KR20200106820A - 멀티 전자 빔 조사 장치 - Google Patents

멀티 전자 빔 조사 장치 Download PDF

Info

Publication number
KR20200106820A
KR20200106820A KR1020200005934A KR20200005934A KR20200106820A KR 20200106820 A KR20200106820 A KR 20200106820A KR 1020200005934 A KR1020200005934 A KR 1020200005934A KR 20200005934 A KR20200005934 A KR 20200005934A KR 20200106820 A KR20200106820 A KR 20200106820A
Authority
KR
South Korea
Prior art keywords
electron beam
primary electron
electrode substrates
substrate
electrode
Prior art date
Application number
KR1020200005934A
Other languages
English (en)
Other versions
KR102371265B1 (ko
Inventor
카즈히코 이노우에
아츠시 안도
무네히로 오가사와라
하트레이 존
Original Assignee
가부시키가이샤 뉴플레어 테크놀로지
뉴플레어 테크놀로지 아메리카, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 뉴플레어 테크놀로지, 뉴플레어 테크놀로지 아메리카, 인크. filed Critical 가부시키가이샤 뉴플레어 테크놀로지
Publication of KR20200106820A publication Critical patent/KR20200106820A/ko
Application granted granted Critical
Publication of KR102371265B1 publication Critical patent/KR102371265B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/063Geometrical arrangement of electrodes for beam-forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/145Combinations of electrostatic and magnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • H01J2237/04926Lens systems combined
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1205Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1207Einzel lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/121Lenses electrostatic characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2448Secondary particle detectors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

본 발명의 일 태양의 멀티 전자 빔 조사 장치는, 멀티 1 차 전자 빔을 형성하는 형성 기구와, 상기 멀티 1 차 전자 빔의 통과 위치에 맞추어, 상기 멀티 1 차 전자 빔의 각 빔을 개별적으로 통과시키는, 복수의 지름 치수의 복수의 개구부가 각각 형성된, 상기 멀티 1 차 전자 빔의 각 빔의 상면 공역 위치를 상기 지름 치수에 따라 조정 가능한 복수 단의 전극 기판과, 상기 복수 단의 전극 기판을 통과한 상기 멀티 1 차 전자 빔이 조사되는 시료를 재치하는 것이 가능한 스테이지를 구비한 것을 특징으로 한다.

