JP2017167847A - 運用計画案作成装置、運用計画案作成方法、プログラムおよび運用計画案作成システム - Google Patents

運用計画案作成装置、運用計画案作成方法、プログラムおよび運用計画案作成システム Download PDF

Info

Publication number
JP2017167847A
JP2017167847A JP2016052929A JP2016052929A JP2017167847A JP 2017167847 A JP2017167847 A JP 2017167847A JP 2016052929 A JP2016052929 A JP 2016052929A JP 2016052929 A JP2016052929 A JP 2016052929A JP 2017167847 A JP2017167847 A JP 2017167847A
Authority
JP
Japan
Prior art keywords
unit
building
model
target
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016052929A
Other languages
English (en)
Inventor
愛須 英之
Hideyuki Aisu
英之 愛須
幹人 岩政
Mikito Iwamasa
幹人 岩政
岳 石井
Takeshi Ishii
岳 石井
長野 伸一
Shinichi Nagano
伸一 長野
知史 大槻
Tomoshi Otsuki
知史 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016052929A priority Critical patent/JP2017167847A/ja
Priority to PCT/JP2016/087781 priority patent/WO2017158975A1/ja
Publication of JP2017167847A publication Critical patent/JP2017167847A/ja
Priority to US15/919,609 priority patent/US20180203961A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/206Drawing of charts or graphs

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】本発明の実施形態に係る運用計画案作成装置は、年月の経過に伴い性能が劣化する設備または機器に対する運用計画案を作成する。【解決手段】本発明の実施形態に係る運用計画案作成装置は、運用対象と類似するとされた計測対象である類似計測対象の計測値に基づき算出された、前記類似計測対象の性能の劣化モデルを取得する取得部と、前記類似計測対象の性能の劣化モデルと、前記運用対象に想定される利用事例とに基づき、前記運用対象の性能の劣化に関するシミュレーションを行うシミュレーション部と、前記シミュレーション結果に基づき、前記運用対象に対して行われる保全作業の実施時期を示す運用計画案を作成する運用計画案作成部と、を備える。【選択図】図1

