JP2017171965A - Method for reducing corrosive ion in aromatic compound extraction solvent - Google Patents

Method for reducing corrosive ion in aromatic compound extraction solvent Download PDF

Info

Publication number
JP2017171965A
JP2017171965A JP2016056885A JP2016056885A JP2017171965A JP 2017171965 A JP2017171965 A JP 2017171965A JP 2016056885 A JP2016056885 A JP 2016056885A JP 2016056885 A JP2016056885 A JP 2016056885A JP 2017171965 A JP2017171965 A JP 2017171965A
Authority
JP
Japan
Prior art keywords
aromatic compound
corrosive
extraction solvent
ion
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016056885A
Other languages
Japanese (ja)
Other versions
JP6065138B1 (en
Inventor
景亮 辛木
Keisuke Karaki
景亮 辛木
雅一 小泉
Masakazu Koizumi
雅一 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016056885A priority Critical patent/JP6065138B1/en
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to ES16895498T priority patent/ES2804200T3/en
Priority to KR1020187016765A priority patent/KR101960670B1/en
Priority to CN201680074524.2A priority patent/CN108368620B/en
Priority to EP16895498.0A priority patent/EP3406762B1/en
Priority to CA3009028A priority patent/CA3009028C/en
Priority to PCT/JP2016/082311 priority patent/WO2017163475A1/en
Priority to SG11201805159VA priority patent/SG11201805159VA/en
Priority to US16/061,570 priority patent/US20180362868A1/en
Application granted granted Critical
Publication of JP6065138B1 publication Critical patent/JP6065138B1/en
Publication of JP2017171965A publication Critical patent/JP2017171965A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • C10G75/02Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general by addition of corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/16Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/06Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
    • C10G21/12Organic compounds only
    • C10G21/20Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/141Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4075Limiting deterioration of equipment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing corrosive ion in an aromatic compound extraction solvent for simply and effectively reducing corrosive ion in the aromatic compound extraction solvent for suppressing corrosion of an extraction device due to corrosive ion contained in the aromatic compound extraction solvent of a circulatory system.SOLUTION: There is provided a method for reducing corrosive ion in an aromatic compound extraction solvent in a circulatory system in which the aromatic compound extraction solvent is circulated, the corrosive ion is at least one kind of chlorine ion, sulfuric acid ion and sulfite ion and a process for adding a corrosive ion scavenger and reacting the corrosive ion with the corrosive ion scavenger to make a nonvolatile salt and a process for concentrating the solvent containing the salt to remove the salt are included.SELECTED DRAWING: None

Description

本発明は、石油製油所や石炭化学工場等において、炭化水素流体から、ベンゼンやトルエン、キシレン等の芳香族化合物を抽出する溶剤が循環する系における腐食を防止することができる、芳香族化合物抽出溶剤中の塩化物イオンや硫酸イオン、亜硫酸イオン等の腐食性イオンを低減する方法に関する。   The present invention is an aromatic compound extraction capable of preventing corrosion in a system in which a solvent for extracting an aromatic compound such as benzene, toluene and xylene from a hydrocarbon fluid circulates in a petroleum refinery or a coal chemical factory. The present invention relates to a method for reducing corrosive ions such as chloride ions, sulfate ions and sulfite ions in a solvent.

石油精製や、石炭化学工場における炭化水素の精製においては、従来から、原料に混入する種々の塩に由来する塩化物イオンや硫酸イオン、亜硫酸イオン等の腐食性イオンが装置の腐食を招くという課題があった。
これに対しては、腐食性イオンを捕捉するために、アルカリを添加するという技術が知られている。しかしながら、アルカリの添加によって生じる塩は、固着・析出し、装置内での付着堆積や閉塞等、重大なトラブルを引き起こす危険性があった。
In oil refining and refining hydrocarbons at coal chemical factories, there has been a problem that corrosive ions such as chloride ions, sulfate ions, sulfite ions, etc. derived from various salts mixed in raw materials have caused corrosion of equipment. was there.
For this, a technique of adding an alkali to capture corrosive ions is known. However, the salt generated by the addition of alkali has a risk of causing serious troubles such as adhesion and deposition, adhesion deposition and clogging in the apparatus.

また、特許文献1には、モノエタノールアミン等の複数のアミンを混合して用いることにより、製油工程の凝縮系における塩化物に起因する腐食を防止する方法が記載されている。また、特許文献2には、コリンハイドロオキサイド(2−ヒドロキシエチルトリメチルアンモニウムハイドロオキサイド)等の第4級アンモニウム化合物を、石油精製装置等の内部と接触し得る流体に存在させて塩化水素の発生を防止し、金属防食を行うことが記載されている。   Patent Document 1 describes a method for preventing corrosion caused by chlorides in a condensation system in an oil production process by mixing and using a plurality of amines such as monoethanolamine. Further, in Patent Document 2, a quaternary ammonium compound such as choline hydroxide (2-hydroxyethyltrimethylammonium hydroxide) is present in a fluid that can come into contact with the inside of an oil refinery or the like to generate hydrogen chloride. Preventing and performing metal corrosion protection is described.

特開平7−180073号公報Japanese Patent Laid-Open No. 7-180073 特開2004−211195号公報JP 2004-2111195 A

しかしながら、従来の方法では、石油等に含まれる塩に由来する塩化物イオンは低減するものの、完全に除去することは困難であった。このため、石油等の精製により得られたナフサ等の炭化水素混合物中には、塩化物や塩化物イオン、硫酸イオン、亜硫酸イオンが混入することも少なくなく、この炭化水素混合物を原料として用いる系においては、依然として、腐食性イオンによる腐食の課題が存在していた。   However, in the conventional method, although chloride ions derived from salts contained in petroleum or the like are reduced, it has been difficult to completely remove them. Therefore, hydrocarbons such as naphtha obtained by refining petroleum are often mixed with chloride, chloride ions, sulfate ions, sulfite ions, and a system using this hydrocarbon mixture as a raw material. However, the problem of corrosion by corrosive ions still existed.

一方、ナフサ等の炭化水素混合物を改質して、ベンゼンやトルエン、キシレン等の芳香族化合物を得る方法では、触媒が用いられている。触媒は連続的に使用され、あるいは反応生成物の組成物中から回収されて再利用されるが、長時間の使用により触媒活性が低下するため、触媒の再生処理が行われている。触媒の再生処理には塩素化合物が用いられることが多く、芳香族化合物の製造装置から抽出装置へ供給される炭化水素改質物には、原料である炭化水素混合物中に混入した塩化物イオンのみならず、触媒の再生に用いられた塩素化合物由来の塩化物イオンも混入し得る。   On the other hand, a catalyst is used in a method of reforming a hydrocarbon mixture such as naphtha to obtain an aromatic compound such as benzene, toluene, or xylene. The catalyst is used continuously or recovered from the composition of the reaction product and reused. However, since the catalyst activity decreases with long-term use, the catalyst is regenerated. Chlorine compounds are often used for catalyst regeneration, and the hydrocarbon reformate supplied from the aromatic compound production equipment to the extraction equipment can only contain chloride ions mixed in the hydrocarbon mixture as the raw material. In addition, chloride ions derived from the chlorine compound used for the regeneration of the catalyst may also be mixed.