Description

멀티 전자 빔 조사 장치 {MULTIPLE ELECTRON BEAMS IRRADIATION APPARATUS}
본 출원은 그 전체 내용이 여기에 참조로서 포함되고 미국에서 2019년 3월 5일에 출원된 미국 가출원 제62/814,087에 기초하며 우선권의 이익을 주장한다.
본 발명은, 멀티 전자 빔 조사 장치에 관한 것이다. 예를 들면, 전자 선에 의한 멀티 빔을 조사하여 방출되는 패턴의 2 차 전자 화상을 취득하여 패턴을 검사하는 검사 장치에 관한 것이다.
최근, 대규모 집적회로(LSI)의 고집적화 및 대용량화에 수반하여, 반도체 소자에 요구되는 회로 선폭은 점점 좁아지고 있다. 그리고, 많은 제조 코스트가 드는 LSI의 제조에 있어서, 수율의 향상은 빠뜨릴 수 없다. 그러나, 1 기가비트급의 DRAM(랜덤 액세스 메모리)로 대표되듯이, LSI를 구성하는 패턴은, 서브 미크론부터 나노 미터의 오더로 되어 있다. 최근, 반도체 웨이퍼 상에 형성되는 LSI 패턴 치수의 미세화에 수반하여, 패턴 결함으로서 검출해야 하는 치수도 매우 작은 것으로 되어 있다. 따라서, 반도체 웨이퍼 상에 전사된 초미세 패턴의 결함을 검사하는 패턴 검사 장치의 고정밀화가 필요해지고 있다. 그 밖에, 수율을 저하시키는 큰 요인의 하나로서, 반도체 웨이퍼 상에 초미세 패턴을 포토리소그래피 기술로 노광, 전사할 때에 사용되는 마스크의 패턴 결함을 들 수 있다. 이 때문에, LSI 제조에 사용되는 전사용 마스크의 결함을 검사하는 패턴 검사 장치의 고정밀화가 필요해지고 있다.
검사 수법으로서는, 반도체 웨이퍼 또는 리소그래피 마스크 등의 기판 상에 형성되어 있는 패턴을 촬상한 측정 화상과, 설계 데이터, 혹은 기판 상의 동일 패턴을 촬상한 측정 화상과 비교함으로써 검사를 행하는 방법이 알려져 있다. 예를 들면, 패턴 검사 방법으로서, 동일 기판 상의 상이한 장소의 동일 패턴을 촬상한 측정 화상 데이터끼리를 비교하는 「die to die(다이-다이) 검사」나, 패턴 설계된 설계 데이터를 베이스로 설계 화상 데이터(참조 화상)를 생성하고, 이와 패턴을 촬상한 측정 데이터가 되는 측정 화상을 비교하는 「die to database(다이-데이터베이스) 검사」가 있다. 촬상된 화상은 측정 데이터로서 비교 회로로 보내어진다. 비교 회로에서는, 화상끼리의 위치 조정 후, 측정 데이터와 참조 데이터를 적절한 알고리즘에 따라 비교하여, 일치하지 않는 경우에는, 패턴 결함 있음이라고 판정한다.
상술한 패턴 검사 장치에는, 레이저광을 검사 대상 기판에 조사하고, 이 투과상 혹은 반사상을 촬상하는 장치 외에, 검사 대상 기판 상을 1 차 전자 빔으로 주사(스캔)하고, 1 차 전자 빔의 조사에 수반하여 검사 대상 기판으로부터 방출되는 2 차 전자를 검출하고, 패턴상을 취득하는 검사 장치의 개발도 진행되고 있다. 전자 빔을 이용한 검사 장치에서는, 또한, 멀티 빔을 이용한 장치의 개발도 진행되고 있다. 멀티 빔을 조사하는 장치에서는, 시료면 상에 조사되는 빔이 광축 중심으로부터 외주 방향으로 사이가 떨어트려짐에 따라, 상면 만곡 수차의 영향에 의하여 빔의 스팟 지름에 차이가 생긴다. 따라서, 시야(FOV)를 크게 하면, 이러한 수차의 영향에 의하여 빔의 흐려짐이 커져 버린다. 이 때문에, 시료면을 관찰하는 장치나 검사 장치 등으로 FOV를 확대하는 것이 곤란하다고 하는 문제가 있다. 여기서, 하전 입자 선에 대하여 광축으로부터 사이가 떨어트려지도록 편향하는 오목 렌즈의 기능을 가지는 편향기가 복수 배치된 편향기 어레이, 렌즈 어레이 및 4 극자 어레이를 조합한 수차 보정기를 사용하여 복수의 하전 입자 선을 편향하여, 색 수차 또는 구면 수차를 보정하는 것이 제안되어져 있다(JP2014-229481A). 그러나, 흐려짐의 보정을 빔마다 행하면, 빔마다 인가 전위가 상이하므로, 빔마다 개별적으로 전원이 필요해져 버린다. 따라서, 대규모의 장치 구성이 되어 버린다.
본 발명의 일 태양의 멀티 전자 빔 조사 장치는, 멀티 1 차 전자 빔을 형성하는 형성 기구와, 상기 멀티 1 차 전자 빔의 통과 위치에 맞추어, 상기 멀티 1 차 전자 빔의 각 빔을 개별적으로 통과시키는, 복수의 지름 치수의 복수의 개구부가 각각 형성된, 상기 멀티 1 차 전자 빔의 각 빔의 상면 공역 위치를 상기 지름 치수에 따라 조정 가능한 복수 단의 전극 기판과, 상기 복수 단의 전극 기판을 통과한 상기 멀티 1 차 전자 빔이 조사되는 시료를 재치하는 것이 가능한 스테이지를 구비한 것을 특징으로 한다.
본 발명의 일 태양의 멀티 전자 빔 조사 방법은, 멀티 1 차 전자 빔을 형성하고, 상기 멀티 1 차 전자 빔의 통과 위치에 맞추어, 상기 멀티 1 차 전자 빔의 각 빔을 개별적으로 통과시키는, 복수의 지름 치수의 복수의 개구부가 각각 형성된, 상기 멀티 1 차 전자 빔의 각 빔의 상면 공역 위치를 상기 지름 치수에 따라 조정 가능한 복수 단의 전극 기판을 이용하여, 상기 멀티 1 차 전자 빔에 상기 복수 단의 전극 기판을 통과시키고, 스테이지에 재치된 시료에, 상기 복수 단의 전극 기판을 통과한 상기 멀티 1 차 전자 빔을 조사하는 것을 특징으로 한다.
도 1은, 실시 형태 1에 있어서의 패턴 검사 장치의 구성을 도시한 구성도이다.
도 2는, 실시 형태 1에 있어서의 성형 애퍼쳐 어레이 기판의 구성을 도시한 개념도이다.
도 3은, 실시 형태 1에 있어서의 수차 보정기의 구성을 설명하기 위한 상면도이다.
도 4는, 실시 형태 1에 있어서의 수차 보정기의 구성을 설명하기 위한 단면도이다.
도 5는, 실시 형태 1에 있어서의 수차 보정기 통과 후의 상면 공역 위치와 통과 홀의 지름 치수와의 관계의 일예를 나타내는 도면이다.
도 6은, 실시 형태 1의 수차 보정기의 효과를 설명하기 위한 도면이다.
도 7은, 실시 형태 1에 있어서의 검사 방법의 요부 공정을 나타내는 플로우차트도이다.
도 8은, 실시 형태 1에 있어서의 반도체 기판에 형성되는 복수의 칩 영역의 일예를 나타내는 도면이다.
도 9는, 실시 형태 1에 있어서의 멀티 빔의 스캔 동작을 설명하기 위한 도면이다.
도 10은, 실시 형태 1에 있어서의 비교 회로 내의 구성의 일예를 나타내는 구성도이다.
도 11은, 실시 형태 1에 있어서의 수차 보정기를 정전 렌즈로 간주한 경우의 각 전극의 일예를 나타내는 도면이다.
도 12는, 도 11에 대응하는 집속 작용의 일예를 설명하기 위한 도면이다.
도 13은, 실시 형태 1에 있어서의 수차 보정기를 정전 렌즈로 간주한 경우의 각 전극의 다른 일예를 나타내는 도면이다.
도 14는, 도 13에 대응하는 또 다른 집속 작용의 일예를 설명하기 위한 도면이다.
이하, 실시 형태에서는, 멀티 전자 빔 조사 장치의 일예로서, 멀티 전자 빔 검사 장치에 대하여 설명한다. 단, 멀티 전자 빔 조사 장치는, 검사 장치에 한정되는 것은 아니며, 예를 들면, 화상이 취득 가능한 멀티 전자 빔을 조사하는 장치라면 상관없다.
실시 형태 1
도 1은, 실시 형태 1에 있어서의 패턴 검사 장치의 구성을 도시한 구성도이다. 도 1에서, 기판에 형성된 패턴을 검사하는 검사 장치(100)는, 멀티 전자 빔 검사 장치의 일예이다. 검사 장치(100)는, 화상 취득 기구(150) 및 제어계 회로(160)를 구비하고 있다. 화상 취득 기구(150)는, 전자 빔 컬럼(102)(전자 경통이라고도 함)(멀티 빔 컬럼의 일예), 검사실(103), 검출 회로(106), 칩 패턴 메모리(123), 스테이지 구동 기구(142) 및 레이저 측장 시스템(122)을 구비하고 있다. 전자 빔 컬럼(102) 내에는, 전자 총(201), 조명 렌즈(202), 성형 애퍼쳐 어레이 기판(203)(형성 기구의 일예), 전자기 렌즈(205), 수차 보정기(204), 일괄 블랭킹 편향기(212), 제한 애퍼쳐 기판(206), 전자기 렌즈(220), 빔 세퍼레이터(214), 대물 렌즈(207), 주편향기(208), 부편향기(209), 편향기(218), 투영 렌즈(224) 및 멀티 검출기(222)가 배치되어 있다. 조명 렌즈(202), 성형 애퍼처 어레이 기판(203), 전자기 렌즈(205), 수차 보정기(204), 일괄 블랭킹 편향기(212), 제한 애퍼처 기판(206), 전자기 렌즈(220), 빔 세퍼레이터(214), 대물 렌즈(207), 주편향기(208) 및 부편향기(209)에 의해 1 차 전자 빔 광학계가 구성된다. 또한, 빔 세퍼레이터(214), 편향기(218) 및 투영 렌즈(224)에 의해 2 차 전자 빔 광학계가 구성된다.
검사실(103) 내에는, 적어도 XY 평면 상을 이동 가능한 XY 스테이지(105)가 배치된다. XY 스테이지(105) 상에는, 검사 대상이 되는 기판(101)(시료)이 배치된다. 기판(101)에는, 노광용 마스크 기판 및 실리콘 웨이퍼 등의 반도체 기판이 포함된다. 기판(101)이 반도체 기판인 경우, 반도체 기판에는 복수의 칩 패턴(웨이퍼 다이)이 형성되어 있다. 기판(101)이 노광용 마스크 기판인 경우, 노광용 마스크 기판에는, 칩 패턴이 형성되어 있다. 칩 패턴은, 복수의 도형 패턴에 의하여 구성된다. 이러한 노광용 마스크 기판에 형성된 칩 패턴이 반도체 기판 상에 복수 회 노광 전사됨으로써, 반도체 기판에는 복수의 칩 패턴(웨이퍼 다이)이 형성되게 된다. 이하, 기판(101)이 반도체 기판인 경우를 주로 설명한다. 기판(101)은, 예를 들면, 패턴 형성면을 상측을 향해 XY 스테이지(105)에 배치된다. 또한, XY 스테이지(105) 상에는, 검사실(103)의 외부에 배치된 레이저 측장 시스템(122)으로부터 조사되는 레이저 측장용의 레이저광을 반사하는 미러(216)가 배치되어 있다. 멀티 검출기(222)는, 전자 빔 컬럼(102)의 외부에서 검출 회로(106)에 접속된다. 검출 회로(106)는, 칩 패턴 메모리(123)에 접속된다.
제어계 회로(160)에서는, 검사 장치(100) 전체를 제어하는 제어 계산기(110)가, 버스(120)를 통하여, 위치 회로(107), 비교 회로(108), 참조 화상 작성 회로(112), 스테이지 제어 회로(114), 수차 보정 회로(121), 렌즈 제어 회로(124), 블랭킹 제어 회로(126), 편향 제어 회로(128), 자기 디스크 장치 등의 기억 장치(109), 모니터(117), 메모리(118) 및 프린터(119)에 접속되어 있다. 또한, 편향 제어 회로(128)는, DAC(디지털 아날로그 변환) 앰프(144, 146, 148)에 접속된다. DAC 앰프(146)는 주편향기(208)에 접속되고, DAC 앰프(144)는 부편향기(209)에 접속된다. 또한, DAC 앰프(148)는 편향기(218)에 접속된다. 수차 보정 회로(121)는 수차 보정기(204)에 접속된다.