Description

本発明の実施形態は、運用計画案作成装置、運用計画案作成方法、プログラムおよび運用計画案作成システムに関する。
近年、年月の経過に伴い性能が劣化する設備または機器に対しては、異常の早期発見などを目的として、センサ等による常時監視が行われている。これにより、オンサイトで実施していた従来の保守に比べ異常を迅速に発見し、設備等が故障する前に保全作業を行うことができる。
しかし、異常を検知する度に保全作業を行うと、突発的なコストが発生することになる。また、機器の部品交換を行った後に、別の部品が異常となり、機器全体を交換することになる事態も多々ある。このような事態を回避するためにも、設備、機器または建物全体のライフサイクルを見越した長期の運用計画を立案する必要がある。
運用計画は、設備等の耐用年数またはリース契約などの更新時期などに合わせて作成されるのが一般的である。設備等の劣化の進行具合を高精度に把握しなければ、適切な運用計画を作成することはできないが、設備等の劣化の進行具合は、使用状況、設置場所の環境などにより異なる。これから設置予定の設備等の運用計画案を作成したい場合もある。また、性能の劣化を計測項目から直接算出することができない場合もある。
特開2009−003502号公報
"Commercial Prototype Building Models"、[online]、[2016年3月1日検索]、米国エネルギー省、インターネット<URL:https://www.energycodes.gov/commercial−prototype−building−models)
本発明の実施形態に係る運用計画案作成装置は、年月の経過に伴い性能が劣化する設備または機器に対する運用計画案を作成する。
本発明の実施形態に係る運用計画案作成装置は、運用対象と類似するとされた計測対象である類似計測対象の計測値に基づき算出された、前記類似計測対象の性能の劣化モデルを取得する取得部と、前記類似計測対象の性能の劣化モデルと、前記運用対象に想定される利用事例とに基づき、前記運用対象の性能の劣化に関するシミュレーションを行うシミュレーション部と、前記シミュレーション結果に基づき、前記運用対象に対して行われる保全作業の実施時期を示す運用計画案を作成する運用計画案作成部と、を備える。
第1の実施形態に係る運用計画案作成装置の概略構成の一例を示すブロック図。 劣化モデル生成部が生成した劣化モデルの一例を示す図。 劣化モデル生成処理のフローチャート。 推定手法としてパーティクルフィルタを用いる場合における劣化モデル生成部の概略構成の一例を示すブロック図。 パーティクルフィルタの処理の内容を示す図。 パーティクルフィルタによる内部パラメータの推定処理のフローチャート。 建物モデル抽出処理のフローチャート。 運用計画案の一例を示す図。 運用計画案の他の一例を示す図。 運用計画案作成処理のフローチャート 第2の実施形態に係る運用計画案作成装置の概略構成の一例を示すブロック図。 要素簡略化の一例を示す図。 直線化の一例を示す図。 分割について説明する図。 分割片の再構成について説明する図。 集約について説明する図。 空間形状加工処理のフローチャート。 空間形状加工部の概略構成の一例を示すブロック図。 方向軸を取得する方法の一例を示す図。 分割線を生成するフローチャート。 簡略区間設定の処理について説明する図。 簡略面積閾値を算出するフローチャート。 要素簡略化処理のフローチャート。 要素簡略化における凹部の簡略化について説明する図。 外周の加工処理のフローチャート。 内部の加工処理のフローチャート。 直線化処理のフローチャート。 直線化における凸部の簡略化について説明する図。 直線化における凹部の簡略化について説明する図。 凹エッジの簡略化について説明する図。 双方簡略化について説明する図。 エッジ部の簡略化のフローチャート。 凹エッジの簡略化のフローチャート。 エッジ部の整形について説明する図。 空間構造加工部の概略構成の一例を示すブロック図。 空間構造加工処理の概略フローチャート。 本実施形態に係る空間情報生成装置を実現したハードウェア構成の一例を示すブロック図。
以下、図面を参照しながら、本発明の実施形態について説明する。
(第1の実施形態)
図1は、第1の実施形態に係る運用計画案作成装置の概略構成の一例を示すブロック図である。第1の実施形態に係る運用計画案作成装置は、運用計画案作成処理部1と、劣化モデル処理部2と、建物モデル処理部3とを備える。
運用計画案作成処理部1は、入力部11と、取得部12と、運用計画案作成部13と、シミュレーション部14と、運用計画案記憶部15と、出力部16と、を備える。
劣化モデル処理部2は、計測データ(センサデータ)管理部21と、オントロジー管理部22と、劣化モデル管理部23とを備える。計測データ管理部21は、計測データ取得部211と、計測データ記憶部212とを備える。オントロジー管理部22は、オントロジー記憶部221と、特徴量データ抽出部(利用事例抽出部)222と、オントロジーデータ記憶部223とを備える。劣化モデル管理部23は、劣化モデル生成部(パラメータキャリブレータ部)231と、オントロジー取得部232と、劣化モデル記憶部233とを備える。
建物モデル処理部3は、建物データ記憶部31と、建物モデル抽出部32と、抽出結果記憶部33とを備える。
第1の実施形態に係る運用計画案作成装置は、運用対象の運用計画案を作成する。運用対象は、設備または機器(設備等)などであり、経年劣化により性能が劣化するものであればよい。例えば、空調機器、電源機器などが運用対象となり得る。また、運用対象の劣化は、運用対象の使われ方、設置場所の環境などに依存するものとする。
なお、運用対象の使われ方、設置場所の環境など、運用対象の劣化を引き起こす要因となるものを、利用事例と称することとする。
運用計画案とは、運用対象に対して行われる保全作業の実施時期を示すものである。保全作業には、設備等の一部または全部の交換、点検、清掃、および補修、新しいタイプの機器へのリプレースなどの作業が含まれる。なお、設備等ごとに運用計画案を作成するだけでなく、複数の設備等が設置される建物全体の運用計画案を作成してもよい。
運用計画案の保全作業の実施時期は、運用対象の性能の劣化以外に基づいて決定されてもよい。例えば、運用対象にかかるコストなどに基づき決定されてもよい。
運用計画案は、運用対象の利用事例と、運用対象の劣化モデルとに基づき、作成される。劣化モデルは、運用対象などにおける性能の劣化の推移を示す。具体的には、性能に関する所定のパラメータの推移データである。
運用計画案は、さらに運用対象の建物モデルに基づいて作成されてもよい。建物モデルは、運用対象の設置場所のモデルとして用いられる。また、運用対象が空調設備などの場合に、空調設備が空調を行う対象とする空間を建物モデルとしてもよい。建物モデルの違いによっても性能の劣化の推移は異なるからである。
建物モデルは、建物または建物の構成要素の形状および構造を示す。建物の構成要素は、建物内にあるものであれば特に限られものではない。例えば、部屋、廊下、壁、階段、設備、機器などでもよい。運用対象の建物モデルは、運用対象が設置された建物または設置予定の建物の建物モデルとする。
但し、本実施形態の運用計画案は、運用対象に基づく劣化モデルと建物モデルではなく、運用対象と類似する別の対象に基づく劣化モデルと建物モデルを再利用して、運用対象の運用計画案を作成することを想定する。
この別の対象は、計測装置(センサ)などの計測対象であるとする。そして、劣化モデル処理部2が、計測装置による計測データに基づき、計測対象の劣化モデルを生成する。また、運用対象と類似するとは、運用対象と同種の設備等であって、運用対象と属性などが一致または属性の値が所定の閾値以内なものとする。また、属性が一致しなくとも、類似関係であることを示す予め定められた類似関係データに、両属性の関係が登録されている場合には、両属性は類似であるとしてもよい。運用対象の属性は特に限られるものではない。例えば、運用対象の用途、目的、利用方法、利用時間、設置建物、または設置場所などでもよい。
運用対象と類似する別の対象に基づく劣化モデルを用いることにより、センサ等が配置されていない建物の設備等または今後建築される建物に設置予定の設備等の運用計画案も作成することができる。
なお、運用対象の利用事例と建物モデルも、運用対象と類似する別の対象の利用事例と建物モデルを用いてもよい。
なお、本実施形態では、運用計画案作成処理部1と劣化モデル処理部2と建物モデル処理部3とを備える運用計画案作成装置としたが、これらの各部が個別の装置として用意され、データの授受を行うシステムとして構築されてもよい。データの授受は、有線または無線通信にて行われてもよいし、電気信号にて行われてもよい。また、劣化モデル処理部2と建物モデル処理部3がネットワーク上に存在し、クラウドサービスなどとして、劣化モデルと建物モデルを運用計画案作成処理部1に送信してもよい。
運用計画案作成処理部1と劣化モデル処理部2と建物モデル処理部3の内部構成も、個別の装置として用意されてもよい。例えば、計測データ管理部21が独立の装置として存在し、有線または無線通信にて計測データを取得し、劣化モデル管理装置とオントロジー管理装置に計測データを送信してもよい。
まず、劣化モデル処理部2について説明する。
劣化モデル処理部2の計測データ管理部21は、設備等の計測対象を計測することにより得られた計測データを収集し管理する。計測対象には、運用対象と同種の設備等が含まれているとする。例えば、運用対象が空調装置の場合、計測対象として空調装置が含まれているとする。運用対象と計測対象は同種であれば、メーカ、型番、設定値といった運用対象の属性は同じでもよいし、異なっていてもよい。
計測データ管理部21の計測データ取得部211は、計測対象自身、計測対象を監視する計測装置(センサ)または計測装置を束ねる計測システムから、通信または電気信号などにより、計測データを収集する。本実施形態おいて、計測対象、計測装置、および計測システムは特に限られるものではない。
計測データは、計測対象または計測装置が計測できるデータであれば何でもよい。例えば、設定値、消費電力、制御信号、エラー等のログなどでもよい。例えば、計測装置が空調設備であれば、部屋の温度、湿度、熱交換器に出入りする水の流量と温度、機器の稼働音などでもよい。計測データに含まれる項目の種類は、1つでも複数でもよい。
計測データは、任意のタイミングで、計測データ取得部211がポーリングして取得してもよい。もしくは、運用対象、計測装置または計測システムが、任意のタイミングで、計測データ取得部211に送信してもよい。収集された計測データは、計測データ記憶部212に送られ、計測データ記憶部212に記憶される。
劣化モデル処理部2のオントロジー管理部22は、オントロジーを管理する。オントロジーとは、概念同士の関係、概念と具体例との関係などを体系化したものである。オントロジーのモデルとしては、下記に説明するRDF(Resource Description Framework)などがあるが、本実施形態において特に限定されるものではない。
例えば、RDFのモデルでは、主語(subject)、述語(predicate)、目的語(object)の3つの要素を用いて、リソースを表現する。主語は表現されるリソース自身であり、述語は主語の特徴または主語と目的語との関係を示す。目的語は主語との関係のある物または述語の値を示す。3つの要素の関係を関係情報(トリプル)と称する。一般に、トリプルの集合はRDFグラフと称される。RDFグラフでは、主語と目的語はノードとして表され、述語はリンクとして表され、全体で1つの知識グラフとして表される。この知識グラフにて、オントロジーは概念同士の関係を表す。
オントロジー管理部22のオントロジー記憶部221(知識グラフ記憶部)は、計測対象に係るオントロジーを記憶し、劣化モデル管理部23が類似事例を検索する際に利用する。オントロジー記憶部221に記憶されるオントロジーは、計測データと、計測対象データ(仕様データ)と、空間データと、特徴量データと、インシデントデータとが相互に関連付けられた、RDFグラフのような知識グラフとして記憶される。
空間データは、計測対象が設置されている空間に関するデータである。例えば、空間データは、個人宅、商業ビル、工場といった設置されている建物の種類を示すデータでもよい。また、空間データは、計測対象が設置されていているフロア数、部屋番号、部屋における位置などといった設置場所も示すデータでもよい。
計測対象データ(仕様データ)は、計測対象に関するデータである。例えば、計測対象データは、設備等の種類、用途、役割、メーカ名、初期性能、使用条件、想定耐久年数などを示すデータでもよい。また、計測対象に対して行われた保全作業の内容、計測対象に生じた異常報告もしくは故障の記録、当該設備の設置場所のレイアウト変更もしくはテナントの入れ替えなどの計測対象に影響を与えるイベントなど、インシデントの記録が電子化されたデータも含まれる。
特徴量データは、計測データの特徴量を示すデータである。特徴量は、例えば、計測データの値の平均値、最大値、最小値などにしてもよい。または、例えば、所定期間には必ず特定の状態である場合または所定時刻に必ず設定が変化されるといった特徴的な状態または事象(イベント)などにしてもよい。特徴量データは、例えば、特徴量の内容、特徴量の継続時間、特徴量の抽出方法、当該抽出方法に必要な情報、特徴量を表す値などを示すデータでもよい。また、特徴量データは、計測対象の利用事例として用いられてもよい。
インシデントデータは、計測データに含まれる特定の事象(インシデント)に関するデータである。インシデントデータは、例えば、計測対象に対して行われた保全作業の内容でもよい。または計測対象に生じた異常もしくは故障の内容でもよい。または異常等を確認した報告者でもよい。または当該設備の設置場所のレイアウト変更もしくはテナントの入れ替えなど、計測対象に影響を与えるイベントでもよい。インシデントデータも特徴量データは、計測対象の利用事例として用いられてもよい。
オントロジー管理部22の特徴量データ抽出部222は、計測データ記憶部212の計測データに基づき、特徴量データまたはインシデントデータの抽出を行う。抽出を行うための情報、例えば、計測対象、対象期間(計測日時)、特徴量の抽出方法、当該抽出方法に必要な情報は、予め与えられるものとする。
特徴量データなどを抽出する方法としては、例えば、対象期間における計測データの平均値または閾値との比較といった統計量に基づき抽出する方法がある。閾値の場合は、閾値を上回る計測データの個数または閾値を下回る計測データの個数を特徴量(頻度)として集計する。またSAX法と呼ばれる時系列データの近似表現手法を採用して、計測データを文字列表現に変換してもよい。SAX法は、指定されたセグメント数で対象期間を分割し、各セグメント内でのデータの平均値を算出した後、指定されたアルファベット数で正規分布の各面積が均等になるように分割し、各分割区間に対して文字列(アルファベット)を割り当てる。SAX法を用いるためのセグメント数なども与えられるものとする。
特徴量データ抽出部222は、抽出した特徴量データなどにより、オントロジー記憶部221に記憶されたオントロジー(知識グラフ)を更新する。
オントロジーにより、計測対象の種類、利用環境、設置場所、ビルの仕様などに関する抽象的な検索キーワードによっても、各データを検出することができる。例えば、「設置場所は、夏はすごく暑い」といった検索キーワードでも、計測データに基づき、オントロジーに関する他のデータの検索が可能である。また、「設置場所は西側上層階」といった検索キーワードでも、空間データに基づき、オントロジーに関する他のデータの検索が可能である。
なお、特徴量データ抽出部222は、オントロジー(知識グラフ)生成部として、オントロジーを生成してもよい。オントロジーの生成は、空間データ、計測対象データ、計測データ、特徴データ、インシデントデータをいずれに配置するかが定められた変換フォーマットに基づき作成すればよい。オントロジー(知識グラフ)生成部として、オントロジーを生成する場合は、オントロジーデータ記憶部223が、変換フォーマットと空間データと計測対象データとを予め記憶しているものとする。特徴量データ抽出部222は、オントロジーデータ記憶部223から変換フォーマットと空間データと計測対象データを取得し、計測データ記憶部212から計測データを取得し、計測データから特徴量データとインシデントデータを算出した上で、オントロジー(知識グラフ)を一から生成してもよい。
劣化モデル処理部2の劣化モデル管理部23は、劣化モデルを管理する。本実施形態の劣化モデルは、計測対象の性能を示すパラメータの推移を示す推移データであり、計測対象のオントロジーと対応づけられている。これにより、特徴量データまたは抽象的な検索キーワードなどを用いて、利用事例などが運用対象と類似する計測対象の劣化モデルを検索することができる。
劣化モデル管理部23の劣化モデル生成部(パラメータキャリブレータ部)231は、計測データ記憶部212に格納された計測データに基づき、劣化モデルを生成する。
劣化モデル生成部231は、所定期間における計測データに基づき、ある時刻における計測対象の所定のパラメータの値を算出する。パラメータの値の算出は周期的に行われる。このように、複数の時刻におけるパラメータの値に基づき、パラメータの推移を示すデータである劣化モデルを生成する。
なお、劣化モデル生成部231は、計測データに含まれる計測項目からでは直接算出することができないパラメータに対しても、パラメータの値を推定することにより、劣化モデルを生成してもよい。例えば、計測対象が空調設備の場合、空調の設定温度や部屋の温度などは、計測装置などで計測することができるが、空調設備の冷暖房効率(COP:Coefficient of performance)は、計測することができず、計測データには含まれない。このような直接計測できない内部パラメータ(非計測パラメータ)も、計測データに基づくシミュレーションなどにより推定を行う。そして、複数の時刻の推定値または確率密度分布に基づき、内部パラメータの劣化モデルが生成される。
なお、計測装置等で計測は可能であるが、実際に計測しておらず、計測データに含まれていないパラメータも内部パラメータとして推定してもよい。
推定方法は、特に限られるものではない。例えば、シミュレイティドアニーリング(Simulated Annealing:SA)法などの公知の逐次最適化手法、パーティクルフィルタなどの公知の確率分布推定手法を用いてもよい。また、ビルシミュレーション部14などの既存のシミュレーション部14を用いてもよい。算出されたパラメータの推定値は、一意に定めてもよいし、確率密度分布にて表されてもよい。
図2は、劣化モデル生成部231が生成した、パラメータの推定値を確率密度分布にて表現する劣化モデルの一例を示す図である。横軸が計測対象の稼働時間を示す。縦軸は計測対象のパラメータの値を示す。劣化モデルは、図2のように内部パラメータの時系列の推移にて表される。図2には3つのグラフが示されているが、一番上の点線のグラフ(最大期待性能)は、推定された最大の性能を示す。一番下の点線のグラフ(最小期待性能)が推定された最小の性能を示す。最大期待性能と最小期待性能の間にある実線のグラフ(平均期待性能)は推定された平均の性能を示す。
図2では、時刻t1とt2において、上記3つのグラフの上に正規分布が示されている。これは、時刻t1とt2それぞれにおいて、劣化モデル生成部231が算出した、パラメータの確率密度分布である。時刻t2における確率密度分布は、時刻t1における確率密度分布よりも確率密度分布のばらつきは大きい。このように、推定される確率密度分布は、一般に時間の経過に伴い大きくなることが多い。
劣化モデル生成部231は、各時刻におけるパラメータの確率密度分布を算出して、算出した確率密度分布をつなぎ合わせることにより、推移データを生成する。劣化モデル生成部231が生成した推移データは劣化モデル記憶部233に記憶される。
