JP2017166291A - Composite banking structure having reinforced soil structure and overlaid fill - Google Patents

Composite banking structure having reinforced soil structure and overlaid fill Download PDF

Info

Publication number
JP2017166291A
JP2017166291A JP2016055329A JP2016055329A JP2017166291A JP 2017166291 A JP2017166291 A JP 2017166291A JP 2016055329 A JP2016055329 A JP 2016055329A JP 2016055329 A JP2016055329 A JP 2016055329A JP 2017166291 A JP2017166291 A JP 2017166291A
Authority
JP
Japan
Prior art keywords
embankment
reinforced
top end
composite
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016055329A
Other languages
Japanese (ja)
Inventor
横田 善弘
Yoshihiro Yokota
善弘 横田
小林 洋文
Hirofumi Kobayashi
洋文 小林
史晃 伊東
Fumiaki Ito
史晃 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Kosen Co Ltd
Original Assignee
Maeda Kosen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Kosen Co Ltd filed Critical Maeda Kosen Co Ltd
Priority to JP2016055329A priority Critical patent/JP2017166291A/en
Publication of JP2017166291A publication Critical patent/JP2017166291A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Retaining Walls (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite banking structure which can reduce a construction cost of a reinforced soil structure, which has high safety, and which can suppress slip of economical and workable overlaid soil.SOLUTION: A composite banking structure comprises a reinforced soil structure 10 and overlaid fill 20, and a crown reinforcement layer 30 is formed in a crown part of the overlaid fill 20.SELECTED DRAWING: Figure 1

Description

本発明は道路、鉄道、堤防等に適用可能な複合盛土構造物に関し、殊に上載盛土が高盛土である場合に好適な補強土構造体と上載盛土を有する複合盛土構造物に関するものである。   The present invention relates to a composite embankment structure applicable to roads, railways, embankments and the like, and more particularly to a composite embankment structure having a reinforced soil structure and an upper embankment suitable when the upper embankment is a high embankment.

補強土構造体は、のり面勾配(壁面勾配)が1:0.6より急なものを「補強土壁」、1:0.6かそれより緩いものを「補強盛土」と大別されている。
補強土構造体の施工法としては、例えばジオテキスタイルを用いた補強盛土工法、帯状鋼材を用いた補強土壁工法、または支圧板付き棒鋼を用いたアンカー式補強盛土壁工法等の多くの工法が提案されており(特許文献1〜5)、現場周辺環境、設計強度、施工コスト、工期等を考慮して適宜工法が選択される。
これらの工法は、補強材による補強形式が異なるものの、盛土内部に敷設した補強材との間の摩擦抵抗または支圧抵抗により盛土の安定性を補い、法面勾配を標準勾配より急勾配に保つ点で共通する。
一般的には、簡易設計法に基づき、以下の複数の評価項目を照査して補強土構造体が設計されている。
その評価項目とは、補強材が通過する箇所のすべりを設定して、補強材の密度、強さ、全長を選定して補強領域自体の安定性を照査する「内的安定」と、補強領域を一体化した仮想擁壁と捉え、これを取り巻く仮想擁壁全体の安定性(転倒、滑動、支持力)について照査する「外的安定」と、補強領域自体が周辺地盤に対して所定の安全率(補強土構造体の外側及び補強領域を横切るすべり破壊、基礎地盤の沈下、地震時の液状化)を確保できているか否かを照査する「全体安定」の三つの評価項目である。
Reinforced soil structures are roughly classified as “reinforced soil walls” where the slope of the slope (wall slope) is steeper than 1: 0.6, and “reinforced embankments” where the slope is 1: 0.6 or less. Yes.
Many methods are proposed for the construction of reinforced earth structures, such as reinforced embankment method using geotextile, reinforced earth wall method using strip steel, or anchor type reinforced embankment wall method using bar steel with bearing plate. (Patent Documents 1 to 5), and a construction method is appropriately selected in consideration of the on-site surrounding environment, design strength, construction cost, construction period, and the like.
Although these methods differ in the type of reinforcement by the reinforcing material, the stability of the embankment is compensated by the frictional resistance or bearing resistance between the reinforcing material laid inside the embankment and the slope of the slope is kept steeper than the standard gradient. In common.
Generally, based on a simple design method, a reinforced soil structure is designed by checking the following evaluation items.
The evaluation items are “internal stability” in which the slip of the part through which the reinforcing material passes is set, the density, strength, and total length of the reinforcing material are selected to check the stability of the reinforcing region itself, and the reinforcing region "External stability" that checks the stability of the entire virtual retaining wall surrounding it (falling, sliding, supporting force), and the reinforced area itself has a predetermined safety against the surrounding ground It is three evaluation items of “total stability” to check whether the rate (slip failure across the outside of the reinforced soil structure and the reinforced area, subsidence of foundation ground, liquefaction during earthquake) can be secured.

また図6に示すように、補強土構造体aの上部に高盛土の上載盛土(嵩上げ盛土)bが存在する場合には、中規模盛土と比べて崩壊時の影響が大きくなるために、上記した複数の評価項目について、より慎重かつ詳細な検討が求められている。   In addition, as shown in FIG. 6, when the upper embankment (lifting embankment) b of the high embankment is present at the upper part of the reinforced soil structure a, the impact at the time of collapse is greater than that of the medium-scale embankment. There is a need for more careful and detailed examination of multiple evaluation items.

特開昭57−140424号公報(図1,2)Japanese Patent Laid-Open No. 57-140424 (FIGS. 1 and 2) 特開平9−279580号公報(図1)JP-A-9-279580 (FIG. 1) 特開平6−322769号公報(図1)JP-A-6-322769 (FIG. 1) 特開平6−220855号公報(図1)Japanese Patent Laid-Open No. 6-220855 (FIG. 1) 特開2001−182065号公報(図1)Japanese Patent Laying-Open No. 2001-182065 (FIG. 1)