또한, 칩 패턴 메모리(123)는, 비교 회로(108)에 접속되어 있다. 또한, XY 스테이지(105)는, 스테이지 제어 회로(114)의 제어 하에 스테이지 구동 기구(142)에 의하여 구동된다. 스테이지 구동 기구(142)에서는, 예를 들면, 스테이지 좌표계에 있어서의 X 방향, Y 방향, θ 방향으로 구동하는 3 축(X-Y-θ) 모터의 같은 구동계가 구성되고, XY 스테이지(105)가 이동 가능하도록 되어 있다. 이들 도시하지 않은 X 모터, Y 모터, θ 모터는, 예를 들면, 스텝 모터를 이용할 수 있다. XY 스테이지(105)는, XYθ 각 축의 모터에 의하여 수평 방향 및 회전 방향으로 이동 가능하다. 그리고, XY 스테이지(105)의 이동 위치는 레이저 측장 시스템(122)에 의하여 측정되어, 위치 회로(107)로 공급된다. 레이저 측장 시스템(122)은, 미러(216)로부터의 반사광을 수광함으로써, 레이저 간섭법의 원리로 XY 스테이지(105)의 위치를 측장한다. 스테이지 좌표계는, 예를 들면, 멀티 1 차 전자 빔의 광축에 직교하는 면에 대하여, X 방향, Y 방향, θ 방향이 설정된다.
일괄 블랭킹 편향기(212)는, 적어도 2 극의 전극군에 의하여 구성되어, 블랭킹 제어 회로(126)에 의하여 제어된다. 주편향기(208)는, 적어도 4 극의 전극군에 의하여 구성되어, 전극마다 배치되는 DAC 앰프(146)를 통하여, 편향 제어 회로(128)에 의하여 제어된다. 마찬가지로, 부편향기(209)는, 적어도 4 극의 전극군에 의하여 구성되어, 전극마다 배치되는 DAC 앰프(144)를 통하여, 편향 제어 회로(128)에 의하여 제어된다. 마찬가지로, 편향기(218)는, 적어도 4 극의 전극으로 구성되어, 전극마다 DAC 앰프(148)를 통해, 편향 제어 회로(128)에 의하여 제어된다.
여기서, 도 1에서는, 실시 형태 1을 설명함에 있어서 필요한 구성을 기재하고 있다. 검사 장치(100)에 있어서, 통상, 필요한 그 밖의 구성을 구비하고 있어도 상관없다.
도 2는, 실시 형태 1에 있어서의 성형 애퍼쳐 어레이 기판의 구성을 도시한 개념도이다. 도 2에서, 성형 애퍼쳐 어레이 기판(203)에는, 2 차원 형상의 가로(x 방향) m1 열×세로(y 방향) n1 단(m1, n1는 2 이상의 정수)의 홀(개구부)(22)이 x, y 방향으로 소정의 배열 피치로 형성되어 있다. 도 2의 예에서는, 5Х5의 홀(개구부)(22)이 형성되어 있는 경우를 나타내고 있다. 홀(22)의 배열 수는 이에 한정되는 것은 아니다. 각 홀(22)은, 모두 동일한 외경의 원형으로 형성된다. 혹은, 동일한 치수 형상의 직사각형이여도 상관없다. 이들 복수의 홀(22)을 전자 빔(200)의 일부가 각각 통과함으로써, 멀티 빔(20)이 형성되게 된다. 여기에서는, 가로 세로(x, y 방향)가 모두 2 열 이상의 홀(22)이 배치된 예를 나타냈으나, 이에 한정되는 것은 아니다. 예를 들면, 가로 세로(x, y 방향) 중 어느 일방이 복수 열이고 타방은 1 열뿐이여도 상관없다. 또한, 홀(22)의 배열의 방법은, 도 2와 같이, 가로 세로가 격자 형상으로 배치되는 경우에 한정되는 것은 아니다. 예를 들면, 세로 방향(y 방향) k 단째의 열과, k+1 단째의 열의 홀끼리가, 가로 방향(x 방향)으로 치수 a만큼 이탈되어 배치되어도 된다. 마찬가지로, 세로 방향(y 방향) k+1 단째의 열과, k+2 단째의 열의 홀끼리가, 가로 방향(x 방향)으로 치수 b만큼 이탈되어 배치되어도 된다.
이어서, 검사 장치(100)에 있어서의 화상 취득 기구(150)의 동작에 대하여 설명한다.
전자 총(201)(방출원)으로부터 방출된 전자 빔(200)은, 조명 렌즈(202)에 의하여 거의 수직으로 성형 애퍼쳐 어레이 기판(203) 전체를 조명한다. 성형 애퍼처 어레이 기판(203)에는, 도 2에 도시한 바와 같이, 복수의 홀(22)(개구부)이 형성되고, 전자 빔(200)은, 모든 복수의 홀(22)이 포함되는 영역을 조명한다. 복수의 홀(22)의 위치에 조사된 전자 빔(200)의 각 일부가, 이러한 성형 애퍼처 어레이 기판(203)의 복수의 홀(22)을 각각 통과함으로써, 예를 들면, 복수의 전자 빔(멀티 1 차 전자 빔)(20)(도 1의 실선)이 형성된다.
형성된 멀티 1 차 전자 빔(20)은, 도시하지 않은 상면 공역 위치에서 각 빔이 각각 집속한 후, 각 빔이 퍼진 상태에서 전자기 렌즈(205)에 입사되고, 전자기 렌즈(205)에 의하여 제한 애퍼처 기판(206)에 형성된 중심의 홀을 향해 굴절된다. 환언하면, 전자기 렌즈(205)는, 멀티 1 차 전자 빔(20)의 입사를 받아, 멀티 1 차 전자 빔(20)을 굴절시킨다. 여기서, 일괄 블랭킹 편향기(212)에 의하여, 멀티 1 차 전자 빔(20) 전체가 일괄하여 편향된 경우에는, 제한 애퍼처 기판(206)의 중심의 홀로부터 위치가 이탈되어, 제한 애퍼처 기판(206)에 의하여 차폐된다. 한편, 일괄 블랭킹 편향기(212)에 의하여 편향되지 않은 멀티 1 차 전자 빔(20)은, 도 1에 도시한 바와 같이 제한 애퍼처 기판(206)의 중심의 홀을 통과한다. 이러한 일괄 블랭킹 편향기(212)의 ON/OFF에 의하여, 멀티 1 차 전자 빔(20) 전체의 일괄된 블랭킹 제어가 행해져, 빔의 ON/OFF가 일괄 제어된다. 이와 같이, 제한 애퍼쳐 기판(206)은, 일괄 블랭킹 편향기(212)에 의하여 빔 OFF의 상태가 되도록 편향된 멀티 1 차 전자 빔(20)을 차폐한다. 그리고, 빔 ON이 되고 나서 빔 OFF가 될 때까지 형성된, 제한 애퍼쳐 기판(206)을 통과한 빔 군에 의하여, 검사용의 멀티 1 차 전자 빔(20)이 형성된다.
제한 애퍼쳐 기판(206)을 통과한 멀티 1 차 전자 빔(20)은, 전자기 렌즈(220)로 진행된다. 전자기 렌즈(220)는, 멀티 1 차 전자 빔(20)의 입사를 받아, 멀티 1 차 전자 빔(20)을 굴절시킨다. 멀티 1 차 전자 빔(20)은, 전자기 렌즈(220)에 의하여, 빔마다 크로스오버(C.O.)를 형성한다. 멀티 빔(20)은, 이러한 빔마다 형성되는 크로스오버의 위치에 배치된 빔 세퍼레이터(214)를 통과한 후, 대물 렌즈(207)에 의하여 기판(101)(시료)면 상에 초점이 맞추어져(합초되어), 원하는 축소율의 패턴상(빔 지름)이 되고, 주편향기(208) 및 부편향기(209)에 의하여, 제한 애퍼쳐 기판(206)을 통과한 멀티 1 차 전자 빔(20) 전체가 동일 방향으로 일괄하여 편향되고, 각 빔의 기판(101) 상의 각각의 조사 위치에 조사된다. 이러한 경우에, 주편향기(208)에 의하여, 멀티 1 차 전자 빔(20)이 주사하는 마스크 다이의 기준 위치에 멀티 빔(20) 전체를 일괄 편향한다. 실시 형태 1에서는, 예를 들면 XY 스테이지(105)를 연속 이동시키면서 스캔을 행한다. 이 때문에, 주편향기(208)는, 더욱 XY 스테이지(105)의 이동에 추종하도록, 트랙킹 편향을 행한다. 그리고, 부편향기(209)에 의하여, 각 빔이 각각 대응하는 영역 내를 주사하도록 멀티 1 차 전자 빔(20) 전체를 일괄 편향한다. 한번에 조사되는 멀티 1 차 전자 빔(20)은, 이상적이게는 성형 애퍼쳐 어레이 기판(203)의 복수의 홀(22)의 배열 피치에 원하는 축소율(1/a)을 곱한 피치로 배열된다. 이와 같이, 전자 빔 컬럼(102)은, 한번에 2 차원 형상의 m1×n1 개의 멀티 빔(20)을 기판(101)에 조사한다.
기판(101)의 원하는 위치에 멀티 1 차 전자 빔(20)이 조사된 것에 기인하여 기판(101)으로부터 멀티 1 차 전자 빔(20)의 각 빔에 대응하는, 반사 전자를 포함하는 2 차 전자의 다발(멀티 2 차 전자 빔(300))(도 1의 점선)이 방출된다. 도 1에서는, 멀티 2 차 전자 빔(300)을 1 개의 빔으로 대표하여 도시하고 있다.
기판(101)으로부터 방출된 멀티 2 차 전자 빔(300)은, 대물 렌즈(207)에 의하여, 멀티 2 차 전자 빔(300)의 중심측으로 굴절되어, 크로스오버 위치에 배치된 빔 세퍼레이터(214)로 진행된다. 빔 세퍼레이터(214)는, 기판(101)(시료)에 멀티 1 차 전자 빔(20)이 조사된 것에 기인하여 방출되는 멀티 2 차 전자 빔(300)을 멀티 1 차 전자 빔(20)으로부터 분리한다.
여기서, 빔 세퍼레이터(214)는 멀티 빔(20)의 중심 빔이 진행하는 방향(광축)에 직교하는 면 상에서 전계와 자계를 직교하는 방향으로 발생시킨다. 전계는 전자의 진행 방향에 관계없이 동일 방향으로 힘을 미친다. 이에 대하여, 자계는 프레밍 왼손의 법칙에 따라 힘을 미친다. 이 때문에 전자의 침입 방향에 의하여 전자에 작용하는 힘의 방향을 변화시킬 수 있다. 빔 세퍼레이터(214)에 상측으로부터 침입해 오는 멀티 1 차 전자 빔(20)에는, 전계에 의한 힘과 자계에 의한 힘이 상쇄하고, 멀티 1 차 전자 빔(20)은 하방으로 직진한다. 이에 대하여, 빔 세퍼레이터(214)에 하측으로부터 침입해 오는 멀티 2 차 전자 빔(300)에는, 전계에 의한 힘과 자계에 의한 힘이 모두 동일 방향으로 움직이고, 멀티 2 차 전자 빔(300)은 기울기 상방으로 굽혀진다. 이에 의하여, 멀티 2 차 전자 빔(300)은, 멀티 1 차 전자 빔(20)으로부터 분리된다. 도 1에서는, 멀티 2 차 전자 빔(300)을 1 개의 빔으로 대표하여 도시하고 있다.
기울기 상방으로 굽혀진 멀티 2 차 전자 빔(300)은, 편향기(218)에 의하여 더 굽혀져, 투영 렌즈(224)로 진행된다. 그리고, 편향기(218)에 의하여 편향된 멀티 2 차 전자 빔(300)은, 투영 렌즈(224)에 의하여, 굴절되면서 멀티 검출기(222)에 투영된다. 멀티 검출기(222)는, 멀티 1 차 전자 빔(20)으로부터 분리된 멀티 2 차 전자 빔을 개별적으로 검출한다. 구체적으로는, 멀티 검출기(222)는, 투영된 멀티 2 차 전자 빔(300)을 검출한다. 또한, XY 스테이지(105)를 연속 이동시키면서 스캔을 행하기 위하여, 상술한 바와 같이 트랙킹 편향이 행해진다. 편향기(218)는, 이러한 트랙킹 편향 및 스캔 동작에 수반하는 멀티 1 차 전자 빔(20)의 편향 위치의 이동에 의한 멀티 검출기(222)의 수광면에서의 멀티 2 차 전자 빔(300)의 수광 위치의 이탈을 캔슬하고, 멀티 2 차 전자 빔(300)을 멀티 검출기(222)의 수광면에 있어서의 원하는 위치에 조사시키도록 편향한다. 그리고, 멀티 2 차 전자 빔(300)은, 멀티 검출기(222)에서 검출된다. 멀티 검출기(222)에서 검출된 강도 신호에 의하여, 기판(101) 상의 화상이 형성된다.