さらに、炭化水素改質物である芳香族炭化水素油等は、抽出溶剤を用いた芳香族化合物の抽出処理に供される。この抽出処理においては、抽出溶剤に芳香族炭化水素油を溶解し、蒸留により芳香族化合物を抽出分離する。そして、抽出後の溶剤に、新たな原料芳香族炭化水素油を添加し、再度蒸留を行う。このように、抽出溶剤は、コスト低減や環境汚染防止等の観点から、抽出装置内で循環使用される。
その結果、循環使用される抽出溶剤中には、逐次供給される原料芳香族炭化水素油に含まれる腐食性イオンが蓄積する。抽出溶剤中の腐食性イオン濃度の上昇は、抽出溶剤中に微量の水が存在することとも相俟って、抽出装置の急速な腐食を引き起こす。これに対して、公知のアルカリ添加によって、抽出溶剤中の腐食性イオンを生じる酸を中和したとしても、抽出溶剤の循環系内には、塩が蓄積することとなる。また、従来、アルカリ添加により腐食性イオンを捕捉するという技術的思想はなかった。
Further, the aromatic hydrocarbon oil or the like that is a hydrocarbon reformed product is subjected to an aromatic compound extraction process using an extraction solvent. In this extraction process, an aromatic hydrocarbon oil is dissolved in an extraction solvent, and an aromatic compound is extracted and separated by distillation. And a new raw material aromatic hydrocarbon oil is added to the solvent after extraction, and it distills again. Thus, the extraction solvent is circulated and used in the extraction apparatus from the viewpoints of cost reduction and prevention of environmental pollution.
As a result, corrosive ions contained in the raw material aromatic hydrocarbon oil that is sequentially supplied accumulate in the extraction solvent that is circulated. Increasing the concentration of corrosive ions in the extraction solvent causes rapid corrosion of the extraction device, coupled with the presence of trace amounts of water in the extraction solvent. On the other hand, even if the acid that generates corrosive ions in the extraction solvent is neutralized by adding a known alkali, salt accumulates in the circulation system of the extraction solvent. Conventionally, there has been no technical idea of capturing corrosive ions by adding an alkali.

このように、抽出溶剤中の腐食性イオン濃度の上昇は、循環系の抽出溶剤に特有の問題であり、一過式の系に比べてより腐食抑制効果の高い対処法が必要となる。
なお、循環系において、上記特許文献1に記載されているような方法で対処しようとすると、複数のアミンを中和及び析出に最適となるように調合する必要があり、しかも、蒸留により循環系内から揮発成分として排出されやすく、腐食抑制効果が低下することとなる。一般的なアルカノールアミン等は、条件によっては、蒸留により循環系内から揮発成分として排出されやすく、腐食性イオンを補足する能力に欠ける。
Thus, the increase in the concentration of corrosive ions in the extraction solvent is a problem peculiar to the extraction solvent in the circulation system, and a countermeasure with a higher corrosion inhibition effect is required than in the transient system.
In addition, if it is going to cope with a method as described in the said patent document 1 in a circulation system, it is necessary to prepare several amines so that it may become optimal for neutralization and precipitation, and also a circulation system by distillation. It will be easily discharged from the inside as a volatile component, and the corrosion inhibiting effect will be reduced. Depending on conditions, general alkanolamines and the like are easily discharged as volatile components from the circulation system by distillation and lack the ability to supplement corrosive ions.

本発明は、このような状況下でなされたものであり、循環系の芳香族化合物抽出溶剤に含まれる腐食性イオンに起因する抽出装置の腐食を抑制するために、該芳香族化合物抽出溶剤中の腐食性イオンを簡便かつ効率的に低減する、芳香族化合物抽出溶剤中の腐食性イオン低減方法を提供することを目的とする。   The present invention has been made under such circumstances, and in order to suppress corrosion of the extraction apparatus caused by corrosive ions contained in the aromatic compound extraction solvent in the circulation system, An object of the present invention is to provide a method for reducing corrosive ions in an aromatic compound extraction solvent, which can easily and efficiently reduce the corrosive ions.

本発明は、循環系内の芳香族化合物抽出溶剤中の腐食性イオンを不揮発性の塩として捕捉し、この塩を含む抽出溶剤を設備内にて濃縮することにより系内の塩濃度を低下させることが可能であり、さらに、濃縮した塩を排出することにより循環抽出溶剤中の腐食性イオンを簡便かつ効率的に低減することが可能であることを見出したことに基づくものである。   The present invention captures corrosive ions in an aromatic compound extraction solvent in a circulation system as a non-volatile salt and reduces the salt concentration in the system by concentrating the extraction solvent containing this salt in the facility. Further, it is based on the finding that corrosive ions in the circulating extraction solvent can be easily and efficiently reduced by discharging the concentrated salt.

すなわち、本発明は、次の[1]〜[11]を提供する。
[1]芳香族化合物抽出溶剤が循環する循環系において、前記芳香族化合物抽出溶剤中の腐食性イオンを低減させる方法であって、前記腐食性イオンが、塩化物イオン、硫酸イオン及び亜硫酸イオンのうちの少なくともいずれか1種であり、腐食性イオン捕捉剤を添加し、前記腐食性イオンを前記腐食性イオン捕捉剤と反応させて不揮発性の塩とする工程と、前記塩を含有する前記溶剤を濃縮して前記塩を除去する工程とを含む、芳香族化合物抽出溶剤中の腐食性イオン低減方法。
[2]前記芳香族化合物抽出溶剤が、スルホラン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、N−メチルピロリドン、ジメチルスルホキシド、モルホリン、N−ホルミルモルホリン、メチルカルバメート、ジグリコールアミン、フルフラール及びフェノールのうちから選ばれるいずれか1種以上である、上記[1]に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。
[3]前記腐食性イオン捕捉剤が、下記一般式(1)で表される第4級アンモニウム化合物である、上記[1]又は[2]に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。
That is, the present invention provides the following [1] to [11].
[1] A method for reducing corrosive ions in an aromatic compound extraction solvent in a circulation system in which an aromatic compound extraction solvent circulates, wherein the corrosive ions are chloride ions, sulfate ions, and sulfite ions. A step of adding a corrosive ion scavenger and reacting the corrosive ions with the corrosive ion scavenger to form a non-volatile salt, and the solvent containing the salt A method for reducing corrosive ions in an aromatic compound extraction solvent, which comprises a step of removing the salt by concentration.
[2] The aromatic compound extraction solvent is selected from sulfolane, diethylene glycol, triethylene glycol, tetraethylene glycol, N-methylpyrrolidone, dimethyl sulfoxide, morpholine, N-formylmorpholine, methyl carbamate, diglycolamine, furfural and phenol. The method for reducing corrosive ions in the aromatic compound extraction solvent according to the above [1], which is one or more selected from the group consisting of:
[3] The corrosive ion in the aromatic compound extraction solvent according to the above [1] or [2], wherein the corrosive ion scavenger is a quaternary ammonium compound represented by the following general formula (1): Reduction method.