劣化モデル管理部23のオントロジー取得部232は、オントロジー記憶部221からオントロジーを取得し、劣化モデル記憶部233に記憶させる。なお、オントロジーではなく、オントロジー記憶部221に記憶されているオントロジーの位置を示す位置情報(リンク)を取得してもよい。
劣化モデル記憶部233は、計測対象ごとに、劣化モデル生成部231から送られた推移データと、オントロジー取得部232から送られた特徴量データを含むオントロジーを検索用のインデックスとして対応付けて記憶する。なお、オントロジーの代わりにオントロジー記憶部221に記憶されているオントロジーの位置を示す位置情報(リンク)を対応付けて記憶してもよい。
劣化モデル記憶部233は、取得部12から検索条件を受取り、検索条件に適合した劣化モデルを抽出する。オントロジーは、推移データを抽出する際のインデックスとして用いられる。これにより、オントロジーに含まれる空間データ、計測対象データ、計測データ、特徴量データ、インシデントデータに係る検索キーワードを用いて、運用対象と類似する計測対象の劣化モデルを検索することができる。
例えば、運用計画案処理部1の取得部12が入力部11を介して運用対象に想定される利用事例を受け取った場合は、当該利用事例が劣化モデル記憶部233に渡され、劣化モデル記憶部233は当該利用事例と類似する利用事例を有する計測対象の劣化モデルを取得部12に渡してもよい。また、劣化モデル記憶部233は、運用対象の情報または建物の利用条件などを受け取り、運用対象に類似する計測対象または当該利用条件などに適応する計測対象を検出し、当該計測対象の利用事例と劣化モデルを取得部12に渡してもよい。
図3は、劣化モデル生成処理のフローチャートである。計測データは既に計測データ記憶部212に記憶されていることを想定する。
劣化モデル生成部231が、計測データ記憶部212から計測データを取得し、内部パラメータの推定処理を実行する(S101)。内部パラメータの推定処理のフローについては後述する。
劣化モデル生成部231は、算出した各時刻の内部パラメータの推定値より、推移データである劣化モデルを生成する(S102)。劣化モデルは既に過去に作成された同一対象のものに新たに推定した内部パラメータの推定値を追加し更新してもよい。劣化モデル生成部231は、登録周期経過後に、劣化モデル記憶部233に劣化モデルを記録する(S103)。
一方、特徴量データ抽出部222は、計測データ記憶部212から計測データを取得し、計測データから特徴量データを抽出する(S104)。特徴量データ抽出部222は、抽出した特徴量データにて、オントロジー記憶部221のオントロジーを更新する(S105)。
オントロジー取得部232は、定期的にまたはオントロジーが更新されたときに、オントロジー記憶部221からオントロジーまたは位置情報を取得する(S106)。そして、オントロジー取得部232は、運用ごとに、劣化モデル記憶部233の劣化モデルと取得したオントロジーとを対応付ける(S107)。以上が第1の実施形態に係る劣化モデル生成処理のフローである。
なお、このフローチャートは一例であり、これに限られるものではない。例えば、S104とS105の処理は、S101よりも前に行われても問題は生じない。このように、問題が生じなければ、順番などは入れ替えてもよい。以降に説明されるフローチャートについても同様である。
次に、劣化モデル生成部231が行う内部パラメータの推定について説明する。内部パラメータの推定方法としては、ベイズ推定などが用いられる。計測データに基づく計測された状態をY、計測されていない状態(推定状態、非計測状態)をXとすると、状態Yに基づき、状態Xを推定することは、状態Yが起きた場合における状態Xの起きる確率(事後確率)P(X|Y)を求めることと同じである。そして、事後確率P(X|Y)はベイズの定理により次式で表される。
ベイズ推定では、上記数式において、Xを確率変数とし、Xを確率密度関数Pにおけるパラメータとみなす。以降、Xを推定パラメータと称する。そうすると、P(X)は、推定パラメータXの事前確率密度分布、P(X|Y)は、状態Yが計測されたときの推定パラメータXの事後確率密度分布となる。P(Y)は状態Yが起きる事前確率、P(Y|X)は、パラメータXの時にYが得られる事後確率であり、尤度と称される。
さらに、時刻t(tは正の実数)における推定パラメータをXt、数式1は次式に置き換えることができる。
Y1:tとは、時刻tまでに計測されたデータの集合Y={Y1、Y2、・・・Yt}を意味する。つまり、P(Xt│Y1:t)は、計測開始時刻から現在時刻までの計測値に基づく、推定パラメータXの確率密度分布を意味する。
なお、確率密度分布の分布形状に着目する場合、P(Yt│Y1:t−1)は、Xに依存しない定数であるため、無視してもよい。よって、次式で表される。
上記数式3によれは、新たに計測値Ytを得て、尤度P(Yt│Xt)を求めることにより、先の時刻t−1までの計測データから推定した事後確率密度分布P(Xt│Y1:t−1)を、現在の時刻までの計測データから推定する事後確率密度分布P(Xt│Y1:t)に、逐次更新できることを意味する。したがって、初期時刻t=0における適当な初期確率密度分布P(X0)から始めて、尤度の算出と事後確率密度分布の更新を繰り返すことで、現在時刻の推定パラメータXの確率密度分布を求めることができる。
このように、事後確率密度分布を求める方法としては、ギブス法、メトロポリス法などを含むマルコフ連鎖モンテカルロ法(MCMC:Markov chain Monte Carlo methods)、逐次モンテカルロ法の一種であるパーティクル法(パーティクルフィルタ)などを用いればよい。
劣化モデル生成部231は、予め定められた上記の手法を用いて、事後確率密度分布を算出する。なお、尤度P(Yt│Xt)はシミュレーションにて求めればよい。シミュレーションを利用する際は、運用計画案作成処理部1のシミュレーション部14を用いるが、劣化モデル生成部231自体がシミュレーション部を含む場合もあり得る。
劣化モデル生成部231が、事後確率密度分布を推定する一例として、パーティクルフィルタを推定手法として用いる場合を次に説明する。
パーティクルフィルタは、推定パラメータXの事後確率密度分布P(X|Y)を、多数のパーティクルを有するパーティクル群の分布で近似する手法である。パーティクルフィルタは、予測、尤度計算、リサンプリング(パーティクル群の分布の更新)を逐次的に繰り返すことによって、現在時刻における推定パラメータXの事後確率密度分布を算出する。
パーティクルの数は、一般的に100から1万個程度の範囲で任意に定めるとする。パーティクルの総数が多くなれば、推定精度が向上するが、推定計算に要する時間が長くなる。なお、パーティクル群は、パーティクルの数をn(nは正の整数)個とすると、P={p1、p2、・・、pi・・・pn}で表される。iは1以上、n以下の整数である。
なお、推定する状態が複数ある場合、推定パラメータXはm(mは正の整数)個の構成要素を含むn次元ベクトルX={x1、x2、・・・xm}で表すことができる。例えば、COPと、1人あたりの想定発熱量の2つを推定したい場合は、x1をCOP、x2を1人あたりの想定発熱量とするが、他の情報も含んでいる場合もある。それぞれのパーティクルは、前記の計測値Ytとパーティクルの各構成要素を入力として、乱数と予め定められたモデル式(状態方程式)を用いて、時刻t+1における各パーティクルの構成要素の予測値と計測予測値Yt+1を算出することが可能となる全ての情報を含んでいる。この場合、i番目のパーティクルは、次式で表される。
={x1、x2、・・・・・,xm、重みi}
重みiは、後述するリサンプリングの処理にて用いられる数値である。パーティクルの各要素の値および重みは、浮動小数点または整数で表される。
図4は、推定手法としてパーティクルフィルタを用いる場合における劣化モデル生成部231の概略構成の一例を示すブロック図である。この場合の劣化モデル生成部231は、パーティクル初期設定部2311と、シミュレーション制御部2312と、パーティクルシミュレーション部2313と、パーティクル尤度計算部2314と、パーティクル変更演算部2315と、合成部2316と、を備える。
パーティクル初期設定部2311は、初期時刻における各パーティクルの構成要素および重みの初期値を設定する。構成要素の初期値は0、重みの初期値は1を想定しているが、他の値でもよい。
シミュレーション制御部2312は、各パーティクルの構成要素および重みの値をパーティクルシミュレーション部2313に送り、シミュレーションの実行を指示する。
パーティクルシミュレーション部2313は、乱数と予め定められたモデル式(状態方程式)を用いて、時刻t+1における各パーティクルの構成要素の予測値を計算する。
パーティクル尤度計算部2314は、パーティクルシミュレーション部2313が算出した時刻t+1における各パーティクルの予測値と、時刻t+1における計測データの実測値の差に基づき、尤度を算出する。
尤度の算出方法は、例えば、ガウス分布に基づくノイズが観測値に入ることを仮定し、計測データの計測値と、パーティクルシミュレーション部2313の予測値とのユークリッド距離を正規化するなどの方法があるが、特に限定されるものではない。
パーティクル変更演算部2315は、パーティクル尤度計算部2314が算出した各パーティクルの尤度を、各パーティクルの重み値とし、リサンプリングを行う。リサンプリングとは、重み値に基づき、各パーティクルを複製または消滅させ、新たなパーティクル群を生成することを意味する。なお、消滅させたパーティクルの数だけ、パーティクルは複製されるため、パーティクルの数は一定である。
リサンプリングの方法は、パーティクルpiの重みiを、全てのパーティクルの重みの総和で除算した値(重みi/Σ重みi)である選択確率Riに基づき、各パーティクルに対し、複製および消滅を行う。そして、リサンプリング終了後に存在するn個のパーティクルを、新しいパーティクルの集合とする。
パーティクル変更演算部2315は、新しいパーティクル群の全てのパーティクルの全ての構成要素の値に対し、一定の長さで予め区切られた範囲に含まれるパーティクルの構成要素の値を、当該範囲内の予め定められた値に変更する。これは、パーティクルの個数によって、確率密度分布の値を決定するためである。そして、各パーティクルの重みを1にする。このようにして、時刻t+1のパーティクル群が生成される。
図5は、パーティクルフィルタの処理の内容を示す図である。横軸は確率変数x1、縦軸は確率密度を表す。
図5(A)は、時刻tにおけるパーティクル群の分布を示す。パーティクルが別のパーティクルの上に表示されているのは、便宜上、x1の値が同じパーティクルが複数あることを示す。
図5(B)は、時刻t+1におけるパーティクルの分布をシミュレーションにより予測した分布である。
図5(C)は、尤度のグラフと、パーティクルの重みを色で分類した図である。曲線で示された尤度の大きさに基づき、各パーティクルの重みが決定される。尤度の大小の判断基準は、予め定められているものとする。ここでは、尤度の小さいパーティクルを黒色に、尤度の大きいパーティクルを斜線に、それ以外のパーティクルは白色に示している。
図5(D)は、リサンプリングの結果を示す。尤度が小さい黒色のパーティクルは消滅し、尤度の大きい斜線のパーティクルは複製されている。なお、複製する個数は、重みによって異なってもよい。例えば、図5(C)の尤度が最大となるパーティクルは、図5(D)にて2つ複製されている。
図5(E)は、時刻t+1におけるパーティクル群の分布を示す。一定区間内に存在するパーティクルの値を、全て一定値にするという調整により、同じ値のパーティクルが複数存在することになり、時刻t+1における確率密度分布の形状となる。
この処理を現在の時刻まで繰り返すことで、最終的に現在時刻の事後確率密度分布が求まる。そして、事後確率密度分布の算出処理が周期的に行われることにより、事後確率密度分布の時系列のデータが求まる。
合成部は、各時刻の事後確率密度分布の値を合成して推移データとし劣化モデルを生成する。例えば、合成部は、各時刻の事後確率密度分布の平均値をつなぎ合わせて平均期待性能を生成する。
図6は、パーティクルフィルタによる内部パラメータの推定処理のフローチャートである。本フローは、パーティクルフィルタにより内部パラメータを推定する場合において、図3に示した劣化モデル生成処理のフローのS101に該当する。
パーティクル初期設定部2311は、確率密度分布を生成する推定パラメータに対し、以前に生成したパーティクル群があるかを確認する(S201)。ある場合は、S203の処理に移る。ない場合は、パーティクル初期設定部2311は、各パーティクルの初期値を決定する(S202)。パーティクルの数は、予め定められていることを想定しているが、この時にパーティクル初期設定部2311が決定してもよい。
シミュレーション制御部2312は、全パーティクルの構成要素の値をシミュレーション部142315に送る(S203)。パーティクルシミュレーション部2313は、取得した全パーティクルに対し、シミュレーションを行い、次の時刻における各パーティクルの予測値を算出する(S204)。
パーティクル尤度計算部2314は、シミュレーション制御部2312から予測値を、計測データ記憶部212103から計測データを取得し、予測値と計測データに基づき、各パーティクルの尤度を計算する(S205)。
パーティクル尤度計算部2214は、リサプリングと各パーティクルの値の調整を行い、新たなパーティクル群を生成する(S206)。生成した新たなパーティクル群が現在時刻のパーティクル群かを確認し(S207)、現在時刻でのパーティクル群でない場合は(S207のNO)、S203の処理に戻る。現時時刻でのパーティクル群である場合は(S207のYES)、当該処理は終了し、確率密度分布が内部パラメータの推定値(範囲)となる。
次に建物モデル処理部3について説明する。建物モデル処理部3は、建物モデルを含む、建物に関する様々なデータ(建物データ)を管理する。そして、所定の情報に基づき、建物モデルを抽出および加工することにより、設備運用計画の作成に用いられる建物モデルを生成する。
建物データ管理部の建物データ記憶部31は、様々な建物の建物データが予め記憶されている。記憶される建物データは、例えば、BIMモデル(Building Information Model)などのCADデータなどがある。
BIMモデルなどの建物データには、オブジェクト、そのオブジェクトの属性に関する属性情報(建物属性)、他のオブジェクトとの関係性を表す関係情報などが含まれる。オブジェクトには、建物を構成する、空間、部材(構成物)、設備、機器などを表すオブジェクトなどがある。また、これらのオブジェクトには、頂点の位置座標など形状に関する情報が含まれる。また空間は、床、壁、天井、仮想の区切りなどにより囲まれた空間(室)を表す。扉などで仕切られておらず、空間の境界となる建物部材がない場合でも、仮想の区切りがあるものとしてよい。空間は、平面も立体も含むものとする。建物の一部または構成物は、例えば、窓、柱、階段といったものがある。設備等または機器は、空調、照明、センサ、無線アクセスポイントなど、建物内に存在している設備等であればよい。
属性情報には、例えば、そのオブジェクトの名称、面積、体積、材料、材質、性能、用途、状態、存在する階(フロア)などがある。関係情報には、構造関係、構成関係、および接続関係などがある。
なお、建物データには、加工処理に用いられる情報が含まれていればよく、加工処理に用いられない情報は、含まれていなくともよい。例えば、加工処理に材料の属性が不要であれば、材料の属性の値が空でもよい。また、建物データは、BIMソフトウェアにより生成されたものでもよいし、空間情報生成装置のために加工または新規作成されたものでもよい。また、ここでは、BIMモデルを加工することを想定して説明を行うが、BIMモデルに限らず、必要な情報を含む建物データであればよい。
建物データ管理部の建物モデル抽出部32は、運用対象が設置される建物と類似する建物を類似建物と判断する。そして、類似建物に係る建物モデルを、運用対象の建物モデルとして、建物データ記憶部31から取得する。なお、建物モデル抽出部32が抽出した結果は、取得部12に渡されてもよいし、抽出結果記憶部33に記憶されてもよい。
建物が類似するか否かの判定条件は、任意に定めてよい。例えば、建物モデル抽出部32は、建物内のオブジェクトの属性、形状、または構造のいずれかが一致または類似しているオブジェクトを有する建物を類似建物と判定する。
例えば、建物データが有する属性を比較し、両属性が一致するかを確かめればよい。両属性が一致しなくとも、類似関係であることを示す予め定められた類似関係データに、両属性の関係が登録されている場合には、両属性は類似であると判定してもよい。または、両属性が値で表されている場合に、両属性の値の差分が閾値以下の場合に、両属性は類似であると判定してもよい。
また、例えば、壁、底面などといった平面のオブジェクトの形状に着目し、平面のオブジェクトの一部または全部の形状が一致または相似であるときに、両形状は一致または類似であると判定してもよい。
また、窓もしくは扉などの開口部の向き、または定められた方向軸の向きなどに着目し、これらの向きが一致しているか所定範囲内であるかにより、両構造は一致または類似であると判定してもよい。
その他にも、例えば、形状に関しては、公知の形状判定方法を用いて、両建物が一致または類似であるかを判定してもよい。また、構造に関しては、BIMQL(Building Information Model Query Language)などの公知のBIMモデル属性検索方法を用いて、両建物が一致または類似であるかを判定してもよい。また、例えば、建物の情報を意味的な関係にて結び付けた木構造にて表し、木構造の類似度をTED(Tree Edit Distance)により算出する方法などが考えられる
図7は、建物モデル抽出処理のフローチャートである。建物モデル処理部3の建物データ記憶部31には建物データが既に記録されていることを想定する。
建物モデル抽出部32は、取得部12から検索条件を取得する(S301)。建物モデル抽出部32は建物データ記憶部31を検索し、検索条件と適合する建物データを有する建物を類似建物と判定し、類似建物の建物モデルを取得する(S302)。建物モデル抽出部32は、取得した建物モデルを取得部12に渡す(S303)。建物モデル抽出部32は、取得した建物モデルを抽出結果記憶部33に記録してもよい。以上が、建物モデル抽出処理のフローである。
次に運用計画案作成処理部1について説明する。運用計画案作成処理部1は、与えられた情報に基づき、運用計画案の作成に必要な情報を劣化モデル処理部2と建物モデル処理部3から取得した上で、運用計画案を作成する。
入力部11は、運用計画案に関する情報を受け付ける。例えば、作成される運用計画案の条件として、運用計画案の計画年数、保全作業の実施期限などがある。運用対象に契約期間があり、契約期間前に運用対象を返却しなければならないといった場合には、契約期間前に運用対象を更新する運用計画案を作成する。その他、各保全作業にかかる費用、設備等を交換する場合の新しい設備等の機種候補などがある。
入力部11は、劣化モデルを取得するための情報を受け付ける。劣化モデルを取得するための情報としては、運用対象の利用事例、または運用対象のオントロジーを利用するためのオントロジーに含まれる空間データ、計測対象データ、計測データ、特徴量データ、インシデントデータに係る検索キーワード情報がある。運用対象の利用事例は、入力部11から受け取るのではなく、類似する計測対象または建物の利用条件などに基づいて、オントロジー記憶部221または劣化モデル記憶部233から取得してもよい。
