JP2017170466A - Method for production of weld structure - Google Patents

Method for production of weld structure Download PDF

Info

Publication number
JP2017170466A
JP2017170466A JP2016057836A JP2016057836A JP2017170466A JP 2017170466 A JP2017170466 A JP 2017170466A JP 2016057836 A JP2016057836 A JP 2016057836A JP 2016057836 A JP2016057836 A JP 2016057836A JP 2017170466 A JP2017170466 A JP 2017170466A
Authority
JP
Japan
Prior art keywords
metal plate
welding
weld line
plate member
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016057836A
Other languages
Japanese (ja)
Other versions
JP6794641B2 (en
Inventor
庄太 菊池
Shota Kikuchi
庄太 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016057836A priority Critical patent/JP6794641B2/en
Publication of JP2017170466A publication Critical patent/JP2017170466A/en
Application granted granted Critical
Publication of JP6794641B2 publication Critical patent/JP6794641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for production of a weld structure hardly generating solidification crack even if a flange width is lessened compared to a spot weld structure in weld structure production including overlapping the flange of a metal plate member, for example a hat-shaped member, with the other metal plate member and then carrying out laser welding.SOLUTION: A method for production of a weld structure includes a process of laser-welding two or more metal plate members, and prior thereto, a process of forming a partial hardening part by applying a hardening treatment to a site of one side short in a distance from a weld line (region to be laser-welded) to the edge face of the metal plate member among the sites of one and the other sides of the metal plate member in the orthogonal direction of the weld line as a center.SELECTED DRAWING: Figure 3

Description

本発明は、溶接構造体の製造方法に関する。より具体的には、金属板部材の重ね合わせ部をレーザ溶接して得られる溶接構造体の製造方法に関する。なお、「金属板部材」とは、金属板から所定形状に成形加工及び/又は切り出しされた部材の意味で用いる。   The present invention relates to a method for manufacturing a welded structure. More specifically, the present invention relates to a method for manufacturing a welded structure obtained by laser welding an overlapping portion of metal plate members. The “metal plate member” is used to mean a member formed and / or cut into a predetermined shape from a metal plate.

自動車には、金属板(代表的には鋼板であり、以下では鋼板として説明する。)から製造される金属板部材の1態様である断面ハット型の長尺の部材(以下、単に「ハット型部材」という。)が数多く使用されている。このようなハット型部材は、通常フランジで他の金属板部材である鋼板部材(例えばクロージングプレートや他のハット型部材等)と重ね合わされて、その重ね合わせ部で接合される。この場合の接合手段として最も一般的に用いられている方法は、抵抗スポット溶接(以下、スポット溶接という。)である。
最近は、スポット溶接に代えてレーザ溶接を適用することで、ハット型部材のフランジ幅を狭くして部材を軽量化する検討がなされている。具体的には次の通りである。
In an automobile, a long member having a cross-sectional hat shape (hereinafter simply referred to as a “hat type”), which is one embodiment of a metal plate member manufactured from a metal plate (typically, a steel plate and will be described below as a steel plate). A number of "members" are used. Such a hat-shaped member is usually overlapped with a steel plate member (for example, a closing plate or another hat-shaped member) that is another metal plate member by a flange, and is joined at the overlapping portion. The most commonly used method for joining in this case is resistance spot welding (hereinafter referred to as spot welding).
Recently, studies have been made to reduce the weight of the member by narrowing the flange width of the hat-shaped member by applying laser welding instead of spot welding. Specifically, it is as follows.

スポット溶接では、溶接部を電極で狭持及び加圧する必要がある。また溶接位置がフランジの端面に寄り過ぎると、溶融した金属の飛散(チリ)が発生する。そのため、スポット溶接ではフランジの幅を15mm〜20mm程度の大きさで確保する必要があり、重量の増加となってしまう。
これに対してレーザ溶接によれば、スポット溶接のように加圧する必要はなく、溶融幅も1mm程度に抑えることができる。そのためレーザ溶接では、フランジの幅を例えば5mm〜10mm程度のように狭くできる可能性がある。
In spot welding, it is necessary to sandwich and pressurize the welded portion with an electrode. Further, if the welding position is too close to the end face of the flange, the molten metal is scattered (chile). Therefore, in spot welding, it is necessary to secure the width of the flange with a size of about 15 mm to 20 mm, which increases the weight.
On the other hand, according to laser welding, it is not necessary to apply pressure unlike spot welding, and the melt width can be suppressed to about 1 mm. Therefore, in laser welding, there is a possibility that the width of the flange can be reduced to, for example, about 5 mm to 10 mm.

しかしながら一般に、フランジの端面近く(概ね端面から10mm未満の領域)にレーザ溶接をすると、溶接線の凝固割れが発生するおそれが高くなる。従って、フランジの幅を短くしても凝固割れが発生しない溶接方法が求められている。
例えば「安藤弘平ら、「回転変形による高温割れの発生進展機構と高温割れ感受性の評価方法−薄板アルミニウム合金の高温割れ現象(第2報)−」、溶接学会誌、第42巻、第9号、pp.37−47(1973)」等によれば、溶接時の凝固割れは、溶融した金属が凝固する過程において、固相と液相が共存する延性が低下した部分である凝固脆性温度領域(Brittleness Temperature Range(BTR))内において、溶融熱で鋼板端部(ハット型部材では、フランジ)が変形することにより生じるひずみの増分が、割れ発生に要するひずみ(以下、「限界ひずみ」という)を超えることで生じると考えられる。
However, generally, when laser welding is performed near the end face of the flange (generally, an area less than 10 mm from the end face), there is a high risk of solidification cracking in the weld line. Accordingly, there is a need for a welding method that does not cause solidification cracks even when the flange width is shortened.
For example, “Hirohira Ando,“ Evaluation Method for Hot Cracking Progression Mechanism and Hot Cracking Susceptibility by Rotational Deformation-Hot Cracking Phenomenon of Thin Aluminum Alloy (2nd Report) ”, Journal of the Japan Welding Society, Vol. Pp. 37-47 (1973) "indicates that solidification cracking during welding is a solidification brittle temperature region (Brittens Temperature region) in which the ductility in which a solid phase and a liquid phase coexist is reduced in the process of melting a molten metal. In the Range (BTR)), the increase in strain caused by the deformation of the steel plate edge (in the case of a hat-shaped member) by the heat of fusion exceeds the strain required for cracking (hereinafter referred to as “limit strain”). It is thought that it occurs in.