(式(1)中、R〜Rはそれぞれ独立に炭素数1〜4の炭化水素基であり、nは1〜10の整数である。)
[4]前記循環系において、アンモニア及び中和性アミンのうちから選ばれるいずれか1種以上が併用される、上記[1]〜[3]のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。
[5]前記濃縮が、芳香族化合物抽出溶剤のリジェネレーターで行われる、上記[1]〜[4]のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。
[6]前記腐食性イオン捕捉剤は、その添加頻度及び添加濃度が、循環する芳香族化合物抽出溶剤中の腐食性イオン濃度に基づいて決定される、上記[1]〜[5]のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。
[7]前記腐食性イオン捕捉剤が、前記腐食性イオン濃度に対して0.5〜2倍モル当量となるように添加される、上記[6]に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。
[8]前記腐食性イオン捕捉剤は、その添加頻度及び添加濃度が、循環する芳香族化合物抽出溶剤中の金属イオン濃度に基づいて決定される、上記[1]〜[5]のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。
[9]前記金属イオンが鉄イオンである、上記[8]に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。
[10]前記芳香族化合物が、ベンゼン、トルエン及びキシレンのうちから選ばれるいずれか1種以上である、上記[1]〜[9]のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。
(In the formula (1), R 1 ~R 3 are each independently a hydrocarbon group having 1 to 4 carbon atoms, n represents an integer of 1 to 10.)
[4] The aromatic compound extraction solvent according to any one of the above [1] to [3], wherein in the circulation system, any one or more selected from ammonia and neutralizing amines are used in combination. Corrosive ion reduction method.
[5] The method for reducing corrosive ions in the aromatic compound extraction solvent according to any one of the above [1] to [4], wherein the concentration is performed with a regenerator of the aromatic compound extraction solvent.
[6] Any of the above [1] to [5], wherein the corrosive ion scavenger is added based on the corrosive ion concentration in the circulating aromatic compound extraction solvent. The method for reducing corrosive ions in the aromatic compound extraction solvent according to item 1.
[7] Corrosion in the aromatic compound extraction solvent according to the above [6], wherein the corrosive ion scavenger is added so as to have a molar equivalent of 0.5 to 2 times the corrosive ion concentration. Negative ion reduction method.
[8] The corrosive ion scavenger is any one of the above [1] to [5], wherein the addition frequency and concentration are determined based on the metal ion concentration in the circulating aromatic compound extraction solvent. The method for reducing corrosive ions in the aromatic compound extraction solvent according to Item.
[9] The method for reducing corrosive ions in the aromatic compound extraction solvent according to [8], wherein the metal ions are iron ions.
[10] The aromatic compound extraction solvent according to any one of [1] to [9], wherein the aromatic compound is any one or more selected from benzene, toluene, and xylene. Corrosive ion reduction method.

[11]上記[1]〜[10]のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法を用いる、芳香族化合物の抽出方法。 [11] A method for extracting an aromatic compound using the method for reducing corrosive ions in the aromatic compound extraction solvent according to any one of [1] to [10].

本発明によれば、循環系の芳香族化合物抽出溶剤中の腐食性イオンを簡便かつ効率的に低減することができる。
したがって、循環系の芳香族化合物抽出溶剤に含まれる腐食性イオンに起因する抽出装置の腐食を抑制することができ、芳香族化合物の抽出を効率的に行うことが可能となる。
ADVANTAGE OF THE INVENTION According to this invention, the corrosive ion in the aromatic compound extraction solvent of a circulation system can be reduced simply and efficiently.
Therefore, the corrosion of the extraction apparatus due to the corrosive ions contained in the aromatic compound extraction solvent in the circulatory system can be suppressed, and the aromatic compound can be extracted efficiently.

芳香族化合物抽出装置の一例の系統概要図である。It is a system | strain schematic diagram of an example of an aromatic compound extraction apparatus.

本発明の芳香族化合物抽出溶剤中の腐食性イオン低減方法は、芳香族化合物抽出溶剤が循環する循環系に適用される方法であり、塩化物イオン、硫酸イオン及び亜硫酸イオン、すなわち、腐食性イオンを低減させるものである。その工程としては、腐食性イオン捕捉剤を添加し、前記腐食性イオンを前記腐食性イオン捕捉剤と反応させて不揮発性の塩とする工程と、前記塩を含有する前記溶剤を濃縮して前記塩を除去する工程とを含む。
このように、循環系内の芳香族化合物抽出溶剤中の腐食性イオンを不揮発性の塩とし、これを含む抽出溶剤を濃縮することにより、抽出装置の腐食を引き起こす原因となる前記溶剤中の腐食性イオンを簡便かつ効率的に低減させることができる。
The method for reducing corrosive ions in an aromatic compound extraction solvent of the present invention is a method applied to a circulation system in which an aromatic compound extraction solvent circulates, and chloride ions, sulfate ions and sulfite ions, that is, corrosive ions. Is reduced. The step includes adding a corrosive ion scavenger, reacting the corrosive ions with the corrosive ion scavenger to form a non-volatile salt, and concentrating the solvent containing the salt to Removing the salt.
In this way, the corrosive ions in the aromatic compound extraction solvent in the circulation system are converted into non-volatile salts, and the extraction solvent containing this is concentrated to cause corrosion in the solvent causing the extraction device to corrode. Ionic ions can be reduced easily and efficiently.

[循環系]
本発明の方法は、芳香族化合物抽出溶剤が腐食性イオンである、塩化物イオン、硫酸イオン及び亜硫酸イオンのうちの少なくともいずれか1種を含む循環系に適用される。例えば、石油等の炭化水素油の精製において、芳香族炭化水素油から芳香族化合物を抽出する工程で溶剤が循環使用される系等が挙げられる。
前記芳香族炭化水素油は、例えば、改質により得られた芳香族化合物を含み、具体的には、芳香族化合物としては、ベンゼン、トルエン又はキシレン、及びこれらのうちのいずれかの混合物を含有するものが挙げられる。
[Circulating system]
The method of the present invention is applied to a circulation system containing at least one of chloride ion, sulfate ion and sulfite ion, in which the aromatic compound extraction solvent is a corrosive ion. For example, in the refining of hydrocarbon oil such as petroleum, a system in which a solvent is circulated and used in the process of extracting an aromatic compound from the aromatic hydrocarbon oil can be used.
The aromatic hydrocarbon oil contains, for example, an aromatic compound obtained by reforming. Specifically, the aromatic compound contains benzene, toluene or xylene, and a mixture of any of these. To do.

[芳香族化合物抽出溶剤]
芳香族化合物抽出溶剤は、炭化水素油の精製において一般的に使用されるものを用いることができ、例えば、スルホラン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、N−メチルピロリドン、ジメチルスルホキシド、モルホリン、N−ホルミルモルホリン、メチルカルバメート、ジグリコールアミン、フルフラール、フェノール等が挙げられる。これらの溶剤は、1種単独で用いても、2種以上を併用してもよい。これらのうち、スルホランが好適に用いられる。なお、スルホランは、使用により徐々に熱分解したり、不純物として硫酸を含む場合もあり、硫酸イオンや亜硫酸イオンを生じ得るが、本発明の方法によれば、スルホラン由来の硫酸イオン及び亜硫酸イオンも低減可能であるため、支障はない。
[Aromatic compound extraction solvent]
As the aromatic compound extraction solvent, those commonly used in the purification of hydrocarbon oils can be used. For example, sulfolane, diethylene glycol, triethylene glycol, tetraethylene glycol, N-methylpyrrolidone, dimethyl sulfoxide, morpholine, N-formylmorpholine, methyl carbamate, diglycolamine, furfural, phenol and the like can be mentioned. These solvents may be used alone or in combination of two or more. Of these, sulfolane is preferably used. Sulfolane may be gradually decomposed by use or may contain sulfuric acid as an impurity, and may produce sulfate ion or sulfite ion. However, according to the method of the present invention, sulfolane-derived sulfate ion and sulfite ion are also present. There is no problem because it can be reduced.