補強土構造体aの上部に高盛土の上載盛土が位置する場合、補強土構造体aの設計にあたってつぎのような解決すべき課題がある。
<1>高盛土の場合における補強土構造体aの設計手法が明確に確立されていない。
そのため、従来の設計手法である簡易設計法に基づき補強土構造体aを設計しているものの、その設計に多くの時間と手間を要している。
<2>補強土構造体aを設計する場合、上載盛土b内に生じる円弧すべり線(面)を仮定して照査する必要がある。
上載盛土bの天端に路面cのみが存在する場合、補強土構造体aの高さHと奥行Lを求めるためには、上載盛土bの小段位置や法肩位置に円弧すべり線s,sを仮定するだけでなく、天端に達する円弧すべり線s,sについても仮定しなければならない。
<3>天端に達する円弧すべり線s,sが仮定される場合、これらの円弧すべり線s,sに対処するためには、補強土構造体aの奥行L(補強材の全長)が長くなる。
<4>高盛土が中盛土と比べて盛土崩落の影響が大きくなることと、土構造物の安全率をより高める観点から、補強土構造体aの奥行Lは正規より余分に長い寸法で見積もられているのが実情である。
分かり易く説明すると、補強土構造体aの奥行Lの正規の設計長が、例えば補強土構造体aの高さHの1.5倍の長さであっても、最終的には補強土構造体aの高さHの2〜3倍の長さに過分に見積もられている。
<5>上記したように、従来は補強土構造体aの奥行Lが必要以上に長く見積もられるために、非常に不経済な設計となっている。
すなわち、補強領域の奥行Lの寸法は、補強土構造体aの歩掛に大きな影響を及ぼし、補強領域の奥行Lが僅かでも長くなると、補強土構造体aの施工コストが嵩むだけでなく工期も長期化して歩掛が悪化する。
支持地盤の支持力が不足する現場では、支持地盤を補強する追加工事が必要となって、歩掛がさらに悪化する。
<6>現在、補強土壁工法だけでも壁面材や補強材の違いにより30種以上の工法が提案されていて、工法毎に性能(安全性、耐久性)や施工単価等が異なる。
公共構造物の観点にたてば、現地に適した性能優先の工法を選定することが最も重要なことではあるが、重要な工法選定基準である工事費が障害となって、性能優先の工法選定が阻害されている。
そのため、既存の工法であっても補強土構造体aの工事費を低減できれば、現地に適した性能優先の工法選定の実現性が高くなることから、工事費低減の改善技術の提案が望まれている。
<7>近年の巨大地震時により道路盛土や鉄道盛土等の土構造物がすべり崩壊等の被害を受けて主幹交通網が随所で寸断され、緊急輸送路の確保が大きな課題として残った。
殊に、既設の土構造物を補強して耐振性能を引き上げることは可能であるが、長距離におよぶ土構造物の全断面を補強することは、経済的な負担が極めて大きいことから、実現性に乏しい。
<8>従来の土構造物では、想定を超える地震動を繰り返し受けると、一次すべり線に沿って上載盛土bが崩壊し、さらに奥側の二次、三次すべり線に沿って上載盛土bの崩壊が進行する。
震災時の道路ネットワークを確保するためには、二次、三次すべりといったすべりの連鎖を断ち切り、路面cに緊急車両等が通行可能な幅員を残留し得るような、安全性が高く、経済的でかつ実効性のある上載盛土のすべり抑制技術の提案が切望されている。
When the upper embankment of the high embankment is located above the reinforced soil structure a, there are the following problems to be solved in designing the reinforced soil structure a.
<1> The design method of the reinforced soil structure a in the case of high embankment is not clearly established.
Therefore, although the reinforced soil structure a is designed based on the simple design method which is a conventional design method, much time and labor are required for the design.
<2> When designing the reinforced soil structure a, it is necessary to check the arc slip line (surface) generated in the upper embankment b.
When only the road surface c exists at the top end of the upper embankment b, in order to obtain the height H 1 and the depth L 1 of the reinforced soil structure a, an arc slip line s is placed at the step position or the shoulder position of the upper embankment b. Not only 1 and s 2 but also arc slip lines s 3 and s 4 reaching the top must be assumed.
<3> When arc slip lines s 3 and s 4 reaching the top end are assumed, in order to deal with these arc slip lines s 3 and s 4 , the depth L 1 (reinforcing material) of the reinforced earth structure a The total length).
<4> Effect and the increase of the high embankment than the middle embankment fill collapse, from the viewpoint of enhancing the safety factor of the soil structure, depth L 1 of the reinforced soil structure a is an extra long dimension than normal The actual situation is estimated.
When easily be described to understand the design length of the regular depth L 1 of the reinforced soil structure a is, even for example reinforced soil structure height 1.5 times the length of an H 1 of a, eventually reinforcement It has been estimated to excessive to a height 2-3 times the length of an H 1 of the soil structure a.
<5> As described above, conventionally, because the depth L 1 of reinforced soil structures a estimated longer than necessary, has become a very expensive design.
That is, the dimension of depth L 1 of the reinforcing region, have a significant impact on walking hanging of reinforced soil structures a, the depth L 1 of the reinforcing region is even slightly longer, only increase the construction cost of reinforced soil structures a In addition, the construction period is prolonged and the yield gets worse.
In a site where the supporting capacity of the supporting ground is insufficient, additional work for reinforcing the supporting ground is required, and the yield is further deteriorated.
<6> At present, more than 30 types of construction methods have been proposed for the reinforced earth wall construction method alone depending on the wall material and the reinforcing material, and the performance (safety and durability), the construction unit price, etc. are different for each construction method.
From the viewpoint of public structures, it is most important to select a performance-priority construction method suitable for the site, but the construction cost, which is an important construction method selection criterion, becomes an obstacle, and a performance-priority construction method. Selection is hindered.
Therefore, if the construction cost of the reinforced soil structure a can be reduced even with the existing construction method, the feasibility of selecting a performance-priority construction method suitable for the local area will be high, so it is desirable to propose a technique for improving construction cost reduction. ing.
<7> Earth structures such as road embankments and railroad embankments suffered damage such as slippage collapse due to the recent large earthquakes, and the main transportation network was severed everywhere, and securing emergency transportation routes remained a major issue.
In particular, it is possible to reinforce the existing earth structure and increase the vibration resistance, but it is possible to reinforce the entire cross section of the earth structure over a long distance because the economic burden is extremely large. Poor sex.
<8> In the conventional earth structure, when the earthquake motion exceeding the assumption is repeatedly received, the upper embankment b collapses along the primary slip line, and further, the upper embankment b collapses along the secondary and tertiary slip lines on the back side. Progresses.
To secure the road network in the event of an earthquake disaster, it is highly safe and economical to break the chain of slips such as secondary and tertiary slips and leave a width that allows emergency vehicles to pass on the road surface c. Proposal of a slip suppression technology for top embankment that is effective and effective is highly desired.

本発明は既述した点に鑑みてなされたもので、その目的とするところは、現地に適した性能の工法選定を実現するために、既存の工法であっても補強土構造体の工事費を低減でき、かつ、安全性が高く、経済的でかつ実効性のある上載盛土のすべりを抑制できる、補強土構造体と上載盛土を有する複合盛土構造物を提供することにある。   The present invention has been made in view of the above-described points, and the object of the present invention is to realize the construction cost of the reinforced earth structure even in the existing construction method in order to realize the construction method having the performance suitable for the site. It is an object of the present invention to provide a composite embankment structure having a reinforced soil structure and an upper embankment that can reduce the slippage of the upper embankment, which is low in safety, is economical, and that is economical and effective.

