JP2017173250A - 電子ビーム画像検出装置及び電子ビーム画像検出方法 - Google Patents
電子ビーム画像検出装置及び電子ビーム画像検出方法 Download PDFInfo
- Publication number
- JP2017173250A JP2017173250A JP2016062228A JP2016062228A JP2017173250A JP 2017173250 A JP2017173250 A JP 2017173250A JP 2016062228 A JP2016062228 A JP 2016062228A JP 2016062228 A JP2016062228 A JP 2016062228A JP 2017173250 A JP2017173250 A JP 2017173250A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- electron beam
- pole piece
- electron
- secondary electrons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
【課題】検査対象基板の凹凸に関わらず高精度に電子ビームを入射することが可能な電子ビーム画像検出装置を提供する。
【解決手段】一態様の電子ビーム画像検出装置は、電磁レンズ用のポールピース15と、電磁レンズ用のコイル13と、ポールピース内に配置され、ポールピースの中実部分上で基板を移動可能に支持するXYステージ105a、105bと、コイルを励磁することによって生じるポールピースの中空部分と中実部分との間に形成される磁力線に実質的に直交する方向に検出面が配置され、中空部分内を通過する電子ビームが中実部分上で基板に照射されることによって生じ、磁力線に沿ってサイクロトロン運動をしながら移動する2次電子を検出する2次電子検出器222と、を備えたことを特徴とする。
【選択図】図9
【解決手段】一態様の電子ビーム画像検出装置は、電磁レンズ用のポールピース15と、電磁レンズ用のコイル13と、ポールピース内に配置され、ポールピースの中実部分上で基板を移動可能に支持するXYステージ105a、105bと、コイルを励磁することによって生じるポールピースの中空部分と中実部分との間に形成される磁力線に実質的に直交する方向に検出面が配置され、中空部分内を通過する電子ビームが中実部分上で基板に照射されることによって生じ、磁力線に沿ってサイクロトロン運動をしながら移動する2次電子を検出する2次電子検出器222と、を備えたことを特徴とする。
【選択図】図9
Description
本発明は、電子ビーム画像検出装置及び電子ビーム画像検出方法に関する。例えば、電子ビームを照射して放出されるパターン像の2次電子画像を取得する装置及び方法に関する。
近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。これらの半導体素子は、回路パターンが形成された原画パターン(マスク或いはレチクルともいう。以下、マスクと総称する)を用いて、いわゆるステッパと呼ばれる縮小投影露光装置でウェハ上にパターンを露光転写して回路形成することにより製造される。
そして、多大な製造コストのかかるLSIの製造にとって、歩留まりの向上は欠かせない。しかし、1ギガビット級のDRAM(ランダムアクセスメモリ)に代表されるように、LSIを構成するパターンは、サブミクロンからナノメータのオーダーになっている。近年、半導体ウェハ上に形成されるLSIパターン寸法の微細化に伴って、パターン欠陥として検出しなければならない寸法も極めて小さいものとなっている。よって、半導体ウェハ上に転写された超微細パターンの欠陥を検査するパターン検査装置の高精度化が必要とされている。その他、歩留まりを低下させる大きな要因の一つとして、半導体ウェハ上に超微細パターンをフォトリソグラフィ技術で露光、転写する際に使用されるマスクのパターン欠陥があげられる。そのため、LSI製造に使用される転写用マスクの欠陥を検査するパターン検査装置の高精度化が必要とされている。
検査手法としては、拡大光学系を用いて半導体ウェハやリソグラフィマスク等の基板上に形成されているパターンを所定の倍率で撮像した光学画像と、設計データ、あるいは試料上の同一パターンを撮像した光学画像と比較することにより検査を行う方法が知られている。例えば、パターン検査方法として、同一マスク上の異なる場所の同一パターンを撮像した光学画像データ同士を比較する「die to die(ダイ−ダイ)検査」や、パターン設計されたCADデータをマスクにパターンを描画する時に描画装置が入力するための装置入力フォーマットに変換した描画データ(設計パターンデータ)を検査装置に入力して、これをベースに設計画像データ(参照画像)を生成して、それとパターンを撮像した測定データとなる光学画像とを比較する「die to database(ダイ−データベース)検査」がある。かかる検査装置における検査方法では、検査対象基板はステージ上に載置され、ステージが動くことによって光束が試料上を走査し、検査が行われる。検査対象基板には、光源及び照明光学系によって光束が照射される。検査対象基板を透過あるいは反射した光は光学系を介して、センサ上に結像される。センサで撮像された画像は測定データとして比較回路へ送られる。比較回路では、画像同士の位置合わせの後、測定データと参照データとを適切なアルゴリズムに従って比較し、一致しない場合には、パターン欠陥有りと判定する。
上述したパターン検査装置では、レーザ光を検査対象基板に照射して、その透過像或いは反射像を撮像することにより、光学画像を取得する。これに対して、電子ビームによるマルチビームを検査対象基板に照射して、検査対象基板から放出される各ビームに対応する2次電子を検出して、パターン像を取得する検査装置の開発も進んでいる(例えば、特許文献1参照)。かかるマルチビームを含む電子ビームを用いた検査装置では、検査対象基板の小領域毎にビームを走査して2次電子を検出する。従来、提案されてきたマルチビームを用いた検査装置では、基板面から放出された2次電子を検出側に引き出すために、基板表面に電界を形成する必要があった。そのため、凹凸のある基板表面に電子ビームを照射しても凹凸に起因した電界の歪みが生じて、入射する電子ビームの軌道がずれてしまい、正確な位置を測定することが困難になるといった問題があった。
そこで、本発明の一態様は、検査対象基板の凹凸に関わらず高精度に電子ビームを入射することが可能な電子ビーム画像検出装置及び方法を提供する。
本発明の一態様の電子ビーム画像検出装置は、
所定の軸と直交する底面部分と、底面部分に接続された側面外周を覆う側面部分と、底面部分上に配置された側面部分の高さ方向途中まで形成された所定の軸に回転対称な中実部分と、中実部分と非接触で中実部分よりも上方に配置された所定の軸に回転対称な中空部分と、中空部分と側面部分との間の領域を覆う上面部分と、を有する電磁レンズ用のポールピースと、
ポールピースの内側の領域に配置された電磁レンズ用のコイルと、
ポールピース内に配置され、中実部分上で基板を移動可能に支持するステージと、
基板に向けて中空部分内の空間を通過するように電子ビームを照射する電子光学系と、
コイルを励磁することによって生じる中空部分と中実部分との間に形成される磁力線に実質的に直交する方向に検出面が配置され、中空部分内を通過する電子ビームが中実部分上で基板に照射されることによって生じ、磁力線に沿ってサイクロトロン運動をしながら移動する2次電子を検出する2次電子検出器と、
を備えたことを特徴とする。
所定の軸と直交する底面部分と、底面部分に接続された側面外周を覆う側面部分と、底面部分上に配置された側面部分の高さ方向途中まで形成された所定の軸に回転対称な中実部分と、中実部分と非接触で中実部分よりも上方に配置された所定の軸に回転対称な中空部分と、中空部分と側面部分との間の領域を覆う上面部分と、を有する電磁レンズ用のポールピースと、
ポールピースの内側の領域に配置された電磁レンズ用のコイルと、
ポールピース内に配置され、中実部分上で基板を移動可能に支持するステージと、
基板に向けて中空部分内の空間を通過するように電子ビームを照射する電子光学系と、
コイルを励磁することによって生じる中空部分と中実部分との間に形成される磁力線に実質的に直交する方向に検出面が配置され、中空部分内を通過する電子ビームが中実部分上で基板に照射されることによって生じ、磁力線に沿ってサイクロトロン運動をしながら移動する2次電子を検出する2次電子検出器と、
を備えたことを特徴とする。
また、2次電子検出器の検出面は、円錐台の斜面状に形成されると好適である。
また、ポールピースは、中空部分と中実部分との間に形成される磁力線に直交する中空部分の断面の面積が、中実部分の上面の面積よりも大きいと好適である。
また、ポールピースの側面部分に、基板を搬送するためのスリットが形成されると好適である。
本発明の一態様の電子ビーム画像検出方法は、
電磁レンズを構成するポールピース内に配置された基板上に電磁レンズによって基板面を通過する磁力線が形成される磁場を発生させた状態で、基板上に電子ビームを照射する工程と、
基板に電子ビームが照射されることによって生じた2次電子を磁力線に沿ってサイクロトロン運動をさせながら移動させ、サイクロトロン運動をさせられながら移動させられてきた2次電子をポールピース内に配置された2次電子検出器によって検出する工程と、
を備えたことを特徴とする。
電磁レンズを構成するポールピース内に配置された基板上に電磁レンズによって基板面を通過する磁力線が形成される磁場を発生させた状態で、基板上に電子ビームを照射する工程と、
基板に電子ビームが照射されることによって生じた2次電子を磁力線に沿ってサイクロトロン運動をさせながら移動させ、サイクロトロン運動をさせられながら移動させられてきた2次電子をポールピース内に配置された2次電子検出器によって検出する工程と、
を備えたことを特徴とする。
本発明の一態様によれば、検査対象基板の凹凸に関わらず高精度な位置に電子ビームを入射できる。よって、高精度な位置の画像を検出できる。
実施の形態1.