[腐食性イオン捕捉剤]
腐食性イオン捕捉剤は、腐食性イオンと塩を形成し得る化合物であり、添加する循環系内で揮発しないものが用いられる。好ましくは、強塩基性であれば、腐食性イオンと形成される塩が中性塩となり、抽出装置の腐食がより抑制され得る。
このような腐食性イオン捕捉剤としては、例えば、下記一般式(1)で表される第4級アンモニウム化合物が挙げられる。また、1,8−ジアザビシクロ[5.4.0]ウンデセン−7等の超強塩基化合物や、水酸化ナトリウム等の無機の強アルカリも挙げられる。無機アルカリの添加は、循環系の溶剤中の灰分の増加が懸念されること、また、取り扱い性等の観点から、上記のような第4級アンモニウム化合物が好ましい。
[Corrosive ion scavenger]
The corrosive ion scavenger is a compound that can form a salt with corrosive ions, and one that does not volatilize in the circulation system to be added is used. Preferably, if it is strongly basic, the salt formed with the corrosive ions becomes a neutral salt, and the corrosion of the extraction apparatus can be further suppressed.
Examples of such corrosive ion scavengers include quaternary ammonium compounds represented by the following general formula (1). In addition, super strong base compounds such as 1,8-diazabicyclo [5.4.0] undecene-7 and inorganic strong alkalis such as sodium hydroxide are also included. The addition of the inorganic alkali is preferably a quaternary ammonium compound as described above from the viewpoint of an increase in the ash content in the circulating solvent and from the viewpoint of handleability.

式(1)中、R〜Rはそれぞれ独立に炭素数1〜4の炭化水素基であり、nは1〜10の整数である。R〜Rとしては、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等の直鎖状又は分岐状のアルキル基等が挙げられる。
このような第4級アンモニウム化合物の具体例としては、ヒドロキシメチルトリメチルアンモニウムハイドロオキサイド、ヒドロキシメチルトリエチルアンモニウムハイドロオキサイド、コリンハイドロオキサイド、2−ヒドロキシエチルトリエチルアンモニウムハイドロオキサイド、3−ヒドロキシプロピルトリメチルアンモニウムハイドロオキサイド等が挙げられる。これらは、1種単独で用いても、2種以上を併用してもよい。
In formula (1), R 1 to R 3 are each independently a hydrocarbon group having 1 to 4 carbon atoms, and n is an integer of 1 to 10. Specific examples of R 1 to R 3 include linear groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group. Examples thereof include a branched alkyl group.
Specific examples of such quaternary ammonium compounds include hydroxymethyltrimethylammonium hydroxide, hydroxymethyltriethylammonium hydroxide, choline hydroxide, 2-hydroxyethyltriethylammonium hydroxide, 3-hydroxypropyltrimethylammonium hydroxide, and the like. Is mentioned. These may be used alone or in combination of two or more.

好ましくは、R〜Rは、それぞれ独立に炭素数1〜3の炭化水素基であり、nは1〜4の整数である。第4級アンモニウム化合物が、このように低分子量であると、水への溶解性に優れ、低添加量でも腐食性イオン捕捉剤としての十分な効果を示し、本発明の効果である抽出装置の腐食抑制効果がより高くなる。これらの中でも、R〜Rがいずれもメチル基であり、nが2である、コリンハイドロオキサイド(別名:コリン)が特に好ましい。 Preferably, R 1 to R 3 are each independently a hydrocarbon group having 1 to 3 carbon atoms, and n is an integer of 1 to 4. When the quaternary ammonium compound has such a low molecular weight, it is excellent in solubility in water and exhibits a sufficient effect as a corrosive ion scavenger even in a low addition amount, which is an effect of the present invention. Corrosion suppression effect becomes higher. Among these, choline hydroxide (also known as choline) in which R 1 to R 3 are all methyl groups and n is 2 is particularly preferable.

このような第4級アンモニウム化合物は、取り扱い上、一般的には水溶液として用いることが好ましく、その濃度は特に限定されるものではないが、5〜50質量%であることが好ましい。
アンモニアや他のアミン等は弱塩基性であるため、これらのアルカリと腐食性イオンとが形成する塩は酸性塩であり、微量でも水が存在すると腐食を引き起こす。これに対して、上記のような第4級アンモニウム化合物は、強塩基性であるため、腐食性イオンと形成する塩は中性塩であり、水の存在下でも腐食を引き起こしにくい。
また、前記第4級アンモニウム化合物と腐食性イオンとが形成する塩は、潮解性を有し、流動性を有するため固着しにくく、循環系の装置内部において付着堆積や閉塞のおそれもない。
Such a quaternary ammonium compound is generally preferably used as an aqueous solution in terms of handling, and the concentration thereof is not particularly limited, but is preferably 5 to 50% by mass.
Since ammonia, other amines, and the like are weakly basic, the salt formed by these alkalis and corrosive ions is an acid salt, and even a trace amount causes corrosion when water is present. On the other hand, since the quaternary ammonium compound as described above is strongly basic, the salt formed with the corrosive ions is a neutral salt and hardly corrodes even in the presence of water.
In addition, the salt formed by the quaternary ammonium compound and corrosive ions has deliquescence and fluidity, so that it is difficult to stick, and there is no possibility of adhesion or clogging inside the circulation system.

本発明の腐食性イオン捕捉剤と腐食性イオンとが形成する塩は、高沸点であり、循環系において不揮発性の塩である。このため、芳香族炭化水素油の蒸留精製工程等において、前記塩が蒸発して抽出した芳香族化合物中に混入することはほとんどなく、抽出溶剤との分離も蒸留による濃縮によって行うことができ、蒸留残渣として除去することができる。   The salt formed by the corrosive ion scavenger and corrosive ions of the present invention has a high boiling point and is a non-volatile salt in the circulation system. For this reason, in the distillation purification process of aromatic hydrocarbon oil etc., the salt is hardly mixed in the aromatic compound extracted by evaporation, and separation from the extraction solvent can also be performed by concentration by distillation, It can be removed as a distillation residue.

腐食性イオン捕捉剤は、上記のような第4級アンモニウム化合物であることが好ましく、それのみでも、十分な腐食性イオン捕捉効果を発揮し得るが、腐食性イオン捕捉効果をより高めるために、他の薬剤として、アンモニア、中和性アミン等を併用していてもよい。
中和性アミンとしては、例えば、モノエタノールアミン、シクロへキシルアミン、モルホリン、ジエチルエタノールアミン、モノイソプロパノールアミン、3−メトキシプロピルアミン、2−アミノ−2−メチル−1−プロパノール等が挙げられる。
The corrosive ion scavenger is preferably a quaternary ammonium compound as described above, and even by itself, it can exhibit a sufficient corrosive ion scavenging effect, but in order to further enhance the corrosive ion scavenging effect, As other chemicals, ammonia, neutralizing amine or the like may be used in combination.
Examples of the neutralizing amine include monoethanolamine, cyclohexylamine, morpholine, diethylethanolamine, monoisopropanolamine, 3-methoxypropylamine, 2-amino-2-methyl-1-propanol and the like.