本発明は、盛土中に補強材を埋設した補強土構造体と、前記補強土構造体の上部に上載盛土が位置する複合盛土構造物であって、前記上載盛土の天端部分に、盛土材を面状補強材で包持して拘束した所定の層厚の天端補強層を有し、該上載盛土の天端を起点とした円弧すべり線をなくしたことを特徴とする。
本発明の他の形態において、前記天端補強層の面状補強材の伸び率が補強土構造体の補強材の伸び率より小さいか、または等しい関係にある。
本発明の他の形態において、前記天端補強層は均一厚、または不均一厚であってもよい。
本発明の他の形態において、前記天端補強層が盛土材を面状補強材で包持して形成した単数または複数を積層した拘束土マットで構成されている。
本発明の他の形態において、前記上載盛土の法尻に位置する補強土構造体が、補強盛土または補強土壁の何れかである。
本発明の他の形態において、前記上載盛土が高盛土である場合は、小段位置に小段用補強材を埋設してもよい。
本発明の他の形態において、前記上載盛土が道路盛土であり、路面の直下の路盤または路床を含めて面状補強材で包持された天端補強層を有するようにしてもよい。
The present invention relates to a reinforced soil structure in which a reinforcing material is embedded in the embankment, and a composite embankment structure in which an upper embankment is positioned above the reinforced earth structure, and the embankment material is provided at a top end portion of the upper embankment. It is characterized by having a top end reinforcing layer having a predetermined layer thickness which is held and restrained by a planar reinforcing material, and the arc slip line starting from the top end of the upper embankment is eliminated.
In another embodiment of the present invention, the elongation rate of the planar reinforcing material of the top end reinforcing layer is less than or equal to the elongation rate of the reinforcing material of the reinforced soil structure.
In another embodiment of the present invention, the top end reinforcing layer may have a uniform thickness or a non-uniform thickness.
In another embodiment of the present invention, the top end reinforcing layer is constituted by a constrained soil mat in which one or more laminated layers are formed by holding a banking material with a planar reinforcing material.
In another embodiment of the present invention, the reinforced soil structure located at the top of the upper embankment is either a reinforced embankment or a reinforced soil wall.
In another embodiment of the present invention, when the upper embankment is a high embankment, a small-stage reinforcing material may be embedded in the small-stage position.
In another embodiment of the present invention, the upper embankment may be a road embankment, and may include a top end reinforcing layer that is wrapped with a planar reinforcing material including a roadbed or a roadbed directly below the road surface.

本発明は、既存の工法であっても補強土構造体の工事費を低減でき、かつ、安全性が高く、経済的でかつ実効性のある上載盛土のすべりを抑制することができる。   The present invention can reduce the construction cost of the reinforced soil structure even with an existing construction method, and can suppress slipping of the overfill with high safety, economy, and effectiveness.

本発明に係る複合盛土構造物のモデル図Model diagram of composite embankment structure according to the present invention 補強盛土のモデル図Model diagram of reinforced embankment 多数アンカー式補強土壁のモデル図Model of multi-anchor reinforced earth wall テールアルメ式補強土壁のモデル図Model of tail arme reinforced earth wall ジオテキスタイル式補強土壁のモデル図Geotextile reinforced earth wall model 二重壁式補強土壁のモデル図Model diagram of double wall type reinforced earth wall 均一厚の天端補強層を形成した上載盛土の天端部の拡大モデル図An enlarged model of the top edge of the top embankment with a uniform thickness top reinforcement layer 不均一厚の天端補強層を形成した上載盛土の天端部の拡大モデル図Magnified model of the top edge of the top embankment with a non-uniform thickness top layer reinforcement layer 高盛土における補強土構造体の設計方法を説明するための従来の土構造物のモデル図Model diagram of conventional earth structure to explain the design method of reinforced earth structure in high embankment

以下、図面を参照しながら本発明について説明する。   Hereinafter, the present invention will be described with reference to the drawings.

<1>複合盛土構造物の概要
図1を参照して説明すると、本発明に係る複合盛土構造物は、法尻に位置する補強土構造体10と、補強土構造体10の上部に位置する上載盛土20と、上載盛土20の天端部分の盛土材を所定の層厚で補強した天端補強層30とにより構成する。
天端補強層30の上面に路面40が形成されており、路面40を通じて自動車または列車等が走行可能である。
<1> Outline of Composite Embankment Structure With reference to FIG. 1, the composite embankment structure according to the present invention is located at a reinforcing earth structure 10 located at the heel and an upper part of the reinforcing earth structure 10. The upper embankment 20 and the top end reinforcing layer 30 obtained by reinforcing the embankment material of the top end of the upper embankment 20 with a predetermined layer thickness are configured.
A road surface 40 is formed on the upper surface of the top end reinforcing layer 30, and an automobile or a train can travel through the road surface 40.

本発明に係る複合盛土構造物は補強土構造体10に天端補強層30を組み合せることで、上載盛土20の天端を起点とした円弧すべり線(面)をなくすとともに、円弧すべり線の発生位置を天端補強層30の外方位置(上載盛土20の法面範囲)に限定し、最終的に補強土構造体10の補強領域である奥行Lを従来と比べて大幅に短縮し得るようにしたものである。
これにより、現地に適した性能の工法選定を実現するために補強土構造体10の経済的な設計を可能にするとともに、震災時においては上載盛土のすべりを抑制すことで路面40の致命的な被害を回避して、緊急輸送路の確保を可能にする。
The composite embankment structure according to the present invention eliminates the arc slip line (surface) starting from the top end of the upper embankment 20 by combining the top end reinforcing layer 30 with the reinforced earth structure 10, and limiting the generation position outside the position of the top end reinforcement layer 30 (slope face a range of overburden embankment 20), the depth L 2 is a reinforced region of the final reinforced soil structure 10 significantly reduced as compared to conventional It ’s what you get.
As a result, it is possible to economically design the reinforced soil structure 10 in order to select a construction method with performance suitable for the site, and to prevent the road surface 40 from being slipped by suppressing the slip of the overfill in the event of an earthquake. It is possible to avoid emergency damage and secure emergency transportation routes.

<2>補強土構造体
補強土構造体10は盛土中に補強材を埋設した土構造物である。
以下に補強土構造体10について例示するが、補強土構造体10はこれらの例示に限定されず、公知の各種の土構造物を含むものである。
<2> Reinforced soil structure The reinforced soil structure 10 is a soil structure in which a reinforcing material is embedded in the embankment.
Although illustrated about the reinforced earth structure 10 below, the reinforced earth structure 10 is not limited to these illustrations, and contains various well-known earth structures.

<2.1>補強盛土
図2は補強土構造体10が補強盛土10Aである場合のモデル図を示す。
補強盛土10Aは補強材12として、鋼製網、高分子材料製の格子状または面状のジオテキスタイル等を使用し、複数の盛土層11中に埋設した複数の補強材12と盛土材とを双方の摩擦力により一体化して土留効果を発揮させるようにした土構造物である。
<2.1> Reinforced Embankment FIG. 2 shows a model diagram when the reinforced earth structure 10 is a reinforced embankment 10A.
The reinforcing embankment 10 </ b> A uses a steel net, a lattice-like or planar geotextile made of a polymer material as the reinforcing material 12, and both the plurality of reinforcing materials 12 embedded in the plurality of embankment layers 11 and the embankment material. It is a soil structure that is integrated by the frictional force of the soil so as to exhibit the earth retaining effect.

<2.2>補強土壁(図3A〜3E)
補強土構造体10(10A〜10D)は法面を保護する壁面材15と、壁面材15の背面側に接続した補強材12と、補強材12を埋設した盛土層11とを具備した補強土壁であってもよい。
壁面材15は、例えばコンクリートパネル、コンクリートブロック、鋼製枠(溶接金網、エキスパンドメタル)、場所打ちコンクリート等の中から適宜選択する。
補強材12としては、例えばアンカープレート付棒鋼、帯状鋼材、鋼製網や高分子材料製の格子状または面状のジオテキスタイル、ジオグリッド等を含む。
以下に代表的な補強土壁を例示する。
<2.2> Reinforced earth wall (FIGS. 3A to 3E)
The reinforced soil structure 10 (10A to 10D) is a reinforced soil including a wall surface material 15 for protecting a slope, a reinforcing material 12 connected to the back side of the wall surface material 15, and an embankment layer 11 in which the reinforcing material 12 is embedded. It may be a wall.
The wall surface material 15 is appropriately selected from, for example, a concrete panel, a concrete block, a steel frame (welded wire mesh, expanded metal), cast-in-place concrete, and the like.
The reinforcing material 12 includes, for example, a steel bar with an anchor plate, a strip-shaped steel material, a grid or planar geotextile made of a steel net or a polymer material, a geogrid, or the like.
The typical reinforced earth wall is illustrated below.

