | |
JP2013041059A (ja) | 露出演算装置およびカメラ | |
JP2008103809A (ja) | 撮影装置、画像処理方法、及び画像処理プログラム | |
JP2019020538A (ja) | カメラのファインダ装置 |