腐食性イオン捕捉剤の添加量は、循環系における抽出溶剤中の腐食性イオン濃度を予測又は測定することができれば、該腐食性イオン濃度に基づいて、添加する頻度及び濃度を決定することができる。腐食性イオン濃度は、吸光光度計、イオンクロマトグラフ、キャピラリー電気泳動装置等により測定することができる。
腐食性イオン捕捉剤の濃度は、その添加効果の観点から、腐食性イオン濃度の0.5〜2倍モル当量となるように添加されることが好ましく、より安定した腐食性イオン捕捉効果を得る観点から、1〜2倍モル当量であることがより好ましい。
If the corrosive ion scavenger addition amount can predict or measure the corrosive ion concentration in the extraction solvent in the circulation system, the addition frequency and concentration can be determined based on the corrosive ion concentration. . The corrosive ion concentration can be measured with an absorptiometer, ion chromatograph, capillary electrophoresis apparatus or the like.
From the viewpoint of the addition effect, the concentration of the corrosive ion scavenger is preferably added so as to be 0.5 to 2 times the molar equivalent of the corrosive ion concentration, and a more stable corrosive ion scavenging effect is obtained. From a viewpoint, it is more preferable that it is 1-2 times molar equivalent.

また、腐食性イオン濃度を間接的に検知する手段として、循環系における抽出溶剤中の金属イオン濃度を測定してもよい。循環する抽出溶剤中の腐食性イオン濃度の上昇に伴い抽出装置の腐食が進行した場合、循環系における金属イオン濃度が上昇する。このため、腐食性イオン濃度の上昇を、金属イオン濃度の上昇によって検知することも可能である。金属イオン濃度は、吸光光度計、誘導結合プラズマ発光分光分析装置(ICP−AES)、誘導結合プラズマ質量分析装置(ICP−MS)等により測定することができる。
この場合は、循環系における測定対象の金属イオン濃度と腐食性イオン濃度との相関関係を予め求めておくことが好ましい。これにより、循環系の金属イオン濃度に基づいて、腐食性イオン捕捉剤の添加頻度及び濃度を決定することができる。
測定対象とする金属イオンとしては、具体的には、装置の腐食により溶出しやすい鉄イオンが好ましい。
Further, as a means for indirectly detecting the corrosive ion concentration, the metal ion concentration in the extraction solvent in the circulation system may be measured. When corrosion of the extraction device proceeds with an increase in the corrosive ion concentration in the circulating extraction solvent, the metal ion concentration in the circulation system increases. For this reason, it is also possible to detect the increase in the corrosive ion concentration by the increase in the metal ion concentration. The metal ion concentration can be measured with an absorptiometer, an inductively coupled plasma emission spectrometer (ICP-AES), an inductively coupled plasma mass spectrometer (ICP-MS), or the like.
In this case, it is preferable to obtain a correlation between the metal ion concentration to be measured and the corrosive ion concentration in the circulation system in advance. Thereby, the addition frequency and density | concentration of a corrosive ion trapping agent can be determined based on the metal ion density | concentration of a circulation system.
Specifically, the metal ions to be measured are preferably iron ions that are easily eluted due to corrosion of the apparatus.

循環系で芳香族化合物を抽出する際、抽出溶剤中の腐食性イオンを低減させる方法として、上記のような本発明の方法を用いることにより、循環系の抽出溶剤に含まれる腐食性イオンに起因する抽出装置の腐食の抑制を効果的に行うことができるため、効率的な抽出を行うことが可能となる。   When extracting aromatic compounds in the circulatory system, the method of the present invention as described above is used as a method for reducing the corrosive ions in the extraction solvent, resulting in corrosive ions contained in the circulatory extraction solvent. Therefore, it is possible to effectively suppress the corrosion of the extracting device, and thus it is possible to perform efficient extraction.

以下、本発明の方法を適用する装置及び処理機構について、一例を挙げて説明する。図1に、本発明の方法を適用する芳香族化合物抽出装置の一例の系統概要図を示す。
図1に示す系統フローにおいては、フィード1から連続的又は断続的に供給される原料芳香族炭化水素油を、クロルトリーター2で脱塩処理した後、抽出塔3で芳香族化合物抽出溶剤と混合し、ベンゼンやトルエン、キシレン等の芳香族化合物を抽出する。溶剤に不溶な成分は塔頂から抜き取られ、洗浄塔4で洗浄された後、ラフィネート9が分離される。
一方、抽出溶剤中に抽出された芳香族化合物は、抽出溶剤とともに、抽出塔3の塔底から抜き出される。その後、ストリッパーカラム5とリカバリーカラム6での蒸留により、芳香族化合物と抽出溶剤とに分離され、芳香族化合物が得られる。
Hereinafter, an apparatus and a processing mechanism to which the method of the present invention is applied will be described with an example. FIG. 1 shows a system outline diagram of an example of an aromatic compound extraction apparatus to which the method of the present invention is applied.
In the system flow shown in FIG. 1, the raw aromatic hydrocarbon oil supplied continuously or intermittently from feed 1 is desalted by chlortritor 2 and then mixed with an aromatic compound extraction solvent in extraction tower 3. Then, aromatic compounds such as benzene, toluene and xylene are extracted. Components insoluble in the solvent are withdrawn from the top of the column, washed with the washing column 4 and then the raffinate 9 is separated.
On the other hand, the aromatic compound extracted in the extraction solvent is extracted from the bottom of the extraction tower 3 together with the extraction solvent. Then, it is separated into an aromatic compound and an extraction solvent by distillation in the stripper column 5 and the recovery column 6 to obtain an aromatic compound.

ここで、ストリッパーカラム5の塔頂系等の抽出溶剤の循環系のいずれかの位置に設けた注入設備10から腐食性イオン捕捉剤を水溶液として添加する。
抽出溶剤は、リカバリーカラム6で再度蒸留により再生処理され、プロセスウォーターストリッパー8で脱水処理後、抽出塔3に戻され、循環使用される。
リカバリーカラム6からの回収抽出溶剤中には、腐食性イオン捕捉剤と抽出溶剤中の腐食性イオンとが反応して生成した不揮発性塩が含まれる。このような塩を含有する回収抽出溶剤は、バイパスのリジェネレーター7で蒸留により濃縮する。この濃縮残渣を分離除去し、留分をリカバリーカラム6に戻すことにより、腐食性イオンが低減された再生溶剤が循環系に供される。
Here, the corrosive ion scavenger is added as an aqueous solution from the injection facility 10 provided at any position in the circulation system of the extraction solvent such as the top system of the stripper column 5.
The extraction solvent is regenerated by distillation again in the recovery column 6, dehydrated by the process water stripper 8, returned to the extraction tower 3, and recycled.
The recovered extraction solvent from the recovery column 6 contains a non-volatile salt generated by the reaction of the corrosive ion scavenger and the corrosive ions in the extraction solvent. The recovered extraction solvent containing such a salt is concentrated by distillation with a bypass regenerator 7. The concentrated residue is separated and removed, and the fraction is returned to the recovery column 6, whereby the regenerated solvent with reduced corrosive ions is provided to the circulation system.

腐食性イオン捕捉剤は、循環系のいずれの位置で添加してもよいが、例えば、上記装置においては、芳香族化合物の抽出塔3より後段であるストリッパーカラム5の塔頂系に設けた注入設備10から添加することができる。
なお、リジェネレーター7を含む抽出溶剤の循環系の温度は、腐食性イオン捕捉剤の揮発を防止し、これをリジェネレーター7での腐食性イオン捕捉効果を促進する観点から、180℃以下であることが好ましい。
Although the corrosive ion scavenger may be added at any position in the circulation system, for example, in the above apparatus, the injection provided in the tower top system of the stripper column 5 that is a stage after the aromatic compound extraction tower 3. It can be added from the facility 10.
The temperature of the extraction solvent circulation system including the regenerator 7 is 180 ° C. or less from the viewpoint of preventing the corrosive ion scavenger from volatilizing and promoting the corrosive ion scavenging effect of the regenerator 7. It is preferable.