<2.2.1>多数アンカー式補強土壁(図3A)
多数アンカー式補強土壁10Bは、壁面材15にコンクリートパネルまたはコンクリートブロックを使用し、補強材12としてアンカープレート16付きの棒鋼を使用するもので、壁面材15の背面に連結した複数の補強材12のアンカープレート16による引抜抵抗力を利用して土留効果を発揮させるようにした土構造物である。
盛土の補強機構としては、壁面材15とアンカープレート16に挟まれた盛土材を拘束補強することで土構造物の強度を高めている。
<2.2.1> Multi-anchor reinforced earth wall (Fig. 3A)
The multi-anchor reinforced earth wall 10B uses a concrete panel or a concrete block for the wall surface material 15 and uses a steel bar with an anchor plate 16 as the reinforcing material 12, and a plurality of reinforcing materials connected to the back surface of the wall surface material 15. This is a soil structure that exerts the earth retaining effect by utilizing the pulling resistance force of the twelve anchor plates 16.
As the embankment reinforcement mechanism, the embankment material sandwiched between the wall surface material 15 and the anchor plate 16 is restrained and reinforced to increase the strength of the earth structure.

<2.2.2>テールアルメ式補強土壁(図3B)
テールアルメ式補強土壁10Cは、壁面材15にコンクリートパネルまたはコンクリートブロックを使用し、補強材12に帯状鋼材を使用するもので、盛土層11内に埋設した帯状の補強材12と盛土材との摩擦力による引抜抵抗力で土留効果を発揮させるようにした土構造物である。
盛土の補強機構としては、盛土内に埋設した複数の帯鋼の補強材12による擬似粘着力により土構造物の強度を高めている。
<2.2.2> Tail Arme reinforced earth wall (Fig. 3B)
The tail arme type reinforced earth wall 10C uses a concrete panel or a concrete block for the wall surface material 15 and uses a strip-shaped steel material for the reinforcing material 12, and includes a band-shaped reinforcing material 12 embedded in the embankment layer 11 and the embankment material. It is a soil structure that exerts the earth retaining effect by pulling resistance force by frictional force.
As the embankment reinforcement mechanism, the strength of the earth structure is increased by a pseudo adhesive force by a plurality of steel strip reinforcements 12 embedded in the embankment.

<2.2.3>ジオテキスタイル式補強土壁(図3C)
ジオテキスタイル補強土壁10Dは、補強材12に鋼製網や格子状または面状のジオテキスタイルを使用するもので、盛土層11内に埋設した面状の補強材12と盛土材との間の摩擦力による引抜抵抗力、及びインターロッキング効果により土留効果を発揮させるようにした土構造物である。
壁面材15は勾配を持たせた鋼製枠(溶接金網、エキスパンドメタル)、または直壁用のコンクリートブロックを法面勾配に応じて使い分けする。
また図示を省略するが、必要に応じて排水機能を備えた不織布製の補強材を併用する。
<2.2.3> Geotextile reinforced earth wall (Fig. 3C)
The geotextile reinforced earth wall 10D uses a steel net or a lattice-like or planar geotextile as the reinforcing material 12, and a frictional force between the planar reinforcing material 12 embedded in the embankment layer 11 and the embankment material. It is a soil structure in which the earth retaining effect is exhibited by the pulling-out resistance force and the interlocking effect.
As the wall surface material 15, a steel frame (welded wire mesh, expanded metal) having a gradient or a concrete block for a straight wall is selectively used according to the slope of the slope.
Although not shown, a non-woven reinforcing material having a drainage function is used in combination as necessary.

<2.2.4>二重壁式補強土壁(図3D)
アデムウォールに代表される二重壁式補強土壁10Eは、壁面材15にコンクリートパネルまたはコンクリートブロックを使用し、補強材12に鋼製網や格子状または面状のジオテキスタイルを使用するもので、盛土層11内に面状の補強材12を埋設して補強した盛土体と、壁面材15との間に変形吸収用の空間16を形成した二重壁構造の土構造物であり、壁面材13と盛土体の間がベルト状の連結材で連結してある。
細骨材または粗骨材を充填した空間16が盛土体前面の変形吸収作用を発揮するので、盛土の転圧荷重を壁面材15に影響させずに、壁面材15近傍の締め固めを十分に行うことができて、高品質の盛土体を構築できる。
<2.2.4> Double wall reinforced earth wall (Fig. 3D)
The double wall type reinforced earth wall 10E represented by an adem wall uses a concrete panel or a concrete block for the wall material 15, and uses a steel net or a lattice or planar geotextile for the reinforcing material 12. It is a soil structure of a double wall structure in which a space 16 for deformation absorption is formed between an embankment body reinforced by embedding a planar reinforcing material 12 in the embankment layer 11 and a wall surface material 15. 13 and the embankment body are connected by a belt-like connecting material.
Since the space 16 filled with the fine aggregate or coarse aggregate exhibits the deformation absorbing action on the front surface of the embankment body, the compaction near the wall surface material 15 is sufficiently performed without affecting the wall material 15 with the rolling load of the embankment. It is possible to build a high quality embankment.

<3>上載盛土
上載盛土20は標準勾配(35°以下)の道路盛土、鉄道盛土、堤体等である。
本例では上載盛土20がその法面途中に単数または複数の小段21を形成した高盛土である場合について示すが、上載盛土20の高さは原則的に制限がない。
ここでいう「高盛土」とは、補強土構造体10の高さHと上載盛土bの高さHの比が1:1以上であって、盛土高H(補強土構造体aの高さHと上載盛土bの高さHの和)が15〜20m以上の土構造体を指す。
<3> Upper embankment The upper embankment 20 is a road embankment, a railway embankment, a bank, etc. with a standard gradient (35 ° or less).
In this example, although the case where the upper embankment 20 is a high embankment in which one or more small steps 21 are formed in the middle of the slope is shown, the height of the upper embankment 20 is not limited in principle.
The "high embankment", the ratio of the height H 2 of the height H 1 and the upper mounting embankment b of reinforced soil structure 10 was 1: 1 or greater, embankment height H (reinforced soil structure a the sum of the height H 2 of the height H 1 and the upper mounting embankment b) refers to a more soil structure 15-20 meters.