도 3은, 실시 형태 1에 있어서의 수차 보정기(204)의 구성을 설명하기 위한 상면도이다. 도 4는, 실시 형태 1에 있어서의 수차 보정기(204)의 구성을 설명하기 위한 단면도이다. 도 4에서, 수차 보정기(204)는, 전자기 렌즈(205)의 자기장 중에 배치된다. 수차 보정기(204)는, 복수 단의 전극 기판(11, 12, 13)을 가진다. 인접하는 전극 기판(11, 12, 13)끼리 사이는, 소정의 간극을 두고 배치된다. 각 단의 전극 기판(11, 12, 13)은, 도전성 재료, 예를 들면, 금속으로 형성된다. 혹은, 절연성 재료의 주위에 도전성의 박막을 코팅하여 형성해도 된다. 도 3 및 도 4에 도시한 바와 같이, 각 단의 전극 기판(11, 12, 13)에는, 멀티 1 차 전자 빔(20)의 통과 위치에 맞추어, 각각 복수의 통과 홀(15)이 형성된다. 복수의 통과 홀(15)은, 멀티 1 차 전자 빔(20)의 통과 위치에 맞추어 형성되고, 멀티 1 차 전자 빔(20)의 각 빔을 개별적으로 통과시킨다. 수차 보정 회로(121)로부터 상단, 중단 및 하단의 3 개의 전극 기판(11, 12, 13)으로 각각 독립적으로 전위를 인가함으로써, 빔마다 개별적으로 집속 작용을 부여하는 멀티 정전 렌즈를 구성한다.
여기서, 실시 형태 1에서는, 각 빔의 상면 공역 위치(초점 위치)를 개별적으로 이탈시키는 보정을 행한다. 이 때문에, 각 빔에 미치는 집속 작용을 보정한다. 따라서, 복수 단의 전극 기판(11, 12, 13)은, 멀티 1 차 전자 빔(20)의 각 빔의 상면 위치와 공역인 위치(상면 공역 위치)와는 상이한 위치에 배치된다. 도 4의 예에서는, 성형 애퍼처 어레이 기판(203)에 의하여 형성된 멀티 1 차 전자 빔(20)의 각 빔이, 상면 공역 위치에서 각 빔이 각각 집속한 후, 각 빔이 퍼지면서 복수 단의 전극 기판(11, 12, 13)이 대응하는 통과 홀(15) 내로 진행하고, 도중에 수속측으로 바뀌어, 복수 단의 전극 기판(11, 12, 13)을 통과한 후에 집속점(상면 공역 위치)에서 집속한다. 이러한 경우에, 실시 형태 1에서는, 수차 보정기(204)에 의하여, 빔마다 복수 단의 전극 기판(11, 12, 13)을 통과한 후의 각 빔의 상면 공역 위치를 이탈시킨다. 도 4의 예에서는, 수차 보정기(204)를 통과한 후의 각 빔의 상면 공역 위치를, 높이 위치가 상이한 3 종류의 상면 공역 위치(Z1, Z2, Z3) 중 어느 하나로 이탈되도록 보정한다. 실시 형태 1에서는, 통과 홀(15)의 지름 치수를 변경함으로써, 복수 종의 집속 작용을 제공한다.
이에, 실시 형태 1에 있어서의 각 단의 전극 기판(11, 12, 13)에 각각 형성되는 복수의 통과 홀(15)(개구부)은, 복수의 지름 치수로 형성된다. 복수 단의 전극 기판(11, 12, 13)에 형성되는, 같은 빔이 통과하는 각 통과 홀(15)은, 같은 지름 사이즈로 형성되면 된다. 도 3의 예에서는, 5Х5 개의 멀티 1 차 전자 빔(20)에 대해, 5 종류의 지름 치수가 상이한 원형 통과 홀이 도시되어 있다. 도 4의 예에서는, 중심 빔이 통과하는 통과 홀(15)이 지름 치수(d1)로 형성되고, 외측으로 1 개 사이가 떨어트려진 빔이 통과하는 통과 홀(15)이 지름 치수(d2)로 형성되며, 외측으로 더욱 1 개 사이가 떨어트려진 빔이 통과하는 통과 홀(15)이 지름 치수(d3)로 형성되는 경우를 도시하고 있다.
도 4에서, 멀티 1 차 전자 빔(20)의 중심 빔의 초점 위치를 기판(101)면 상에 맞추는 경우(중심 빔 기준으로 하는 경우), 상면 만곡 수차에 의하여, 멀티 1 차 전자 빔(20)의 중심 빔으로부터 외측으로 사이가 떨어트려지는 빔일수록, 초점 위치가 기판(101)면으로부터 상방으로 사이가 떨어트려져 버린다. 멀티 1 차 전자 빔(20)의 외주 빔의 초점 위치를 기판(101)면 상에 맞추는 경우(외주 빔 기준으로 하는 경우), 상면 만곡 수차에 의하여, 멀티 1 차 전자 빔(20)의 중심 빔의 초점 위치가 기판(101)면으로부터 하방으로 사이가 떨어트려져 버린다. 따라서, 중심 빔으로부터 외측으로 사이가 떨어트려지는 빔일수록, 수차 보정기(204) 통과 후의 상면 공역 위치가 수차 보정기(204)로부터 사이가 떨어트려지도록(멀어지도록) 궤도를 수정하는 것이 필요해진다. 이에, 실시 형태 1에서는, 상이한 지름 사이즈의 통과 홀(15)을 사용하여 복수의 정전 렌즈 작용을 선택적으로 적용시킨다.
도 5는, 실시 형태 1에 있어서의 수차 보정기 통과 후의 상면 공역 위치와 통과 홀의 지름 치수와의 관계의 일예를 나타내는 도면이다. 도 5에서, 세로축에 수차 보정기(204) 통과 후의 수차 보정기(204)로부터 상면 공역 위치까지의 거리(a.u.)를 나타낸다. 가로축에 각 단의 전극 기판(11, 12, 13)에 각각 형성되는 원 형상의 통과 홀(15)의 지름 치수(a.u.)를 나타낸다. 또한, 도 5에서는, 예를 들면, 상단의 전극 기판(11)의 전위(V1)와, 하단의 전극 기판(13)의 전위(V3)를, 그라운드 전위(GND)로 하고, 중단의 전극 기판(12)의 전위(V2)로서, 예를 들면, -100V 정도의 음의 전위(음의 제어 전위)를 이용한다. 도 5에 도시한 바와 같이, 통과 홀(15)의 지름 치수가 클수록, 수차 보정기(204) 통과 후의 수차 보정기(204)로부터 상면 공역 위치까지의 거리가 수차 보정기(204)로부터 사이가 떨어트려지는(멀어지는) 것을 알 수 있다.
이에, 실시 형태 1에서는, 복수 단의 전극 기판(11, 12, 13)에 의하여, 멀티 1 차 전자 빔(20)의 각 빔의 상면 공역 위치를 통과 홀(15)의 지름 치수에 따라 개별적으로 조정한다. 중심측의 빔일수록, 통과 홀(15)의 지름 치수를 작게 함으로써, 수차 보정기(204) 통과 후의 빔의 집속 작용을 크게 한다. 환언하면, 중심측의 빔일수록, 수차 보정기(204) 통과 후의 상면 공역 위치를 근방으로 한다. 구체적으로는, 중심 빔이 통과하는 통과 홀(15)을, 복수의 지름 치수 중 최소의 지름 치수로 형성하고, 외주측에 위치하는 빔이 통과하는 통과 홀(15)일수록 지름 치수를 크게 형성한다. 도 4의 예에서는, 중심 빔이 통과하는 통과 홀(15)이 최소의 지름 치수(d1)로 형성되고, 외측으로 1 개 사이가 떨어트려진 빔이 통과하는 통과 홀(15)이 중간 사이즈의 지름 치수(d2)로 형성되며, 외측으로 더욱 1 개 사이가 떨어트려진 빔이 통과하는 통과 홀(15)이 큰 지름 치수(d3)로 형성되는 경우를 나타내고 있다. 그리고, 상단의 전극 기판(11)의 전위(V1)(예를 들면, GND 전위)와, 하단의 전극 기판(13)의 전위(V3)(예를 들면, GND 전위)에 대해, 중단의 전극 기판(12)에, 예를 들면 음의 전위(V2)(예를 들면, -100V)를 인가함으로써, 중심 빔에 가장 큰 집속 작용을 부여하고, 외주측에 위치하는 빔일수록 집속 작용을 작게 한다. 이에 의하여, 수차 보정기(204) 통과 후의 중심 빔의 상면 공역 위치를 수차 보정기(204)에 가까운 상면 공역 위치(Z1)로 제어할 수 있다. 또한, 수차 보정기(204) 통과 후의 외주 빔의 상면 공역 위치를 수차 보정기(204)로부터 가장 사이가 떨어트려진 상면 공역 위치(Z3)로 제어할 수 있다. 그리고, 수차 보정기(204) 통과 후의 중심 빔과 외주 빔의 중간에 위치하는 중간 빔의 상면 공역 위치를 수차 보정기(204)로부터 중간의 거리에 해당하는 상면 공역 위치(Z2)로 제어할 수 있다.
또한, 전위(V1, V3)는, 같은 전위여도 되고, 상이한 전위여도 된다. 전위(V1)에 대하여, 전위(V2)가, 예를 들면 음의 전위가 되고, V1, V2 간에 원하는 전위 차가 얻어지면 된다. 마찬가지로, 전위(V3)에 대하여, 전위(V2)가, 예를 들면 음의 전위가 되고, V3, V2 간에 원하는 전위 차가 얻어지면 된다.
실시 형태 1에서는, 복수 단의 전극 기판(11, 12, 13)의 각 전극 기판에 있어서, 복수의 통과 홀(15)의 각 통과 홀(15)의 지름 치수는, 멀티 1 차 전자 빔(20) 전체의 궤도 중심 축에 대해 회전 대칭이 된다. 도 3의 예에서는, 5Х5 개의 멀티 1 차 전자 빔(20)의 중심 빔의 위치를 멀티 1 차 전자 빔(20) 전체의 궤도 중심 축으로 하고, 이러한 궤도 중심축으로부터 동심원(점선) 상에 중심이 위치하는 통과 홀(15)끼리는, 원 형상의 같은 지름 치수로 형성된다. 그리고, 복수 단의 전극 기판(11, 12, 13)의 각 전극 기판에 있어서, 복수의 통과 홀(15)의 각 통과 홀(15)의 지름 치수를 멀티 1 차 전자 빔(20) 전체의 궤도 중심축으로부터 사이가 떨어트려짐에 따라 크게 한다. 이러한 구성에 의하여, 중심 빔으로부터 외측으로 사이가 떨어트려지는 빔일수록 수차 보정기(204) 통과 후의 상면 공역 위치가 수차 보정기(204)로부터 사이가 떨어트려지도록(멀어지도록) 궤도를 수정할 수 있다. 이에 의하여, 멀티 1 차 전자 빔(20)의 외주측의 빔의 초점 위치를 기판(101)면 상에 맞추도록 설정하면, 중심 빔의 초점 위치를 상방으로 이탈시켜, 기판(101)면 상에 맞출 수 있다.
또한, 미리 각 빔의 초점 위치의 이탈을 측정해 두고, 이러한 이탈을 보정하는 통과 홀(15)의 지름 치수를 구해두면 된다.
여기서, 실시 형태 1의 비교예로서, 전자기 렌즈(205)의 자기장 외에서 수차 보정기(204)에 의하여, 예를 들면, -10kV의 가속 전압으로 방출된 고속으로 이동하는 전자 빔(e)의 상면 공역 위치를 변경하고자 하는 경우, 가속 전압과 동일한 정도의, 예를 들면, -10kV 정도의 전위를 중단의 전극 기판(12)으로 인가할 필요가 있다. 상단과 하단의 전극 기판(11, 13)에는, GND 전위를 인가한다. 이에 대해, 실시 형태 1에서는, 수차 보정기(204)를 전자기 렌즈(205)의 자기장 중에 배치한다. 이에 의하여, 예를 들면, -10kV의 가속 전압으로 방출된 고속으로 이동하는 전자 빔(e)이 전자기 렌즈(205)의 자기장에 진입하면, 이러한 자기장에 의하여 전자의 이동 속도가 느려진다. 따라서, 전자기 렌즈(205)에 의하여 합초되는 중간상의 초점 위치가 되는 상면 공역 위치를 변경하는 경우, 전자의 이동 속도가 느려지고 있는 상태, 환언하면, 전자의 에너지가 작아지고 있는 상태에서, 수차 보정기(204)에 의하여 전자 빔의 궤도를 수정하므로, 상단과 하단의 전극 기판(11, 13)으로 GND 전위를 인가하는 경우, 중단의 전극 기판(12)으로 인가하는 전위는, 예를 들면, -10kV의 가속 전압에 대해, 예를 들면 1/100의 -100V 정도로 저감할 수 있다.