図1は、実施の形態1におけるパターン検査装置の構成を示す構成図である。図1において、基板に形成されたパターンを検査する検査装置100は、マルチ電子ビーム検査装置の一例であると共に、電子ビーム画像検出装置の一例である。検査装置100は、光学画像取得部150、及び制御系回路160(制御部)を備えている。光学画像取得部150は、電子ビームカラム102(電子鏡筒)、検査室103、検出回路106、ストライプパターンメモリ123、ステージ駆動機構130、及びレーザ測長システム122を備えている。電子ビームカラム102内には、電子銃201、照明レンズ202、成形アパーチャアレイ部材203、ブランキングアパーチャアレイ機構204、縮小レンズ205、制限アパーチャ部材206及び偏向器208が配置されている。
図1は、実施の形態1におけるパターン検査装置の構成を示す構成図である。図1において、基板に形成されたパターンを検査する検査装置100は、マルチ電子ビーム検査装置の一例であると共に、電子ビーム画像検出装置の一例である。検査装置100は、光学画像取得部150、及び制御系回路160(制御部)を備えている。光学画像取得部150は、電子ビームカラム102(電子鏡筒)、検査室103、検出回路106、ストライプパターンメモリ123、ステージ駆動機構130、及びレーザ測長システム122を備えている。電子ビームカラム102内には、電子銃201、照明レンズ202、成形アパーチャアレイ部材203、ブランキングアパーチャアレイ機構204、縮小レンズ205、制限アパーチャ部材206及び偏向器208が配置されている。
検査室103内には、対物レンズ207が配置される。対物レンズ207は、電子ビームカラム102側に突き出すように配置されても良い。また、対物レンズ207内には、少なくともXY方向に移動可能な対となる2つのXYステージ105a,105bが配置される。また、対物レンズ207内には、検出器222が配置される。2つのXYステージ105a,105b上には、検査対象となる複数の図形パターンが形成された基板101が配置される。基板101には、露光用マスクやシリコンウェハ等の半導体基板が含まれる。また、2つのXYステージ105a,105bの少なくとも一方(例えばXYステージ105b)上には、検査室103の外部に配置されたレーザ測長機構122から照射されるレーザ測長用のレーザ光を反射するミラー216が配置されている。また、検出器222は、電子ビームカラム102の外部で検出回路106に接続される。検出回路106は、ストライプパターンメモリ123に接続される。
制御系回路160では、コンピュータとなる制御計算機110が、バス120を介して、位置回路107、比較回路108、展開回路111、参照回路112、ステージ制御回路114、レンズ制御回路124、ブランキング制御回路126、偏向制御回路128、磁気ディスク装置等の記憶装置109、モニタ117、メモリ118、及びプリンタ119に接続されている。また、ストライプパターンメモリ123は、比較回路108に接続されている。
また、XYステージ105bは、制御計算機110の制御の下にステージ制御回路114により制御されたステージ駆動機構130によって駆動される。XYステージ105aは、制御計算機110の制御の下にステージ制御回路114により制御された図示しないステージ駆動機構130と同様の機構によってXYステージ105bの移動と同期しながら駆動される。2つのXYステージ105a,105bは、それぞれX方向、Y方向、θ方向に駆動する3軸(X−Y−θ)モータの様な駆動系によって移動可能となっている。これらの、図示しないXモータ、Yモータ、θモータは、例えばステップモータを用いることができる。2つのXYステージ105a,105bは、XYθ各軸のモータによって水平方向及び回転方向に移動可能である。そして、2つのXYステージ105a,105bの移動位置はレーザ測長システム122により測定され、位置回路107に供給される。レーザ測長機構122は、ミラー216からの反射光を受光することによって、レーザ干渉法の原理で例えばXYステージ105bの位置を測長する。
電子銃201には、図示しない高圧電源回路が接続され、電子銃201内の図示しないカソードとアノード間への高圧電源回路からの加速電圧の印加と共に、所定のバイアス電圧の印加と所定の温度のカソードの加熱によって、カソードから放出された電子群が加速させられ、電子ビームとなって放出される。照明レンズ202、縮小レンズ205、及び対物レンズ207は、例えば電子レンズが用いられ、共にレンズ制御回路124によって制御される。ブランキングアパーチャアレイ機構204には、後述するように複数の個別ブランキング機構がブランキング基板上に配置され、各個別ブランキング機構への制御信号は、ブランキング制御回路126から出力される。偏向器208は、少なくとも4極の電極群により構成され、偏向制御回路128によって制御される。
基板101が複数のチップ(ダイ)パターンが形成された半導体ウェハである場合には、かかるチップ(ダイ)パターンのパターンデータが検査装置100の外部から入力され、記憶装置109に格納される。
ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。検査装置100にとって、通常、必要なその他の構成を備えていても構わない。
図2は、実施の形態1における成形アパーチャアレイ部材の構成を示す概念図である。図2において、成形アパーチャアレイ部材203には、2次元状の横(x方向)n列×縦(y方向)m列(n,mは一方が1以上の整数、他方が2以上の整数)の穴(開口部)22が所定の配列ピッチでマトリクス状に形成されている。図2では、例えば、横縦(x,y方向)に32×32列の穴22が形成される。各穴22は、共に同じ寸法形状の矩形で形成される。或いは、同じ外径の円形であっても構わない。これらの複数の穴22を電子ビーム200の一部がそれぞれ通過することで、マルチビーム20が形成されることになる。ここでは、横縦(x,y方向)が共に2列以上の穴22が配置された例を示したが、これに限るものではない。例えば、横縦(x,y方向)どちらか一方が複数列で他方は1列だけであっても構わない。また、穴22の配列の仕方は、図2のように、横縦が格子状に配置される場合に限るものではない。例えば、縦方向(y方向)k段目の列と、k+1段目の列の穴同士が、横方向(x方向)に寸法aだけずれて配置されてもよい。同様に、縦方向(y方向)k+1段目の列と、k+2段目の列の穴同士が、横方向(x方向)に寸法bだけずれて配置されてもよい。或いは、その他の構成であってもよい。
図3は、実施の形態1におけるブランキングアパーチャアレイ機構の一部を示す上面概念図である。なお、図3において、電極24,26と制御回路41の位置関係は一致させて記載していない。ブランキングアパーチャアレイ機構204は、図3に示すように、図2に示した成形アパーチャアレイ部材203の各穴22に対応する位置にマルチビームのそれぞれのビームの通過用の通過孔25(開口部)が図示しない基板(例えばシリコン基板)上に開口される。そして、基板上の各通過孔25の近傍位置に、該当する通過孔25を挟んでブランキング偏向用の電極24,26の組(ブランカー:ブランキング偏向器)がそれぞれ配置される。また、各通過孔25の近傍には、各通過孔25用の例えば電極24に偏向電圧を印加する制御回路41(ロジック回路)が配置される。制御回路41は、通過孔25が形成された基板内部に形成され、基板表面に露出しないように配置すると好適である。各ビーム用の2つの電極24,26の他方(例えば、電極26)は、グランド接続される。また、各制御回路41は、制御信号用の数ビット、例えば5〜10ビットの配線が接続される。各制御回路41は、例えば数ビットの配線の他、クロック信号線および電源用の配線等が接続される。マルチビームを構成するそれぞれのビーム毎に、電極24,26と制御回路41とによる個別ブランキング機構47が構成される。ブランキング制御回路126から各制御回路41用の制御信号が出力される。各制御回路41内には、図示しないシフトレジストが配置され、例えば、n×m本のマルチビームの1列分の制御回路内のシフトレジスタが直列に接続される。そして、例えば、n×m本のマルチビームの1列分の制御信号がシリーズで送信され、例えば、n回のクロック信号によって各ビームの制御信号が対応する制御回路41に格納される。