<4>天端補強層(図4,5)
天端補強層30は路面40の直下の路盤、路床を含む天端部の盛土材22を面状補強材31で包持して拘束した所定の層厚を有するせん断強度の高い補強層である。
換言すれば天端補強層30は、地震時に最も大きな加速度が作用する上載盛土20の天端部分を効率的に面状補強材31で補強した補強層であり、上載盛土20の天端部に敷設する面状補強材31で盛土のり面を巻き込む構造であり、面状補強材31による拘束効果により盛土天端部の一体化効果が発揮される。
面状補強材31には、例えば高分子材料製の格子状または面状のジオテキスタイルまたはジオグリッド等を使用できる。
<4> Top edge reinforcing layer (Figs. 4 and 5)
The top end reinforcing layer 30 is a high shear strength reinforcing layer having a predetermined layer thickness in which the embankment material 22 at the top end including the roadbed and roadbed immediately below the road surface 40 is held and restrained by the planar reinforcing material 31. is there.
In other words, the top end reinforcing layer 30 is a reinforcing layer in which the top end portion of the upper embankment 20 on which the greatest acceleration acts during an earthquake is efficiently reinforced with the planar reinforcing material 31, and is formed on the top end portion of the upper embankment 20. It is a structure in which the embankment slope surface is wound by the laid planar reinforcing material 31, and the integration effect of the top of the embankment is exhibited by the restraining effect of the planar reinforcing material 31.
For the planar reinforcing material 31, for example, a lattice-shaped or planar geotextile made of a polymer material or a geogrid can be used.

<4.1>天端部を補強した理由
上載盛土20の天端部に天端補強層30を形成したのは、地震時における上載盛土20の法肩の崩壊抑止効果を高めるためだけではなく、上載盛土20の天端を起点とした円弧すべり線をなくして法尻の補強土構造体10の奥行を短く設計するためである。
以下に幾つかの天端補強層30について例示するが、天端補強層30は例示した形態に限定されず、公知の補強構造を適用できる。
<4.1> Reason for reinforcing the top edge The reason why the top edge reinforcing layer 30 is formed on the top edge of the upper embankment 20 is not only to increase the effect of preventing the collapse of the shoulder of the upper embankment 20 during an earthquake. This is for the purpose of designing the depth of the reinforcing soil structure 10 of the hoshijiri by eliminating the arc slip line starting from the top edge of the upper embankment 20.
Although several top end reinforcement layers 30 are illustrated below, the top end reinforcement layer 30 is not limited to the illustrated form, and a known reinforcement structure can be applied.

<4.2>均一厚に形成した天端補強層
図4(A)に地震時に最も大きな加速度が作用する上載盛土20の天端部分を均一厚の天端補強層30で構成した形態を示す。
天端補強層30は盛土材22を面状補強材31で包持して形成した複数の拘束土マット35の積層構造物であり、上載盛土20の天端を横断し得る横幅を有する。
複数の拘束土マット35を積層して設置する場合、隣接する各拘束土マット35の上下間を公知の連結具34で連結すると、各拘束土マット35の一体性が増して、水平移動に対する抑止効果や全体の曲げ剛性を高めることができる。
<4.2> Top end reinforcement layer formed with uniform thickness FIG. 4 (A) shows a form in which the top end portion of the upper embankment 20 on which the greatest acceleration acts during an earthquake is composed of a top thickness reinforcement layer 30 of uniform thickness. .
The top end reinforcing layer 30 is a laminated structure of a plurality of constrained soil mats 35 formed by holding the embankment material 22 with a planar reinforcing material 31 and has a width that can cross the top end of the upper embankment 20.
In the case where a plurality of constrained soil mats 35 are stacked and connected, the upper and lower sides of adjacent constrained soil mats 35 are connected to each other by a known connector 34, so that the integrity of the constrained soil mats 35 is increased and the horizontal movement is suppressed. The effect and overall bending rigidity can be increased.

<4.2.1>拘束マット
図4(B)(C)に拘束土マット35の一例を示す。
図4(B)に示した拘束土マット35は、水平に敷設した面状補強材31の上面に盛土材22を層状に撒き出して締め固め、盛土材22の法面を含む全周を面状補強材31で巻き込んでマット状に形成したものである。
面状補強材31が盛土材22を拘束することで、拘束土マット35が強固な構造となり、地震時における盛土材22の崩落変位を効果的に阻止できる。
必要に応じて拘束土マット35の上下面間を棒材やベルト材等の連結材で接続すると、拘束土マット35の曲げ強度(剛性)がさらに高くなる。
<4.2.1> Restraint Mat An example of the restraint soil mat 35 is shown in FIGS.
The constrained soil mat 35 shown in FIG. 4 (B) has the embankment material 22 spread out in layers on the upper surface of a horizontally laid planar reinforcing material 31 and compacted, and covers the entire circumference including the slope of the embankment material 22. It is formed in a mat shape by being wound with a reinforcing material 31.
Since the planar reinforcing material 31 restrains the embankment material 22, the restraint soil mat 35 has a strong structure, and the collapse displacement of the embankment material 22 during an earthquake can be effectively prevented.
If the upper and lower surfaces of the constraining soil mat 35 are connected to each other by a connecting material such as a bar or a belt as necessary, the bending strength (rigidity) of the constraining soil mat 35 is further increased.

<4.2.2>二重構造の拘束マット
図4(C)に示した拘束土マット35は、土のう袋32内に盛土材22を袋詰めした複数の土のう33と、面状補強材31を組み合せたものであり、面状補強材31の上面に複数の土のう33を敷き並べ、複数の土のう33の周囲を面状補強材31で包み込むように巻き掛けたて拘束土マット35を形成する。
盛土材22を複数の土のう袋32で区画して拘束すると共に、土のう袋32と面状補強材31による二重の拘束構造となるので、盛土材22に低品質の材料を用いても拘束土マット35に高い曲げ強度を付与することができる。
<4.2.2> Restraint Mat with Double Structure The restraint soil mat 35 shown in FIG. 4C includes a plurality of sandbags 33 in which the embankment material 22 is packed in a sandbag 32 and a planar reinforcing material 31. A constrained soil mat 35 is formed by laying a plurality of sandbags 33 on the top surface of the planar reinforcing material 31 and winding the sandbag 33 so as to wrap the periphery of the plurality of sandbags 33 with the planar reinforcing material 31. .
The embankment material 22 is partitioned and restrained by a plurality of sandbags 32 and has a double restraint structure with the sandbag 32 and the planar reinforcing material 31. Therefore, even if a low-quality material is used for the embankment material 22, the restraint soil is used. High bending strength can be imparted to the mat 35.

<4.2.3>拘束マットの敷設数
本例では複数の拘束土マット35を積層して均一厚の天端補強層30を構成する場合について示すが、天端補強層30は単層の拘束土マット35で構成してもよい。
<4.2.3> Number of laying of restraint mats In this example, a case where a plurality of restraint soil mats 35 are laminated to form the top end reinforcing layer 30 having a uniform thickness is shown. You may comprise the restraint soil mat 35.