入力部11は、建物モデルを取得するための情報を受け付ける。建物モデルを取得するための情報としては、例えば、建物の面積、体積、材料、材質、性能、用途、状態などの建物の属性に関する情報がある。
取得部12は、劣化モデル記憶部233から劣化モデルと利用事例を取得する。利用事例に係る情報は、運用対象の使われ方を特定するものであれば特に限られるものではない。例えば、運用対象を空調機器とする場合は、日時別の空調機器のON/OFF時間、設定温度の変化、各部屋の室温、外気温などでもよい。
運用計画案作成部13は、運用計画案を作成する。運用計画案の基となる運用対象全体の経済性(運用コストと保全コストの和)や快適性などの性能の予測は、シミュレーション部14が利用事例と、劣化モデルと、建物モデルとに基づいてシミュレーションを行うことにより求まる。運用計画案作成部13は、利用事例と、劣化モデルと、建物モデルをシミュレーション部14に設定する。そして、シミュレーションのパラメータとして、保全作業の内容、時期などを変えて、シミュレーションを行なわせる。これにより、保全作業の内容、時期などが異なるシミュレーション結果が生成される。
なお、シミュレーションに用いられる利用事例は、非特許文献1に記載した米国エネルギー省のホームページに開示されているものを例に作成してもよい。
図8は、運用計画案の一例を示す図である。図8では、運用対象に対して行われる保全作業の実施時期が、横軸(時間軸)上の△にて示されている。また、運用計画案を評価する指標として性能が縦軸に示されている。図8のように、運用計画案には、保全作業実施前後の性能の推移が示されている。これにより、保全作業の効果を見ることができる。
図8(A)に示す運用計画案1(プラン1)は、更新時期が早いため、更新時期までにおける性能の劣化は小さい。図8(B)に示す運用計画案2(プラン2)は、更新時期が遅いため、期待性能のばらつきはあるが、更新時期において性能の劣化は大きい。ゆえに、プラン2では、更新時期の直前に、設備等を利用するユーザ等の不満が高まるといった可能性がある。
運用計画案作成部13は、図8のような運用計画案を作成し、出力部16を介して出力する。運用計画案作成部13は、作成した運用計画案を全て出力してもよい。または、運用計画案作成部13は、作成した運用計画案のうち、条件を満たす運用計画案または最適と判定される運用計画案を出力してもよい。
例えば、平均期待特性が閾値以下になってはならないという条件の場合において、図8に示したプラン2の平均期待特性が閾値以下であれば、プラン2は出力されなくともよい。例えば、最大期待性能が閾値以上であればよいという条件が入力された場合において、プラン2の最大期待性能が閾値以上であれば、プラン1とプラン2のいずれかまたは両方を出力してもよい。
なお、図8では、保全作業を同種の機器に更新することを想定する。ゆえに、更新後の性能の値は初期値と同じである。また、更新後の使用状況も同じとする。ゆえに、グラフの形状も更新前後において同じである。しかし、保全作業の内容は更新に限られないし、更新後の使用状況も変えてよい。
また、更新により運用対象を異なる機種に交換するとしてもよい。その場合は、運用対象のシミュレーション結果と異なる機種のシミュレーション結果をつなぎ合わせればよい。異なる機種のシミュレーションも、異なる機種の劣化モデルを運用対象と同様に取得すればよい。運用対象を異なる機種に交換した場合の運用計画案では、図8とは異なり、性能指標の値とグラフの形状が変化する。また、更新後の使用条件も変化させてよい。例えば、異なるテナントに設置され、使用条件が変わったと想定してもよい。その場合、異なるテナントに対応する建物モデルと利用事例を用いてシミュレーションを行う。
図8は評価の指標として性能を用いたが、性能以外の指標を用いてもよい。図9は、運用計画案の他の一例を示す図である。図9の例では、累積コストを評価指標とした運用計画案である。累積コストは、今までの運用対象の更新時のコストと運用コストとの総和で表される。図9(A)は、図8(A)で示されたプラン1を示す。図9(B)は、図8(B)で示されたプラン2を示す。
図9(B)に示されたプラン2では、更新時期の直前において、最大期待累積コストが加速度的に増加されている。これは、性能の劣化に伴い消費電力コストなどが増加することを示している。これにより、プラン2の更新後の平均期待累積コストは、プラン1の更新後の平均期待累積コストよりも大きくなる。ゆえに、例えば、図9(B)の更新時期における平均期待累積コストが最も小さい運用計画案を出力するという条件である場合は、プラン1が出力される。
運用計画案記憶部15は、運用計画案作成部13が作成した運用計画案を記憶する。また、ユーザなどから入力部11を介して検索条件を受け付けて、検索条件に適合する運用計画案を、出力部16を介して出力してもよい。
図10は、運用計画案作成処理のフローチャートである。劣化モデルは既に生成され劣化モデル記憶部233に記憶されていることを想定する。また、建物モデル処理部3の建物データ記憶部31には建物データが格納されていることを想定する。
入力部11が入力情報を受け付ける(S401)。入力部11は、必要な情報を取得部12に渡す。取得部12は、運用対象と運用対象が設置される建物の使用条件などの情報に基づき、劣化モデル処理部2に利用事例を要求する(S402)。なお、ここでは、利用事例をオントロジー記憶部221から取得することを想定しているが、取得部12は、入力部11を介してユーザまたは他のシステムなどから利用条件を取得してもよい。そのときは、S402の処理は省略される。劣化モデル処理部2は、取得部12から与えられた情報に適合する利用事例をオントロジー記憶部221から抽出し、当該利用事例を取得部12に渡す(S403)。なお、S402とS403の処理は、取得部12とオントロジー記憶部221との間で直接行われてもよいし、オントロジー取得部232を介して行われてもよい。
取得部12は、運用対象と取得した利用事例とに基づき、劣化モデル処理部2に劣化モデルを要求する(S404)。劣化モデル処理部2は、取得部12から与えられた情報に適合する劣化モデルを劣化モデル記憶部233から抽出し、当該劣化モデルを取得部12に渡す(S405)。なお、劣化モデル処理部2はS403の処理において抽出した利用事例に基づき、S405の処理を連続して行い、利用事例と劣化モデルを取得部12に一度に渡してもよい。そのときは、S404の処理は省略される。
取得部12は、運用対象が設置される建物の情報に基づき、建物モデル処理部3に建物モデルを要求する(S406)。建物モデル処理部3は、図7に示した建物モデル抽出処理を行い、建物モデルを取得部12に渡す(S407)。
取得部12は、取得した利用事例、劣化モデル、および建物モデルを運用計画案作成部13に渡す(S408)。運用計画案作成部13がシミュレーション部14に利用事例、劣化モデル、建物モデルを設定する(S409)。運用計画案作成部13が、保全作業の内容、保全作業の時期などのパラメータを変えながら、シミュレーション部14にシミュレーションを行わせる(S410)。そして、運用計画案作成部13は、取得したシミュレーション結果に基づき、運用計画案を作成する(S411)。
作成された運用計画案は出力部16に渡され、出力部16が運用計画案を出力する(S412)。また、作成された運用計画案は運用計画案記憶部15に渡され、運用計画案記憶部15に記憶されてもよい。以上が、運用計画案作成処理のフローである。
以上のように、第1の実施形態によれば、運用対象と類似する計測対象の計測データを用いて運用計画案を作成する。この際、計測データからは直接求めることができない内部パラメータも確率密度分布を用いて推定することにより、性能の劣化を予測でき、保全作業の実施時期が適切な運用計画案を作成することができる。
また、計測対象の計測データと計測対象に係るその他のデータとを体系づけたオントロジーを用いることにより、運用対象と類似する計測対象および計測対象の利用事例を簡易なキーワードでも検出することができる。
また、運用対象が設置される建物と類似する建物の建物モデルを用いることにより、運用対象が設置される建物の詳細情報がない場合または建物が建設中である場合でも、運用計画案を作成することができる。
(第2の実施形態)
第2の実施形態では、シミュレーションに用いられる建物モデルから、不要なデータを取り除くことで建物モデルを簡略化し、シミュレーションの負荷を抑える。例えば、柱等の特定の建物要素、または外気に接している壁といった特定の条件を満たす建物要素を排除してもよい。また、対象空間の外周形状を短絡または直線化してもよい。第1の実施形態と同様な点は、説明を省略する。
図11は、第2の実施形態に係る運用計画案作成装置の概略構成の一例を示すブロック図である。第2の実施形態は、第1の実施形態に対し、建物モデル処理部3が建物モデル加工部34をさらに備える。建物モデル加工部34は、空間形状加工部341と、空間構造加工部342とを備える。
建物モデル加工部34は、取得部12から受け付けたパラメータに基づき、建物モデルを加工して簡略する。取得部12から受け付けるパラメータとしては、加工する対象、加工する部分または範囲、加工レベル、加工方法などがある。加工レベルは、加工によって失われる面積・体積などの閾値などが考えられる。
建物モデル加工部34の空間形状加工部341は、建物モデルの形状についての加工を行う。形状に関する加工とは、例えば、建物内の部屋などの外周、内周などの形状を簡略化することなどがある。例えば、建物モデルの形状の指定された要素に関する部分、あるいは指定された種類の要素の部分の形状を簡略化する。これにより、平面の当該要素に関する辺数を少なくする。
空間形状加工部341は、建物モデル抽出部32または抽出結果記憶部33から取得した建物モデルから、建物モデルの一部である平面オブジェクトを取得し、平面オブジェクトの形状を生成する。ここでは、この平面オブジェクトを加工面(基準面)と称する。
空間形状加工部341は、生成した加工面の形状から、指定された要素に関する部分、あるいは指定された種類の要素の部分の形状を簡略化する。これにより、加工面の当該要素に関する辺数を少なくする。この簡略化を、ここでは要素簡略化と称する。
また、空間形状加工部341は、加工面において、取得した建物モデルと、当該建物モデルに隣接する建物モデルとが接している隣接辺上に存在する、閾値より小さい凸部または凹部を簡略化する。この簡略化を、ここでは直線化と称する。
図12は、要素簡略化の一例を示す図である。図12(A)は加工前の加工面を示す図である。図12(B)には、この例の指定要素である柱に係る辺は実線で、柱以外の線は点線で示す。図12(C)は、簡略化処理の途中を示す図である。図12(D)は、加工後の加工面を示す。
加工前の加工面は、外周部に柱による窪み(凹部)と、内部に柱による空き空間が存在する。このような窪み、空間などは、シミュレーション部14のシミュレーションにおいて不要とされる場合もあり得る。例えば、柱による内部の空き空間の情報は必要だが、外周部の柱による窪みは不要といった場合もあり得る。そのため、空間形状加工部341は、指定された省略すべき不要な情報を削除する。
空間形状加工部341は、指定要素の柱に関する面と、それ以外の面を区別し、柱に関する面を簡略化する。まず、外周の柱が簡略化され、図12(C)では、外周の凹部が消滅した状態となっている。そして、内部に柱による空き空間が簡略化され、図12(D)では、柱に関する面が全て削除されている。このようにして、空間形状加工部341は、加工面を簡略化する。
図13は、直線化の一例を示す図である。ここでは、空間の外周に存在する、予め定められた閾値より小さい凸部および凹部を直線化し、オブジェクトが有する情報量を削減する。図13(A)は直線化処理前の加工面を示す図である。図13(B)と図13(C)は、直線化処理の途中を示すものであり、図13(B)は、凸部および凹部を、予め定められた方法に基づき、簡略化したものである。図13(C)は、簡略化された空間と、他の空間との重複部分を示すものである。重複部分について、さらに簡略化処理が行われる。図13(D)は、さらなる簡略化後の加工面を示す。このようにして、空間形状加工部341は、加工面を直線化する。
空間形状加工部341は、要素簡略化と直線化のどちらか一方または両方を行うことにより、不要な情報が排除された簡略化された加工面を生成する。これにより、シミュレーションの処理の負荷を削減することができ、また計算結果の算出までの時間を短くすることができる。空間形状加工部341の処理の詳細については後述する。
空間構造加工部342は、指定された加工方法に基づき、加工面の分割または集約を行い、建物モデルを簡略化する。ここでは、分割とは、加工面を複数の分割片に分割することを意味する。また、ここでは、集約とは、複数の加工面を1つに合成することを意味する。
図14は、分割について説明する図である。図14(A)は、これから簡略化される加工面を示す図である。図14(B)は、当該加工面に対し、分割線を引いた図である。図14(C)は、生成された分割片を示す図である。図14(A)に示す加工面の外周に接している黒色の四角は、外周に接する柱を示すものである。空間構造加工部342は、例えば柱などの構成要素を基準として分割線を生成する。そして、1つの平面を複数の分割片に分ける。
図15は、分割片の再構成について説明する図である。図15(A)は、図14(C)で示した図と同じであり、分割片を示す。図15(B)は、矢印の末端の分割片が、矢印の先端の分割片に吸収されることを示す。図15(C)は、再構成された分割片と、さらなる再構成の方向を矢印にて示す。図15(D)は、再構成の結果を示す。分割片の再構成は、このように小さな分割片をなくす。
次に、集約について説明する。図16は、集約について説明する図である。図16(A)の実線で囲まれた部分は加工面である。点線は分割線である。灰色で示された加工面は、分割対象に指定されていない加工面であり、白色で示された加工面は、分割対象に指定され、分割片が生成された加工面である。このように、複数の加工面がある場合において、分割対象でない加工面を対象として集約を行う。
空間構造加工部342は、加工面の外周の一部が隣接または共有することにより隣接関係にあると言える加工面を取得し、加工面の外周が最長となるように合成する。隣接する複数の加工面を1グループと考えれば、加工面を分割片とみなすことができる。そして、分割片の再構成と同様にすれば、集約を行うことができる。図16(A)では、白色で示された加工面の上側の3つの加工面を1グループに、白色で示された加工面の下側の2つの加工面を別の1グループとすれば、図16(B)のように、集約される。
このようにして、分割または集約が行われることにより、建物モデルが簡略化される。空間構造加工部342の処理の詳細については後述する。
次に、空間形状加工処理の詳細について説明する。図17は、空間形状加工処理のフローチャートである。空間形状加工部341は、全ての加工対象の建物モデルに対して処理を行う。まず空間形状加工部341は、加工面の形状の生成を行う(S501)。次に空間形状加工部341は、加工面の生成後、加工面の方向軸を取得する(S502)。加工面の方向軸は、加工を行う際の基準軸となるものである。
また、空間形状加工部341は、簡略区間の設定(S503)および簡略区間における簡略面積閾値を設定する(S504)。簡略区間は、加工面を形成する辺を複数の区間に分割することにより生成された、形状を簡略化する対象の区間である。簡略面積閾値は、空間形状加工部341の簡略化により削減される面積の上限値を示す。簡略面積閾値は、簡略化より面積が削減され過ぎるのを防ぐ。
方向軸の取得(S502)は、加工区間および簡略面積閾値の設定(S503、S504)と、並行して行われてもよいし、先または後に行われてもよい。方向軸の取得(S502)と、加工区間および簡略面積閾値の設定(S503、S504)が完了した後に、空間形状加工部341は、加工面の形状を簡略化する(S505)。簡略化は、要素簡略化と直線化のどちらか一方または両方でもよい。以上が、空間形状加工処理の概略フローチャートである。
さらに空間形状加工部341の詳細について説明する。図18は、空間形状加工部341の概略構成の一例を示すブロック図である。空間形状加工部341は、加工面取得部3411と、方向軸取得部3412と、簡略区間設定部3413と、形状簡略部3414と、加工程度評価部3415と、加工区間情報管理部3416とを備える。
加工面取得部3411は、加工面の形状を生成する。加工面となる面は、予め定めておいてもよいし、取得部12などから指定されてもよい。建築分野では、加工面を床面(底面)とすることが多いため、ここでは、加工面を床面として、説明する。
加工面として床面が設定されていた場合、加工面取得部3411は、建物モデルの属性情報と関係情報に基づき、床面を検出する。床面を検出後、予め定められた生成方法に基づき、加工面の形状を生成する。生成方法としては、例えば、床面に関する全ての要素の全ての頂点の2次元座標を取得し、各頂点間を結ぶ辺を算出し、最大の閉ループとなる形状を生成するという方法が考えられる。また、別の方法としては、空間を囲い込む側面、例えば壁に関する全ての要素の全ての頂点から、床面に関する頂点のみを抽出し、それらの2次元座標と各頂点間を結ぶ辺とに基づき、最大の閉ループとなる形状を生成する。なお、座標に誤差がある場合などは、壁同士の接続関係を考慮してもよい。
方向軸取得部3412は、加工面ごとに方向軸を取得する。図19は、方向軸を取得する方法の一例を示す図である。方向軸取得部3412は、加工面を形成する辺のうち、方向基準として指定された要素に係る辺の向き(べクトル)を取得する。図19では、指定要素に関する辺を実線で示されている。そして、方向軸取得部3412は、指定要素の辺全てにおいて、辺の向き把握した後で、直行する辺の組み合わせがあるかを確認する。直交する辺の組を発見した場合は、その辺の組を方向軸とする。直交する辺の組を複数発見した場合は、方向軸を複数としてもよいし、1つを選択してもよい。
図20は、分割線を生成するフローチャートである。方向軸取得部3412は、加工面の外周を形成する辺の接続関係を取得し(S601)、当該接続関係に基づき、柱などの指定要素の辺が連続する区間を取得する(S602)。連続区間がある場合(S603のYES)は、当該連続区間それぞれに対し、分割線の生成を行う。具体的には、指定要素の辺と重なる分割線を生成する(S604)。また、両隣も指定要素である辺を取得する(S605)。この辺は、凹部の窪んだ部分の辺(加工面の外周と接しない辺)を意味する。取得することができたならば(S606のYES)、その辺の中点を直交する分割線を生成する(S607)。これにより、連続区間の分割線を生成する。
連続区間がない場合(S603のNO)または全ての連続区間に対する分割線の生成処理(S607)をした後は、両隣が別要素である指定要素の辺を取得する(S608)。取得することができたならば(S609のYES)、取得した辺それぞれに対し、辺の中点を直交する分割線を生成する(S610)。該当する辺がない場合(S609のNO)または取得した辺全てに対する分割線の生成処理(S610)をした後は、簡略化した後の外周と直交しない分割線を取得する(S611)。当該分割線がない場合(S612のNO)は処理を終了する。当該分割線を取得した場合(S612のYES)は、他の分割線と直交しているかを確認し、直行していない場合(S613のYES)は、分割線を削除する(S614)。これにより、方向軸とすることができない不要な分割線を削除することができる。全ての分割線に対し、確認および削除を行ったらば、本フローは終了する。
上記のような予め定められた方法にて方向軸が取得できない場合は、便宜的に、隣接空間の方向軸と合わせる。隣接空間の方向軸も取得できない場合は、探索の範囲を徐々に広げていき、取得可能な空間を見つける。
なお、方向軸を生成する際に、必要となる指定要素は、取得部12などから指定されればよい。