各通過孔を通過する電子ビーム20は、それぞれ独立に対となる2つの電極24,26に印加される電圧(電位差)によって偏向される。かかる偏向によってブランキング制御される。マルチビームのうちの対応ビームをそれぞれブランキング偏向する。このように、複数のブランカーが、成形アパーチャアレイ部材203の複数の穴22(開口部)を通過したマルチビームのうち、それぞれ対応するビームのブランキング偏向を行う。個別ブランキング制御を行うことで、異常ビームを検査から排除できる。
なお、図3の例では個別ブランキング機構47を示しているが、これに限るものではない。マルチビーム20全体を一括してブランキング制御する機構であっても構わない。
次に検査装置100における光学画像取得部150の動作について説明する。電子銃201(放出部)から放出された電子ビーム200は、照明レンズ202によりほぼ垂直に成形アパーチャアレイ部材203全体を照明する。成形アパーチャアレイ部材203には、矩形の複数の穴22(開口部)が形成され、電子ビーム200は、すべての複数の穴22が含まれる領域を照明する。複数の穴22の位置に照射された電子ビーム200の各一部が、かかる成形アパーチャアレイ部材203の複数の穴22をそれぞれ通過することによって、例えば矩形形状の複数の電子ビーム(マルチビーム)20a〜eが形成される。かかるマルチビーム20a〜eは、ブランキングアパーチャアレイ機構204のそれぞれ対応するブランカー(第1の偏向器:個別ブランキング機構47)内を通過する。かかるブランカーは、それぞれ、個別に通過する電子ビーム20を偏向する(ブランキング偏向を行う)。
ブランキングアパーチャアレイ機構204を通過したマルチビーム20a〜eは、縮小レンズ205によって、縮小され、制限アパーチャ部材206に形成された中心の穴に向かって進む。ここで、ブランキングアパーチャアレイ機構204のブランカーによって偏向された電子ビーム20は、制限アパーチャ部材206の中心の穴から位置がはずれ、制限アパーチャ部材206によって遮蔽される。一方、ブランキングアパーチャアレイ機構204のブランカーによって偏向されなかった電子ビーム20は、図1に示すように制限アパーチャ部材206の中心の穴を通過する。かかる個別ブランキング機構47のON/OFFによって、ブランキング制御が行われ、ビームのON/OFFが制御される。このように、制限アパーチャ部材206は、個別ブランキング機構47によってビームOFFの状態になるように偏向された各ビームを遮蔽する。そして、ビーム毎に、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ部材206を通過したビームにより、1回分のショットのビームが形成される。制限アパーチャ部材206を通過したマルチビーム20は、対物レンズ207により焦点が合わされ、所望の縮小率のパターン像となり、偏向器208によって、制限アパーチャ部材206を通過した各ビーム(マルチビーム20全体)が同方向に一括して偏向され、各ビームの基板101上のそれぞれの照射位置に照射される。一度に照射されるマルチビーム20は、理想的には成形アパーチャアレイ部材203の複数の穴22の配列ピッチに上述した所望の縮小率を乗じたピッチで並ぶことになる。このように、電子ビームカラム102は、一度に2次元状のn×m本のマルチビーム20を基板101に照射する。
かかる場合に、電子ビームカラム102は、電磁レンズを構成する対物レンズ207のポールピース内に配置された基板101上に対物レンズ207(電磁レンズ)によって基板101面を通過する磁力線が形成される磁場を発生させた状態で、基板101上にマルチビーム20(電子ビーム)を照射する。かかる磁場は、基板101上にマルチビーム20の焦点を合わせるための磁場に相当する。基板101の所望する位置にマルチビーム20が照射されたことに起因して基板101から放出される、マルチビーム20の各ビームに対応する2次電子300(或いは2次電子群)は、検出器222に入射することによって検出される。かかる場合に、基板101にマルチビーム20(電子ビーム)が照射されることによって生じた2次電子300を磁力線に沿ってサイクロトロン運動をさせながら移動させ、サイクロトロン運動をさせられながら移動させられてきた2次電子300を対物レンズ207のポールピース内に配置された2次電子検出器222によって検出する。
図4は、実施の形態1におけるスキャン動作の一例を説明するための概念図である。図4に示すように、基板101の検査領域30には、例えば、x,y方向に向かってアレイ状にそれぞれ所定の幅で複数のチップ32(ダイ)が形成される。各チップ32は、例えば、30mm×25mmのサイズで基板101上に形成される。パターン検査は、チップ32毎に実施されることになる。各チップ32の領域は、例えば、一回のマルチビーム20全体の照射で照射可能な照射領域34と同じx,y方向幅で複数の単位検査領域33に仮想分割される。まず、XYステージ105を移動させて、第1番目のチップ32の4つ角のいずれか(例えば左上端)の単位検査領域33の位置に一回のマルチビーム20の照射で照射可能な照射領域34が位置するように調整し、スキャン動作が開始される。実施の形態1では、例えば、ステップアンドリピート動作を繰り返すことで、照射領域34を例えばx方向に照射領域34の幅で順次ずらしながら各単位検査領域33をマルチビーム20により走査していく。y方向に同じ段のx方向に並ぶすべての単位検査領域33の走査が終了したら、ステージ位置をy方向に移動させて、y方向に同じ次の段のx方向に並ぶ各単位検査領域33をマルチビーム20により同様に走査していく。かかる動作を繰り返し、1つのチップ32の領域の走査が終了したら、XYステージ105を移動させて、次のチップ32の4隅のいずれか(例えば左上端)の単位検査領域33の位置に一回のマルチビーム20の照射で照射可能な照射領域34が位置するように調整し、同様の動作を行う。かかる動作を繰り返すことで、すべてのチップ32について走査していく。
なお、図4では、基板101が円板状の半導体ウェハである場合について説明したが、矩形状の基板で構成される露光用マスクであっても構わないことは言うまでもない。かかる場合には、露光用マスクの検査領域をメッシュ状に複数の単位検査領域33に仮想分割し、上述した動作と同様の動作を行えばよい。また、ステップアンドリピート動作のステップ間のステージ停止中にスキャン動作を行う場合を示したがこれに限るものではない。XYステージ105a,105bが連続移動しながらスキャン動作を行っても良い。
図5は、実施の形態1におけるマルチビームの照射領域と測定用画素との一例を示す図である。図5において、チップ32の領域は、例えば、マルチビームのビームサイズでメッシュ状の複数のメッシュ領域に分割される。かかる各メッシュ領域が、測定用画素36(単位照射領域)となる。そして、照射領域34内に、1回のマルチビーム20の照射で照射可能な複数の測定用画素28(1ショット時のビームの照射位置)が示されている。言い換えれば、隣り合う測定用画素28間のピッチがマルチビームの各ビーム間のピッチPとなる。図5の例では、隣り合う4つの測定用画素28で囲まれると共に、4つの測定用画素28のうちの1つの測定用画素28を含む正方形の領域で1つのグリッド29を構成する。図5の例では、各グリッド29は、4×4画素で構成される場合を示している。