도 6은, 실시 형태 1의 수차 보정기의 효과를 설명하기 위한 도면이다. 수차 보정기(204)에 의하여, 상면 만곡하고 있던 멀티 1 차 전자 빔(20)(파선)에 대해, 개별적으로 수차 보정기(204) 통과 후의 상면 공역 위치를 보정함으로써, 도 6에 도시한 바와 같이, 각 빔의 초점 위치를 동일면 상, 예를 들면, 기판(101)면 상에 맞출 수 있다(실선).
도 7은, 실시 형태 1에 있어서의 검사 방법의 요부 공정을 나타내는 플로우차트도이다. 도 7에서, 실시 형태 1에 있어서의 검사 방법은, 피검사 화상 취득 공정(S202)과, 참조 화상 작성 공정(S204)과, 위치 조정 공정(S206)과, 비교 공정(S208)이라고 하는 일련의 공정을 실시한다.
피검사 화상 취득 공정(S202)으로서, 화상 취득 기구(150)는, 수차 보정기(204)를 통과한 멀티 1 차 전자 빔(20)을 사용하여, 기판(101)(시료)에 형성된 패턴의 2 차 전자 화상을 취득한다. 구체적으로는, 이하와 같이 동작한다. 상술한 바와 같이, 성형 애퍼처 어레이 기판(203)에 의하여 형성된 멀티 1 차 전자 빔(20)은, 전자기 렌즈(205)에 입사된다.
전자기 렌즈(205)의 자기장을 통과 중, 수차 보정기(204)에 의하여 멀티 1 차 전자 빔(20)은 개별적으로 빔 궤도가 보정된다. 이 후, 일괄 블랭킹 편향기(212), 제한 애퍼처 기판(206), 전자기 렌즈(220) 및 빔 세퍼레이터(214)를 통과하고, 대물 렌즈(207)에 의하여, 복수 단의 전극 기판(11, 12, 13)을 통과한 멀티 1 차 전자 빔(20)을 기판(101)면에 포커스시킨다. 복수 단의 전극 기판(11, 12, 13)을 통과한 멀티 1 차 전자 빔(20)이 조사되는 기판(101)은, XY 스테이지(105) 상에 재치된다. 그리고, 기판(101)으로부터 방출된 멀티 2 차 전자 빔(300)은, 대물 렌즈(207), 빔 세퍼레이터(214), 편향기(218) 및 투영 렌즈(224)를 통과하여, 멀티 검출기(222)에 의하여 각 2 차 전자 빔이 개별적으로 검출된다.
도 8은, 실시 형태 1에 있어서의 반도체 기판에 형성되는 복수의 칩 영역의 일예를 도시한 도면이다. 도 8에서, 기판(101)이 반도체 기판(웨이퍼)인 경우, 반도체 기판(웨이퍼)의 검사 영역(330)에는, 복수의 칩(웨이퍼 다이)(332)이 2 차원의 어레이 형상으로 형성되어 있다. 각 칩(332)에는, 노광용 마스크 기판에 형성된 1 칩분의 마스크 패턴이 도시하지 않은 노광 장치(스테퍼)에 의하여, 예를 들면, 1/4로 축소되어 전사되어 있다. 각 칩(332) 내는, 예를 들면, 2 차원 형상의 가로(x 방향) m2 열Х세로(y 방향) n2 단(m2, n2는 2 이상의 정수) 개의 복수의 마스크 다이(33)로 분할된다. 실시 형태 1에서는, 이러한 마스크 다이(33)가 단위 검사 영역이 된다.
도 9는, 실시 형태 1에 있어서의 멀티 빔의 스캔 동작을 설명하기 위한 도면이다. 도 9의 예에서는, 5Х5 열의 멀티 1 차 전자 빔(20)의 경우를 도시하고 있다. 1 회의 멀티 1 차 전자 빔(20)의 조사로 조사 가능한 조사 영역(34)은, (기판(101)면 상에 있어서의 멀티 1 차 전자 빔(20)의 x 방향의 빔 간 피치에 x 방향의 빔 수를 곱한 x 방향 사이즈)Х(기판(101)면 상에 있어서의 멀티 1 차 전자 빔(20)의 y 방향의 빔 간 피치에 y 방향의 빔 수를 곱한 y 방향 사이즈)로 정의된다. 도 9의 예에서는, 조사 영역(34)이 마스크 다이(33)와 동일한 사이즈의 경우를 나타내고 있다. 단, 이에 한정되는 것은 아니다. 조사 영역(34)이 마스크 다이(33)보다 작아도 된다. 혹은 커도 상관없다. 그리고, 멀티 1 차 전자 빔(20)의 각 빔은, 자신의 빔이 위치하는 x 방향의 빔 간 피치와 y 방향의 빔 간 피치로 둘러싸이는 서브 조사 영역(29) 내를 주사(스캔 동작)한다. 멀티 1 차 전자 빔(20)을 구성하는 각 빔은, 서로 상이한 몇 개의 서브 조사 영역(29)을 담당하게 된다. 그리고, 각 샷 시에, 각 빔은, 담당 서브 조사 영역(29) 내의 동일한 위치를 조사하게 된다. 서브 조사 영역(29) 내의 빔의 이동은, 부편향기(209)에 의한 멀티 1 차 전자 빔(20) 전체에서의 일괄 편향에 의하여 행해진다. 이러한 동작을 반복하여, 1 개의 빔으로 1 개의 서브 조사 영역(29) 내의 전부를 순서대로 조사해 간다.
이상과 같이, 멀티 1 차 전자 빔(20) 전체에서는, 마스크 다이(33)를 조사 영역(34)으로서 주사(스캔)하게 되지만, 각 빔은, 각각 대응하는 1 개의 서브 조사 영역(29)을 주사하게 된다. 그리고, 1 개의 마스크 다이(33)의 주사(스캔)가 종료되면, 인접하는 다음의 마스크 다이(33)가 조사 영역(34)이 되도록 이동하고, 이러한 인접하는 다음의 마스크 다이(33)의 주사(스캔)를 행한다. 이러한 동작을 반복하여, 각 칩(332)의 주사를 진행시켜 간다. 멀티 1 차 전자 빔(20)의 샷에 의하여, 그때마다, 조사된 위치로부터 2 차 전자가 방출되어, 멀티 검출기(222)에서 검출된다.
이상과 같이 멀티 1 차 전자 빔(20)을 이용하여 주사함으로써, 싱글 빔으로 주사하는 경우보다도 고속으로 스캔 동작(측정)을 할 수 있다. 또한, 스텝 앤드 리핏 동작으로 각 마스크 다이(33)의 스캔을 행해도 되고, XY 스테이지(105)를 연속 이동시키면서 각 마스크 다이(33)의 스캔을 행해도 된다. 조사 영역(34)이 마스크 다이(33)보다 작은 경우에는, 해당 마스크 다이(33) 중에서 조사 영역(34)을 이동시키면서 스캔 동작을 행하면 된다.
기판(101)이 노광용 마스크 기판인 경우에는, 노광용 마스크 기판에 형성된 1 칩분의 칩 영역을, 예를 들면, 상술한 마스크 다이(33)의 사이즈로 직사각형 형상으로 복수의 스트라이프 영역으로 분할한다. 그리고, 스트라이프 영역마다에, 상술한 동작과 동일한 주사로 각 마스크 다이(33)를 주사하면 된다. 노광용 마스크 기판에 있어서의 마스크 다이(33)의 사이즈는, 전사 전의 사이즈이므로 반도체 기판의 마스크 다이(33)의 4 배의 사이즈가 된다. 이 때문에, 조사 영역(34)이 노광용 마스크 기판에 있어서의 마스크 다이(33)보다 작은 경우에는, 1 칩분의 칩 영역을 스캔하는데 걸리는 스캔 동작 거리가, 반도체 기판의 마스크 다이(33)의 1 칩분의 칩 영역을 스캔하는데 걸리는 스캔 동작에 비해, 예를 들면 4 배로 증가하게 된다. 그러나, 노광용 마스크 기판에는 1 칩분의 패턴이 형성되므로, 4 칩보다 많은 칩이 형성되는 반도체 기판에 비해 스캔 동작 거리는 짧아도 된다.
멀티 검출기(222)에 의하여 검출된 각 위치로부터의 2 차 전자의 검출 데이터(측정 화상:2 차 전자 화상:피검사 화상)는, 측정 순으로 검출 회로(106)로 출력된다. 검출 회로(106) 내에서는, 도시하지 않은 A/D 변환기에 의하여, 아날로그의 검출 데이터가 디지털 데이터에 변환되어 칩 패턴 메모리(123)에 저장된다. 이와 같이 하여, 화상 취득 기구(150)는, 기판(101) 상에 형성된 패턴의 측정 화상을 취득한다. 그리고, 예를 들면, 1 개의 칩(332)분의 검출 데이터가 축적된 단계에서, 칩 패턴 데이터로서, 위치 회로(107)로부터의 각 위치를 도시한 정보와 함께, 비교 회로(108)로 전송된다.
참조 화상 작성 공정(S204)으로서, 참조 화상 작성 회로(112)(참조 화상 작성부)는, 피검사 화상에 대응하는 참조 화상을 작성한다. 참조 화상 작성 회로(112)는, 기판(101)에 패턴을 형성하는 기초가 된 설계 데이터, 혹은 기판(101)에 형성된 패턴의 노광 이미지 데이터로 정의된 설계 패턴 데이터에 기초하여, 프레임 영역마다에 참조 화상을 작성한다. 프레임 영역으로서, 예를 들면, 마스크 다이(33)를 이용하면 바람직하다. 구체적으로는, 이하와 같이 동작한다. 우선, 기억 장치(109)로부터 제어 계산기(110)를 통해 설계 패턴 데이터를 읽어내고, 읽어내어진 설계 패턴 데이터로 정의된 각 도형 패턴을 2 값 내지는 다값의 이미지 데이터로 변환한다.
여기서, 설계 패턴 데이터로 정의되는 도형은, 예를 들면, 직사각형 또는 삼각형을 기본 도형으로 한 것으로, 예를 들면, 도형의 기준 위치에 있어서의 좌표(x, y), 변의 길이, 직사각형 또는 삼각형 등의 도형종을 구별하는 식별자가 되는 도형 코드라고 하는 정보로 각 패턴 도형의 형태, 크기, 위치 등을 정의한 도형 데이터가 저장되어 있다.
이러한 도형 데이터가 되는 설계 패턴 데이터가 참조 화상 작성 회로(112)에 입력되면, 도형마다의 데이터에까지 전개되고, 이 도형 데이터의 도형 형상을 도시한 도형 코드, 도형 치수 등을 해석한다. 그리고, 소정의 양자화 치수의 그리드를 단위로 하는 눈금 내에 배치되는 패턴으로서, 2 값 내지는 다값의 설계 패턴 화상 데이터에 전개하여 출력한다. 환언하면, 설계 데이터를 읽어들이고, 검사 영역을 소정의 치수를 단위로 하는 눈금으로서 가상 분할하여 생긴 눈금마다에 설계 패턴에 있어서의 도형이 차지하는 점유율을 연산하여, n 비트의 점유율 데이터를 출력한다. 예를 들면, 1 개의 눈금을 1 화소로서 설정하면 바람직하다. 그리고, 1 화소에 1/28(=1/256)의 분해능을 갖게한다고 하면, 화소 내에 배치되어 있는 도형의 영역분만큼 1/256의 소 영역을 할당하여 화소 내의 점유율을 연산한다. 그리고, 8 비트의 점유율 데이터로서 참조 회로(112)로 출력한다. 이러한 눈금(검사 화소)은, 측정 데이터의 화소에 맞추면 된다.
이어서, 참조 화상 작성 회로(112)는, 도형의 이미지 데이터인 설계 패턴의 설계 화상 데이터에 적절한 필터 처리를 실시한다. 측정 화상으로서의 광학 화상 데이터는, 광학계에 의하여 필터가 작용한 상태, 환언하면, 연속 변화하는 아날로그 상태에 있으므로, 화상 강도(농담값)가 디지털값의 설계측의 이미지 데이터인 설계 화상 데이터에도 필터 처리를 실시함으로써, 측정 데이터에 맞출 수 있다. 작성된 참조 화상의 화상 데이터는 비교 회로(108)로 출력된다.