上記のように、腐食性イオン捕捉剤と腐食性イオンとが形成する塩は、循環系において不揮発性の塩であるため、芳香族化合物の抽出のための蒸留等で抽出物側に排出されることはなく、循環系に設けた溶剤再生のためのリジェネレーター7等の特定箇所での溶剤濃縮の蒸留残渣として分離することができる。さらに、塩を含む残留残渣を排出するための手段を設けることによって、塩を循環系外に除去するようにしてもよい。   As described above, since the salt formed by the corrosive ion scavenger and the corrosive ion is a non-volatile salt in the circulation system, it is discharged to the extract side by distillation or the like for extraction of aromatic compounds. However, it can be separated as a distillation residue of solvent concentration at a specific location such as the regenerator 7 for solvent regeneration provided in the circulation system. Furthermore, the salt may be removed out of the circulation system by providing a means for discharging the residual residue containing the salt.

以下、本発明をより詳細に説明するが、本発明は下記実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail, but the present invention is not limited to the following examples.

[試験1]実験室レベルでの確認試験
(試験1−1)
500mLの丸底フラスコに、キシレン100mL、スルホラン96mL、純水4mLを入れた。これに、塩酸及びコリンハイドロオキサイド(コリン)水溶液を加え、塩化物イオン濃度が100mg/L、コリン濃度が340mg/Lとなるように試料液を調製した。
この試料液を蒸留して水分を留去した。丸底フラスコに残った残留液(スルホラン及びキシレン)を純水200mLで2回抽出した。
[Test 1] Laboratory level confirmation test (Test 1-1)
In a 500 mL round bottom flask, 100 mL of xylene, 96 mL of sulfolane, and 4 mL of pure water were added. To this, hydrochloric acid and an aqueous choline hydroxide (choline) solution were added, and a sample solution was prepared so that the chloride ion concentration was 100 mg / L and the choline concentration was 340 mg / L.
This sample solution was distilled to remove water. The residual liquid (sulfolane and xylene) remaining in the round bottom flask was extracted twice with 200 mL of pure water.

(試験1−2)
試験1−1の試料液と塩化物イオン濃度及びコリン濃度は同様であり、さらに、モノエタノールアミン(MEA)が濃度172mg/Lとなるように添加された試料液を調製し、それ以外は試験1−1と同様にして、蒸留及び抽出を行った。
(Test 1-2)
The sample solution of Test 1-1 has the same chloride ion concentration and choline concentration, and a sample solution to which monoethanolamine (MEA) is added to a concentration of 172 mg / L is prepared. Distillation and extraction were performed in the same manner as in 1-1.

(試験1−3)
試験1−1の試料液と塩化物イオン濃度は同様であり、コリンハイドロオキサイド(コリン)を添加しない試料液を調製し、それ以外は試験1−1と同様にして、蒸留及び抽出を行った。
(Test 1-3)
The sample solution in Test 1-1 was the same in chloride ion concentration, and a sample solution to which choline hydroxide (choline) was not added was prepared. Otherwise, distillation and extraction were performed in the same manner as in Test 1-1. .

(試験1−4)
試験1−2の試料液と塩化物イオン濃度及びMEA濃度は同様であり、コリンハイドロオキサイド(コリン)を添加しない試料液を調製し、それ以外は試験1−2と同様にして、蒸留及び抽出を行った。
(Test 1-4)
The sample solution of Test 1-2 was the same in chloride ion concentration and MEA concentration, and a sample solution to which choline hydroxide (choline) was not added was prepared. Otherwise, distillation and extraction were performed in the same manner as in Test 1-2. Went.

上記各試験における抽出1回目及び2回目の抽出液について、キャピラリー電気泳動分析装置にて、塩化物イオン、コリンハイドロオキサイド及びMEAの各濃度を測定した。これらの測定結果を表1に示す。   With respect to the first and second extraction liquids in the above tests, the respective concentrations of chloride ion, choline hydroxide and MEA were measured with a capillary electrophoresis analyzer. These measurement results are shown in Table 1.

表1に示した結果から分かるように、コリンハイドロオキサイドを添加した場合(試験1−1)は、添加しない場合(試験1−3)に比べて、抽出液中の塩化物イオン濃度が20倍以上も高く、芳香族化合物抽出溶剤中の腐食性イオン捕捉効果の向上が確認された。
また、コリンハイドロオキサイドを添加した場合(試験1−1)は、MEAのみを添加した場合(試験1−4)よりも、抽出液中の塩化物イオン濃度が少なくとも15倍以上であり、芳香族化合物抽出溶剤中の腐食性イオン捕捉効果がより優れていることが確認された。
コリン及びMEAを添加した場合(試験1−2)は、さらに、抽出液中の塩化物イオン濃度が高くなり、芳香族化合物抽出溶剤中の腐食性イオン捕捉効果がより向上すると言える。
As can be seen from the results shown in Table 1, the chloride ion concentration in the extract was 20 times higher when choline hydroxide was added (Test 1-1) than when it was not added (Test 1-3). The above was also high, and the improvement of the corrosive ion trapping effect in the aromatic compound extraction solvent was confirmed.
In addition, when choline hydroxide is added (Test 1-1), the chloride ion concentration in the extract is at least 15 times higher than when only MEA is added (Test 1-4), and aromatics are added. It was confirmed that the corrosive ion scavenging effect in the compound extraction solvent was more excellent.
When choline and MEA are added (Test 1-2), it can be said that the chloride ion concentration in the extract is further increased, and the corrosive ion trapping effect in the aromatic compound extraction solvent is further improved.

[試験2]実機レベルでの試験
図1に示す装置において、ベンゼン、トルエン及びキシレンを含む芳香族炭化水素油及びスルホラン(塩化物イオン含有濃度が70mg/L)が循環している条件にて、以下の試験を行った。
ストリッパーカラム5の塔頂出口付近にコリンハイドロオキサイド(コリン)水溶液を1週毎に1回添加した。コリンハイドロオキサイドの添加量は、スルホラン中の塩化物イオンと同じモル当量分とした。なお、塩化物イオンは、純水50mLによる抽出を2回行い、イオンクロマトグラフにて濃度の測定を行った。
装置の所定日数運転後、リカバリーカラム6の塔底からスルホラン1Lを回収し、このスルホラン中の塩化物イオン濃度を測定した。表2に、測定結果を示す。
[Test 2] Test at an actual machine level In the apparatus shown in FIG. 1, an aromatic hydrocarbon oil containing benzene, toluene and xylene and sulfolane (chloride ion content concentration is 70 mg / L) are circulated. The following tests were conducted.
A choline hydroxide (choline) aqueous solution was added to the vicinity of the top outlet of the stripper column 5 once a week. The amount of choline hydroxide added was the same molar equivalent as the chloride ion in sulfolane. Chloride ions were extracted twice with 50 mL of pure water and the concentration was measured with an ion chromatograph.
After operating the apparatus for a predetermined number of days, 1 L of sulfolane was recovered from the bottom of the recovery column 6 and the chloride ion concentration in the sulfolane was measured. Table 2 shows the measurement results.