図6は、実施の形態1におけるスキャン動作の細部の一例を説明するための概念図である。図6では、ある1つの単位検査領域33(照射領域34)を走査する場合の一例を示している。1つの照射領域34内には、x,y方向に(2次元状に)n1×m1個のグリッド29が配列されることになる。n×m個のマルチビーム20がすべて使用される場合には、n1×m1個のグリッド29は、n×m個のグリッド29になる。1つの単位検査領域33にマルチビーム20が照射可能な位置にXYステージ105を移動させたら、その位置でXYステージ105を停止させ、当該単位検査領域33を照射領域34として当該単位検査領域33内を走査(スキャン動作)する。マルチビーム20を構成する各ビームは、互いに異なるいずれかのグリッド29を担当することになる。そして、各ショット時に、各ビームは、担当グリッド29内の同じ位置に相当する1つの測定用画素28を照射することになる。図6の例では、各ビームは、1ショット目に担当グリッド29内の最下段の右から1番目の測定用画素36を照射する。そして、偏向器208によってマルチビーム20全体を一括してy方向に1測定用画素36分だけビーム偏向位置をシフトさせ、2ショット目に担当グリッド29内の下から2段目の右から1番目の測定用画素36を照射する。同様に、3ショット目に担当グリッド29内の下から3段目の右から1番目の測定用画素36を照射する。4ショット目に担当グリッド29内の下から4段目の右から1番目の測定用画素36を照射する。次に、偏向器208によってマルチビーム20全体を一括して最下段の右から2番目の測定用画素36の位置にビーム偏向位置をシフトさせ、同様に、y方向に向かって、測定用画素36を順に照射していく。かかる動作を繰り返し、1つのビームで1つのグリッド29内のすべての測定用画素36を順に照射していく。1回のショットでは、成形アパーチャアレイ部材203の各穴22を通過することによって形成されたマルチビームによって、最大で各穴22と同数の複数のショットに応じた2次電子の束による2次電子300が一度に検出される。
以上のように、電子ビームカラム102は、複数の電子ビームにより構成されるマルチビーム20を用いて、パターンが形成された基板101上を走査する。マルチビーム20全体では、単位検査領域33を照射領域34として走査することになるが、各ビームは、それぞれ対応する1つのグリッド29を走査することになる。そして、XYステージ105が停止した状態で、1つの単位検査領域33の走査(スキャン)が終了すると、隣接する次の単位検査領域33にステップ動作をして、XYステージ105が停止した状態で、かかる隣接する次の単位検査領域33の走査(スキャン)を行う。かかるステップアンドリピート動作を繰り返し、各チップ32の走査を進めていく。マルチビーム20のショットにより、その都度、照射された測定用画素36から2次電子300が上方に放出され、検出器222にて検出される。検出器222は、2次電子300を測定用画素36毎(或いはグリッド29毎)に検出する。
以上のようにマルチビーム20を用いて走査することで、シングルビームで走査する場合よりも高速にスキャン動作(測定)ができる。
なお、上述した例では、1画素36毎にビームのON/OFFを行っている場合を説明したが、これに限るものではない。グリッド29毎に、同じグリッド29を対応する1つのビームが走査する間、連続ビームで走査しても構わない。言い換えれば、ステップ動作の間はビームOFFにすればよい。
図7は、実施の形態1における画像検出機構の構成の一例を示す図である。図8は、実施の形態1における対物レンズの上面図の一例を示す図である。図7において、対物レンズ207は、ポールピース15とコイル13によって電磁レンズを構成する。ポールピース15は、図7及び図8に示すように中心軸11(所定の軸)を回転軸とする厚さtの円板状の底面部分10と、底面部分10に接続された側面外周を覆う側面部分12と、上面部分18とによって覆われる。よって、底面部分10の表面は中心軸11と直交する。側面部分12は、底面部分10の中心軸11を回転軸とする円周状に例えば厚さtで形成される。底面部分10上には、例えば中心に、底面部分10の中心軸11に回転対称な例えば半径tの円筒状の中実部分14が配置される。中実部分14は、底面部分10上に配置された側面部分12の高さ方向途中までの高さに形成される。図7に示すように、例えば、側面部分12の高さの1/2よりも低い高さで構成されると好適である。また、中実部分14と非接触で中実部分14よりも上方に中空部分16が配置される。中空部分16は、底面部分10の中心軸11に回転対称に例えば厚さtで形成され、中心部が、マルチビーム20全体が入射可能なサイズで開口されている。そして、中空部分16と側面部分12との間の領域を上面部分18が覆っている。コイル13は、中空部分16と側面部分12との間の領域に配置される。ポールピース15を構成する底面部分10と、側面部分12と、中実部分14と、中空部分16と、上面部分18とは、一体で形成されても良いが、コイル13やXYステージ105a,105bの配置がし易いように、上下で分割できるように構成すると好適である。そして、ポールピース15内における中空部分16の底面側には、検出器222が配置される。
XYステージ105a,105b(ステージの一例)は、ポールピース15内に配置され、中実部分14上で基板101を移動可能に支持する。基板101は、XYステージ105a,105bによって、中実部分14と隙間を空けて支持される。かかる隙間は適宜設定すれば良い。側面部分12には、基板101をポールピース15内に出し入れ可能なスリット4が開口されている。ポールピース15の側面部分12に形成されたスリット4を介して、基板101が搬送される。図示しない搬送アームに支持された基板101がスリット4を介してポールピース15内部の中央部に搬送され、搬送アームが下降することによって、2つのXYステージ105a,105b上に載置される。基板101が載置されると搬送アームはさらに下降して、基板101との間に隙間を形成し、スリット4を介してポールピース15外部に退避する。基板101はXYステージ105a,105bによって単純支持される場合であっても良いが、例えば、静電チャック等により固定されるとなお良い。また、ステージ駆動機構130aから延びる移動アーム106aがスリット4を通って、ポールピース15内のXYステージ105aに接続され。そして、ステージ駆動機構130aによって駆動される移動アーム106aの移動によって、XYステージ105aは駆動される。また、側面部分12には、中心軸11を挟んでスリット4と対向する位置にスリット2が開口されている。そして、ステージ駆動機構130bから延びる移動アーム106bがスリット2を通って、ポールピース15内のXYステージ105bに接続され。そして、ステージ駆動機構130bによって駆動される移動アーム106bの移動によって、XYステージ105bは駆動される。また、側面部分12には、検出器222の配置高さ付近の高さ位置にスリット6が開口されている。後述するように検出器222には複数の光ファイバ228が接続されており、検出器222に接続された複数の光ファイバ228がスリット6を通ってポールピース15の外部に延びている。
なお、底面部分10の厚さと、側面部分12の厚さと、中実部分14の半径と、中空部分16の厚さと、上面部分18の厚さとが、同じサイズtである場合について説明したが、これに限るものではなく、マルチビーム20の焦点調整が可能な磁束密度が得られる範囲で適宜変更しても構わない。
図9は、実施の形態1における対物レンズに励磁した場合の磁力線の一例について説明するための図である。図9において、実施の形態1における対物レンズ207のコイル13を励磁すると、底面部分10の中心軸に対して対称になるように磁界が発生し、ポールピース15内を磁力線が通ることになる。その場合に、中実部分14と中空部分16は非接触なので、その間の空間を磁力線302が通ることになる。検出器222は、コイル13を励磁することによって生じる中空部分16と中実部分14との間に形成される磁力線302に実質的に直交する方向に検出面が配置される。図9の例では、中実部分14の上面に対して斜め方向に検出面が向くように検出器222が配置される。そのため、中空部分16の底面は、磁力線302に実質的に直交する方向に向くように形成されると好適である。