これを鑑みると、凝固割れの防止方法として、溶接金属の成分適正化によるBTRの縮小や限界ひずみの制御による材料的アプローチ、及び鋼板端部に発生するひずみの抑制による力学的アプローチが挙げられる。 In view of this, as a method for preventing solidification cracking, there are a material approach by reducing the BTR and controlling the limit strain by optimizing the components of the weld metal, and a mechanical approach by suppressing the strain generated at the end of the steel plate.

材料的アプローチのひとつとして、溶接金属の成分適正化によるBTRの縮小が考えられる。溶接金属の成分適正化によるBTRの縮小は、具体的には、一般に凝固割れに影響を与える因子の1つであるとされる液相−固相間の凝固温度幅に基づいており、Feに対する2元系を対象に、少量の添加でも凝固温度幅を広げる元素であるC、P、Sなどの溶接金属中の量を限定するものである(例えば、特許文献1や特許文献2)。しかし特許文献3において、スポット径が0.6mmであるレーザ溶接の限界まで、フランジ端部からの距離を小さくした場合(距離の最小値1.5mm)、上記特許文献1、特許文献2の金属の組成であっても凝固割れが発生すると記載されており、十分であるとはいえない。   One possible material approach is to reduce the BTR by optimizing the components of the weld metal. Specifically, the reduction in BTR by optimizing the composition of the weld metal is based on the solidification temperature range between the liquid phase and the solid phase, which is generally considered to be one of the factors affecting solidification cracking. For binary systems, the amount in the weld metal such as C, P, and S, which is an element that widens the solidification temperature range even with a small amount of addition, is limited (for example, Patent Document 1 and Patent Document 2). However, in Patent Document 3, when the distance from the flange end is reduced to the limit of laser welding where the spot diameter is 0.6 mm (minimum value of distance 1.5 mm), the metal of Patent Document 1 and Patent Document 2 above. Even if it is composition of this, it is described that the solidification crack generate | occur | produces, It cannot be said that it is enough.

材料的アプローチのもうひとつとして限界ひずみの制御がある。限界ひずみの制御は、溶接金属の成分適正化により限界ひずみを大きくして、発生するひずみ増分量が不変でも凝固割れが発生しないようにする。その事例として、特許文献3(レーザ溶接方法及びレーザ溶接継手)で示されている方法が挙げられ、溶接金属の成分適正化により等軸晶率を制御して凝固割れを防止する。具体的には、等軸晶の核となる窒化チタン(TiN)を生成させるためにTi、N、Si等を活用している。しかしながら、この技術ではTiの使用などによる材料コスト増の可能性があったり、他の性能との関係で限界があったりする。   Another material approach is the control of critical strain. The limit strain is controlled by increasing the limit strain by optimizing the components of the weld metal so that solidification cracks do not occur even if the generated strain increment remains unchanged. An example of this is the method shown in Patent Document 3 (laser welding method and laser welded joint), which controls the equiaxed crystal ratio by optimizing the components of the weld metal to prevent solidification cracking. Specifically, Ti, N, Si, or the like is utilized to generate titanium nitride (TiN) that becomes the nucleus of equiaxed crystals. However, with this technique, there is a possibility of an increase in material cost due to the use of Ti or the like, and there is a limit in relation to other performance.

そこで次に力学的なアプローチとして発生するひずみの抑制が考えられる。発生するひずみの抑制については、いくつかの方法が提案されている。
第一に冶具による拘束が挙げられる。例えば、特許文献4には溶接金属の組成が割れを発生し得る場合に、レーザ光の照射位置の近傍の鋼板端部にプレートを押し当て、鋼板端部の膨張を抑制しながら溶接することにより凝固割れを防止する発明が開示されている。しかしこの発明は、鋼板端部の膨張を抑制する装置を溶接の際に配置する必要があり、小さな部材や複雑な形状の部材の溶接線には用いることができないとともに、溶接の作業工数が増加し煩雑な作業となってしまう。
Then, suppression of the generated strain can be considered as a mechanical approach. Several methods have been proposed for suppressing the generated strain.
First, there is a restraint by a jig. For example, in Patent Document 4, when the composition of the weld metal can cause cracking, the plate is pressed against the steel plate end near the irradiation position of the laser beam, and welding is performed while suppressing the expansion of the steel plate end. An invention for preventing solidification cracking is disclosed. However, the present invention requires a device for suppressing the expansion of the steel plate end portion during welding, and cannot be used for welding lines of small members or members of complicated shapes, and increases the number of welding work steps. However, it becomes a complicated work.

第二に、溶接条件(入熱量、溶接速度)や剛性(板厚、溶接線のフランジ端からの距離など)の調整によってひずみを抑制する方法が挙げられる。例えば、特許文献5では、凝固割れの発生有無は、端部からの距離(L)、溶接速度(V)、板厚(h)に依存していると説明している。しかしフランジ幅が小さい場合、溶接速度を大きくすることができず、その解決策も提示されていない。   Secondly, there is a method of suppressing distortion by adjusting welding conditions (amount of heat input, welding speed) and rigidity (plate thickness, distance from the flange end of the weld line, etc.). For example, Patent Document 5 describes that the presence or absence of solidification cracking depends on the distance (L) from the end, the welding speed (V), and the plate thickness (h). However, when the flange width is small, the welding speed cannot be increased, and no solution has been proposed.