도 10은, 실시 형태 1에 있어서의 비교 회로 내의 구성의 일예를 도시하는 구성도이다. 도 10에서, 비교 회로(108) 내에는, 자기 디스크 장치 등의 기억 장치(50, 52, 56), 피검사 화상 생성부(54), 위치 조정부(57) 및 비교부(58)가 배치된다. 피검사 화상 생성부(54), 위치 조정부(57) 및 비교부(58)라고 하는 각 「~부」는, 처리 회로를 포함하고, 이 처리 회로에는, 전기 회로, 컴퓨터, 프로세서, 회로 기판, 양자 회로, 혹은, 반도체 장치 등이 포함된다. 또한, 각 「~부」는, 공통된 처리 회로(동일한 처리 회로)를 이용하여도 된다. 혹은, 상이한 처리 회로(다른 처리 회로)를 이용하여도 된다. 피검사 화상 생성부(54), 위치 조정부(57) 및 비교부(58) 내에 필요한 입력 데이터 혹은 연산된 결과는 그때마다 도시하지 않은 메모리, 혹은 메모리(118)에 기억된다.
비교 회로(108) 내에서는, 전송된 스트라이프 패턴 데이터(혹은 칩 패턴 데이터)가, 위치 회로(107)로부터의 각 위치를 나타내는 정보와 함께, 기억 장치(50)에 일시적으로 저장된다. 또한, 전송된 참조 화상 데이터가, 기억 장치(52)에 일시적으로 저장된다.
이어서, 피검사 화상 생성부(54)는, 스트라이프 패턴 데이터(혹은 칩 패턴 데이터)를 이용하여, 소정의 사이즈의 프레임 영역(단위 검사 영역) 마다, 프레임 화상(피검사 화상)을 생성한다. 프레임 화상으로서 예를 들면, 여기에서는, 마스크 다이(33)의 화상을 생성한다. 단, 프레임 영역의 사이즈는 이에 한정되는 것은 아니다. 생성된 프레임 화상(예를 들면, 마스크 다이 화상)은, 기억 장치(56)에 저장된다.
위치 조정 공정(S206)으로서, 위치 조정부(57)는, 피검사 화상이 되는 마스크 다이 화상과, 해당 마스크 다이 화상에 대응하는 참조 화상을 읽어내고, 화소(36)보다 작은 서브 화소 단위로, 양 화상을 위치 조정한다. 예를 들면, 최소 2 승법으로 위치 조정을 행하면 된다.
비교 공정(S208)으로서, 비교부(58)는, 마스크 다이 화상(피검사 화상)과 참조 화상을 비교한다. 비교부(58)는, 소정의 판정 조건에 따라 화소(36)마다 양자를 비교하고, 예를 들면, 형상 결함이라고 하는 결함의 유무를 판정한다. 예를 들면, 화소(36)마다의 계조값 차가 판정 역치(Th)보다 크면 결함이라고 판정한다. 그리고, 비교 결과가 출력된다. 비교 결과는, 기억 장치(109), 모니터(117), 혹은 메모리(118)로 출력된다, 혹은 프린터(119)로부터 출력되면 된다.
또한, 상술한 다이-데이터베이스 검사에 한정되지 않고, 다이-다이 검사를 행해도 상관없다. 다이-다이 검사를 행하는 경우에는, 동일한 패턴이 형성된 마스크 다이(33)의 화상끼리를 비교하면 된다. 따라서, 다이(1)가 되는 칩(332)의 일부의 영역의 마스크 다이(33)의 화상과, 다이(2)가 되는 별도의 칩(332)의 대응하는 영역의 마스크 다이(33)의 화상을 이용한다. 혹은, 동일한 칩(332)의 일부의 영역의 마스크 다이(33)의 화상을 다이(1)의 마스크 다이(33)의 화상으로 하고, 동일한 패턴이 형성된 동일한 칩(332)의 다른 일부의 마스크 다이(33)의 화상을 다이(2)의 마스크 다이(33)의 화상으로서 비교해도 상관없다. 이러한 경우에는, 동일한 패턴이 형성된 마스크 다이(33)의 화상끼리의 일방을 참조 화상으로서 이용하면, 상술한 다이-데이터베이스 검사와 같은 수법으로 검사를 할 수 있다.
즉, 위치 조정 공정(S206)으로서, 위치 조정부(57)는, 다이(1)의 마스크 다이(33)의 화상과, 다이(2)의 마스크 다이(33)의 화상을 읽어내고, 화소(36)보다 작은 서브 화소 단위로, 양 화상을 위치 조정한다. 예를 들면, 최소 2 승법으로 위치 조정을 행하면 된다.
그리고, 비교 공정(S208)으로서, 비교부(58)는, 다이(1)의 마스크 다이 화상과, 다이(2)의 마스크 다이 화상을 비교한다. 비교부(58)는, 소정의 판정 조건에 따라 화소(36)마다 양자를 비교하고, 예를 들면, 형상 결함이라고 하는 결함의 유무를 판정한다. 예를 들면, 화소(36)마다의 계조값 차가 판정 역치(Th)보다 크면 결함이라고 판정한다. 그리고, 비교 결과가 출력된다. 비교 결과는, 기억 장치(109), 모니터(117), 혹은 메모리(118)로 출력되거나, 혹은 프린터(119)로부터 출력되면 된다.
도 11은, 실시 형태 1에 있어서의 수차 보정기를 정전 렌즈로 간주한 경우의 각 전극의 일예를 나타내는 도면이다. 도 12는, 도 11에 대응하는 집속 작용의 일예를 설명하기 위한 도면이다. 도 12에서, 세로축에 집속 작용의 강도, 가로축에 인가 전위를 나타낸다. 도 11의 예에서는, 자기장 분포의 확대 범위(L)에 대해, 정전 렌즈(중단의 전극 기판)의 두께(t1)가 매우 작은 경우를 나타내고 있다. 이러한 경우, 자기장의 영향은 받지 않고, 정전 렌즈의 효과로서 도 12에 나타내는 포물선에 따른 집속 작용의 효과를 얻을 수 있다. 인가하는 전위가 음양 어느 경우에도, 통과 홀(15)의 지름 치수가 작은 경우가, 큰 경우보다 집속 작용이 크다는 것을 알 수 있다.
따라서, 상술한 바와 같이, 상면 만곡이 아래로 볼록한 형상이 되는 경우에, 멀티 1 차 전자 빔(20)의 외주 빔의 초점 위치를 기판(101)면 상에 맞추도록 설정하고, 복수의 통과 홀(15)의 각 통과 홀(15)의 지름 치수를 멀티 1 차 전자 빔(20) 전체의 궤도 중심축으로부터 사이가 떨어트려짐에 따라 크게 하면 된다. 이에 의하여, 중심측의 빔일수록 큰 집속 작용이 작용하므로, 수차 보정기(204) 통과 후의 상면 공역 위치가 수차 보정기(204)로부터 가까워지도록 궤도를 수정할 수 있어, 상면 만곡을 보정할 수 있다.
한편, 상면 만곡이 위로 볼록한 형상이 된 경우에, 중심측의 빔일수록 수차 보정기(204) 통과 후의 상면 공역 위치가 수차 보정기(204)로부터 사이가 떨어트려지도록(멀어지도록) 궤도를 수정할 필요가 있다. 이 경우에는, 멀티 1 차 전자 빔(20)의 중심 빔의 초점 위치를 기판(101)면 상에 맞추도록 설정하고, 복수의 통과 홀(15)의 각 통과 홀(15)의 지름 치수를 멀티 1 차 전자 빔(20) 전체의 궤도 중심축으로부터 사이가 떨어트려짐에 따라 작게 하면 된다. 이에 의하여, 외주측의 빔일수록 큰 집속 작용이 작용하므로, 수차 보정기(204) 통과 후의 상면 공역 위치가 수차 보정기(204)로부터 가까워지도록 궤도를 수정할 수 있어, 상면 만곡을 보정할 수 있다.
도 13은, 실시 형태 1에 있어서의 수차 보정기를 정전 렌즈로 간주한 경우의 각 전극의 다른 일예를 나타내는 도면이다. 도 14는, 도 13에 대응하는 또 다른 집속 작용의 일예를 설명하기 위한 도면이다. 도 14에서, 세로축에 집속 작용의 강도, 가로축에 인가 전위를 나타낸다. 자기장 분포의 확대 범위(L)에 대해 정전 렌즈의 중단 전극의 두께(t2)가 어느 크기 이상이 되면, 도 12에 나타낸 집속 작용에 추가로, 도 14에 나타내는 바와 같은 자기장 중에서의 에너지 변화에 따른 집속 작용 효과가 생긴다. 따라서, 이러한 경우에는, 인가하는 전위의 부호의 음양에 의하여 집속 작용이 크게 변화한다. 정전 렌즈와 자기장 렌즈의 조합에 의하여, 도 12의 효과와 도 14의 효과의 대소 관계가 상이하므로, 각 전극의 통과 홀(15)의 개구경과 전위의 관계는 하나로 정해지는 것은 아니다.
따라서, 수차 보정기(204)의 중단 전극의 두께가 자기장의 영향 범위(L)에 대해 매우 작은 경우에는, 자기장 렌즈의 유무에 상관없이 인가 전위를 설정할 수 있다. 한편, 수차 보정기(204)의 중단 전극의 두께를 크게 하는 경우, 자기장의 영향 범위 내에 배치하지 않으면, 도 12의 효과에 따라 각 전극의 통과 홀(15)의 개구경과 인가 전위를 설정하면 된다. 그러나, 자기장의 영향 범위 내에 배치하는 경우에는, 도 14의 효과가 더 생기므로, 각 전극의 통과 홀(15)의 개구경과 인가 전위의 관계를 미리 실험 등에 의하여 구하고, 이 관계에 따라 양자를 적절히 설정하면 된다.
이상과 같이, 실시 형태 1에 의하면, 통과 홀(15)의 지름 치수를 선택함으로써, 멀티 1 차 전자 빔(20)의 상면 만곡을 보정할 수 있다. 따라서, 상면 만곡 수차의 영향에 의한 빔의 스팟 지름에 차이를 억제할 수 있다. 따라서, 기판(101)의 표면 관찰 등의 리뷰 또는 검사에 있어서 시야(FOV)를 확대할 수 있다. 또한, 1 개의 전극 기판에 1 종의 전위가 인가될 뿐이므로 전원 수를 억제할 수 있다. 따라서, 대규모의 장치 구성이 되는 것을 회피할 수 있다.
이상의 설명에서, 일련의 「~회로」는, 처리 회로를 포함하고, 이 처리 회로에는, 전기 회로, 컴퓨터, 프로세서, 회로 기판, 양자 회로, 혹은, 반도체 장치 등이 포함된다. 또한, 각 「~회로」는, 공통된 처리 회로(동일한 처리 회로)를 이용하여도 된다. 혹은, 상이한 처리 회로(다른 처리 회로)를 이용하여도 된다. 프로세서 등을 실행시키는 프로그램은, 자기 디스크 장치, 자기 테이프 장치, FD, 혹은 ROM(리드 온리 메모리) 등의 기록 매체에 기록되면 된다. 예를 들면, 위치 회로(107), 비교 회로(108), 참조 화상 작성 회로(112), 수차 보정 회로(121) 및 편향 제어 회로(128) 등은, 상술한 적어도 1 개의 처리 회로로 구성되어도 된다.
이상, 구체적인 예를 참조하면서 실시 형태에 대하여 설명하였다. 그러나, 본 발명은, 이들 구체적인 예로 한정되는 것은 아니다.
또한, 장치 구성 또는 제어 수법 등, 본 발명의 설명에 직접 필요하지 않은 부분 등에 대하여서는 기재를 생략했으나, 필요해지는 장치 구성 또는 제어 수법을 적절히 선택하여 이용할 수 있다.
그 밖에, 본 발명의 요소를 구비하여, 당업자가 적절히 설계 변경할 수 있는 모든 멀티 전자 빔 조사 장치는, 본 발명의 범위에 포함된다.
추가적인 이점 및 수정이 당업자에 의해 쉽게 일어날 것이다. 따라서, 넓은 양상에서의 본 발명은 여기에서 기술되고 나타난 대표적인 실시예와 상세한 설명에 제한되지 않는다. 따라서, 첨부된 청구범위 및 그 균등 범위에 의해 정의되는 일반적인 발명 개념의 범위 또는 사상에서 벗어나지 않으면서 다양한 수정이 이루어질 수 있다.