上述したように、電子ビームカラム102内の各構成による電子光学系が、基板101に向けて中空部分16内の空間を通過するように制限アパーチャ部材206を通過した各ビーム(電子ビーム)を照射する。各ビームが基板101上のそれぞれの照射位置に照射されると、基板101の各照射位置からは2次電子300が放出される。各照射位置の2次電子300は、その位置の磁力線302に沿ってサイクロトロン運動をしながら移動する。検出器222(2次電子検出器)は、中空部分16内を通過する各ビーム(電子ビーム)が中実部分14上で基板101に照射されることによって生じ、磁力線302に沿ってサイクロトロン運動をしながら移動する2次電子を検出する。このように、わざわざ検出器222と基板101間に電位差(電界)を発生させなくても、検出器222(2次電子検出器)は、各磁力線302に沿ってサイクロトロン運動をしながら移動してきた2次電子300をそれぞれ検出できる。一方、マルチビーム20は、加速電圧が大きいために、2次電子300よりも運動エネルギーがはるかに大きい。よって、磁力線302に引っ張られることなく、基板101に向けて照射できる。
図10は、実施の形態1における2次電子のエネルギー分布の一例を示す図である。図10では、縦軸に2次電子数、横軸にエネルギーを示す。図10に示すエネルギー分布から、基板101から放出される2次電子300は、絶縁物面から最も2次電子数が多いピーク値の約1eVのエネルギーをもち、配線等の金属面から最も2次電子数が多いピーク値の約2eVのエネルギーを持っていると想定できる。ここでは、2次電子300は、約2eVのエネルギーを持っている場合を想定する。ポールピース15の形状とコイル13の励磁電流を適切に設定することで、図9の例では、基板101面上(中実部分14上面)での磁束密度を2T、検出器222の検出面(中空部分16の底面)での磁束密度を1Tに設定している。また、加速電圧を50kV、マルチビーム20の本数を196本、各ビームの間隔(ピッチ)を5μmとする。図9の例において、ポールピース15は、飽和磁束密度が高いパーメンジュールを材料として用いている。ここで、2次電子300のサイクロトロン運動のラーマー半径rは、2次電子300の質量m(例えば9.1×10−31kg)、2次電子300の速度v(m/s)、素電荷e(例えば1.6×10−19C)、及び磁束密度B(T)を用いて、次の式(1)で定義できる。
(1) r=m・v/(e・B)
(1) r=m・v/(e・B)
また、2次電子300の速度vは、電子のエネルギー(例えばJ=6.3×1018eV)及び2次電子300の質量mを用いて、次の式(2)で定義できる。
(2) v=(2E/m)0.5
(2) v=(2E/m)0.5
基板101から放出される2次電子300の磁力線302と直交する方向のエネルギーを1eV(全エネルギーの半分)とすると、各位置でのラーマー半径rは、基板101面上で1.7μm、検出器222の検出面で3.4μmとなる。よって、基板101から放出される2次電子300は、基板101面上でマルチビーム20のビーム間ピッチ(5μm)よりも小さい円周軌道(ラーマー半径r×2=3.4μm)で回転することがわかる。よって、マルチビーム20のビーム毎に、2次電子300は別々の軌道を通って検出器222に向かわせる(導く)ことができる。言い換えれば、ビーム間で2次電子300が交わることがないようにできる。さらに言い換えれば、ビーム間で2次電子300を混在(干渉)させないようにできる。よって、ビームの照射位置毎に画像データを得ることができる。なお、同時期に同じ照射位置(1点)から複数の2次電子300(2次電子群)が放出される場合でも、同じ照射位置から放出される2次電子群は同じ磁力線302に巻き付きながらサイクロトロン運動を行うので、照射位置間の2次電子群が交わることがないようにできる。
実施の形態1では、図8に示すように、中空部分16と中実部分14との間に形成される磁力線302に直交する中空部分16の断面の面積S2が、中実部分14の上面の面積S1よりも大きくなるようにポールピース15を形成する。これにより、上述したように、基板101面上(中実部分14上面)での磁束密度(例えば2T)に比べて、検出器222の検出面(中空部分16の底面)での磁束密度(例えば1T)を低くできる。これにより、検出面での異なるビームに起因する2次電子300同士間のピッチを大きくできる。例えば、磁束密度が1/2になり磁力線間ピッチが2倍になれば、検出面での2次電子300同士間のピッチもビーム間ピッチの2倍にできる。よって、1つのビームに対応する2次電子300あたりの検出器222の電子増倍素子の数を多くすることができ、解像度を向上させることができる。
図11は、実施の形態1における検出器の断面構成を示す構成図の一例である。図11において、検出器222は、電子増倍素子アレイプレート224(MCP:マイクロチャンネルプレート)と、電子増倍素子アレイプレート224の2次側に配置される蛍光板226と、蛍光板226の2次側に配置される複数の光ファイバ228とを有する。電子増倍素子アレイプレート224には、複数の電子増倍素子223が配置される。磁力線302の回りをサイクロトロン運動しながら移動してきた2次電子300は、複数の電子増倍素子223が並ぶ検出面225に入射する。検出面225に入射された2次電子300は、対応する電子増倍素子223に検出され、強度が倍増され、出力される。電子増倍素子アレイプレート224から出力された2次電子304は、蛍光板226に衝突して発光する。発光された2次電子300の光306は、発光した位置に対応する光ファイバ228によって検出回路106に伝搬される。これにより、検出回路106は、ビーム毎に、当該ビームに起因した2次電子300の画像データを得ることができる。
図12は、実施の形態1における電子増倍素子アレイプレートの検出面の形状の一例を示す図である。2次電子検出器222を構成する電子増倍素子アレイプレート224の検出面225は、磁力線302と直交する方向に合わせて、図12に示すように、例えば、円錐台の斜面状に形成されると好適である。かかる形状により、対物レンズ207の中実部分14の上面と中空部分16の底面との間に生じるいずれの磁力線302についても検出面225を直交するように通過させることができる。同様に、蛍光板226の表面も磁力線302と直交する方向に合わせて、図12に示すように、例えば、円錐台の斜面状に形成されると好適である。但し、電子増倍素子アレイプレート224の厚さ分だけ円錐台斜面の半径が大きくなることは言うまでもない。
図13は、実施の形態1における1次電子ビームの位置と2次電子の検出位置との関係の一例を示す図である。図13(a)に示すように、複数の電子増倍素子223が検出面225に沿って各高さ位置にて中心軸11と回転対称に配置される。各高さ位置では、周長が異なるため、配列される電子増倍素子223の数が異なる。よって、円錐台斜面の上部(半径が小さい方の斜面)側になればなるほど、電子増倍素子223の数が少なくなり、円錐台斜面の下部(半径が大きい方の斜面)側になればなるほど、電子増倍素子223の数が多くなる。図13(c)には、マルチビーム20の各ビーム(1次電子ビーム)が照射される基板101面上の位置を示している。図13(c)の例では、中実部分14の中心軸11を中心にx,y座標系が構成される。中心軸11に近い中心部に照射されたビーム20aに起因して放出された2次電子300は、磁力線302に沿って、図13(a)に示すように、電子増倍素子アレイプレート224の検出面225上では、円錐台斜面の上部(半径が小さい方の斜面)の電子増倍素子223aにて検出される。中心軸11から遠い外周部に照射されたビーム20cに起因して放出された2次電子300は、磁力線302に沿って、図13(a)に示すように、電子増倍素子アレイプレート224の検出面225上では、円錐台斜面の下部(半径が大きい方の斜面)の電子増倍素子223cにて検出される。中心軸11と外周部との中間部に照射されたビーム20bに起因して放出された2次電子300は、磁力線302に沿って、図13(a)に示すように、電子増倍素子アレイプレート224の検出面225上では、円錐台斜面の中間高さ位置の電子増倍素子223bにて検出される。よって、中心軸11に近い中心部に照射されたビーム20aに起因して放出された2次電子300に起因する光306aは、図13(b)に示すように、蛍光板226表面上では、円錐台斜面の上部(半径が小さい方の斜面)で発光する。中心軸11から遠い外周部に照射されたビーム20cに起因して放出された2次電子300に起因する光306cは、蛍光板226表面上では、円錐台斜面の下部(半径が大きい方の斜面)で発光する。中心軸11と外周部との中間部に照射されたビーム20bに起因して放出された2次電子300に起因する光306bは、円錐台斜面の中間高さ位置で発光する。