第三に、特許文献6で提案されているフランジ端面を冷却する方法が挙げられる。ここでは、母材側と、母材側に対し高い温度となる端面側との熱膨張量差に起因して生じるひずみによって割れが発生すると考えている。この方法は、抜熱しにくい条件(例えば、フランジ端が短く、かつ溶接速度が遅い場合)において特に有効だと考えられる。ところが一方で、フランジ端面を冷却すると溶接線の位置との温度差が大きくなり回転変形の駆動力が大きくなることで、溶接条件によってはひずみが大きくなり割れ発生を助長することも考えられる。また溶接速度が速い場合は、速度が遅い場合に比べて抜熱しやすく冷却の効果は小さくなると考えられる。またこの方法でも冷却装置の配置に留意しなければならず、作業工数が増加する虞がある。   Thirdly, there is a method of cooling the flange end face proposed in Patent Document 6. Here, it is considered that cracking occurs due to strain generated due to a difference in thermal expansion between the base material side and the end face side at a higher temperature than the base material side. This method is considered to be particularly effective in conditions where heat removal is difficult (for example, when the flange end is short and the welding speed is low). On the other hand, if the flange end face is cooled, the temperature difference from the position of the weld line is increased and the driving force for rotational deformation is increased, so that depending on the welding conditions, distortion may be increased and cracking may be promoted. Further, when the welding speed is high, it is considered that heat is easily removed compared with the case where the speed is low, and the cooling effect is considered to be small. Also in this method, attention must be paid to the arrangement of the cooling device, which may increase the number of work steps.

特開2007−229740号公報JP 2007-229740 A 特開2009−255134号公報JP 2009-255134 A 特開2013−128938号公報JP 2013-128938 A 特開2008−18450号公報JP 2008-18450 A 特開2009−285722号公報JP 2009-285722 A 特開2009−56483号公報JP 2009-56483 A

上記のように、溶接時の凝固割れは、溶融した金属が凝固する過程において、固相と液相が共存する延性が低下した部分であるBTRに、溶融熱により鋼板端部が変形することにより発生するひずみが加わって発生する。そのBTR内で生じるひずみ増分量がある閾値を超えたとき凝固割れが発生すると考えられ、ハット型パネルのフランジ部レーザ溶接において、BTR内のひずみ増分量に影響を与える主因子として以下の2つが挙げられる。   As described above, solidification cracking at the time of welding is caused by deformation of the end of the steel sheet due to heat of fusion in the BTR where the ductility in which the solid phase and the liquid phase coexist is reduced in the process of melting the molten metal. Generated by adding strain. It is considered that solidification cracking occurs when the strain increment generated in the BTR exceeds a certain threshold. In the flange-type laser welding of a hat-type panel, the following two main factors affecting the strain increment in the BTR are as follows. Can be mentioned.

(1)フランジ幅(溶接位置のフランジ端からの距離)の大きさ等で決定される部材剛性(あるいは回転曲げに対する抵抗力):
フランジ幅が大きく、溶接位置がフランジ端からの距離が大きいほど、回転曲げに対する剛性(あるいは回転曲げに対する抵抗力)が高く、変形・ひずみは抑制される。すなわち、同一溶接条件下において板幅のみを大きくすると、変形に対する剛性が増加するため溶接熱による試片の回転変形量が減少する。しかしながら、単にフランジ幅を大きくするのでは部材の軽量化には反する。
(1) Member rigidity (or resistance to rotational bending) determined by the size of the flange width (distance from the flange end of the welding position), etc .:
The greater the flange width and the greater the distance from the flange end to the welding position, the higher the rigidity against rotation bending (or resistance to rotation bending), and the more the deformation / strain is suppressed. That is, if only the plate width is increased under the same welding conditions, the rigidity against deformation increases, so the amount of rotational deformation of the specimen due to welding heat decreases. However, simply increasing the flange width is against the weight reduction of the member.

(2)入熱による板幅方向の温度分布:
溶接線の不均一な温度上昇に伴う不均一な熱膨張が、回転変形の駆動力となる。板幅方向に温度分布の不均一があるとき、回転変形の駆動力が働くことはよく知られている(安藤弘平、仲田周次「加熱による矩形板の変形についての一計算」、溶接学会全国大会講演概要第10集、p.305、昭和47年)が、この回転変形を抑えることで、ひずみ増分量は抑制できると考えられる。
すなわち、図6(a)に示すように板1のAからBへ溶接を行うと、板幅方向に不均一な温度分布を生じるため、板1は溶融池Yより前方点Pを支点として矢印Cの方向に回転変形を生じる。溶接線の脆化領域の強度はきわめて小さいため、脆化領域部分の溶接金属はこの回転変形をほとんど抑制できない。この回転変形によって脆化領域部分に加えられるひずみ量が限界ひずみ量を超えるとき割れが発生する。その後溶接が進行すると、図6(b)に示すように溶融池Yも進行し、回転変形の支点もそれに追随して点P’に移動する。このとき、温度分布が準定常状態にあると、脆化領域部に加えられるひずみ量は時間的に一定と考えられ、この場合割れは図6(b)に示すように溶接線に沿って進展する。
一方、溶接速度が遅い場合は、板幅方向の温度分布は均一化しやすくなり回転変形の駆動力は小さくなる。しかし、単に溶接速度を下げるのでは、部材の生産性が悪くなり、板幅を小さくするのでは、剛性が落ちるため発生するひずみを抑制できず凝固割れが発生する可能性が高くなる。
(2) Temperature distribution in the plate width direction due to heat input:
The non-uniform thermal expansion accompanying the non-uniform temperature rise of the weld line becomes the driving force for rotational deformation. It is well known that the driving force of rotational deformation works when there is uneven temperature distribution in the width direction of the plate (Kohei Ando, Shuji Nakata "Calculation on deformation of rectangular plate by heating", National Welding Society) It is considered that the strain increment can be suppressed by suppressing this rotational deformation, according to the 10th Annual Conference Outline, p.305 (Showa 47).
That is, when welding from A to B of the plate 1 as shown in FIG. 6 (a), a non-uniform temperature distribution is generated in the plate width direction. Rotational deformation occurs in the direction of C. Since the strength of the embrittled region of the weld line is extremely small, the weld metal in the embrittled region part can hardly suppress this rotational deformation. Cracks occur when the amount of strain applied to the embrittled region due to this rotational deformation exceeds the limit strain. When welding proceeds thereafter, the weld pool Y also advances as shown in FIG. 6B, and the fulcrum of the rotational deformation follows the same and moves to the point P ′. At this time, if the temperature distribution is in a quasi-steady state, the amount of strain applied to the embrittled region is considered to be constant over time, and in this case, cracks propagate along the weld line as shown in FIG. To do.
On the other hand, when the welding speed is low, the temperature distribution in the plate width direction is easily uniformized, and the driving force for rotational deformation becomes small. However, if the welding speed is simply lowered, the productivity of the member is deteriorated, and if the plate width is reduced, the rigidity is lowered, so that the generated strain cannot be suppressed and the possibility of occurrence of solidification cracks increases.