<4.3>不均一厚に形成した天端補強層
図5に上載盛土20の天端部分を不均一厚の天端補強層30で構成した他の形態を示す。
この天端補強層30は、路面40の直下に位置する中央部36と、中央部36の端部に一体に連設した法面部37とからなり、中央部36の層厚tが法面部37の層厚tと比べて相対的に薄厚の関係となるように不均一の層厚となっている。
天端補強層30の下面中央には下向きの拘束凹部38が形成されており、この拘束凹部38と上載盛土20の中央峰部23とが密着嵌合した一体構造となる。
上載盛土20の中央峰部23は剛性の高い拘束凹部38の三面で拘束して包持されるため、天端補強層30を法面部37の層厚tの均一厚で形成した場合と同等の耐震効果が得られる。
本例の天端補強層30は、例えば長さ(横幅)の異なる前記した複数の拘束土マット35を上下に積層して構築することができる。
<4.3> Top End Reinforcement Layer Formed with Uneven Thickness FIG. 5 shows another form in which the top end portion of the upper embankment 20 is configured with a top end reinforcement layer 30 with a nonuniform thickness.
The crest reinforcing layer 30 has a central portion 36 located immediately below the road surface 40, consists Law surface 37. which is integrally connected to the end of the central portion 36, the layer thickness t 1 of the central portion 36 is legal surface Compared with the layer thickness t 2 of 37, the layer thickness is non-uniform so as to have a relatively thin relationship.
A downward constraining recess 38 is formed at the center of the lower surface of the top end reinforcing layer 30, and the constraining recess 38 and the central peak portion 23 of the upper embankment 20 are in close contact with each other.
Equivalent to that central peak portion 23 of the upper mounting embankment 20 to be embraced by restrained by three sides of the high rigidity constraint recess 38, forming a top end reinforcement layer 30 with a uniform thickness of layer thickness t 2 of the law face 37 The seismic effect is obtained.
The top end reinforcing layer 30 of this example can be constructed by, for example, laminating a plurality of the above-mentioned restrained soil mats 35 having different lengths (widths).

[複合盛土構造物の特性]
つぎに複合盛土構造物の主な特性について説明する。
[Characteristics of composite embankment structure]
Next, the main characteristics of the composite embankment structure will be described.

<1>天端を起点とした円弧すべり線が生じない理由
本発明では、図1に示すように上載盛土20の天端部分を適宜の層厚で補強して土砂のせん断力(強度)の高い盛土製の天端補強層30を形成することで、天端補強層30を起点とした円弧すべり線の発生がなくなる。
天端補強層30を起点とした円弧すべり線が生じないのは、天端補強層30の補強材である面状補強材31の伸び率を、補強土構造体10の補強材12の伸び率より小さいか、または等しい関係にしてあるからである。
すなわち、天端補強層30の面状補強材31の伸び率が補強土構造体10の補強材12の伸び率より大きいと、法尻側に対して天端側の土砂のせん断力(強度)が小さくなるために、地震時において上載盛土20の天端側の土砂が移動し易くなって、天端を起点とした円弧すべり線が生じ易くなる。
本発明では面状補強材31と補強材12の伸び率の関係に着目し、天端補強層30を起点とした円弧すべり線を生じさせないために、面状補強材31と補強材12を上記した伸び率の関係としたものである。
<1> Reason why an arc slip line starting from the top end does not occur In the present invention, the top end portion of the upper embankment 20 is reinforced with an appropriate layer thickness as shown in FIG. By forming the top embankment reinforcement layer 30 made of high embankment, the occurrence of arc slip lines starting from the top reinforcement layer 30 is eliminated.
The reason why the arc slip line starting from the top end reinforcing layer 30 does not occur is that the elongation rate of the planar reinforcing material 31 that is the reinforcing material of the top end reinforcing layer 30 is the extension rate of the reinforcing material 12 of the reinforced earth structure 10. This is because the relationship is smaller or equal.
That is, when the elongation rate of the planar reinforcing material 31 of the top end reinforcing layer 30 is larger than the elongation rate of the reinforcing material 12 of the reinforced soil structure 10, the shear force (strength) of the earth and sand on the top end side with respect to the tail end side. Therefore, the earth and sand on the top end side of the upper embankment 20 can easily move during an earthquake, and an arc slip line starting from the top end is easily generated.
In the present invention, paying attention to the relationship between the elongation rates of the planar reinforcing material 31 and the reinforcing material 12, the planar reinforcing material 31 and the reinforcing material 12 are connected to each other in order not to generate an arc slip line starting from the top reinforcing layer 30. The growth rate relationship.

<2>上載盛土の円弧すべり線の本数について
天端補強層30が存在しない場合には、図6で示したように上載盛土bの天端を通る多数本の円弧すべり線s,s・・・を想定して法尻の補強土構造体aを設計しなければならなかった。
これに対して、上載盛土20の天端部分に天端補強層30を形成することで、天端補強層30を起点とした円弧すべり線を考慮せずに済むため、結果的に考慮すべき円弧すべり線の本数を大幅に削減できる。
<3>補強土構造体の奥行について
既述したように、図1に示した上載盛土20の天端部分に盛土製の天端補強層30を形成することで、天端補強層30を起点とした円弧すべり線がなくなり、円弧すべり線の発生位置を天端補強層30の外方位置(上載盛土20の法面範囲の円弧すべり線S,S)に限定することが可能となる。
したがって、補強土構造体10の設計にあたっては、天端補強層30を起点とした円弧すべり線を考慮する必要がなくなるため、補強土構造体10の補強領域(補強材の敷設長)である奥行Lを従来の奥行Lと比べて大幅に短縮でき、補強領域の短縮分に見合うだけ補強土構造体10の工事費を削減できる。
<2> Number of Arc Slip Lines of Overlay Embankment When the top edge reinforcing layer 30 does not exist, a large number of arc slip lines s 3 and s 4 passing through the top edge of the top embankment b as shown in FIG. It was necessary to design the reinforced soil structure a for the Houshiri, assuming.
On the other hand, since the top end reinforcing layer 30 is formed at the top end portion of the upper embankment 20, it is not necessary to consider the arc slip line starting from the top end reinforcing layer 30. The number of arc slip lines can be greatly reduced.
<3> Depth of Reinforced Earth Structure As described above, the top edge reinforcing layer 30 is formed at the top edge of the upper embankment 20 shown in FIG. As a result, the generation position of the arc slip line can be limited to the outer position of the top end reinforcing layer 30 (the arc slip lines S 1 and S 2 in the range of the slope of the upper embankment 20). .
Therefore, in designing the reinforced soil structure 10, since it is not necessary to consider the arc slip line starting from the top end reinforcing layer 30, the depth which is the reinforced region (the length of the reinforced material) of the reinforced soil structure 10 is eliminated. L 2 a greatly reduced as compared with the conventional depth L 1, can be reduced construction costs only reinforced soil structure 10 meet shorter portion of the reinforcing region.

<4>工法選定の自由度について
上記したように、上載盛土20の天端部分に天端補強層30を形成することで、法尻の補強領域の短縮分だけ補強土構造体10の工事費を削減できる。
これは低廉な施工法に変更することに拠るものではなく、同一の施工法で以て工事費を削減することを意味する。
したがって、従来まで工法選定の障害となっていた工事費を最重要視せずに、現地に最も適した性能(安全性、耐久性等)に配慮した工法を選定できる。
換言すれば、従来まで工事費がネックとなっていた工法が採用される可能性が高くなり、公共構造物の観点にたてば工法選定の自由度が高まり、多数の既存工法のなかから性能優先で最適な工法を選択することができる。
<4> Degree of freedom of method selection As described above, by forming the top end reinforcing layer 30 at the top end portion of the upper embankment 20, the construction cost of the reinforcing soil structure 10 is reduced by the shortening of the reinforcing region of the buttock. Can be reduced.
This does not depend on changing to an inexpensive construction method, but means that the construction cost is reduced with the same construction method.
Therefore, it is possible to select a construction method that considers the performance (safety, durability, etc.) most suitable for the site without placing the highest priority on the construction cost that has been an obstacle to the selection of the construction method.
In other words, there is a high possibility that a construction method that has previously been a bottleneck in construction costs will be adopted, and the degree of freedom in selecting a construction method will increase from the viewpoint of public structures. The most suitable method can be selected with priority.