簡略区間設定部3413は、加工面を形成する各辺それぞれに対し、他の空間との隣接関係に基づき、簡略区間を設定(生成)する。
図21は、簡略区間設定の処理について説明する図である。加工対象である空間Aが、建物外と、空間B、C、およびDと隣接しているとする。簡略区間設定部3413は、対象空間Aが別の空間と隣接する区間(辺)の両端をそれぞれ区間端に設定する。図21では、区間端を黒の丸で示す。これにより、隣り合う空間同士の隣接辺の簡略区間が、両隣接空間同士で一致する。同じ辺であっても簡略区間の両端が異なれば、加工結果が異なる場合があり得る。したがって、これにより、各空間それぞれに対して行われた加工処理の結果が、隣接辺において整合性を保つことができる。
そして、簡略区間設定部3413は、隣接空間のない区間、つまり建物外に面する辺を取得し、その辺上にある頂点を取得する。そして、取得した各頂点と隣接する2つの区間端とを接続線で結び、2つの接続線が空間内にあるかを確認する。図21では、空間内にある接続線を1点破線で表示し、空間外にはみ出してしまう接続線を破線で表示している。なお、接続線が、区間端同士を結ぶ線上にある場合も、その接続線は空間内にあるとする。頂点から出ている2つの接続線がともに空間内にある場合、その頂点を空間内頂点とする。図21では、空間内頂点を白抜きの丸と、内部が斜線で表された丸で示す。頂点から出ている2つの接続線が一方でも空間内にない場合、その頂点を空間外頂点とする。図21では、空間外頂点を、内部が灰色で表された丸で示す。
そして、空間内頂点のうち、空間内頂点と隣接する2つの区間端とを結ぶ線で囲まれる範囲の面積が最大となる空間内頂点を区間端に追加する。図21では、内部が斜線で示された丸が、面積が最大となる頂点を示している。区間端に追加された頂点は、簡略化処理により削除されることがなくなる。
簡略区間設定部3413は、上記のように区間端を追加した後で、区間端の1つを基点として任意に選び、時計回りに外周を辿り、区間端と区間端との間の区間を簡略区間として設定する。なお、ここでは時計回りとしたが、反時計回りでもよい。なお、以降の説明において行われる処理は、時計回りを前提としており、反時計回りで設定したときは、処理の向きが逆になる。
簡略区間設定部3413は、簡略区間ごとに加工区間情報を生成する。加工区間情報は、簡略区間に関する情報と、当該簡略区間に行われた加工処理に関する情報が含まれる。例えば、簡略区間のID、簡略区間上に存在する頂点のIDと位置座標、簡略区間ごとに設定される加工面積閾値、行われた加工処理(加工ステップ)の順番を表す加工ステップ数、各加工ステップにおいて追加または削除された部位の面積、今までの加工ステップにおいて追加または削除された部位の面積の積算値、復元フラグなどが含まれることが考えられる。
復元フラグは、簡略処理によって削除された部位または区間などを、復元するかを判断するためのフラグである。復元対象となる指定要素が削除された場合に、復元フラグの値がtrueにされればよい。指定要素は、取得部から取得すればよい。復元対象の指定要素は、前述の省略対象で指定したものの一部でも全部でもよい。
簡略区間設定部3413は、算出した簡略区間それぞれに対し、簡略面積閾値を設定する。図22は、簡略面積閾値を算出するフローチャートである。簡略区間設定部3413は、まず加工対象の空間全体の簡略面積閾値dlimit を算出する(S701)。簡略面積閾値dlimit は、対象空間Sの面積と加工割合の積で求められる。
加工割合は、簡略対象とされる凹凸部分の元の面積に対する加除された部分の面積の比である。加工割合の値は、任意に定めてよい。
そして、簡略区間それぞれに対し、各区間の簡略面積閾値を算出する(S702)。とある区間jの簡略面積閾値dlimit sjとすると、dlimit sjは、dlimit に対し、区間jの長さが加工対象の空間の外周長に占める割合を積算することにより求められる。
次に、簡略区間設定部3413は、区間jを共有する隣接空間srにおける区間jの簡略面積閾値dlimit srjと、dlimit sjを絶対値で比較する(S703)。dlimit sjの絶対値のほうが大きい場合(S704のYES)は、dlimit sjの値をdlimit srjに置き換える。そうでない場合(S704のNO)は、そのままにする。これにより、区間jを有する各空間において、区間jの簡略面積閾値が異なるという事態を防ぐことができる。なお、dlimit srjがまだ算出されていない場合は、dlimit srjの値を非常に大きな値にして比較してもよいし、比較を省略してもよい。そして、当該簡略区間の加工区間情報の加工面積閾値を更新し(S706)、次の区間の処理に移る。全ての簡略区間で処理が終了すると、本フローは終了する。なお、ここでは、絶対値により比較を行ったが、面積の増減量に対する、負の値から正の値までの許容範囲を定めてもよい。
なお、加工区間情報には、加工ステップごとに、当該加工ステップ時における簡略区間の情報が含まれる。ゆえに、加工区間情報を参照することにより、最後の加工処理後の簡略区間の状態のみならず、各加工ステップにおける状態も参照することができる。
また、簡略区間設定部3413は、簡略すべき指定要素が指定されたときは、当該指定要素にかかる面(辺)の形状の一部または全部を、簡略区間として設定してもよい。
形状簡略部3414は、対象の加工面に対し、要素簡略化または直線化を行う。要素簡略化および直線化は、いずれか一方のみ行われてもよいし、両方行われてもよい。いずれの処理または両方の処理を行うか否かは、予め定めておいてもよいし、判断基準を定めておいてもよい。判断基準は、例えば、指定された要素の種類、または簡略対象の面積などにすればよい。
要素簡略化の詳細について説明する。図23は、要素簡略化処理のフローチャートである。形状簡略部3414は、外周の加工(S801)または内部の加工(S802)またはその両方を行う。外周の加工と内部の加工については後述する。上記片方または両方の処理を行った後は、これらの処理により削除された指定要素を後で復元するか否かで処理が異なる。
指定要素を後で復元する場合(S803のYES)は、指定部位単位で復元するか否かを確認する。指定部位単位で復元する場合(S804のYES)は、加工区間情報ごとに復元する指定部位が加工区間情報に含まれているかを確認する。指定部位が加工区間情報に含まれていた場合(S805のYES)は、当該部位の復元フラグをtrueにする(S806)。これにより、指定された特定の部位だけを復元させることができる。全ての加工区間情報に対し処理を行った場合は、処理を終了する。
指定要素を後で復元しない場合(S803のNO)は、加工した全区間の加工区間情報の変化した面積を積算してdelement を算出する(S807)。算出したdelement の絶対値が上限値を超えた場合(S808のYES)には、元に戻す必要があるため、加工した全区間の加工区間情報の復元フラグをtrueにし(S809)、処理を終了する。これにより、指定要素の全部位を復元させる。算出したdelement の絶対値が上限値を超えていない場合(S808のYES)には、元に戻す必要はないため、処理は終了する。
指定要素を後で復元するが、指定部位単位では復元しない場合(S804のNO)、つまり指定要素の全部位を復元する場合は、加工した全区間の加工区間情報の復元フラグをtrueにし(S809)、処理を終了する。これにより、指定要素の全部位を復元させることができる。以上が、要素簡略化処理のフローチャートである。
次に、外周の加工の詳細について説明する。外周の加工は、外周に存在する指定要素に関する面を簡略化することである。簡略化の方法は、簡略化すべき面の形状に応じ、予め定めておけばよい。図24は、要素簡略化における凹部の簡略化について説明する図である。case1から4までの4つのパタンが示されている。なお、これらのパタンは一例であり、これらのパタンに限られるものではない。
図24(A)に示すcase1では、省略すべき指定要素の辺(実線)と接続されている2辺(点線)を、2辺の交点まで延長させることにより、凹部を簡略化するパタンである。図24(B)に示すcase2では、前述の2辺が平行な場合に、省略すべき指定要素の辺と2辺との各接点から等距離にある前述の2辺の垂線と、前述の2辺の延長線とにより、凹部を簡略化するパタンある。図24(C)に示すcase3では、前述の2辺の1つを延長した場合に、残りの1つと重なる場合に、前述の2辺の延長線により、凹部を簡略化するパタンである。図24(D)に示すcase4では、前述の2辺は平行ではないが、前述の2辺の延長線が交差しない場合に、省略すべき指定要素の辺と2辺との各接点を結ぶ線により、凹部を簡略化するパタンである。
図25は、外周の加工処理のフローチャートである。形状簡略部3414は、簡略区間を形成する辺の接続関係を取得する(S901)。また、指定要素の辺が連続する区間を取得する(S902)。連続する区間が取得できなかった場合(S903のNO)は、次の簡略区間に移る。連続する区間が取得できた場合(S903のYES)は、連続区間それぞれに対し、処理を行う。
まず、両端の辺それぞれと隣接する2辺を連続区間方向に延長し、その交点を取得する(S904)。取得できた場合(S905のYES)は、連続区間の頂点を取得した交点のみとして簡略化する(S906)。この簡略化は図11で示したCase1に該当する。
取得できなかった場合(S905のNO)は、両辺のベクトルが同じかを確認し、同じでない場合(S907のNO)は、連続区間の両端を接続し、他の頂点を削除して簡略化する(S908)。この簡略化は図11で示したCase4に該当する。
両辺のベクトルが同じな場合(S907のYES)は、2辺が重なるか否かを確認し、2辺が重なる場合(S909のNO)は、連続区間の全頂点を削除し簡略化する(S910)。この簡略化は図11で示したCase3に該当する。2辺が重ならない場合(S909のYES)には、連続区間両端から等距離の地点を通る2辺と直交する線と、2辺との交点を取得し、連続区間の頂点を取得した交点のみとして簡略化する(S911)。この簡略化は図11で示したCase2に該当する。これらにより、連続区間を4つの方法のいずれかで簡略化することができる。
上記簡略化の処理を、全ての連続区間にて行い、全ての連続区間に対する処理が完了した後は、形状簡略部3414は、当該簡略区間の加工区間情報を更新し(S912)、次の簡略区間に対する処理に移る。なお、加工区間情報の更新とは、加工区間情報を上書きするのではなく、形状簡略部3414が行った加工ステップにおいて、加工された結果に関する情報を追加することをいう。したがって、加工区間情報には、加工ステップの前後の情報が含まれる。全ての簡略区間に対して処理を行ったらば、本フローは終了する。
なお、簡略化する連続区間の対象を制限してもよい。例えば、連続区間の両端距離を短絡距離とし、その上限値を定める。そして短絡距離の上限値以下の連続区間を加工対象としておもよい。短絡距離の上限値は、任意に定めてよい。シミュレーション部14の処理の負荷などに基づき、定めればよい。
次に、内部の加工の詳細について説明する。図26は、内部の加工処理のフローチャートである。簡略区間設定部3413は、外周以外の辺の接続関係を取得し(S1001)、取得した接続関係に基づき、指定要素の辺上にある連続かつ閉ループの区間を検索する(S1002)。該当の区間が存在しない場合(S1003のNO)は、処理は終了する。該当の区間が存在した場合(S1003のYES)は、当該区間を簡略区間とし、加工区間情報を設定する(S1004)。そして、形状簡略部3414は、当該区間を削除する(S1005)。そして、削除した簡略区間の加工区間情報を更新する(S1006)。連続かつ閉ループの区間が他にも存在する場合は、他の区間に対しても処理を行う。全ての連続かつ閉ループの区間に対する処理が完了したときは、本フローは終了となる。なお、簡略区間設定部3413と形状簡略部3414の処理は分けてもよい。
次に、直線化の詳細について説明する。図27は、直線化処理のフローチャートである。当該フローは簡略区間それぞれに対して行われる。
形状簡略部3414は、加工区間情報の頂点IDのリストから各頂点の向きを取得する(S1101)。頂点の向きとは、簡略区間設定部3413が、基点とした区間端から時計回りに外周を辿り簡略区間を設定したときに、当該頂点において、曲がった方向が、時計回りか反時計回りかを意味する。詳細は後述する。
次に、形状簡略部3414は、凸部優先処理および凹部優先処理を行う。凸部優先処理は、凸部の簡略化(S1102)、凹部の簡略化(S1103)、エッジ部の簡略化(S1104)の順に処理を行うものである。凹部優先処理は、凹部の簡略化(S1106)、凸部の簡略化(S1107)、エッジ部の簡略化(S1108)の順に処理を行うものである。凸部、凹部、エッジ部については後述する。それぞれの簡略化方法は同じではあるが、凸部の簡略化と凹部の簡略化のいずれかを最初に行うかで処理結果が異なる。そのため、形状簡略部3414は、凸部優先処理および凹部優先処理の両方を行う。凸部優先処理または凹部の簡略化の処理は、並列に行われても、別々に行われてもよく、どちらを先に行ってもよい。
凸部優先処理または凹部優先処理の後、形状簡略部3414は、加工区間情報に追加する情報があるかを確認する(S1105、S1109)。ある場合(S1105のNO、S1109のNO)は、さらに直線化を行うべき部分が残っている可能性があるため、凸部優先処理または凹部優先処理に戻る(S1102、S1106)。
凸部優先処理と凹部優先処理の両方の処理が完了した後、簡略形状を決定する(S1110)。簡略形状の決定とは、凸部優先処理による加工結果と凹部優先処理による加工結果を比較し、より適した加工結果である方を簡略形状として決定するものである。簡略形状の決定は、加工程度評価部3415が行う。詳細は、加工程度評価部3415にて説明する。
簡略形状が決定した後は、エッジ部の整形を行う(S1111)。エッジ部の整形とは、方向軸のX軸またはY軸と平行ではないエッジ部の辺を、X軸またはY軸に平行な線に変更することである。エッジ部の整形処理が完了したときは、次の簡略区間の処理に移る。これを繰り返して、全ての簡略区間に対し処理を行ったとき、直線化処理は終了となる。
次に、凸部および凹部の簡略化について説明する。図28は、直線化における凸部の簡略化について説明する図である。ここでは、図28(A)に示された、空間Aと空間Cとに隣接する、頂点(9)と頂点(20)を区間端とする簡略区間を簡略化する。
凸部は、簡略区間の始端から終端までを辿るときに、簡略区間上にある頂点において、時計回り(CW:Clockwise)の向きに曲がる頂点が2つ以上連続し、かつ、反時計回り(CCW:Counter Clockwise)の向きに曲がる頂点に挟まれる部分と定義する。図28(B)に示す通り、簡略区間上には、区間端を除くと、(10)から(19)までの頂点が存在する。各頂点それぞれに、簡略区間の始端(9)から終端(20)までを辿るときの当該頂点を曲がる向きの矢印が示されている。ここで、頂点(11)の矢印の向きはCCWである。頂点(12)および(13)の矢印の向きはCWである。そして、頂点(14)の矢印の向きはCCWである。ゆえに、CWの向きに曲がる頂点(12)と(13)が連続し、かつ頂点(12)と(13)は、CWの向きに曲がる頂点(11)と(14)に挟まれている。したがって、上記凸部の定義により、頂点(11)から(14)までの部分(図28(C)の斜線部分)は凸部となる。このようにして、形状簡略部3414は、簡略区間上の凸部を認識し、簡略化処理を行う。
簡略化は、凸部の始端と終端を結ぶ線を生成し、始端と終端の間に存在する頂点を削除することとする。凸部の始端は、簡略区間の始端に最も近い頂点であり、凸部の始端は、簡略区間の終端に最も近い頂点である。先ほどの例では、頂点(11)と(14)が結ばれ、頂点(12)と(13)が削除される。これにより、図28(D)に示す形状となる。形状簡略部3414は、簡略化後、再度、凸部があるかを確認する。そうすると、頂点(10)から頂点(16)までの部分が新たな凸部であると認識できる。先ほどと同様、凹部の始端(10)から終端(16)を線で結び、頂点(11)、(14)、(15)を削除する。これにより、図28(E)に示す形状となる。この形状は、頂点18は突出しているものの、凸部の定義に合致しないため、凸部ではない。凸部がなくなったため、凸部の簡略化の処理が終了する。なお、頂点18のような突出部分、または、逆に空間内部に切り込んだ形状である埋没部分をエッジ部と称する。
また、形状簡略部3414は、加工後、簡略化区間の加工区間情報を更新する。凸部を簡略した際は、簡略化した凸部の面積と、今までの簡略化処理により簡略化された凸部の総面積d sjを算出する。
図29は、直線化における凹部の簡略化について説明する図である。図29(A)は、図28(B)と同じである。凹部は、簡略区間の始端から終端までを辿るときに、簡略区間上にある頂点において、CCWの向きに曲がる頂点が2つ以上連続し、かつ、CWの向きに曲がる頂点に挟まれる部分と定義する。ゆえに、図29(B)、(C)、および(D)に示す灰色の部分が凹部である。凹部の簡略化は、対象が凹部なこと以外は、凸部の簡略化と同じである。形状簡略部3414は、簡略区間上の凹部を認識し、簡略化処理を繰り返すことで、図29(E)に示す簡略結果を得る。図28(E)と図29(E)から分かるように、凸部の簡略化結果と凹部の簡略化結果は異なる。ゆえに、前述の通り、凸部の簡略化と凹部の簡略化のいずれかを最初に行うかで処理結果が異なる。
次にエッジ部の簡略化について説明する。図28(E)のように、凸部または凹部の簡略化を行っても、突出または埋没部分であるエッジ部分が残る場合がある。このような場合に対応するため、形状簡略部3414は、予め定められた方法にて、エッジ部を簡略化する。
なお、ここでは、エッジ部を凹エッジと凸エッジの2つとする。凹エッジは、簡略区間の始端から終端までを辿るときに、簡略区間上にある頂点において、CCWの向きに曲がる頂点が、CWの向きに曲がる頂点に挟まれる部分と定義する。凸エッジは、簡略区間上にある頂点において、CWの向きに曲がる頂点が、CCWの向きに曲がる頂点に挟まれる部分と定義する。
簡略化の方法は、簡略化すべき部分の形状に応じ、予め定めておけばよい。図30は、凹エッジの簡略化について説明する図である。ここでは、case1から4までの4つのパタンが示されている。なお、これらのパタンは一例であり、これらのパタンに限られるものではない。なお、図30では、凹エッジが表されているが、凸エッジでもこれらのパタンは同じである。
図30(A)に示すcase1は、エッジ部に隣接する2辺を延長した際の交点が、当該2辺の線上に存在しないときに、2辺を交点まで延長させることにより、エッジ部を簡略化するパタンである。図30(B)に示すcase2は、エッジ部に隣接する2辺を延長した際の交点が、当該2辺のいずれかの線上に存在するときに、当該2辺の一方をその交点まで延長させることにより、エッジ部を簡略化するパタンである。図30(C)に示すcase3は、エッジ部に隣接する2辺を延長しても交点がない場合に、当該2辺のうちの1つを延長した線がエッジ部の辺に接触するときに、その延長した線により、エッジ部を簡略化するパタンである。図30(D)に示すcase4では、エッジ部に隣接する2辺の1つを延長した場合、他の1辺と重なる場合に、その延長線により、エッジ部を簡略化するパタンである。
また、エッジ部の簡略化では、他の空間との整合性も考慮する。例えば、簡略化した形状が、他の空間との関係により、不適切な場合もあり得る。図30(E)のcase0は、不適切な場合の一例である。空間Xと空間Yとの隣接辺のエッジ部をcase4で簡略化したものである。しかし、このように簡略化すると、空間Yと空間Zの隣接辺を分断してしまい、整合性がとれなくなる。このように、隣接辺との整合性を考慮して、簡略化したエッジ部を元に戻す場合もある。