なお、中心軸11と同心円上にある角度ずれて照射されたビーム20に起因して放出された2次電子300については、電子増倍素子アレイプレート224の検出面225上では、それぞれ同じ高さ位置に並ぶ中心軸11から同じ角度ずれた電子増倍素子223にて検出されると共に、蛍光板226表面上では、それぞれ同じ高さの中心軸11から同じ角度ずれた位置で発光する。
図14は、実施の形態1における光ファイバの配置構成の一例を示す図である。図14に示すように、複数の光ファイバ228は、円錐台斜面状に形成された蛍光板226の出力面のうち、各電子増倍素子223に対応する発光位置に配置される。言い換えれば、複数の光ファイバ228は、中心軸11に対して回転対称に配置される。
図15は、実施の形態1と比較例とにおける1次電子ビームの照射位置を説明するための図である。実施の形態1の比較例では、2次電子を磁力線に沿ってサイクロトロン運動させる環境に構成されていないので、2次電子を検出器に導くために、検出器の検出面と基板面との間に電子差を生じさせる電界を形成している。そのため、図15(a)に示すように、基板面に凹凸が存在する場合に、凹凸に起因した電界の歪みが生じて、入射するマルチビーム20(1次電子ビーム)のうち、軌道がずれてしまうビームが存在してしまう。よって、正確な位置を測定することが困難になってしまう。これに対して、実施の形態1では、2次電子を磁力線に沿ってサイクロトロン運動させながら検出器222に導くために、検出器222の検出面225と基板101面との間に電子差を生じさせる電界を形成する必要がない。そのため、図15(b)に示すように、基板面に凹凸が存在する場合でも、入射するマルチビーム20(1次電子ビーム)の軌道を妨げず、正確な位置に各ビームを照射できる。よって、放出される2次電子300の位置も正確な入射位置から放出されるので、高精度な画像データを得ることができる。
マルチビームスキャン及び2次電子検出工程として、以上のように、光学画像取得部150は、複数の電子ビームが所定のピッチPで配置されたマルチビーム20を用いて、複数の図形パターンが形成された被検査基板101上を走査し、マルチビーム20が照射されたことに起因して被検査基板101から放出される、2次電子300を検出する。走査(スキャン)の仕方、及び2次電子300の検出の仕方は上述した通りである。検出器222によって検出された各測定用画素36からの2次電子300の検出データは、測定順に検出回路106に出力される。検出回路106内では、図示しない光電変換器によって光データが電気信号(アナログデータ)に変換される。そして、図示しないA/D変換器によって、アナログの検出データがデジタルデータに変換され、ストライプパターンメモリ123に格納される。そして、1つのストライプ領域或いはチップ32分の検出データが蓄積された段階で、ストライプデータ或いはチップパターンデータとして、位置回路107からの各位置を示す情報と共に、比較回路108に転送される。
一方、マルチビームスキャン及び2次電子検出工程と並行或いは前後して、参照画像が作成される。
参照画像作成工程として、展開回路111及び参照回路112といった参照画像作成部は、基板101が半導体基板の場合には、半導体基板に露光用マスクのマスクパターンを露光転写する際の基板上の露光イメージが定義された露光イメージデータに基づいて、複数の画素36で構成されるグリッド29の測定画像(光学画像)に対応する領域の参照画像を作成する。露光イメージデータの代わりに、複数の図形パターンを基板101に露光転写する露光用マスクを形成するための元になる描画データ(設計データ)を用いても良い。展開回路111及び参照回路112といった参照画像作成部は、基板101が露光用マスクの場合には、複数の図形パターンを基板101に形成するための元になる描画データ(設計データ)に基づいて、複数の画素36で構成されるグリッド29の測定画像(光学画像)に対応する領域の参照画像を作成する。光学画像は、グリッド29単位の画像よりも解像度を粗くして、グリッド29を1つの画素とする単位検査領域33単位の画像を作成してもよい。かかる場合、参照画像も同様に、グリッド29単位の画像よりも解像度を粗くして、グリッド29を1つの画素とする単位検査領域33単位の画像を作成すればよい。グリッド29を1つの画素とする場合には、グリッド29内のパターンが占める占有率を階調値にすればよい。
具体的には、以下のように動作する。まず、展開回路111は、記憶装置109から制御計算機110を通して描画データ(或いは露光イメージデータ)を読み出し、読み出された描画データ(或いは露光イメージデータ)に定義された各照射領域34の各図形パターンを2値ないしは多値のイメージデータに変換して、このイメージデータが参照回路112に送られる。
ここで、描画データ(或いは露光イメージデータ)に定義される図形は、例えば長方形や三角形を基本図形としたもので、例えば、図形の基準位置における座標(x、y)、辺の長さ、長方形や三角形等の図形種を区別する識別子となる図形コードといった情報で各パターン図形の形、大きさ、位置等を定義した図形データが格納されている。
かかる図形データとなる描画データ(或いは露光イメージデータ)が展開回路111に入力されると図形ごとのデータにまで展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、所定の量子化寸法のグリッドを単位とするマス目内に配置されるパターンとして2値ないしは多値の設計画像データを展開し、出力する。言い換えれば、設計データを読み込み、検査領域を所定の寸法を単位とするマス目として仮想分割してできたマス目毎に設計パターンにおける図形が占める占有率を演算し、nビットの占有率データを出力する。例えば、1つのマス目を1画素として設定すると好適である。そして、1画素に1/28(=1/256)の分解能を持たせるとすると、画素内に配置されている図形の領域分だけ1/256の小領域を割り付けて画素内の占有率を演算する。そして、8ビットの占有率データとして参照回路112に出力する。かかるマス目は、測定用画素36と同サイズにすればよい。なお、グリッド29を画素とする場合には、かかるマス目は、グリッド29と同サイズにすればよい。
次に、参照回路112は、送られてきた図形のイメージデータである設計画像データに適切なフィルタ処理を施す。検出回路106から得られた光学画像としての測定データは、電子光学系によってフィルタが作用した状態、言い換えれば連続変化するアナログ状態にあるため、画像強度(濃淡値)がデジタル値の設計側のイメージデータである設計画像データにもフィルタ処理を施すことにより、測定データに合わせることができる。このようにしてグリッド29の測定画像(光学画像)と比較する設計画像(参照画像)を作成する。作成された参照画像の画像データは比較回路108に出力され、比較回路108内に出力された参照画像は、それぞれ図示しないメモリに格納される。