表2に示した結果から分かるように、コリンハイドロオキサイドの積算濃度の増加に伴い、リカバリーカラム6の塔底から回収したスルホラン中の塩化物イオン濃度が低減することが確認された。また、回収スルホラン中には、コリンが残存していることも確認された。
また、リジェネレーター7の塔底における塩化物イオン蓄積速度が、コリンハイドロオキサイド未添加の場合は23mg/(L・日)であったのに対して、コリンハイドロオキサイドの添加によって、60mg/(L・日)と約3倍速くなった。
これらから、実機においても、コリンハイドロオキサイドにより良好な腐食性イオン捕捉効果が得られると言える。
As can be seen from the results shown in Table 2, it was confirmed that the chloride ion concentration in the sulfolane recovered from the bottom of the recovery column 6 decreased as the integrated concentration of choline hydroxide increased. It was also confirmed that choline remained in the recovered sulfolane.
The chloride ion accumulation rate at the bottom of the regenerator 7 was 23 mg / (L · day) when no choline hydroxide was added, but 60 mg / (L when the choline hydroxide was added.・ Sun), about 3 times faster.
From these, it can be said that a good corrosive ion scavenging effect can be obtained by choline hydroxide in the actual machine.

1 フィード
2 クロルトリーター
3 抽出塔
4 洗浄塔
5 ストリッパーカラム
6 リカバリーカラム
7 リジェネレーター
8 プロセスウォーターストリッパー
9 ラフィネート
10 注入設備(腐食性イオン捕捉剤添加位置)
DESCRIPTION OF SYMBOLS 1 Feed 2 Chloritoreter 3 Extraction tower 4 Washing tower 5 Stripper column 6 Recovery column 7 Regenerator 8 Process water stripper 9 Raffinate 10 Injection equipment (corrosive ion scavenger addition position)

Claims (11)

芳香族化合物抽出溶剤が循環する循環系において、前記芳香族化合物抽出溶剤中の腐食性イオンを低減させる方法であって、
前記腐食性イオンが、塩化物イオン、硫酸イオン及び亜硫酸イオンのうちの少なくともいずれか1種であり、
腐食性イオン捕捉剤を添加し、前記腐食性イオンを前記腐食性イオン捕捉剤と反応させて不揮発性の塩とする工程と、前記塩を含有する前記溶剤を濃縮して前記塩を除去する工程とを含む、芳香族化合物抽出溶剤中の腐食性イオン低減方法。
In a circulation system in which an aromatic compound extraction solvent circulates, a method of reducing corrosive ions in the aromatic compound extraction solvent,
The corrosive ion is at least one of chloride ion, sulfate ion and sulfite ion;
Adding a corrosive ion scavenger and reacting the corrosive ions with the corrosive ion scavenger to form a non-volatile salt; and concentrating the solvent containing the salt to remove the salt And a method for reducing corrosive ions in an aromatic compound extraction solvent.
前記芳香族化合物抽出溶剤が、スルホラン、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、N−メチルピロリドン、ジメチルスルホキシド、モルホリン、N−ホルミルモルホリン、メチルカルバメート、ジグリコールアミン、フルフラール及びフェノールのうちから選ばれるいずれか1種以上である、請求項1に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。   The aromatic compound extraction solvent is selected from sulfolane, diethylene glycol, triethylene glycol, tetraethylene glycol, N-methylpyrrolidone, dimethyl sulfoxide, morpholine, N-formylmorpholine, methyl carbamate, diglycolamine, furfural and phenol. The method for reducing corrosive ions in the aromatic compound extraction solvent according to claim 1, which is at least one of them. 前記腐食性イオン捕捉剤が、下記一般式(1)で表される第4級アンモニウム化合物である、請求項1又は2に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。

(式(1)中、R〜Rはそれぞれ独立に炭素数1〜4の炭化水素基であり、nは1〜10の整数である。)
The method for reducing corrosive ions in an aromatic compound extraction solvent according to claim 1 or 2, wherein the corrosive ion scavenger is a quaternary ammonium compound represented by the following general formula (1).

(In the formula (1), R 1 ~R 3 are each independently a hydrocarbon group having 1 to 4 carbon atoms, n represents an integer of 1 to 10.)
前記循環系において、アンモニア及び中和性アミンのうちから選ばれるいずれか1種以上が併用される、請求項1〜3のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。   Corrosion ion reduction in the aromatic compound extraction solvent according to any one of claims 1 to 3, wherein any one or more selected from ammonia and neutralizing amines are used in combination in the circulation system. Method. 前記濃縮が、芳香族化合物抽出溶剤のリジェネレーターで行われる、請求項1〜4のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。   The method of reducing corrosive ions in an aromatic compound extraction solvent according to any one of claims 1 to 4, wherein the concentration is performed with a regenerator of the aromatic compound extraction solvent. 前記腐食性イオン捕捉剤は、その添加頻度及び添加濃度が、循環する芳香族化合物抽出溶剤中の腐食性イオン濃度に基づいて決定される、請求項1〜5のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。   The fragrance according to any one of claims 1 to 5, wherein the corrosive ion scavenger has an addition frequency and an addition concentration determined based on a corrosive ion concentration in a circulating aromatic compound extraction solvent. Of reducing corrosive ions in extraction solvents for group compounds. 前記腐食性イオン捕捉剤が、前記腐食性イオン濃度に対して0.5〜2倍モル当量となるように添加される、請求項6に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。   The method for reducing corrosive ions in an aromatic compound extraction solvent according to claim 6, wherein the corrosive ion scavenger is added so as to have a molar equivalent of 0.5 to 2 times the corrosive ion concentration. . 前記腐食性イオン捕捉剤は、その添加頻度及び濃度が、循環する芳香族化合物抽出溶剤中の金属イオン濃度に基づいて決定される、請求項1〜5のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。   The aromatic compound according to any one of claims 1 to 5, wherein the corrosive ion scavenger has an addition frequency and a concentration determined based on a metal ion concentration in a circulating aromatic compound extraction solvent. A method for reducing corrosive ions in extraction solvents. 前記金属イオンが鉄イオンである、請求項8に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。   The method for reducing corrosive ions in an aromatic compound extraction solvent according to claim 8, wherein the metal ions are iron ions. 前記芳香族化合物が、ベンゼン、トルエン及びキシレンのうちから選ばれるいずれか1種以上を含む、請求項1〜9のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法。   The method for reducing corrosive ions in an aromatic compound extraction solvent according to any one of claims 1 to 9, wherein the aromatic compound contains at least one selected from benzene, toluene and xylene. 請求項1〜10のいずれか1項に記載の芳香族化合物抽出溶剤中の腐食性イオン低減方法を用いる、芳香族化合物の抽出方法。   The extraction method of an aromatic compound using the corrosive ion reduction method in the aromatic compound extraction solvent of any one of Claims 1-10.
JP2016056885A 2016-03-22 2016-03-22 Method for reducing corrosive ions in aromatic compound extraction solvents Active JP6065138B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2016056885A JP6065138B1 (en) 2016-03-22 2016-03-22 Method for reducing corrosive ions in aromatic compound extraction solvents
KR1020187016765A KR101960670B1 (en) 2016-03-22 2016-10-31 A method for reducing corrosive ions in an aromatic compound extraction solvent
CN201680074524.2A CN108368620B (en) 2016-03-22 2016-10-31 Method for reducing corrosive ions in aromatic extraction solvent
EP16895498.0A EP3406762B1 (en) 2016-03-22 2016-10-31 Method for reducing corrosive ions in aromatic compound extraction solvent
ES16895498T ES2804200T3 (en) 2016-03-22 2016-10-31 Procedure for reducing corrosive ions in the aromatic compound extraction solvent
CA3009028A CA3009028C (en) 2016-03-22 2016-10-31 Method for reducing corrosive ions in aromatic compound extraction solvent
PCT/JP2016/082311 WO2017163475A1 (en) 2016-03-22 2016-10-31 Method for reducing corrosive ions in aromatic compound extraction solvent
SG11201805159VA SG11201805159VA (en) 2016-03-22 2016-10-31 Method for reducing corrosive ions in aromatic compound extraction solvent
US16/061,570 US20180362868A1 (en) 2016-03-22 2016-10-31 Method for reducing corrosive ions in aromatic compound extraction solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016056885A JP6065138B1 (en) 2016-03-22 2016-03-22 Method for reducing corrosive ions in aromatic compound extraction solvents