そこで本発明は、上記問題に鑑み、金属板部材、例えばハット型部材のフランジを他の金属板部材と重ね合わせてレーザ溶接する溶接構造体を製造するにあたり、スポット溶接に比べてフランジ幅を小さくしても凝固割れが発生し難い溶接構造体の製造方法を提供することを課題とする。   Therefore, in view of the above problems, the present invention reduces the flange width in comparison with spot welding when manufacturing a welded structure in which a metal plate member, for example, a flange of a hat-shaped member is overlapped with another metal plate member for laser welding. It is an object of the present invention to provide a method for manufacturing a welded structure that hardly causes solidification cracks.

本発明の1つの態様は、2以上の金属板部材をレーザ溶接する工程と、レーザ溶接する工程の前に、レーザ溶接される部位を溶接線としたときに、溶接線を中心として、溶接線の直交方向における金属板部材の一方側と他方側の部位のうち、溶接線から金属板部材の端面までの距離が短い一方側の部位に焼き入れ処理を施して部分焼入れ部を形成する工程と、を有する、溶接構造体の製造方法である。   One aspect of the present invention is a welding line centered on a weld line when a laser welded part is a weld line before the laser welding process of laser welding two or more metal plate members. A step of forming a partially quenched portion by performing a quenching process on one side portion of the metal plate member in one direction and the other side of the metal plate member in a direction perpendicular to each other, where the distance from the welding line to the end surface of the metal plate member is short. The manufacturing method of the welding structure which has these.

上記溶接構造体の製造方法では、レーザ溶接する工程において、2以上の金属板部材を重ね合わせて当該重ね合わせ部でレーザ溶接することができる。   In the method for manufacturing a welded structure, in the laser welding step, two or more metal plate members can be overlapped and laser welded at the overlapped portion.

上記溶接構造体の製造方法では、部分焼入れ部の降伏応力が、焼き入れ処理を施さない部位の降伏応力よも250Mpa以上高くすることができる。   In the manufacturing method of the welded structure, the yield stress of the partially quenched portion can be higher than the yield stress of the portion not subjected to the quenching process by 250 Mpa or more.

上記溶接構造体の製造方法では、溶接線と金属板部材の端面の間のうち、部分焼入れ部を含んだ側において、溶接線と金属板部材の端面との間の距離のうち、60%以上の領域に焼入れ処理を施すことができる。   In the manufacturing method of the welded structure, 60% or more of the distance between the weld line and the end face of the metal plate member on the side including the partially quenched portion among the weld line and the end face of the metal plate member. Quenching treatment can be applied to the area.

上記溶接構造体の製造方法では、溶接線と金属板部材の端面の間のうち、部分焼入れ部を含んだ側において、溶接線と端面との間の距離が8mm以内とすることができる。   In the method for manufacturing a welded structure, the distance between the weld line and the end surface can be within 8 mm on the side including the partially quenched portion between the weld line and the end surface of the metal plate member.

上記溶接構造体の製造方法では、金属板部材の厚さが0.5mm以上3.2mm以下としてもよい。   In the manufacturing method of the welded structure, the thickness of the metal plate member may be 0.5 mm or more and 3.2 mm or less.

本発明によれば、金属板部材、例えばハット型部材のフランジを他の金属板部材と重ね合わせてレーザ溶接した溶接構造体を製造するにあたり、スポット溶接に比べてフランジ幅を小さくしても、凝固割れの発生を抑制することができる。   According to the present invention, in manufacturing a welded structure in which a metal plate member, for example, a flange of a hat-shaped member is overlapped with another metal plate member and laser-welded, even if the flange width is reduced compared to spot welding, The occurrence of solidification cracks can be suppressed.

ハット型溶接構造体10の概要を示す外観斜視図である。1 is an external perspective view showing an outline of a hat-type welded structure 10. FIG. フランジ11c及び溶接線13の一部を拡大して表した図である。It is the figure which expanded and represented a part of flange 11c and the welding line 13. FIG. 溶接方法の過程の一場面を説明する図である。It is a figure explaining one scene of the process of a welding method. 溶接の一場面を説明する図である。It is a figure explaining one scene of welding. 実施例による評価方法を説明する図である。It is a figure explaining the evaluation method by an Example. 図6(a)は凝固割れ発生のメカニズムを模式的に示す1つの説明図、図6(b)は凝固割れ発生のメカニズムを模式的に示す他の説明図である。FIG. 6A is one explanatory diagram schematically showing the mechanism of solidification cracking, and FIG. 6B is another explanatory diagram schematically showing the mechanism of solidification cracking.

図1は本形態の溶接構造体の製造方法により得られる溶接構造体の一形態であるハット型溶接構造体10の外観を表す斜視図である。図2はフランジ11cの一部を拡大して表した図である。図1、図2には幅方向、長手方向、及び高さ方向が必要に応じて併せて示してある。   FIG. 1 is a perspective view showing the appearance of a hat-type welded structure 10 which is one form of a welded structure obtained by the method for manufacturing a welded structure of the present embodiment. FIG. 2 is an enlarged view of a part of the flange 11c. In FIG. 1 and FIG. 2, the width direction, the longitudinal direction, and the height direction are shown together as necessary.

ハット型溶接構造体10は、ハット型部材11及びクロージングプレート12を有して構成されている。
ハット型部材11は、鋼板から形成されており金属板部材の1つである。ハット型部材11は、その長手方向に直交する断面においてウェブ片11a、ウェブ片11aの両端から延びる壁片11b、及び壁片11bの端部に設けられるフランジ11cを有していわゆるハット型に形成されている。そしてフランジ11cには、その幅方向端部に、部分的に焼入れされた部位である部分焼入れ部11dが配置されている(図2ではハッチングで示している部分。)。
The hat-type welded structure 10 includes a hat-type member 11 and a closing plate 12.
The hat-shaped member 11 is formed of a steel plate and is one of metal plate members. The hat-shaped member 11 has a web piece 11a, a wall piece 11b extending from both ends of the web piece 11a, and a flange 11c provided at the end of the wall piece 11b in a cross section orthogonal to the longitudinal direction, and is formed into a so-called hat shape. Has been. In the flange 11c, a partially quenched portion 11d, which is a partially quenched portion, is disposed at the end in the width direction (the portion indicated by hatching in FIG. 2).