また、隣接する空間がある場合において、片方の空間の簡略化処理結果と、他方の空間の簡略化処理結果とが必ずしも一致するとは限らない。そこで、双方簡略化を行う。図31は、双方簡略化について説明する図である。図31(A)は、空間Aに凸部優先処理にて簡略化が行われた結果と、空間Cに凹部優先処理にて簡略化が行われた結果を示す。空間Aと空間Cの隣接辺には、エッジ部分がある。図31(B)は、空間Aおよび空間Cに凹エッジ簡略化処理が行われた結果を示す。凹エッジ簡略化処理のため、空間A側の突出部分は削除されていない。一方、空間C側の埋没部分は削除されている。空間Aと空間Cを接合すると、図31(C)で示すように重複部分ができる。双方簡略化処理では、この重複部分を削除する。図31(D)は、双方簡略化処理後を示す。これにより、簡略化されつつ空間の整合性が取れた形状となる。
図32は、エッジ部の簡略化のフローチャートである。形状簡略部3414は、始めに凹エッジの簡略化を行う(S1201)。そして、隣接空間の有無を確認し、隣接空間がある場合(S1202のYES)は、当該隣接空間との双方簡略化を行う。双方簡略化では、エッジ部の簡略化の前に行われた凸部と凹部の簡略化がいずれかが先に行われたかによって処理が異なる。凹部を先に簡略化していた場合(S1203のNO)は、隣接空間は凸部を先に簡略化した結果と比較する(S1204)。逆に凸部を先に簡略化していた(S1203のYES)は、隣接空間は凹部を先に簡略化した結果と比較する(S1205)。
隣接空間との比較(S1204,S1205)の結果、重複部分がない場合(S1206のNO)は、今回の処理で簡略化された部分があるとき(S1210のYES)のみ、加工区間情報を更新する(S1211)。
隣接空間との比較(S1204,S1205)の結果、重複部分がある場合(S1206のYES)は、隣接空間を分断する簡略化結果がないか確認し、分断する簡略化結果があるとき(S1207のNO)は、エッジの簡略化を元に戻す。隣接空間を分断する部分がないとき(S1207のYES)または簡略化を元に戻した後(S1208)は、隣接する空間の重複部分を削除する(S1209)。そして、今回の処理で簡略化された部分がある場合(S1210のYES)は、加工区間情報を更新する(S1211)。
隣接空間がない場合(S1202のNO)は、凸エッジの簡略化を行う(S1212)。隣接空間がある場合は、当該隣接空間との調整により、凸エッジがなくなるため、凸エッジの簡略化を行う必要はない。しかし、隣接空間がない場合は、凸エッジの簡略化を行う必要がある。凸エッジの簡略化処理(S1212)後、簡略化された凹エッジまたは凸エッジがあった場合(S1210のYES)は、簡略区間の加工区間情報を更新する(S1211)。以上が、エッジ部の簡略化のフローである。
次に、凹エッジの簡略化と凸エッジの簡略化について説明する。凹エッジの簡略化と凸エッジの簡略化は、簡略化の対象が凸部であるか凹部であるかの違いしかない。そのため、ここでは、凹エッジの簡略化について説明し、凸部簡略化については省略する。
図33は、凹エッジの簡略化のフローチャートである。形状簡略部3414は、まず凹エッジを取得する(S1301)。凹エッジを取得できなかった場合(S1302のNO)は、処理は終了する。凹エッジを取得できた場合(S1302のYES)は、取得した凹エッジそれぞれに対し、処理を行う。
まず、凹エッジの両端の辺それぞれと隣接する2辺を連続区間方向に延長し、延長線を生成する(S1303)。2つの延長線の交点がある場合(S1304のYES)は、当該交点が凹エッジ領域内であるかを確認する。凹エッジ領域内でない場合(S1305のNO)は、次の凹エッジの処理に移る。凹エッジ領域内であった場合(S1305のYES)は、凹エッジの頂点を取得した交点に変更して簡略化する(S1306)。そして、次の凹エッジの処理に移る。この簡略化は図30で示したCase1に該当する。
2つの延長線の交点がない場合(S1304のNO)は、他方の隣接辺との交点があるかを確認する。当該交点がある場合(S1307のYES)は、凹エッジの頂点を取得した交点に変更して簡略化する(S1306)。そして、次の凹エッジの処理に移る。この簡略化は図30で示したCase2に該当する。当該交点がない場合(S1307のNO)は、凹エッジの辺と交点があることを確認する。
凹エッジの辺との交点がある場合(S1308のYES)は、凹エッジの頂点を凹エッジの辺との交点に変更して簡略化して(S1311)、次の凹エッジの処理に移る。この簡略化は図30で示したCase3に該当する。凹エッジの辺との交点がない場合は、先ほど生成した延長線同士が重なるかを確認する(S1310)。重なる場合(S1310のYES)は、凹エッジの頂点を削除し、その延長線により凹エッジを簡略化して(S1311)、次の凹エッジの処理に移る。この簡略化は図30で示したCase4に該当する。重ならない場合(S1310のNO)は、簡略化せずに、次の凹エッジの処理に移る。
取得した全ての凹エッジに対する処理が完了すると、本フローは終了する。
次に、エッジ部の整形について説明する。形状簡略部3414は、方向軸のX軸またはY軸と平行ではないエッジ部の辺を、X軸またはY軸に平行な線に変更する。図34は、エッジ部の整形について説明する図である。図34(A)は、整形前のエッジ部である。黒の丸はエッジ部の3つの頂点のうちの2つである。この2つの頂点間の辺は、方向軸のX軸とY軸いずれにも平行ではないため、形状簡略部3414は、この辺に対し、整形処理を行う。但し、整形処理を行うのは、対象のエッジ部の辺と接続されている2辺が、方向軸と平行である場合に限られる。なお、この方法の場合、簡略面積に変動はないため、簡略形状を決定した後でも行うことができる。
形状簡略部3414は、対象のエッジ部の辺と接続されている2辺がともに、方向軸のX軸またはY軸と平行である場合に、対象のエッジ部の辺の中点を通り、当該2辺の延長線との垂線を生成する。そして、当該垂線が2辺の延長線と交差する交点(図34(A)に示す白ぬきの丸)を取得する。そして、取得した2つの交点を接続した線と、各交点まで延長した2辺の延長線とにより、対象のエッジ部の辺を置き換える。図34(B)が整形後のエッジ部である。これにより、方向軸のX軸またはY軸と平行でない加工面の形状を減らすことができる。
加工程度評価部3415は、簡略加工の結果が形状加工の制約範囲内であるかを判定する。具体的には、形状簡略部3414による直線化において、算出された凸部優先処理による加工結果と凹部優先処理による加工結果を比較し、簡略形状を決定する。但し、凸部優先処理による加工結果と凹部優先処理による加工結果が、簡略区間設定部3413が算出した簡略面積閾値を超えている可能性がある。そこで、加工程度評価部3415は、加工結果が簡略面積閾値を超えているかを確認し、超えている場合は、加工ステップを1つずつ遡り、遡った加工ステップにおける加工処理の結果が、簡略面積閾値を超えているかを確認する。これにより、加工処理の結果が簡略面積閾値未満である直近の加工ステップと、その加工ステップにおける加工結果を認識することができる。そして、簡略面積閾値未満である凸部優先処理による加工結果と、簡略面積閾値未満である凹部優先処理による加工結果を比較して、簡略形状を決定する。
加工程度評価部3415は、加工結果に対する評価値を算出し、当該評価値に基づき、簡略形状を決定する。評価値は、利用目的に応じて任意に定めてよい。例えば、基本軸に基づき、評価値を算出する方法が考えられる。平面の基本軸の方向(ベクトル)と簡略区間の方向(ベクトル)との差分(ずれ)を求め、評価値を差分の逆数にするなどして、差分が小さいほど、評価値が高いようにしてもよい。また、基本軸が複数ある場合は、各基本軸との簡略区間との各差分を算出し、差分の絶対値の総和が小さいほど、評価値が高くなるようにしてもよい。また、簡略化によって加除された面積が小さいほど、評価値が高いようにしてもよい。または、簡略区間に存在する頂点の数が小さいほど、評価値が高いようにしてもよい。また、評価値を算出する方法は1つでもよいし、複数の方法を組み合わせてもよい。複数の方法を組み合わせる場合は、方法ごとに重み付けを行ってもよく、重みは任意に定めてよい。
次に、空間構造加工部342の処理の詳細について説明する。図35は、空間構造加工部342の概略構成の一例を示すブロック図である。空間構造加工部342は、分割片生成部3421と、分割片再構成部3422と、分割結果評価部3423と、分割片情報管理部3424とを備える。
分割片生成部3421は、予め指定された指定要素の種類のオブジェクトの位置を分割基準として、加工対象である加工面を分割する線を生成する。そして、分割線で囲まれた領域、または、加工面の形状の輪郭線と分割線で囲まれた領域を、分割片とする。
なお、加工面は、空間形状加工部341から取得してもよい。または、空間構造加工部342も空間形状加工部341の加工面取得部3411と同様の部を備え、加工面を生成してもよい。
分割基準となる指定要素は、壁、柱などの建物の構造に関する要素でもよいし、設備等の建物の設備に関する要素でもよい。分割基準および分割方法は、予め定められておいてもよいし、入力部11と取得部12を介して指定されてもよい。
分割片再構成部3422は、分割片を再構成する。再構成とは、複数の分割片を合成することを意味する。
分割片情報管理部3423は、加工された結果を、分割片情報として、管理する。分割片情報は、分割片の生成時に、分割片生成部3421により生成されるものである。分割片情報には、分割片に対応付けられるID、当該分割片が生成された加工ステップ数、分割片に含まれる頂点のIDと位置座標、分割片が合成された合成片のリストである合成片IDリスト、隣接する分割片のリストである隣接片IDリスト、元の空間ID、分割片の形状と重なる簡略区間を表す区間IDリストなどが含まれることが考えられる。
なお、分割片情報には、加工ステップごとに、当該加工ステップ時における分割片の情報が含まれる。ゆにえ、分割片情報を参照することにより、最後の加工処理後の分割片の状態のみならず、各加工ステップにおける状態も参照することができる。
図36は、空間構造加工処理の概略フローチャートである。空間構造加工部342は、初めに空間の分割に関する処理を、分割対象である加工面それぞれに対し、行う。空間の分割に関する処理は、分割線の生成(S1401)と、分割片の生成(S1402)と、分割片の再構成(S1403)の3つの処理からなる。分割線の生成と、分割片の生成は、分割片生成部3421が行う。分割片の再構成は、分割片再構成部3422が行う。
次に、空間構造加工部342は、空間の集約に関する処理を行う。集約は、分割対象以外の加工面を対象に行われる。集約対象がないまたは集約を行わないとする場合(S1404のNO)は、集約処理は省略される。集約対象がある場合(S1404のYES)は、空間構造加工部342は、まず集約対象であって隣接している加工面をグループ化する(S1405)。そして各グループそれぞれに対し、加工面を合成する(S1406)。これらの集約処理は、分割片再構成部3422が行う。
次に、先に説明して図14を用いて、分割片を生成する方法について説明する。分割片生成部3421は、柱の辺と重なるような分割線を生成する。図14(B)では、このように生成された分割線を点線で表している。また、分割片生成部3421は、柱の辺であって、加工面の外周と接しない辺の中点を通る垂線を生成する。図14(B)では、この垂線は破線で表されている。また、このように生成された分割線のうち、加工面の外周とも他の分割線とも直行しない分割線は削除するものとする。そして、図14(C)示すように、分割線で囲まれた領域、または加工面の形状の輪郭線と分割線で囲まれた領域が、分割片となる。分割片が生成されたとき、分割片生成部3421は、分割片情報を生成する。この分割線の生成方法は、先に説明した空間形状加工部341の方向軸取得部3412が行う方向軸の取得の方法の1つと同じである。なお、方向軸の取得の方法と異なる方法にて、分割線を生成してもよい。
次に、先に説明して図15を用いて、分割片を再構成する方法について説明する。分割片再構成部3422は、図15(A)の分割片に対し、合成処理を行う。合成処理は、面積が最小の分割片を、当該分割片に対し基本軸のX軸またはY軸の方向にて隣接する分割片に合成(吸収)させるものである。図15(B)は、X軸方向に隣接する分割片を合成する場合を示す。複数の分割片と接している場合は、合成させる分割片を任意に選んでもよいが、ここでは、面積の大きいほうに合成するものとする。この合成を、合成により新たに生成される分割片面積が予め指定された閾値を超えない限り繰り返す。これにより、一定値以上の面積を有する分割片のみが残る。次に、先ほどの合成処理とは異なる軸方向に隣接する分割片に対し、同様の合成処理を行う。図15(C)は、X軸方向に隣接する分割片を合成した後に、Y軸方向に隣接する分割片を合成する場合を示す。図15(B)では存在した小さな分割片がなくなっていることが分る。図15(C)では、さらに、Y軸方向に分割片を合成させて、より大きい分割片を生成する。このようにして、図15(D)のようになる。
なお、方向軸の決定方法で説明した通り、方向軸が複数ある場合には、方向軸ごとに分割片の合成を行ってもよい。
なお、X軸またはY軸のいずれかを先に合成するかにより合成の結果は異なる。分割片再構成部3422は、このため、X軸を先に行う合成と、Y軸を先に行う合成の両方を行った上で、各合成結果の評価値を算出する。そして、より良い評価値の合成結果を最終結果とする。算出方法は任意に定めてよい。例えば、生成された分割片の数が少ないほうがよい場合は、分割数に基づき、評価値を算出する。また、生成された分割片の大きさが均一のほうがよい場合は、分割片の面積の標準偏差に基づき、評価値を算出する。また、生成された分割片の大きさができるだけ大きいほうがよい場合は、生成された分割片の面積と、予め定められた分割片の面積の上限値との偏差に基づき、評価値を算出する。なお、評価値を算出する方法は1つでもよいし、複数の方法を組み合わせてもよい。複数の方法を組み合わせる場合は、方法ごとに重み付けを行ってもよく、重みは任意に定めてよい。
また、分割片再構成部3422は、最終結果として採用した再構成による分割片に関する分割片情報と、加工区間情報を更新する。以上により、指定要素が省かれた分割片が生成される。
以上のように、第2の実施形態によれば、建物モデルの形状および構造を簡略化することができ、シミュレーション部14の処理の負荷を減少することができる。
また、上記に説明した実施形態における各処理は、ソフトウェア(プログラム)によって実現することが可能である。よって、上記に説明した実施形態における運用計画案作成装置1は、例えば、汎用のコンピュータ装置を基本ハードウェアとして用い、コンピュータ装置に搭載されたプロセッサにプログラムを実行させることにより実現することが可能である。
図37は、本発明の一実施形態に係る運用計画案作成装置1を実現したハードウェア構成の一例を示すブロック図である。運用計画案作成装置1は、プロセッサ41、主記憶装置42、補助記憶装置43、ネットワークインタフェース44、デバイスインタフェース45、入力装置46、出力装置47を備え、これらがバス48などを介して接続された、コンピュータ装置4として実現できる。
プロセッサ41が、補助記憶装置43からプログラムを読み出して、主記憶装置42に展開して、実行することで、運用計画案作成処理部1、劣化モデル処理部2、建物モデル処理部3の機能を実現することができる。
プロセッサ41は、コンピュータの制御装置及び演算装置を含む電子回路である。プロセッサ41は、例えば、汎用目的プロセッサ、中央処理装置(CPU)、マイクロプロセッサ、デジタル信号プロセッサ(DSP)、コントローラ、マイクロコントローラ、状態マシン、特定用途向け集積回路、フィールドプログラマブルゲートアレイ(FPGA)、プログラム可能論理回路(PLD)、及びこれらの組合せを用いることができる。
本実施形態の運用計画案作成装置1は、当該運用計画案作成装置1で実行されるプログラムをコンピュータ装置4に予めインストールすることで実現してもよいし、プログラムをCD−ROMなどの記憶媒体に記憶して、あるいはネットワークを介して配布して、コンピュータ装置4に適宜インストールすることで実現してもよい。
ネットワークインタフェース44は、ネットワークに接続するためのインタフェースである。ネットワークインタフェース44は、既存の無線規格に適合したものを用いればよい。入力部11、取得部12、出力部16は、このネットワークインタフェース44にて、データの入出力を実現してもよい。ここではネットワークインタフェースを1つのみ示しているが、複数のネットワークインタフェースが搭載されていてもよい。
デバイスインタフェース45は、外部記憶媒体5などの機器に接続するインタフェースである。外部記憶媒体5は、HDD、CD−R、CD−RW、DVD−RAM、DVD−R、SAN(Storage area network)等の任意の記録媒体でよい。各記憶部は、外部記憶媒体5としてデバイスインタフェース45に接続されてもよい。
主記憶装置42は、プロセッサ41が実行する命令、および各種データ等を一時的に記憶するメモリ装置であり、DRAM等の揮発性メモリでも、MRAM等の不揮発性メモリでもよい。補助記憶装置43は、プログラムやデータ等を永続的に記憶する記憶装置であり、例えば、HDDまたはSSD等がある。各記憶部は、主記憶装置42、補助記憶装置43として実現されてもよい。
また、運用計画案作成装置1の各部は、プロセッサ41などを実装している半導体集積回路などの専用のハードウェアにて構成されてもよい。
入力装置46は、キーボード、マウス、タッチパネル等の入力デバイスを備え、入力部11の機能を実現する。入力装置46からの入力デバイスの操作による操作信号はプロセッサ41に出力される。入力装置46または出力装置47は、外部からデバイスインタフェース45に接続されてもよい。
出力装置46は、出力部16の機能を実現する。出力装置46は、LCD(Liquid Crystal Display)、CRT(Cathode Ray Tube)等の表示ディスプレイでもよい。
上記に、本発明の一実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 運用計画案作成処理部
11 入力部
12 取得部
13 運用計画案作成部
14 シミュレーション部
15 運用計画案記憶部
16 出力部
2 劣化モデル処理部
21 計測データ(センサデータ)管理部
211 計測データ取得部
212 計測データ記憶部
22 オントロジー管理部
221 オントロジー記憶部
222 特徴量データ抽出部(利用事例抽出部)
223 オントロジーデータ記憶部
23 劣化モデル管理部
231 劣化モデル生成部(パラメータキャリブレータ部)
2311 パーティクル初期設定部
2312 シミュレーション部制御部
2313 パーティクルシミュレーション部
2314 パーティクル尤度計算部
2315 パーティクル変更演算部
2316 合成部
232 劣化モデル記憶部
233 オントロジー取得部
3 建物モデル処理部
31 建物データ記憶部
32 建物モデル抽出部
33 抽出結果記憶部
34 建物モデル加工部
341 空間形状加工部
3411 基準面取得部
3412 方向軸取得部
3413 簡略区間設定部
3414 形状簡略部
3415 加工程度評価部
3416 加工区間情報管理部
342 空間構造加工部
3421 分割片生成部
3422 分割片再構成部
3423 分割結果評価部
3424 分割片情報管理部
4 コンピュータ装置
41 プロセッサ
42 主記憶装置
43 補助記憶装置
44 ネットワークインタフェース
45 デバイスインタフェース
46 バス
5 外部記憶媒体