<5>補強土構造体の設計手法について
従来は補強土構造体の上部に高盛土が存在する場合には、補強土構造体の設計に多くの時間と手間を要していた。
これに対して本発明の複合盛土構造物では、上載盛土20の天端を起点とした円弧すべり線を仮定せずに済むので、従来の簡易設計法を用いた補強土構造体の設計を短時間のうちに簡単かつ正確に行える。
<5> About design method of reinforced soil structure Conventionally, when high embankment exists in the upper part of a reinforced soil structure, much time and effort were required for the design of the reinforced soil structure.
On the other hand, in the composite embankment structure of the present invention, it is not necessary to assume an arc slip line starting from the top edge of the upper embankment 20, so that the design of the reinforced soil structure using the conventional simple design method can be shortened. Can be done easily and accurately in time.

<6>複合盛土構造物の耐震性について
補強土構造体10は上載盛土20の法尻部および法面部の安定に大きく貢献する。
上載盛土20が高盛土で、単数または複数の小段21がある場合には、小段21の形成位置に小段用補強材24を水平に埋設しておくと、円弧すべり線Sの起点を小段21の奥側から表面位置に変更できる。
既述したように、上載盛土20の天端部分に天端補強層30を形成することで、円弧すべり線S,Sの発生位置を天端補強層30の外方位置に限定できる。
したがって、中小規模の地震が生じても上載盛土20の崩壊を抑止できる。
巨大地震が生じた場合には、上載盛土20の崩壊が予想されるが、上載盛土20の天端部分に天端補強層30が位置することで、上載盛土20の天端を起点としたすべりが生じ難く、さらに二次、三次のすべりが生じ難い。
仮に、天端補強層30の下面と接する上載盛土20の天端の法肩部の一部が崩落しても、天端補強層30の曲げ強度により路面40を支え続けることが可能となる。
上載盛土20と天端補強層30は協働して路面40を支持できるので、緊急車両等の通行が可能となり、震災時の道路ネットワークの確保に貢献できる。
<6> Seismic resistance of composite embankment structure The reinforced soil structure 10 greatly contributes to the stability of the slope and slope of the upper embankment 20.
In the case where the upper embankment 20 is a high embankment and there is one or a plurality of small steps 21, if the small step reinforcing material 24 is embedded horizontally at the position where the small steps 21 are formed, the starting point of the arc slip line S 1 is set as the small step 21. It can be changed to the surface position from the back side.
As described above, by forming the top end reinforcing layer 30 at the top end portion of the upper embankment 20, the generation position of the arc slip lines S 1 and S 2 can be limited to the outer position of the top end reinforcing layer 30.
Accordingly, the collapse of the upper embankment 20 can be suppressed even if a small-scale earthquake occurs.
When a huge earthquake occurs, the upper embankment 20 is expected to collapse. However, the top edge reinforcement layer 30 is located at the top edge of the upper embankment 20, so that the top embankment 20 slides from the top edge. Is unlikely to occur, and secondary and tertiary slips are unlikely to occur.
Even if a part of the top shoulder portion of the top embankment 20 in contact with the lower surface of the top end reinforcing layer 30 collapses, the road surface 40 can be continuously supported by the bending strength of the top end reinforcing layer 30.
Since the upper embankment 20 and the top end reinforcement layer 30 can support the road surface 40 in cooperation, it is possible to pass emergency vehicles and the like, which can contribute to securing a road network in the event of an earthquake.

10・・・補強土構造体
11・・・補強土構造体の盛土層
12・・・補強土構造体の補強材
20・・・上載盛土(嵩上げ盛土)
21・・・上載盛土の小段
22・・・盛土材
23・・・上載盛土の中央峰部
24・・・小段用補強材
30・・・天端補強層
31・・・面状補強材
32・・・袋体
33・・・土のう
35・・・拘束土マット
DESCRIPTION OF SYMBOLS 10 ... Reinforced earth structure 11 ... Embankment layer 12 of reinforced earth structure ... Reinforcement material 20 of reinforced earth structure ... Upper embankment (lifting embankment)
21 ... Upper embankment small step 22 ... Embankment material 23 ... Central embankment 24 of upper embankment ... Small step reinforcement 30 ... Top end reinforcement layer 31 ... Planar reinforcement 32 ..Bag 33 ... Soil pad 35 ... Restricted soil mat

Claims (8)

盛土中に補強材を埋設した補強土構造体と、前記補強土構造体の上部に上載盛土が位置する複合盛土構造物であって、
前記上載盛土の天端部分に、盛土材を面状補強材で包持して拘束した所定の層厚の天端補強層を有し、該上載盛土の天端を起点とした円弧すべり線をなくしたことを特徴とする、
複合盛土構造物。
A reinforced soil structure in which a reinforcing material is embedded in the embankment, and a composite embankment structure in which an upper embankment is located above the reinforced soil structure,
The top embankment of the upper embankment has a top end reinforcing layer having a predetermined layer thickness in which the embankment material is held and restrained by a planar reinforcing material, and an arc slip line starting from the top end of the upper embankment is provided. Characterized by the loss
Composite embankment structure.
前記天端補強層の面状補強材の伸び率が補強土構造体の補強材の伸び率より小さいか、または等しい関係にあることを特徴とする、請求項1に記載の複合盛土構造物。   2. The composite embankment structure according to claim 1, wherein an elongation rate of the planar reinforcing material of the top end reinforcing layer is smaller than or equal to an elongation rate of the reinforcing material of the reinforced soil structure. 前記天端補強層が均一厚であることを特徴とする、請求項1または2に記載の複合盛土構造物。   The composite embankment structure according to claim 1 or 2, wherein the top end reinforcing layer has a uniform thickness. 前記天端補強層が不均一厚であることを特徴とする、請求項1または2に記載の複合盛土構造物。   The composite embankment structure according to claim 1 or 2, wherein the top end reinforcing layer has a non-uniform thickness. 前記天端補強層が盛土材を面状補強材で包持して形成した単数または複数を積層した拘束土マットで構成されていることを特徴とする、請求項3または4に記載の複合盛土構造物。   5. The composite embankment according to claim 3, wherein the top end reinforcing layer is constituted by a constrained soil mat formed by laminating an embankment material with a planar reinforcement material and laminating one or a plurality thereof. Structure. 前記上載盛土の法尻に位置する補強土構造体が、補強盛土または補強土壁であることを特徴とする、請求項1乃至5の何れか一項に記載の複合盛土構造物。   The composite embankment structure according to any one of claims 1 to 5, wherein the reinforced earth structure located on the top of the upper embankment is a reinforced embankment or a reinforced earth wall. 前記上載盛土が高盛土であり、小段位置に小段用補強材を埋設したことを特徴とする、請求項1乃至6の何れか一項に記載の複合盛土構造物。   The composite embankment structure according to any one of claims 1 to 6, wherein the upper embankment is a high embankment, and a reinforcing material for a small step is embedded at a small step position. 前記上載盛土が道路盛土であり、路面の直下の路盤または路床を含めて面状補強材で包持された天端補強層を有することを特徴とする、請求項1乃至7の何れか一項に記載の複合盛土構造物。   The top embankment is a road embankment, and has a top end reinforcing layer that is wrapped with a planar reinforcing material including a roadbed or a roadbed directly under a road surface. The composite embankment structure as described in the item.
JP2016055329A 2016-03-18 2016-03-18 Composite banking structure having reinforced soil structure and overlaid fill Pending JP2017166291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016055329A JP2017166291A (en) 2016-03-18 2016-03-18 Composite banking structure having reinforced soil structure and overlaid fill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055329A JP2017166291A (en) 2016-03-18 2016-03-18 Composite banking structure having reinforced soil structure and overlaid fill