部分焼入れ部11dは、部分焼入れをしない部分に比べて降伏応力が250MPa以上高いことが好ましい。これにより本発明による効果をより確実なものとすることができる。また降伏応力の増大は大きいほど効果が高まるのでその上限は特に限定されることはないが、例えば、1500MPaや1000MPaとすることができる。
また、部分焼入れ部11dは、後述する溶接線13からフランジ11cの端部までの幅方向距離(図2のIIaの大きさ)を100%としたとき、部分焼入れ部11dがそのうちの60%以上100%以下の範囲で占めることが好ましい。
ここで部分焼入れ部の降伏応力は、部材から試験片を採取して計測することができる。試験片のサイズはJIS Z 2201に準拠するものとし、試験はJIS Z 2241に準拠して行う。試験は、3回行いその降伏応力の平均値を用いるものとする。ただし、部材から3回分の試験片を採取できない場合は、1回の値または2回の値の平均値を用いてもよい。
The partially quenched portion 11d preferably has a yield stress higher by 250 MPa or more than the portion that is not partially quenched. Thereby, the effect by this invention can be made more reliable. Further, since the effect increases as the increase in yield stress increases, the upper limit is not particularly limited, but can be set to, for example, 1500 MPa or 1000 MPa.
Further, the partially quenched portion 11d has 60% or more of the partially quenched portion 11d when the distance in the width direction (the size of IIa in FIG. 2) from a weld line 13 to be described later to the end of the flange 11c is 100%. It is preferable to occupy in the range of 100% or less.
Here, the yield stress of the partially quenched portion can be measured by collecting a test piece from the member. The size of the test piece shall comply with JIS Z 2201, and the test shall be performed according to JIS Z 2241. The test is performed three times and the average value of the yield stress is used. However, when the test piece for 3 times cannot be extract | collected from a member, you may use the average value of 1 value or 2 times.

ハット型部材11は、実際の用途に応じて、長手方向にまっすぐである場合もあれば、カーブしていたり、断面が拡がったり狭まったりしている等の場合もある。   Depending on the actual application, the hat-shaped member 11 may be straight in the longitudinal direction, or may be curved, or the cross-section may be widened or narrowed.

一方、クロージングプレート12は、金属板部材の1つであり、上記部分焼入れ部11dに重なるような略平滑な鋼板である。またクロージングプレート12の幅方向端部もハット型部材11の例に倣って、幅方向端部が部分焼入れ部11dの一部とされていることが好ましい。   On the other hand, the closing plate 12 is one of metal plate members, and is a substantially smooth steel plate that overlaps the partially quenched portion 11d. Further, it is preferable that the width direction end portion of the closing plate 12 is also a part of the partially quenched portion 11d, following the example of the hat-shaped member 11.

そして、ハット型部材11のうち2つのフランジ11c間を渡し、ハット型部材11の部分焼入れ部11dに重なるようにクロージングプレート12が配置され、該クロージングプレート12とフランジ11cとが重ねられている。当該重なった部分のうち、部分焼入れ部11dよりも内側(端面とは反対側)に溶接線13が設けられており、該溶接線13で両者が接合されている。本形態で溶接線13は、フランジ11c及びクロージングプレート12を板厚方向に貫通した貫通溶接による溶接線とされている。
溶接線13はレーザ溶接により形成されており、フランジ11cの長手方向に沿って延びている。本発明は溶接線13を形成するための溶接方法において、図2にIIaで示したフランジ11cの端部から溶接線13までの距離を従来のレーザ溶接に対して短くしつつ速い速度で溶接しても割れを抑制することができ、その結果、図2にIIbで示したフランジ11cの幅をスポット溶接の場合よりも小さくすることが可能となる。特に限定されることはないが、図2に示したようにフランジ11cの幅IIbを15mm以下にすることができる。また、図2にIIaで示した、溶接線13と端面との距離を8mm以下にすることも可能であり、より好ましくは3mm以下にすることも可能である。
And the closing plate 12 is arrange | positioned so that it may pass between the two flanges 11c among the hat type members 11, and may overlap with the partial hardening part 11d of the hat type member 11, and this closing plate 12 and the flange 11c are piled up. Among the overlapped portions, a weld line 13 is provided on the inner side (opposite to the end face) of the partially quenched portion 11d, and both are joined by the weld line 13. In this embodiment, the weld line 13 is a weld line by penetration welding that penetrates the flange 11c and the closing plate 12 in the plate thickness direction.
The weld line 13 is formed by laser welding and extends along the longitudinal direction of the flange 11c. The present invention is a welding method for forming the weld line 13, and welding is performed at a high speed while shortening the distance from the end of the flange 11c shown by IIa in FIG. 2 to the weld line 13 as compared with the conventional laser welding. However, cracking can be suppressed, and as a result, the width of the flange 11c shown by IIb in FIG. 2 can be made smaller than in the case of spot welding. Although not particularly limited, as shown in FIG. 2, the width IIb of the flange 11c can be set to 15 mm or less. In addition, the distance between the weld line 13 and the end surface shown by IIa in FIG. 2 can be 8 mm or less, more preferably 3 mm or less.

ここで、ハット型部材11に使用される鋼板は特に限定されるものではなく、重ね合わせてレーザ溶接できる程度の組成、板厚であれば特に制限はない。例えば0.5mm以上3.2mm以下の厚さであることが好ましい。また、表面に亜鉛系めっきやアルミニウム系めっき等公知のめっき層を備えていてもよい。また、鋼板ではなく、例えばアルミニウム合金板等の別の金属板を使用することもできる。
また、ハット型部材11の形状は、実際の用途に応じて、長手方向にまっすぐであるものもあればカーブしているものもあり、あるいは断面形状が長手方向に変化しているものもあるが、本発明はそのいずれにも適用してよい。また、クロージングプレート12に代えて、他のハット型部材やその他の形状の金属板部材と溶接してもよい。あるいは、3つ以上の金属板部材を重ね合わせて溶接されるような溶接構造体にも適用できる。
Here, the steel plate used for the hat-shaped member 11 is not particularly limited, and is not particularly limited as long as it has a composition and a thickness that can be overlapped and laser-welded. For example, the thickness is preferably 0.5 mm or more and 3.2 mm or less. Moreover, you may equip the surface with well-known plating layers, such as zinc type plating and aluminum type plating. Further, instead of a steel plate, another metal plate such as an aluminum alloy plate can be used.
Depending on the actual application, the shape of the hat-shaped member 11 may be straight in the longitudinal direction, may be curved, or may have a cross-sectional shape changing in the longitudinal direction. The present invention may be applied to any of them. Moreover, it may replace with the closing plate 12 and may weld with another hat-type member and other shape metal plate members. Or it is applicable also to the welding structure which piles up and welds three or more metal plate members.