次に、比較回路108内では、ストライプパターンメモリ123から送信されてきたストライプデータ(ストライプ画像)或いはチップパターンデータ(チップ画像)を、グリッド29毎或いは単位検査領域33毎に分割する。そして、画素36より小さいサブ画素単位で、グリッド29毎或いは単位検査領域33毎に、光学画像(測定画像)と参照画像を位置合わせする。例えば、最小2乗法で位置合わせを行えばよい。
そして、比較回路108は、当該光学画像と参照画像とを画素36毎に比較する。所定の判定条件に従って画素36毎に両者を比較し、例えば形状欠陥といった欠陥の有無を判定する。例えば、画素36毎の階調値差が判定閾値Thよりも大きければ欠陥と判定する。そして、比較結果が出力される。比較結果は、記憶装置109、モニタ117、メモリ118、或いはプリンタ119より出力されればよい。グリッド29を画素する画像の場合は、画素36をグリッド29と読み替えればよい。
以上のように、実施の形態1によれば、検査対象基板の凹凸に関わらず高精度な位置に電子ビームを入射できる。よって、高精度な位置の画像を検出できる。その結果、疑似欠陥を低減させた高精度なパターン検査ができる。
図16は、実施の形態1における検出器の断面形状の他の一例を示す図である。図11では、検出器222の検出面225の断面が円錐台斜面に沿って直線の場合を説明したが、これに限るものではなく、その他の形状であってもよい。例えば、図16の例では、磁力線の方向に直交する面ではなく、検出器222の検出面225の断面が曲線形状であっても良い。或いは、磁力線の方向に直交する面ではなく、中実部分14の上面と例えば平行する検出面225をもつように構成されてもよい。
図17は、実施の形態1におけるポールピースの断面形状の他の一例を示す図である。図11では、ポールピース15の中空部分16の底面が、円錐台斜面の場合について説明したが、これに限るものではなく、その他の形状であってもよい。例えば、図17の例では、中空部分16の底面が、中実部分14の上面と例えば平行な面であっても良い。
図18は、実施の形態1におけるステージの配置構成の他の一例を示す図である。図11では、XYステージ105a,105bが基板101の下面を支持する場合について説明したが、これに限るものではなく、その他の支持態様であってもよい。例えば、図18の例では、XYステージ105a,105bが基板101の上面端部を支持する。かかる場合、XYステージ105a,105bが基板101の上面端部を静電チャックを用いて支持すればよい。或いは、XYステージ105a,105bが基板101の端部を両側面側から抑え込むように支持してもよい。
図19は、実施の形態1におけるポールピースのスリットの配置構成の他の一例を示す図である。図11では、光ファイバ228のポールピース15からの取り出しに1つのスリット6を用いた場合について説明したが、これに限るものではなく、その他の場合であってもよい。例えば、図19の例では、検出器222の配置高さ付近のポールピース15の側面部分12に2以上の複数のスリット6,8を形成してもよい。そして、複数の光ファイバ228は、その配置位置に応じて、複数のスリット6,8の中から取り出し易い位置(例えば、一番近い位置)のスリットを通して外部と接続してもよい。
以上の説明において、一連の「〜回路」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「〜回路」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。プロセッサ等を実行させるプログラムは、磁気ディスク装置、磁気テープ装置、FD、或いはROM(リードオンリメモリ)等の記録媒体に記録されればよい。
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、ポールピース15の材料について、上述したパーメンジュールの他、純鉄等の飽和磁束密度の高い他の材料を用いても好適である。
また、図10の例では、加速電圧を50kV、マルチビーム20の本数を196本、各ビームの間隔(ピッチ)を5μmとする場合について説明したが、これに限るものではなく、その他の場合であってもよい。
また、図11の例では、検出器222の構成として、光ファイバ228を用いた場合について説明したが、これに限るものではなく、その他の場合であってもよい。例えば、光ファイバ228の代わりに2次元PDS(Position Sensitive Detector)といった光電変換素子とその2次側に接続される電線とを用いてもよい。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての電子ビーム画像検出装置、電子ビーム画像検出方法、パターン検査装置及び方法は、本発明の範囲に包含される。
2,4,6,8 スリット
10 底面部分
11 中心軸
12 側面部分
13 コイル
14 中実部分
15 ポールピース
16 中空部分
18 上面部分
20 マルチビーム
22 穴
24,26 電極
25 通過孔
29 グリッド
30 検査領域
32 チップ
33 単位検査領域
34 照射領域
28,36 画素
41 制御回路
47 個別ブランキング機構
100 検査装置
101 基板
102 電子ビームカラム
103 検査室
106 検出回路
107 位置回路
108 比較回路
109 記憶装置
110 制御計算機
111 展開回路
112 参照回路
114 ステージ制御回路
117 モニタ
118 メモリ
119 プリンタ
120 バス
122 レーザ測長システム
123 ストライプパターンメモリ
124 レンズ制御回路
126 ブランキング制御回路
128 偏向制御回路
130 ステージ駆動機構
150 光学画像取得部
160 制御系回路
200 電子ビーム
201 電子銃
202 照明レンズ
203 成形アパーチャアレイ部材
204 ブランキングアパーチャアレイ機構
205 縮小レンズ
206 制限アパーチャ部材
207 対物レンズ
208 偏向器
216 ミラー
222 検出器
223 電子増倍素子
224 電子増倍素子アレイプレート
225 検出面
226 蛍光板
228 光ファイバ
300 2次電子
302 磁力線
304 2次電子
306 光
10 底面部分
11 中心軸
12 側面部分
13 コイル
14 中実部分
15 ポールピース
16 中空部分
18 上面部分
20 マルチビーム
22 穴
24,26 電極
25 通過孔
29 グリッド
30 検査領域
32 チップ
33 単位検査領域
34 照射領域
28,36 画素
41 制御回路
47 個別ブランキング機構
100 検査装置
101 基板
102 電子ビームカラム
103 検査室
106 検出回路
107 位置回路
108 比較回路
109 記憶装置
110 制御計算機
111 展開回路
112 参照回路
114 ステージ制御回路
117 モニタ
118 メモリ
119 プリンタ
120 バス
122 レーザ測長システム
123 ストライプパターンメモリ
124 レンズ制御回路
126 ブランキング制御回路
128 偏向制御回路
130 ステージ駆動機構
150 光学画像取得部
160 制御系回路
200 電子ビーム
201 電子銃
202 照明レンズ
203 成形アパーチャアレイ部材
204 ブランキングアパーチャアレイ機構
205 縮小レンズ
206 制限アパーチャ部材
207 対物レンズ
208 偏向器
216 ミラー
222 検出器
223 電子増倍素子
224 電子増倍素子アレイプレート
225 検出面
226 蛍光板
228 光ファイバ
300 2次電子
302 磁力線
304 2次電子
306 光
Claims (5)
- 所定の軸と直交する底面部分と、前記底面部分に接続された側面外周を覆う側面部分と、前記底面部分上に配置された前記側面部分の高さ方向途中まで形成された前記所定の軸に回転対称な中実部分と、前記中実部分と非接触で前記中実部分よりも上方に配置された前記所定の軸に回転対称な中空部分と、前記中空部分と前記側面部分との間の領域を覆う上面部分と、を有する電磁レンズ用のポールピースと、