Claims (11)

  1. 運用対象と類似するとされた計測対象である類似計測対象の計測値に基づき算出された、前記類似計測対象の性能の劣化モデルを取得する取得部と、
    前記類似計測対象の性能の劣化モデルと、前記運用対象に想定される利用事例とに基づき、前記運用対象の性能の劣化に関するシミュレーションを行うシミュレーション部と、
    前記シミュレーション結果に基づき、前記運用対象に対して行われる保全作業の実施時期を示す運用計画案を作成する運用計画案作成部と、
    を備える運用計画案作成装置。
  2. 前記類似計測対象の性能の劣化モデルは、
    複数の時刻のそれぞれごとに、前記時刻までに計測された、前記類似計測対象の計測値に基づき算出された、前記類似計測対象の性能を表すパラメータの確率密度分布に基づき算出されたものであり
    複数の時刻のそれぞれごとに、前記時刻までに計測された、計測対象の計測値に基づき算出された、計測対象の性能を表すパラメータの確率密度分布を周期的に算出し、算出された複数の確率密度分布に基づき、前記計測対象の性能の劣化モデルを生成する劣化モデル生成部
    をさらに備える請求項1に記載の運用計画案作成装置。
  3. 前記計測対象の計測データから、前記計測対象の利用事例を抽出する利用事例抽出部と、
    前記計測対象ごとに、前記計測対象の性能の劣化モデルと利用事例とを対応づけて記憶する劣化モデル記憶部と、
    をさらに備え、
    前記取得部は、前記運用対象に想定される利用事例と類似する利用事例を有する計測対象を前記類似計測対象とすることとし、前記類似計測対象の性能の劣化モデルを取得する
    請求項1または2に記載の運用計画案作成装置。
  4. 前記計測データから、前記計測対象の利用事例を抽出する利用事例抽出部と、
    前記計測対象の前記特徴的な利用事例と前記計測対象に関する情報とが体系づけられたオントロジーを記憶するオントロジー記憶部と、
    前記計測対象ごとに、前記計測対象の性能の劣化モデルと前記オントロジーを対応づけて記憶する劣化モデル記憶部と
    をさらに備え、
    前記取得部は、前記運用対象に関する情報に基づき劣化モデル記憶部から選択された、前記類似計測対象の性能の劣化モデルおよび特徴的な利用事例を取得し、
    前記シミュレーション部は、前記運用対象に想定される利用事例として、前記類似計測対象の特徴的な利用事例を用いる
    請求項1から3のいずれか一項に記載の運用計画案作成装置。
  5. 建物モデルを含む、建物に関するデータを記憶する建物データ記憶部と、
    前記運用対象が設置される第1建物に関するデータに基づき、前記建物データ記憶部から、前記第1建物と類似する第2建物の建物モデルを抽出する建物モデル抽出部と、
    をさらに備え、
    前記取得部は、前記第1建物の建物モデルとして、前記第2建物の建物モデルを取得し、
    前記シミュレーション部は、前記類似計測対象の性能の劣化モデルと、前記運用対象に想定される利用事例と、前記第1建物の建物モデルとに基づき、前記シミュレーションを行い、
    前記建物データ記憶部が記憶する建物に関するデータには、少なくとも建物内のオブジェクトの属性、形状、または構造に関する情報が含まれ、
    前記建物モデル抽出部は、前記1建物のオブジェクトの属性、形状、または構造の少なくともいずれかが一致または類似しているオブジェクトを有する建物を類似と判断する
    請求項1から4のいずれか一項に記載の運用計画案作成装置。
  6. 少なくとも、建物モデルに含まれる平面の外周もしくは内周の形状、または指定された要素に関する部分もしくは部分の形状を、直線化または簡略化することにより、建物モデルの簡略化を行う空間形状加工部
    をさらに備える請求項5に記載の運用計画案作成装置。
  7. 少なくとも、建物モデルに含まれる平面の分割または建物モデルに含まれる複数の平面の集約を行うことにより、建物モデルの簡略化を行う空間構造加工部
    をさらに備える請求項5または6に記載の運用計画案作成装置。
  8. 前記取得部は、第1運用対象の劣化モデルと、第2運用対象の劣化モデルを取得し、
    前記シミュレーション部は、第1運用対象の劣化モデルに基づく第1シミュレーションと、第2運用対象の劣化モデルに基づく第2シミュレーションとを行い、
    前記運用計画案作成部は、前記第1シミュレーションの結果と前記第2シミュレーションの結果に基づき、前記第1運用対象から前記第2運用対象へ交換する場合の運用計画案を作成する
    請求項1から7のいずれか一項に記載の運用計画案作成装置。
  9. 運用対象と類似するとされた計測対象である類似計測対象の計測値に基づき算出された、前記類似計測対象の性能の劣化モデルを取得する第1取得ステップと、
    前記類似計測対象の性能の劣化モデルと、前記運用対象に想定される利用事例とに基づき、前記運用対象の性能の劣化に関するシミュレーションを行うシミュレーションステップと、
    前記シミュレーション結果に基づき、前記運用対象に対して行われる保全作業の実施時期を示す運用計画案を作成する運用計画案作成ステップと、
    をコンピュータが実行する運用計画案作成方法。
  10. 運用対象と類似するとされた計測対象である類似計測対象の計測値に基づき算出された、前記類似計測対象の性能の劣化モデルを取得する第1取得ステップと、
    前記類似計測対象の性能の劣化モデルと、前記運用対象に想定される利用事例とに基づき、前記運用対象の性能の劣化に関するシミュレーションを行うシミュレーションステップと、
    前記シミュレーション結果に基づき、前記運用対象に対して行われる保全作業の実施時期を示す運用計画案を作成する運用計画案作成ステップと、
    をコンピュータに実行させるためのプログラム。
  11. 計測対象と、第1の通信装置と、第2の通信装置と、第3の通信装置と、を備えた運用計画案作成システムであって、
    前記第1通信装置は、
    前記計測対象の計測値を前記第2通信装置に送り、
    前記第2通信装置は、
    複数の時刻のそれぞれごとに、前記時刻までに計測された、計測対象の計測値に基づき算出された、計測対象の性能を表すパラメータの確率密度分布を周期的に算出し、算出された複数の確率密度分布に基づき、計測対象の性能の劣化モデルを生成する劣化モデル生成部を備え、
    前記第3の通信装置は、
    運用対象と類似するとされた計測対象である類似計測対象の計測値に基づき算出された、前記類似計測対象の性能の劣化モデルを取得する取得部と、
    前記類似計測対象の性能の劣化モデルと、前記運用対象に想定される利用事例とに基づき、前記運用対象の性能の劣化に関するシミュレーションを行うシミュレーション部と、
    前記シミュレーション結果に基づき、前記運用対象に対して行われる保全作業の実施時期を示す運用計画案を作成する運用計画案作成部と、
    を備える運用計画案作成システム。
JP2016052929A 2016-03-16 2016-03-16 運用計画案作成装置、運用計画案作成方法、プログラムおよび運用計画案作成システム Pending JP2017167847A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016052929A JP2017167847A (ja) 2016-03-16 2016-03-16 運用計画案作成装置、運用計画案作成方法、プログラムおよび運用計画案作成システム
PCT/JP2016/087781 WO2017158975A1 (ja) 2016-03-16 2016-12-19 運用計画案作成装置、運用計画案作成方法、プログラムおよび運用計画案作成システム
US15/919,609 US20180203961A1 (en) 2016-03-16 2018-03-13 Operation draft plan creation apparatus, operation draft plan creation method, non-transitory computer readable medium, and operation draft plan creation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016052929A JP2017167847A (ja) 2016-03-16 2016-03-16 運用計画案作成装置、運用計画案作成方法、プログラムおよび運用計画案作成システム