Publications (1)

Publication Number Publication Date
JP2017166291A true JP2017166291A (en) 2017-09-21

Family

ID=59913021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055329A Pending JP2017166291A (en) 2016-03-18 2016-03-18 Composite banking structure having reinforced soil structure and overlaid fill

Country Status (1)

Country Link
JP (1) JP2017166291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109840B1 (en) * 2022-03-02 2022-08-01 株式会社水戸グリーンサービス Embankment reinforced wall and construction method of embankment reinforced wall

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5041328A (en) * 1973-07-26 1975-04-15
JPS5047406A (en) * 1973-05-10 1975-04-26
JPS5115503A (en) * 1974-07-30 1976-02-07 Kyokado Eng Co TSUCHIKOZOBUTSUNA RABINITSUCHIKOZOBUTSUNOKOCHIKUHO
JPS5251706A (en) * 1975-10-21 1977-04-25 Nittetsu Kinzoku Kogyo Kk Method of building banking
JPS591751U (en) * 1983-05-11 1984-01-07 株式会社ア−スコンサルタント Reinforced earth retaining structure
JPS6363827A (en) * 1986-09-02 1988-03-22 Kyokado Eng Co Ltd Reinforcing soil structure
JPH0197720A (en) * 1987-10-09 1989-04-17 Goutetsu Kenzai Kogyo Kk Reinforcing work of banking
JPH0384101A (en) * 1989-08-25 1991-04-09 Railway Technical Res Inst Tamping method of head of banking body
JP2000144646A (en) * 1998-11-13 2000-05-26 Yoshida Kouzou Design:Kk Support structure of shock absorbing bank body
JP2002054140A (en) * 2000-08-09 2002-02-20 Koiwa Kanaami Co Ltd Fill structure and method for constructing the same
JP2009185516A (en) * 2008-02-06 2009-08-20 Maeda Kosen Co Ltd Reinforcement structure for road banking
US20110070036A1 (en) * 2008-05-20 2011-03-24 Fraenkische Rohrwerke Gebr, Kirchner GmbH & Co.KG Two-shell structural system for constructing plantable steep embankments formed from several layers
JP2012177298A (en) * 2012-06-19 2012-09-13 Maeda Kosen Co Ltd Reinforcement method for road banking
JP2014070477A (en) * 2012-10-02 2014-04-21 Taiyo Kogyo Corp Earthquake proof and overflow proof bank body structure

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5047406A (en) * 1973-05-10 1975-04-26
JPS5041328A (en) * 1973-07-26 1975-04-15
JPS5115503A (en) * 1974-07-30 1976-02-07 Kyokado Eng Co TSUCHIKOZOBUTSUNA RABINITSUCHIKOZOBUTSUNOKOCHIKUHO
JPS5251706A (en) * 1975-10-21 1977-04-25 Nittetsu Kinzoku Kogyo Kk Method of building banking
JPS591751U (en) * 1983-05-11 1984-01-07 株式会社ア−スコンサルタント Reinforced earth retaining structure
JPS6363827A (en) * 1986-09-02 1988-03-22 Kyokado Eng Co Ltd Reinforcing soil structure
JPH0197720A (en) * 1987-10-09 1989-04-17 Goutetsu Kenzai Kogyo Kk Reinforcing work of banking
JPH0384101A (en) * 1989-08-25 1991-04-09 Railway Technical Res Inst Tamping method of head of banking body
JP2000144646A (en) * 1998-11-13 2000-05-26 Yoshida Kouzou Design:Kk Support structure of shock absorbing bank body
JP2002054140A (en) * 2000-08-09 2002-02-20 Koiwa Kanaami Co Ltd Fill structure and method for constructing the same
JP2009185516A (en) * 2008-02-06 2009-08-20 Maeda Kosen Co Ltd Reinforcement structure for road banking
US20110070036A1 (en) * 2008-05-20 2011-03-24 Fraenkische Rohrwerke Gebr, Kirchner GmbH & Co.KG Two-shell structural system for constructing plantable steep embankments formed from several layers
JP2012177298A (en) * 2012-06-19 2012-09-13 Maeda Kosen Co Ltd Reinforcement method for road banking
JP2014070477A (en) * 2012-10-02 2014-04-21 Taiyo Kogyo Corp Earthquake proof and overflow proof bank body structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109840B1 (en) * 2022-03-02 2022-08-01 株式会社水戸グリーンサービス Embankment reinforced wall and construction method of embankment reinforced wall

Similar Documents

Publication Publication Date Title
JP5913701B1 (en) Temporary dual-use main soil structure and its construction method
JP5114234B2 (en) Road embankment reinforcement structure
JPWO2007046142A1 (en) Retaining wall embankment structure
JP5379857B2 (en) Underground structure with resin laminated structure
JP2010203114A (en) Soil retaining construction method using large-sized sandbag and restraining pile together and soil retaining structure by the method
JP5325318B2 (en) Road embankment reinforcement method
JP2017166291A (en) Composite banking structure having reinforced soil structure and overlaid fill
KR102369701B1 (en) Transitional zone available deformation absorption and subsidence reduction and constructing method therefor
JP5008771B2 (en) Retaining wall embankment structure
JP5312263B2 (en) Protective embankment and its construction method
JP4987828B2 (en) Rapid restoration method for damaged embankments using large sandbags and bar reinforcement
KR20210007420A (en) Intergrated structure transitional zone using damping section and constructing method thereof
JP5421191B2 (en) Design method for embankment reinforcement structure
JP6341884B2 (en) Shed and retaining wall
JP6017302B2 (en) Construction and its construction method
JP6001182B2 (en) Shock absorbing dam body
JP3665895B2 (en) Protective embankment
KR102562385B1 (en) Protrusive transitional zone available deformation absorption and subsidence reduction and constructing method therefor
JP5859682B2 (en) Protective embankment
JP7330073B2 (en) Level difference mitigation structure and level difference mitigation method for paved roads
JP7182501B2 (en) Level difference mitigation structure and level difference mitigation method for paved roads
JP4708385B2 (en) Shock absorbing dam body
JP2003129423A (en) Reinforcing filled bank and construction method of the same
JP6355157B2 (en) Structure of back embankment of existing structure
JP6301421B2 (en) Maintenance method for liquefaction prevention of existing embankment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200414