次に上記のようなハット型溶接構造体10は例えばつぎのように作製することができる。図3に説明のための図を示した。図3は図1と同じ視点による図で、幅方向、長手方向、及び高さ方向が併せて示してある。   Next, the hat-type welded structure 10 as described above can be manufactured, for example, as follows. FIG. 3 shows an explanatory diagram. FIG. 3 is a view from the same viewpoint as FIG. 1, and shows the width direction, the longitudinal direction, and the height direction together.

初めに溶接用ハット型部材11’を準備する。溶接用ハット型部材11’は上記したハット型部材11に対して、まだ溶接線13が形成されていない部材である。ここで溶接用ハット型部材11’には部分焼入れ部11dが形成されている。
部分焼入れ部11dの形成は、部分的な焼入れ処理をすることにより行うことができる。具体的には浸炭焼入れや高周波焼入れ等、加熱と冷却を含む処理によって材料の組織の変態を生じさせて、強度を高く(硬度を高く)する処理である。加熱温度は強度差が所定の値以上となるように適宜設定すればよいが、金属板が鋼の場合は、Ac3点以上まで加熱し、マルテンサイトが析出する冷却速度とすることが好ましい。
First, a hat-shaped member 11 ′ for welding is prepared. The welding hat-type member 11 ′ is a member on which the weld line 13 is not yet formed with respect to the hat-type member 11 described above. Here, a partially quenched portion 11d is formed on the welding hat-shaped member 11 ′.
The partially quenched portion 11d can be formed by performing a partial quenching process. Specifically, it is a process of increasing strength (increasing hardness) by causing transformation of the structure of the material by a process including heating and cooling, such as carburizing and induction hardening. The heating temperature may be set as appropriate so that the strength difference is equal to or greater than a predetermined value. However, when the metal plate is steel, it is preferable to heat up to Ac3 point or higher so that martensite precipitates.

以上のような溶接用ハット型部材11’に対して、図3に示したように溶接用ハット型パネル11’のうち2つのフランジ11c間を渡すようにクロージングプレート12が配置され、該クロージングプレート12とフランジ11cが重ねられ、これにより部分焼入れ部11dとクロージングプレート12の端部(本形態ではクロージングプレート12の端部で部分焼入れが行われた部分)とが重ねられる。   As shown in FIG. 3, the closing plate 12 is disposed so as to pass between the two flanges 11c of the welding hat panel 11 ′ as shown in FIG. 12 and the flange 11c are overlapped, whereby the partially quenched portion 11d and the end of the closing plate 12 (in this embodiment, the portion that has been partially quenched at the end of the closing plate 12) are overlapped.

次に、図4に示したように、フランジ11c及びここに重ねられたクロージングプレート12をその板厚方向に貫通するように溶接する。すなわち、レーザを照射して、当該照射した部位を図4に矢印IVaで示したように長手方向に移動させて溶接を行う。溶接をする装置としては、公知のレーザ溶接装置を挙げることができる。レーザの種類は通常に鋼板のレーザ溶接に用いられるレーザであれば、特に限定されることはなく、これには例えばCOレーザ、YAGレーザ、ファイバーレーザなどがある。なお、レーザ溶接におけるスポット径(レーザの鋼板への照射径)も特に限定されないが、0.5mm以上1.0mm以下が好ましく、得られる溶接線幅は約1mmであることが通常である。 Next, as shown in FIG. 4, the flange 11c and the closing plate 12 stacked on the flange 11c are welded so as to penetrate in the thickness direction. That is, laser irradiation is performed, and the irradiated portion is moved in the longitudinal direction as indicated by an arrow IVa in FIG. 4 to perform welding. A known laser welding apparatus can be used as an apparatus for welding. The type of laser is not particularly limited as long as it is a laser that is usually used for laser welding of a steel plate, and examples thereof include a CO 2 laser, a YAG laser, and a fiber laser. In addition, the spot diameter (laser irradiation diameter of the steel plate) in laser welding is not particularly limited, but is preferably 0.5 mm or more and 1.0 mm or less, and the obtained weld line width is usually about 1 mm.

以上のような溶接方法であれば、鋼板の回転変形を抑制することができ、鋼板を拘束したり治具を接触させたりする必要がないため容易に溶接を行える。さらには、例えば端面からの距離が小さい部位において溶接速度を大きくしても凝固割れを抑制することもできる。   With the above welding method, the rotational deformation of the steel sheet can be suppressed, and it is not necessary to restrain the steel sheet or to contact the jig, so that welding can be easily performed. Further, for example, solidification cracking can be suppressed even when the welding speed is increased at a portion where the distance from the end face is small.

なお、本形態ではハット型溶接構造体であったため、溶接線13を挟んでフランジ11cの端部とは反対側には壁片11bが形成されており、これが部分焼入れ部11dと同様の機能(鋼板の回転変形を抑制)をする。従って、ハット型溶接構造体でない形態、又はハット型溶接構造体であっても、場合によっては溶接線を挟んでその両方の端部に部分焼入れ部を設けてもよい。ただしこれに限らず、溶接線で区切られる一方及び他方の部位のうち、少なくとも端面までの距離が短い側の部位の端部に部分焼入れ部が形成されていればよい。   In this embodiment, since it is a hat-type welded structure, a wall piece 11b is formed on the opposite side of the end of the flange 11c across the weld line 13, and this has the same function as the partially quenched portion 11d ( Suppresses rotational deformation of the steel sheet). Therefore, even if it is a form which is not a hat-type welded structure or a hat-type welded structure, a partially quenched portion may be provided at both ends of the weld line depending on circumstances. However, the present invention is not limited to this, and it is only necessary that a partially quenched portion is formed at the end portion of the portion on the side where the distance to the end face is short among the one and the other portions separated by the weld line.