Publications (1)

Publication Number Publication Date
JP2017167847A true JP2017167847A (ja) 2017-09-21

Family

ID=59852047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016052929A Pending JP2017167847A (ja) 2016-03-16 2016-03-16 運用計画案作成装置、運用計画案作成方法、プログラムおよび運用計画案作成システム

Country Status (3)

Country Link
US (1) US20180203961A1 (ja)
JP (1) JP2017167847A (ja)
WO (1) WO2017158975A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045046A1 (ja) 2017-08-31 2019-03-07 旭化成株式会社 プラスチック光ファイバ、プラスチック光ファイバケーブル、コネクタ付プラスチック光ファイバケーブル、光通信システム、及びプラスチック光ファイバセンサ
WO2019065407A1 (ja) * 2017-09-29 2019-04-04 ダイキン工業株式会社 管理システムおよびフィルタ管理方法
JP2019207602A (ja) * 2018-05-30 2019-12-05 株式会社メディンプル 勤務表作成装置、勤務表作成方法及びプログラム
JPWO2021157005A1 (ja) * 2020-02-06 2021-08-12
JP7055258B1 (ja) * 2020-12-18 2022-04-15 三菱電機株式会社 学習装置、推論装置、診断システム、モデル生成方法及びプログラム

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9411327B2 (en) 2012-08-27 2016-08-09 Johnson Controls Technology Company Systems and methods for classifying data in building automation systems
US10534326B2 (en) 2015-10-21 2020-01-14 Johnson Controls Technology Company Building automation system with integrated building information model
US11268732B2 (en) 2016-01-22 2022-03-08 Johnson Controls Technology Company Building energy management system with energy analytics
US11947785B2 (en) 2016-01-22 2024-04-02 Johnson Controls Technology Company Building system with a building graph
WO2017173167A1 (en) 2016-03-31 2017-10-05 Johnson Controls Technology Company Hvac device registration in a distributed building management system
US10417451B2 (en) 2017-09-27 2019-09-17 Johnson Controls Technology Company Building system with smart entity personal identifying information (PII) masking
US10505756B2 (en) 2017-02-10 2019-12-10 Johnson Controls Technology Company Building management system with space graphs
US11774920B2 (en) 2016-05-04 2023-10-03 Johnson Controls Technology Company Building system with user presentation composition based on building context
US11226598B2 (en) 2016-05-04 2022-01-18 Johnson Controls Technology Company Building system with user presentation composition based on building context
US10901373B2 (en) 2017-06-15 2021-01-26 Johnson Controls Technology Company Building management system with artificial intelligence for unified agent based control of building subsystems
US10684033B2 (en) 2017-01-06 2020-06-16 Johnson Controls Technology Company HVAC system with automated device pairing
US11010846B2 (en) 2017-01-12 2021-05-18 Johnson Controls Technology Company Building energy storage system with multiple demand charge cost optimization
US10324483B2 (en) 2017-01-12 2019-06-18 Johnson Controls Technology Company Building energy storage system with peak load contribution cost optimization
US11238547B2 (en) 2017-01-12 2022-02-01 Johnson Controls Tyco IP Holdings LLP Building energy cost optimization system with asset sizing
US11061424B2 (en) 2017-01-12 2021-07-13 Johnson Controls Technology Company Building energy storage system with peak load contribution and stochastic cost optimization
US10949777B2 (en) 2017-06-07 2021-03-16 Johnson Controls Technology Company Building energy optimization system with economic load demand response (ELDR) optimization
US10282796B2 (en) 2017-01-12 2019-05-07 Johnson Controls Technology Company Building energy storage system with multiple demand charge cost optimization
US11900287B2 (en) 2017-05-25 2024-02-13 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with budgetary constraints
US11847617B2 (en) * 2017-02-07 2023-12-19 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with financial analysis functionality
US11487277B2 (en) 2017-05-25 2022-11-01 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system for building equipment
US10515098B2 (en) 2017-02-10 2019-12-24 Johnson Controls Technology Company Building management smart entity creation and maintenance using time series data
US11360447B2 (en) 2017-02-10 2022-06-14 Johnson Controls Technology Company Building smart entity system with agent based communication and control
US10452043B2 (en) 2017-02-10 2019-10-22 Johnson Controls Technology Company Building management system with nested stream generation
US11764991B2 (en) 2017-02-10 2023-09-19 Johnson Controls Technology Company Building management system with identity management
US10854194B2 (en) 2017-02-10 2020-12-01 Johnson Controls Technology Company Building system with digital twin based data ingestion and processing
US11994833B2 (en) 2017-02-10 2024-05-28 Johnson Controls Technology Company Building smart entity system with agent based data ingestion and entity creation using time series data
US10095756B2 (en) 2017-02-10 2018-10-09 Johnson Controls Technology Company Building management system with declarative views of timeseries data
US11307538B2 (en) 2017-02-10 2022-04-19 Johnson Controls Technology Company Web services platform with cloud-eased feedback control
WO2018175912A1 (en) 2017-03-24 2018-09-27 Johnson Controls Technology Company Building management system with dynamic channel communication
US11327737B2 (en) 2017-04-21 2022-05-10 Johnson Controls Tyco IP Holdings LLP Building management system with cloud management of gateway configurations
US11675322B2 (en) 2017-04-25 2023-06-13 Johnson Controls Technology Company Predictive building control system with discomfort threshold adjustment
US11371739B2 (en) 2017-04-25 2022-06-28 Johnson Controls Technology Company Predictive building control system with neural network based comfort prediction
US10788229B2 (en) 2017-05-10 2020-09-29 Johnson Controls Technology Company Building management system with a distributed blockchain database
US11416955B2 (en) 2017-05-25 2022-08-16 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with integrated measurement and verification functionality
US11120411B2 (en) 2017-05-25 2021-09-14 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with incentive incorporation
US11747800B2 (en) 2017-05-25 2023-09-05 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with automatic service work order generation
US11636429B2 (en) 2017-05-25 2023-04-25 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance systems and methods with automatic parts resupply
US11409274B2 (en) 2017-05-25 2022-08-09 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system for performing maintenance as soon as economically viable
US11022947B2 (en) 2017-06-07 2021-06-01 Johnson Controls Technology Company Building energy optimization system with economic load demand response (ELDR) optimization and ELDR user interfaces
EP3655826B1 (en) 2017-07-17 2024-07-03 Johnson Controls Tyco IP Holdings LLP Systems and methods for agent based building simulation for optimal control
EP3655824A1 (en) 2017-07-21 2020-05-27 Johnson Controls Technology Company Building management system with dynamic work order generation with adaptive diagnostic task details
US20190034066A1 (en) 2017-07-27 2019-01-31 Johnson Controls Technology Company Building management system with central plantroom dashboards
US11314788B2 (en) 2017-09-27 2022-04-26 Johnson Controls Tyco IP Holdings LLP Smart entity management for building management systems
US20190096214A1 (en) 2017-09-27 2019-03-28 Johnson Controls Technology Company Building risk analysis system with geofencing for threats and assets
US11768826B2 (en) 2017-09-27 2023-09-26 Johnson Controls Tyco IP Holdings LLP Web services for creation and maintenance of smart entities for connected devices
US10962945B2 (en) 2017-09-27 2021-03-30 Johnson Controls Technology Company Building management system with integration of data into smart entities
US11281169B2 (en) 2017-11-15 2022-03-22 Johnson Controls Tyco IP Holdings LLP Building management system with point virtualization for online meters
US10809682B2 (en) 2017-11-15 2020-10-20 Johnson Controls Technology Company Building management system with optimized processing of building system data
JP6836493B2 (ja) * 2017-11-17 2021-03-03 株式会社東芝 保守手順生成装置、保守手順生成方法、及び保守手順生成プログラム
US11127235B2 (en) 2017-11-22 2021-09-21 Johnson Controls Tyco IP Holdings LLP Building campus with integrated smart environment
US11954713B2 (en) 2018-03-13 2024-04-09 Johnson Controls Tyco IP Holdings LLP Variable refrigerant flow system with electricity consumption apportionment
JP6930938B2 (ja) * 2018-03-16 2021-09-01 株式会社東芝 運転計画作成装置、運転計画作成方法、およびプログラム
US11474485B2 (en) 2018-06-15 2022-10-18 Johnson Controls Tyco IP Holdings LLP Adaptive training and deployment of single chiller and clustered chiller fault detection models for connected chillers
US11859846B2 (en) 2018-06-15 2024-01-02 Johnson Controls Tyco IP Holdings LLP Cost savings from fault prediction and diagnosis
US11016648B2 (en) 2018-10-30 2021-05-25 Johnson Controls Technology Company Systems and methods for entity visualization and management with an entity node editor
US11226604B2 (en) 2018-11-19 2022-01-18 Johnson Controls Tyco IP Holdings LLP Building system with semantic modeling based configuration and deployment of building applications
US11927925B2 (en) 2018-11-19 2024-03-12 Johnson Controls Tyco IP Holdings LLP Building system with a time correlated reliability data stream
US11436567B2 (en) 2019-01-18 2022-09-06 Johnson Controls Tyco IP Holdings LLP Conference room management system
US10788798B2 (en) 2019-01-28 2020-09-29 Johnson Controls Technology Company Building management system with hybrid edge-cloud processing
US11480360B2 (en) 2019-08-06 2022-10-25 Johnson Controls Tyco IP Holdings LLP Building HVAC system with modular cascaded model
WO2021026370A1 (en) * 2019-08-06 2021-02-11 Johnson Controls Technology Company Model predictive maintenance system with degradation impact model
US12021650B2 (en) 2019-12-31 2024-06-25 Tyco Fire & Security Gmbh Building data platform with event subscriptions
US20210200174A1 (en) 2019-12-31 2021-07-01 Johnson Controls Technology Company Building information model management system with hierarchy generation
US11769066B2 (en) 2021-11-17 2023-09-26 Johnson Controls Tyco IP Holdings LLP Building data platform with digital twin triggers and actions
US11894944B2 (en) 2019-12-31 2024-02-06 Johnson Controls Tyco IP Holdings LLP Building data platform with an enrichment loop
WO2021138245A1 (en) 2019-12-31 2021-07-08 Johnson Controls Technology Company Building data platform
US12100280B2 (en) 2020-02-04 2024-09-24 Tyco Fire & Security Gmbh Systems and methods for software defined fire detection and risk assessment
US11537386B2 (en) 2020-04-06 2022-12-27 Johnson Controls Tyco IP Holdings LLP Building system with dynamic configuration of network resources for 5G networks
US11874809B2 (en) 2020-06-08 2024-01-16 Johnson Controls Tyco IP Holdings LLP Building system with naming schema encoding entity type and entity relationships
US11954154B2 (en) 2020-09-30 2024-04-09 Johnson Controls Tyco IP Holdings LLP Building management system with semantic model integration
US11397773B2 (en) 2020-09-30 2022-07-26 Johnson Controls Tyco IP Holdings LLP Building management system with semantic model integration
US12063274B2 (en) 2020-10-30 2024-08-13 Tyco Fire & Security Gmbh Self-configuring building management system
US12061453B2 (en) 2020-12-18 2024-08-13 Tyco Fire & Security Gmbh Building management system performance index
US11921481B2 (en) 2021-03-17 2024-03-05 Johnson Controls Tyco IP Holdings LLP Systems and methods for determining equipment energy waste
US11899723B2 (en) 2021-06-22 2024-02-13 Johnson Controls Tyco IP Holdings LLP Building data platform with context based twin function processing
KR20230125280A (ko) * 2021-09-22 2023-08-29 미츠비시 파워 가부시키가이샤 기기의 성능 평가 장치, 기기의 성능 평가 방법 및기기의 성능 평가 프로그램
US11796974B2 (en) 2021-11-16 2023-10-24 Johnson Controls Tyco IP Holdings LLP Building data platform with schema extensibility for properties and tags of a digital twin
US11934966B2 (en) 2021-11-17 2024-03-19 Johnson Controls Tyco IP Holdings LLP Building data platform with digital twin inferences
US11704311B2 (en) 2021-11-24 2023-07-18 Johnson Controls Tyco IP Holdings LLP Building data platform with a distributed digital twin
US12013673B2 (en) 2021-11-29 2024-06-18 Tyco Fire & Security Gmbh Building control system using reinforcement learning
US11714930B2 (en) 2021-11-29 2023-08-01 Johnson Controls Tyco IP Holdings LLP Building data platform with digital twin based inferences and predictions for a graphical building model
US12061633B2 (en) 2022-09-08 2024-08-13 Tyco Fire & Security Gmbh Building system that maps points into a graph schema
US12013823B2 (en) 2022-09-08 2024-06-18 Tyco Fire & Security Gmbh Gateway system that maps points into a graph schema

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115650A (ja) * 2007-11-07 2009-05-28 Sumitomo Mitsui Construction Co Ltd 構造物の地震被害推定方法および地震被害推定システム
WO2012157040A1 (ja) * 2011-05-13 2012-11-22 株式会社日立製作所 保守部品寿命予測システムおよび保守部品寿命予測方法
JP2014139774A (ja) * 2012-12-21 2014-07-31 Mitsubishi Heavy Ind Ltd プラント設備保全計画の提案支援システム
JP2015200931A (ja) * 2014-04-04 2015-11-12 株式会社Ihi 部品交換サービスシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115650A (ja) * 2007-11-07 2009-05-28 Sumitomo Mitsui Construction Co Ltd 構造物の地震被害推定方法および地震被害推定システム
WO2012157040A1 (ja) * 2011-05-13 2012-11-22 株式会社日立製作所 保守部品寿命予測システムおよび保守部品寿命予測方法
JP2014139774A (ja) * 2012-12-21 2014-07-31 Mitsubishi Heavy Ind Ltd プラント設備保全計画の提案支援システム
JP2015200931A (ja) * 2014-04-04 2015-11-12 株式会社Ihi 部品交換サービスシステム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019045046A1 (ja) 2017-08-31 2019-03-07 旭化成株式会社 プラスチック光ファイバ、プラスチック光ファイバケーブル、コネクタ付プラスチック光ファイバケーブル、光通信システム、及びプラスチック光ファイバセンサ
WO2019065407A1 (ja) * 2017-09-29 2019-04-04 ダイキン工業株式会社 管理システムおよびフィルタ管理方法
JP2019063729A (ja) * 2017-09-29 2019-04-25 ダイキン工業株式会社 管理システムおよびフィルタ管理方法
JP2019207602A (ja) * 2018-05-30 2019-12-05 株式会社メディンプル 勤務表作成装置、勤務表作成方法及びプログラム
JP7134390B2 (ja) 2018-05-30 2022-09-12 株式会社FiveVai 勤務表作成装置、勤務表作成方法及びプログラム
JPWO2021157005A1 (ja) * 2020-02-06 2021-08-12
JP7031076B2 (ja) 2020-02-06 2022-03-07 三菱電機株式会社 管理支援装置、管理支援方法及び管理支援プログラム
JP7055258B1 (ja) * 2020-12-18 2022-04-15 三菱電機株式会社 学習装置、推論装置、診断システム、モデル生成方法及びプログラム
WO2022130640A1 (ja) * 2020-12-18 2022-06-23 三菱電機株式会社 学習装置、推論装置、診断システム、モデル生成方法及びプログラム

Also Published As

Publication number Publication date
WO2017158975A1 (ja) 2017-09-21
US20180203961A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
WO2017158975A1 (ja) 運用計画案作成装置、運用計画案作成方法、プログラムおよび運用計画案作成システム
KR102546065B1 (ko) 빌딩정보모델링 데이터의 xml 파싱을 이용한 디지털 트윈 구현 및 이를 이용한 에너지 시각화 시스템
US11328102B2 (en) Digital design tools for building construction
JP6338678B2 (ja) Cadモデルの3次元格子構造の作成方法、当該cadモデルの3次元格子構造の作成のためのデータ処理装置及び非一時性のコンピュータで読み出し可能な媒体
CN116882038B (zh) 一种基于bim技术的机电施工方法及系统
CN109684714B (zh) 一种基于机器学习和bim技术的建筑设计方法
US9292972B2 (en) Occupant centric capture and visualization of building performance data
LU93399B1 (en) Bim modelling with flexibility attributes
Di Filippo et al. Generative Design for project optimization (S).
JP2017220225A (ja) 複雑なグラフ検索のための局所的な視覚グラフ・フィルタ
US11823110B2 (en) Optimizing building design for future transformation and expansion
KR20130096265A (ko) 빌딩 오퍼레이션 센서 데이터를 분석하는 시스템 및 방법
CN103914865A (zh) 形成几何图案的面的组
US9471720B1 (en) Combined vertical and horizontal load modeling for concrete structures
Zverovich et al. Emergency response in complex buildings: automated selection of safest and balanced routes
WO2013123675A1 (en) Providing building information modeling data
JP6549239B2 (ja) 空間情報生成装置、空間情報生成方法、プログラム
Zhang et al. Graph neural network-based spatio-temporal indoor environment prediction and optimal control for central air-conditioning systems
US20200311322A1 (en) Systems and Methods for Generating an Energy Model and Tracking Evolution of an Energy Model
Jung et al. Appropriate level of development of in-situ building information modeling for existing building energy modeling implementation
Xu et al. Machining feature recognition from in-process model of NC simulation
Gourlis et al. A holistic digital twin simulation framework for industrial facilities: BIM-based data acquisition for building energy modeling
Chen et al. Smart camera placement for building surveillance using OpenBIM and an efficient bi-level optimization approach
Kiavarz et al. An Explainable & Prescriptive Solution for Space-based Energy Consumption Optimization Using BIM Data & Genetic Algorithm
JP2017539027A (ja) 物理システムの経時変化プロファイリングエンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190326