Publications (2)

Publication Number Publication Date
JP6065138B1 JP6065138B1 (en) 2017-01-25
JP2017171965A true JP2017171965A (en) 2017-09-28

Family

ID=57890436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016056885A Active JP6065138B1 (en) 2016-03-22 2016-03-22 Method for reducing corrosive ions in aromatic compound extraction solvents

Country Status (9)

Country Link
US (1) US20180362868A1 (en)
EP (1) EP3406762B1 (en)
JP (1) JP6065138B1 (en)
KR (1) KR101960670B1 (en)
CN (1) CN108368620B (en)
CA (1) CA3009028C (en)
ES (1) ES2804200T3 (en)
SG (1) SG11201805159VA (en)
WO (1) WO2017163475A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6933238B2 (en) * 2018-12-27 2021-09-08 栗田工業株式会社 How to eliminate the differential pressure in the distillation column
JP6648814B1 (en) * 2018-12-27 2020-02-14 栗田工業株式会社 How to eliminate the pressure difference in the distillation column
US11319634B2 (en) * 2019-12-16 2022-05-03 Saudi Arabian Oil Company Corrosion inhibitors for a refinery
US11046901B1 (en) 2020-06-15 2021-06-29 Saudi Arabian Oil Company Naphthenic acid corrosion inhibitors for a refinery
US11434413B1 (en) 2021-05-07 2022-09-06 Saudi Arabian Oil Company Flourinated aromatic compound as refinery corrosion inhibitor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1134582A (en) * 1967-04-06 1968-11-27 Shell Int Research A process for the removal of corrosive contaminants from sulfolane-type solvents
US3466345A (en) * 1967-05-29 1969-09-09 Universal Oil Prod Co Aromatic hydrocarbon recovery process
US4191615A (en) * 1974-12-17 1980-03-04 Krupp-Koppers Gmbh Process for operating extraction or extractive distillation _apparatus
DE69432621T2 (en) * 1993-09-28 2004-02-26 Ondeo Nalco Energy Services, L.P., Sugarland Process for the prevention of chloride corrosion in wet hydrocarbon condensation systems using amine mixtures
DE4441881A1 (en) * 1994-11-24 1996-05-30 Hoechst Ag Process for the production of brominated or chlorinated aromatic carboxylic acids
JP2001199978A (en) * 1999-11-10 2001-07-24 Toray Ind Inc Method for producing trioxane
JP3962919B2 (en) * 2002-11-12 2007-08-22 栗田工業株式会社 Metal anticorrosive, metal anticorrosion method, hydrogen chloride generation inhibitor and method for preventing hydrogen chloride generation in crude oil atmospheric distillation equipment
CN100523301C (en) * 2002-11-12 2009-08-05 栗田工业株式会社 Metal corrosion inhibitor and hydrogen chloride formation inhibitor in a crude oil atmospheric distillation unit
JP4840312B2 (en) * 2007-09-25 2011-12-21 栗田工業株式会社 Heavy metal fixing agent and ash treatment method using the same
JP4867879B2 (en) * 2007-09-25 2012-02-01 栗田工業株式会社 Heavy metal fixing agent and ash treatment method using the same
EP2554050B9 (en) * 2010-03-31 2018-10-03 Kurita Water Industries Ltd. Combined chlorine agent, and manufacturing method and method of use for same
JP6215511B2 (en) * 2010-07-16 2017-10-18 栗田工業株式会社 Anticorrosive for boiler
CN105074054A (en) * 2013-03-14 2015-11-18 巴克曼实验室国际公司 Method to control corrosion of a metal surface using alkyl sulfamic acids or salts thereof

Also Published As

Publication number Publication date
EP3406762A4 (en) 2019-08-28
CN108368620A (en) 2018-08-03
CA3009028A1 (en) 2017-09-28
CN108368620B (en) 2019-12-17
JP6065138B1 (en) 2017-01-25
US20180362868A1 (en) 2018-12-20
CA3009028C (en) 2020-07-14
KR20180072831A (en) 2018-06-29
KR101960670B1 (en) 2019-03-21
ES2804200T3 (en) 2021-02-04
WO2017163475A1 (en) 2017-09-28
EP3406762A1 (en) 2018-11-28
SG11201805159VA (en) 2018-07-30
EP3406762B1 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP6065138B1 (en) Method for reducing corrosive ions in aromatic compound extraction solvents
US7459011B2 (en) Method for processing a natural gas with extraction of the solvent contained in the acid gases
US7470829B2 (en) Method for processing a natural gas with extraction of the solvent contained in the purified natural gas
EA020424B1 (en) Non-nitrogen sulfide sweeteners
WO2013169752A1 (en) Multi-component scavenging systems
Coto et al. Oil acidity reduction by extraction with imidazolium ionic liquids: Experimental, COSMO description and reutilization study
US10118123B2 (en) Process for the removal of heat stable salts from acid gas absorbents
US20140260979A1 (en) Processes for the rejuvenation of an amine acid gas absorbent used in an acid gas recovery unit
CN103937528A (en) Water-soluble compound corrosion inhibitor
WO2019118139A1 (en) Basic ionic liquids as hydrochloric acid scavengers in refinery crude processing
WO2018078065A1 (en) Process for removing sulfur dioxide from a gas stream
US3466345A (en) Aromatic hydrocarbon recovery process
CN103228768A (en) Strong base amines to minimize corrosion in systems prone to form corrosive salts
KR20220134548A (en) Methods for reducing or preventing corrosion or contamination caused by acidic compounds
TWI834788B (en) Differential pressure elimination method and differential pressure elimination agent for distillation tower
SA516371525B1 (en) Methods and systems for the removal of heavy hydrocarbons
CA1306759C (en) Process for removing contaminants from dialkyl ethers of polyalkylene glycols
JPS6221561B2 (en)
CN108929187A (en) A method of the separation of extractive distillation target product from hydrocarbon mixture
JP6648814B1 (en) How to eliminate the pressure difference in the distillation column
RU2818674C2 (en) Method of eliminating pressure drop in distillation column
US11479731B2 (en) Process for removing sulfur in crude oil using microwaves
KR20110067862A (en) Method for separating and recovering phosphoric acid from mixing acid waste of acetic acid-nitric acid-phosphoric acid
Mohammadi et al. Treatment of Petrochemical Pyrolysis Gasoline (PG) Using Novel Eco-friendly Choline Chloride-based Deep Eutectic Solvents (DESs)
US20130306522A1 (en) Use of acid buffers as metal and amine removal aids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R150 Certificate of patent or registration of utility model

Ref document number: 6065138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250