前記ポールピースの内側の領域に配置された電磁レンズ用のコイルと、
前記ポールピース内に配置され、前記中実部分上で基板を移動可能に支持するステージと、
前記基板に向けて前記中空部分内の空間を通過するように電子ビームを照射する電子光学系と、
前記コイルを励磁することによって生じる前記中空部分と前記中実部分との間に形成される磁力線に実質的に直交する方向に検出面が配置され、前記中空部分内を通過する電子ビームが前記中実部分上で前記基板に照射されることによって生じ、前記磁力線に沿ってサイクロトロン運動をしながら移動する2次電子を検出する2次電子検出器と、
を備えたことを特徴とする電子ビーム画像検出装置。 - 前記2次電子検出器の前記検出面は、円錐台の斜面状に形成されることを特徴とする請求項1記載の電子ビーム画像検出装置。
- 前記ポールピースは、前記中空部分と前記中実部分との間に形成される前記磁力線に直交する前記中空部分の断面の面積が、前記中実部分の上面の面積よりも大きいことを特徴とする請求項1又は2記載の電子ビーム画像検出装置。
- 前記ポールピースの前記側面部分に、前記基板を搬送するためのスリットが形成されることを特徴とする請求項1〜3いずれか記載の電子ビーム画像検出装置。
- 電磁レンズを構成するポールピース内に配置された基板上に前記電磁レンズによって前記基板面を通過する磁力線が形成される磁場を発生させた状態で、前記基板上に電子ビームを照射する工程と、
前記基板に前記電子ビームが照射されることによって生じた2次電子を前記磁力線に沿ってサイクロトロン運動をさせながら移動させ、前記サイクロトロン運動をさせられながら移動させられてきた前記2次電子を前記ポールピース内に配置された2次電子検出器によって検出する工程と、
を備えたことを特徴とする電子ビーム画像検出方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016062228A JP2017173250A (ja) | 2016-03-25 | 2016-03-25 | 電子ビーム画像検出装置及び電子ビーム画像検出方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016062228A JP2017173250A (ja) | 2016-03-25 | 2016-03-25 | 電子ビーム画像検出装置及び電子ビーム画像検出方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017173250A true JP2017173250A (ja) | 2017-09-28 |
Family
ID=59973103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016062228A Pending JP2017173250A (ja) | 2016-03-25 | 2016-03-25 | 電子ビーム画像検出装置及び電子ビーム画像検出方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017173250A (ja) |
-
2016
- 2016-03-25 JP JP2016062228A patent/JP2017173250A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10215718B2 (en) | Electron beam inspection apparatus and electron beam inspection method | |
JP6684179B2 (ja) | 荷電粒子ビーム検査装置及び荷電粒子ビーム検査方法 | |
US10886102B2 (en) | Multiple electron beam irradiation apparatus, multiple electron beam irradiation method, and multiple electron beam inspection apparatus | |
US20190355547A1 (en) | Multiple electron beam irradiation apparatus, multiple electron beam inspection apparatus and multiple electron beam irradiation method | |
US20190355546A1 (en) | Multiple electron beam image acquisition apparatus and multiple electron beam image acquisition method | |
US20200104980A1 (en) | Multi-electron beam image acquisition apparatus, and multi-electron beam image acquisition method | |
JP6750937B2 (ja) | パターン検査装置 | |
TWI772803B (zh) | 像差修正器以及多電子束照射裝置 | |
KR20200106820A (ko) | 멀티 전자 빔 조사 장치 | |
JP2017198588A (ja) | パターン検査装置 | |
US11145485B2 (en) | Multiple electron beams irradiation apparatus | |
US10775326B2 (en) | Electron beam inspection apparatus and electron beam inspection method | |
JP2020119682A (ja) | マルチ電子ビーム照射装置、マルチ電子ビーム検査装置、及びマルチ電子ビーム照射方法 | |
US20230077403A1 (en) | Multi-electron beam image acquisition apparatus, and multi-electron beam image acquisition method | |
US10777384B2 (en) | Multiple beam image acquisition apparatus and multiple beam image acquisition method | |
JP2021077492A (ja) | 電子ビーム検査装置及び電子ビーム検査方法 | |
JP7234052B2 (ja) | マルチ電子ビーム画像取得装置及びマルチ電子ビーム画像取得方法 | |
JP7385493B2 (ja) | マルチ荷電粒子ビーム位置合わせ方法及びマルチ荷電粒子ビーム検査装置 | |
TW202226315A (zh) | 多射束圖像取得裝置及多射束圖像取得方法 | |
JP2017173250A (ja) | 電子ビーム画像検出装置及び電子ビーム画像検出方法 | |
WO2021039419A1 (ja) | 電子銃及び電子ビーム照射装置 | |
TWI818407B (zh) | 多射束圖像取得裝置及多射束圖像取得方法 | |
US20230102715A1 (en) | Multi-electron beam image acquisition apparatus, multi-electron beam inspection apparatus, and multi-electron beam image acquisition method | |
JP2022154068A (ja) | 荷電粒子ビーム画像取得装置及び荷電粒子ビーム画像取得方法 | |
JP2022154067A (ja) | 電子ビームの軌道軸調整方法及びマルチビーム画像取得装置 |