これ以外の本発明の形態としては、凝固割れが防止できる範囲で、重ね合わせ端部において全ての部材に対して部分焼入れ部が形成されている必要は必ずしもない。例えば、重ね合わされる一方の金属板部材の幅が十分に広い場合や、凝固割れを生じにくい鋼成分である場合等が想定される。   As a form of the present invention other than this, it is not always necessary that the partially quenched portions are formed for all the members at the overlapping end portion within a range in which solidification cracking can be prevented. For example, the case where the width | variety of one metal plate member overlaid is sufficiently wide, or the case where it is a steel component which hardly produces a solidification crack, etc. are assumed.

実施例では、シミュレーションにより通常の溶接方法で凝固割れが発生する条件に対して、部分焼入れ部を設けた条件を用いて、凝固割れの発生の有無について評価を行った。本実施例は1枚の鋼板に対してレーザを照射するモデルで評価を行ったので厳密には溶接とは異なるが、この評価は複数の金属板部材を重ねた際の溶接に対しても展開することが可能である。実施例では図5に表したように、1300MPa級のホットスタンプ材について、1枚の1mm厚の鋼板モデル30に対して部分焼入れ部として後に説明するように他の平坦部とは異なる特性を適用した。そしてレーザ溶接のレーザ光照射を想定した加熱部への入熱が通過した部位に凝固割れが発生するか否かを評価した。   In the examples, the presence / absence of solidification cracks was evaluated using the conditions in which a partially quenched portion was provided against the conditions under which solidification cracks were generated by a normal welding method by simulation. Although this example was evaluated with a model that irradiates a single steel plate with a laser, strictly speaking, it differs from welding, but this evaluation also applies to welding when multiple metal plate members are stacked. Is possible. In the embodiment, as shown in FIG. 5, the characteristics different from those of other flat portions are applied to a 1300 MPa class hot stamp material as described later as a partially quenched portion with respect to one 1 mm thick steel plate model 30. did. Then, it was evaluated whether or not solidification cracking occurred at a site through which heat input to the heating portion assuming laser irradiation of laser welding passed.

入熱はレーザ溶接機から出射されるレーザを想定して、入熱量1100W、照射範囲の幅を2mmにした。入熱部分は鋼板モデル30の端面から3mmの位置を端面と平行に移動させた。移動速度は21mm/秒である。鋼板モデルの材料は1300MPa級ホットスタンプ材の物性値を用いた。
部分焼入れ部31は、図2に示した形状とし、他の部位に比べて端部から2mmの範囲とした。より詳細には、端部から2mm幅の領域ではマルテンサイト及びオーステナイトの組織の材料特性を適用した。一方、その他の部位についてはフェライト及びパーライトの組織の材料特性を適用した結果、部分焼入れ部の降伏応力が、焼入れ処理を施さない部位の降伏応力よりも約600(597)Mpa高くなった。
一方、比較例は実施例と同形状及び同じ条件による入熱としつつ、部分焼入れ部を形成しなかった。
The heat input was assumed to be a laser emitted from a laser welding machine, and the heat input was 1100 W and the width of the irradiation range was 2 mm. The heat input portion was moved 3 mm from the end face of the steel plate model 30 in parallel with the end face. The moving speed is 21 mm / sec. As the material of the steel plate model, the physical property values of a 1300 MPa class hot stamp material were used.
The partially quenched portion 31 has the shape shown in FIG. 2 and is in a range of 2 mm from the end compared to other portions. More specifically, the material properties of the martensite and austenite structures were applied in a region 2 mm wide from the end. On the other hand, as a result of applying the material properties of the structure of ferrite and pearlite to other portions, the yield stress of the partially quenched portion was about 600 (597) Mpa higher than the yield stress of the portion not subjected to the quenching treatment.
On the other hand, the comparative example did not form a partially-quenched portion while maintaining heat input with the same shape and the same conditions as the example.

その結果、比較例では加熱部が通過した部分に断続的な割れ(凝固割れ)が発生する結果となった。これに対して実施例では割れが発生しない結果を得ることができた。   As a result, in the comparative example, intermittent cracking (solidification cracking) occurred in the portion through which the heating unit passed. On the other hand, in the Example, the result that a crack did not generate | occur | produce was able to be obtained.

10 ハット型溶接構造体(溶接構造体)
11 ハット型部材(金属板部材)
11c フランジ
11d 部分焼入れ部
12 クロージングプレート(金属板部材)
13 溶接部
10 Hat-type welded structure (welded structure)
11 Hat-shaped member (metal plate member)
11c Flange 11d Partial quenching part 12 Closing plate (metal plate member)
13 Welded part

Claims (6)