Claims (10)

  1. 멀티 1 차 전자 빔을 형성하는 형성 기구와,
    상기 멀티 1 차 전자 빔의 통과 위치에 맞추어, 상기 멀티 1 차 전자 빔의 각 빔을 개별적으로 통과시키는, 복수의 지름 치수의 복수의 개구부가 각각 형성된, 상기 멀티 1 차 전자 빔의 각 빔의 상면 공역 위치를 상기 지름 치수에 따라 조정 가능한 복수 단의 전극 기판과,
    상기 복수 단의 전극 기판을 통과한 상기 멀티 1 차 전자 빔이 조사되는 시료를 재치하는 것이 가능한 스테이지
    를 구비한 것을 특징으로 하는 멀티 전자 빔 조사 장치.
  2. 제1항에 있어서,
    상기 복수 단의 전극 기판의 각 전극 기판에 독립된 전위를 인가하는 전원 회로를 더 구비한 것을 특징으로 하는 멀티 전자 빔 조사 장치.
  3. 제1항에 있어서,
    상기 복수 단의 전극 기판의 각 전극 기판에서, 상기 복수의 개구부의 각 개구부의 지름 치수가, 상기 멀티 1 차 전자 빔 전체의 궤도 중심 축에 대해 회전 대칭이 되는 것을 특징으로 하는 멀티 전자 빔 조사 장치.
  4. 제1항에 있어서,
    상기 복수 단의 전극 기판의 각 전극 기판에서, 상기 복수의 개구부의 각 개구부의 지름 치수가, 상기 멀티 1 차 전자 빔 전체의 궤도 중심축으로부터 사이가 떨어트려짐에 따라 커지는 것을 특징으로 하는 멀티 전자 빔 조사 장치.
  5. 제1항에 있어서,
    상기 복수 단의 전극 기판은, 상기 멀티 1 차 전자 빔의 각 빔의 상면 위치와 공역인 위치와는 상이한 위치에 배치되는 것을 특징으로 하는 멀티 전자 빔 조사 장치.
  6. 제1항에 있어서,
    상기 복수 단의 전극 기판을 통과한 상기 멀티 1 차 전자 빔을 상기 시료 면에 포커스시키는 대물 렌즈를 더 구비한 것을 특징으로 하는 멀티 전자 빔 조사 장치.
  7. 제1항에 있어서,
    상기 시료에 상기 멀티 1 차 전자 빔이 조사된 것에 기인하여 방출되는 멀티 2 차 전자 빔을 상기 멀티 1 차 전자 빔으로부터 분리하는 빔 세퍼레이터와,
    분리된 상기 멀티 2 차 전자 빔을 개별적으로 검출하는 멀티 검출기
    를 더 구비한 것을 특징으로 하는 멀티 전자 빔 조사 장치.
  8. 멀티 1 차 전자 빔을 형성하고,
    상기 멀티 1 차 전자 빔의 통과 위치에 맞추어, 상기 멀티 1 차 전자 빔의 각 빔을 개별적으로 통과시키는, 복수의 지름 치수의 복수의 개구부가 각각 형성된, 상기 멀티 1 차 전자 빔의 각 빔의 상면 공역 위치를 상기 지름 치수에 따라 조정 가능한 복수 단의 전극 기판을 이용하여, 상기 멀티 1 차 전자 빔에 상기 복수 단의 전극 기판을 통과시키고,
    스테이지에 재치된 시료에, 상기 복수 단의 전극 기판을 통과한 상기 멀티 1 차 전자 빔을 조사하는 것을 특징으로 하는 멀티 전자 빔 조사 방법.
  9. 제8항에 있어서,
    상기 복수 단의 전극 기판의 각 전극 기판에 독립된 전위를 인가하는 것을 특징으로 하는 멀티 전자 빔 조사 방법.
  10. 제8항에 있어서,
    상기 복수 단의 전극 기판의 각 전극 기판에서, 상기 복수의 개구부의 각 개구부의 지름 치수가, 상기 멀티 1 차 전자 빔 전체의 궤도 중심 축에 대해 회전 대칭이 되는 것을 특징으로 하는 멀티 전자 빔 조사 방법.
KR1020200005934A 2019-03-05 2020-01-16 멀티 전자 빔 조사 장치 KR102371265B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962814087P 2019-03-05 2019-03-05
US62/814,087 2019-03-05