2以上の金属板部材をレーザ溶接する工程と、
前記レーザ溶接する工程の前に、レーザ溶接される部位を溶接線としたときに、前記溶接線を中心として、前記溶接線の直交方向における前記金属板部材の一方側と他方側の部位のうち、前記溶接線から前記金属板部材の端面までの距離が短い一方側の部位に焼き入れ処理を施して部分焼入れ部を形成する工程と、を有する、溶接構造体の製造方法。
Laser welding two or more metal plate members;
Before the laser welding step, when the laser welded portion is a weld line, the one side and the other side of the metal plate member in the orthogonal direction of the weld line with the weld line as the center And a step of quenching a portion on one side where the distance from the weld line to the end face of the metal plate member is short to form a partially quenched portion.
前記レーザ溶接する工程において、前記2以上の金属板部材を重ね合わせて当該重ね合わせ部でレーザ溶接する、請求項1に記載の溶接構造体の製造方法。   The method for manufacturing a welded structure according to claim 1, wherein in the laser welding step, the two or more metal plate members are overlapped and laser welded at the overlapped portion. 前記部分焼入れ部の降伏応力が、焼き入れ処理を施さない部位の降伏応力よりも250Mpa以上高い、請求項1又は2に記載の溶接構造体の製造方法。   The method for manufacturing a welded structure according to claim 1 or 2, wherein a yield stress of the partially quenched portion is 250 Mpa or more higher than a yield stress of a portion not subjected to quenching treatment. 前記溶接線と前記金属板部材の端面の間のうち、前記部分焼入れ部を含んだ側において、
前記溶接線と前記金属板部材の端面との間の距離のうち、60%以上の領域に前記焼入れ処理を施す、請求項1から3のいずれかに記載の溶接構造体の製造方法。
Among the weld line and the end face of the metal plate member, on the side including the partially quenched portion,
The manufacturing method of the welding structure in any one of Claim 1 to 3 which performs the said hardening process to the area | region of 60% or more among the distances between the said weld line and the end surface of the said metal plate member.
前記溶接線と前記金属板部材の端面の間のうち、前記部分焼入れ部を含んだ側において、
前記溶接線と端面との間の距離が8mm以内である、請求項1から4のいずれかに記載の溶接構造体の製造方法。
Among the weld line and the end face of the metal plate member, on the side including the partially quenched portion,
The method for manufacturing a welded structure according to any one of claims 1 to 4, wherein a distance between the weld line and the end face is within 8 mm.
前記金属板部材の厚さが0.5mm以上3.2mm以下である、請求項1から5のいずれかに記載の溶接構造体の製造方法。   The manufacturing method of the welding structure in any one of Claim 1 to 5 whose thickness of the said metal plate member is 0.5 mm or more and 3.2 mm or less.
JP2016057836A 2016-03-23 2016-03-23 Welded structure manufacturing method Active JP6794641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016057836A JP6794641B2 (en) 2016-03-23 2016-03-23 Welded structure manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016057836A JP6794641B2 (en) 2016-03-23 2016-03-23 Welded structure manufacturing method

Publications (2)

Publication Number Publication Date
JP2017170466A true JP2017170466A (en) 2017-09-28
JP6794641B2 JP6794641B2 (en) 2020-12-02

Family

ID=59969900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016057836A Active JP6794641B2 (en) 2016-03-23 2016-03-23 Welded structure manufacturing method

Country Status (1)

Country Link
JP (1) JP6794641B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110541067A (en) * 2019-09-06 2019-12-06 鞍钢股份有限公司 Postweld heating process for preventing high-carbon equivalent vacuum super-thick composite blank welding seam from cracking
WO2020027285A1 (en) 2018-08-01 2020-02-06 住友重機械工業株式会社 Reinforcement member for vehicle, and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472010A (en) * 1990-07-09 1992-03-06 Toyota Motor Corp High strength pressing formed product
JPH07118876A (en) * 1993-10-27 1995-05-09 Kobe Steel Ltd High strength and high corrosion resistant galvanized steel sheet formed product
JP2005144504A (en) * 2003-11-17 2005-06-09 Nippon Steel Corp Lap laser welding method for galvanized steel sheet and welded joint of lap welded galvanized steel sheet
JP2015199111A (en) * 2014-04-10 2015-11-12 新日鐵住金株式会社 Manufacturing method of welded structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472010A (en) * 1990-07-09 1992-03-06 Toyota Motor Corp High strength pressing formed product
JPH07118876A (en) * 1993-10-27 1995-05-09 Kobe Steel Ltd High strength and high corrosion resistant galvanized steel sheet formed product
JP2005144504A (en) * 2003-11-17 2005-06-09 Nippon Steel Corp Lap laser welding method for galvanized steel sheet and welded joint of lap welded galvanized steel sheet
JP2015199111A (en) * 2014-04-10 2015-11-12 新日鐵住金株式会社 Manufacturing method of welded structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027285A1 (en) 2018-08-01 2020-02-06 住友重機械工業株式会社 Reinforcement member for vehicle, and method for manufacturing same
US11518325B2 (en) 2018-08-01 2022-12-06 Sumitomo Heavy Industries, Ltd. Reinforcement member for vehicle, and method for manufacturing same
CN110541067A (en) * 2019-09-06 2019-12-06 鞍钢股份有限公司 Postweld heating process for preventing high-carbon equivalent vacuum super-thick composite blank welding seam from cracking

Also Published As

Publication number Publication date
JP6794641B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6179605B2 (en) Lap welding method, lap joint, lap joint manufacturing method, and automotive parts
JP5967266B2 (en) Welding method of overlapped part, manufacturing method of lap welded member, lap welded member and automotive parts
JP6515299B2 (en) Fillet arc welded joint and method of manufacturing the same
KR102499123B1 (en) Method for bonding two blanks and obtained blanks and products
KR20140050690A (en) Hot-formed previously welded steel part with very high mechanical resistance, and production method
JP2019507013A (en) Reinforced structural components
WO2018061526A1 (en) Method of manufacturing laser welded joint, laser welded joint, and automotive frame component
JP2017189781A (en) Tailored blank compound
JP6379819B2 (en) Lap welding member, lap resistance seam welding method of lap welding member, and lap welding member for automobile having lap welding part
JP6635235B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint, and skeletal parts for automobile
JP2017170466A (en) Method for production of weld structure
JP6260421B2 (en) Manufacturing method of welded structure
KR102337605B1 (en) Method for manufacturing precoated steel sheet and related sheet
JP5369393B2 (en) Forming material welding method and laser welding apparatus using high-strength steel sheet, forming material, processing method and molded product obtained thereby
WO2018003341A1 (en) Laser welded joint and method for manufacturing laser welded joint
JP5527346B2 (en) Method of welding forming material using high-strength steel sheet, forming material and processing method and molded product obtained thereby
JP2010279991A (en) Method of lap-welding steel sheet by laser beam
JP6885523B2 (en) Manufacturing method of spot welded joints and spot welded joints
JP6539972B2 (en) Laser welding method of steel plate and manufacturing method of welded structure
JP2015205286A (en) Method for production of welded structure, and the welded structure
JP6409397B2 (en) Welded structure manufacturing method and welded structure
WO2019198725A1 (en) Spot welding joint, automobile frame part provided with spot welding joint, and method for producing spot welding joint
JP2009000697A (en) Laser beam welding method and laser welded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R151 Written notification of patent or utility model registration

Ref document number: 6794641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151