Publications (2)

Publication Number Publication Date
KR20200106820A true KR20200106820A (ko) 2020-09-15
KR102371265B1 KR102371265B1 (ko) 2022-03-07

Family

ID=72335460

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200005934A KR102371265B1 (ko) 2019-03-05 2020-01-16 멀티 전자 빔 조사 장치

Country Status (4)

Country Link
US (1) US11139138B2 (ko)
JP (1) JP7429128B2 (ko)
KR (1) KR102371265B1 (ko)
TW (2) TWI786705B (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074082A1 (ja) * 2021-10-26 2023-05-04 株式会社ニューフレアテクノロジー マルチ電子ビーム画像取得装置及びマルチ電子ビーム画像取得方法
US11870148B2 (en) * 2021-11-11 2024-01-09 Raytheon Company Planar metal Fresnel millimeter-wave lens
WO2023197125A1 (zh) * 2022-04-12 2023-10-19 华为技术有限公司 用于减小散焦距离defocus的静电透镜

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051370B1 (ko) * 2003-09-05 2011-07-22 어플라이드 머티리얼즈 이스라엘 리미티드 입자광 시스템 및 장치와 이와 같은 시스템 및 장치용입자광 부품
KR20180049099A (ko) * 2015-09-23 2018-05-10 케이엘에이-텐코 코포레이션 다중 빔 주사 전자 현미경 검사 시스템에서의 초점 조정을 위한 방법 및 시스템

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101842101B1 (ko) * 2010-08-03 2018-03-26 가부시키가이샤 에바라 세이사꾸쇼 이물질 부착 방지 기능을 구비한 전자선 검사 장치 및 방법
JP5886663B2 (ja) 2012-03-21 2016-03-16 株式会社日立ハイテクノロジーズ 電子線応用装置およびレンズアレイ
JP2014229481A (ja) * 2013-05-22 2014-12-08 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
EP3113776B1 (en) 2014-03-06 2021-01-13 University of Southern California Use of short term starvation regimen in combination with kinase inhibitors to enhance traditional chemo-drug efficacy and feasibility and reverse side effects of kinases in normal cells and tissues
JP6242745B2 (ja) * 2014-05-13 2017-12-06 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び当該装置を用いる検査方法
DE102015013698B9 (de) 2015-10-22 2017-12-21 Carl Zeiss Microscopy Gmbh Verfahren zum Betreiben eines Vielstrahl-Teilchenmikroskops
JP6781582B2 (ja) * 2016-07-25 2020-11-04 株式会社ニューフレアテクノロジー 電子ビーム検査装置及び電子ビーム検査方法
JP6851181B2 (ja) 2016-11-09 2021-03-31 株式会社ニューフレアテクノロジー マルチビーム光学系の調整方法
JP2018082120A (ja) * 2016-11-18 2018-05-24 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置
JP2019020292A (ja) * 2017-07-19 2019-02-07 株式会社ニューフレアテクノロジー パターン検査装置及びパターン検査方法
JP2019186140A (ja) 2018-04-16 2019-10-24 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム照射装置及びマルチ荷電粒子ビーム照射方法
JP7198092B2 (ja) 2018-05-18 2022-12-28 株式会社ニューフレアテクノロジー マルチ電子ビーム照射装置、マルチ電子ビーム検査装置及びマルチ電子ビーム照射方法
JP7231496B2 (ja) * 2018-07-05 2023-03-01 株式会社ニューフレアテクノロジー マルチ電子ビーム照射装置、マルチ電子ビーム照射方法、及びマルチ電子ビーム検査装置
US11145485B2 (en) * 2018-12-26 2021-10-12 Nuflare Technology, Inc. Multiple electron beams irradiation apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051370B1 (ko) * 2003-09-05 2011-07-22 어플라이드 머티리얼즈 이스라엘 리미티드 입자광 시스템 및 장치와 이와 같은 시스템 및 장치용입자광 부품
KR20180049099A (ko) * 2015-09-23 2018-05-10 케이엘에이-텐코 코포레이션 다중 빔 주사 전자 현미경 검사 시스템에서의 초점 조정을 위한 방법 및 시스템

Also Published As

Publication number Publication date
TWI786705B (zh) 2022-12-11
JP7429128B2 (ja) 2024-02-07
TW202139233A (zh) 2021-10-16
JP2020145184A (ja) 2020-09-10
KR102371265B1 (ko) 2022-03-07
TW202101508A (zh) 2021-01-01
US11139138B2 (en) 2021-10-05
TWI737117B (zh) 2021-08-21
US20200286704A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
KR102217582B1 (ko) 멀티 전자 빔 화상 취득 장치 및 멀티 전자 빔 광학계의 위치 결정 방법
KR102191812B1 (ko) 멀티 전자 빔 조사 장치, 멀티 전자 빔 검사 장치 및 멀티 전자 빔 조사 방법
US20190355546A1 (en) Multiple electron beam image acquisition apparatus and multiple electron beam image acquisition method
KR20200005443A (ko) 멀티 전자 빔 조사 장치, 멀티 전자 빔 조사 방법, 및 멀티 전자 빔 검사 장치
US20200168430A1 (en) Electron beam image acquisition apparatus and electron beam image acquisition method
KR102553520B1 (ko) 멀티 하전 입자 빔 조사 장치 및 멀티 하전 입자 빔 검사 장치
KR102371265B1 (ko) 멀티 전자 빔 조사 장치
JP7316106B2 (ja) 収差補正器及びマルチ電子ビーム照射装置
US20230077403A1 (en) Multi-electron beam image acquisition apparatus, and multi-electron beam image acquisition method
JP6966319B2 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
WO2022130838A1 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
US11145485B2 (en) Multiple electron beams irradiation apparatus
US11694868B2 (en) Multi-beam image acquisition apparatus and multi-beam image acquisition method
KR20220085718A (ko) 수차 보정기

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant