JP2017166038A - Energizing contact member - Google Patents

Energizing contact member Download PDF

Info

Publication number
JP2017166038A
JP2017166038A JP2016053785A JP2016053785A JP2017166038A JP 2017166038 A JP2017166038 A JP 2017166038A JP 2016053785 A JP2016053785 A JP 2016053785A JP 2016053785 A JP2016053785 A JP 2016053785A JP 2017166038 A JP2017166038 A JP 2017166038A
Authority
JP
Japan
Prior art keywords
layer
plating layer
contact member
thickness
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016053785A
Other languages
Japanese (ja)
Other versions
JP6741446B2 (en
Inventor
圭輔 小倉
Keisuke Ogura
圭輔 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016053785A priority Critical patent/JP6741446B2/en
Publication of JP2017166038A publication Critical patent/JP2017166038A/en
Application granted granted Critical
Publication of JP6741446B2 publication Critical patent/JP6741446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an energizing contact member having relatively low price and excellent in fretting resistance and withdrawal properties.SOLUTION: There are provided an energizing contact member by laminating a CuSn alloy plating layer 2 with a thickness of 3 to 10 μm and a Sn plating layer 1 with a thickness of 0.1 o 0.5 μm on a substrate 3 in this order, and a manufacturing method of the energizing contact member including a process for forming and the CuSn alloy plating layer 2 with thickness of 3 to 10 μ on the substrate 3 and a process for forming the Sn plating layer 1 with thickness of 0.1 to 0.5 μm on the CuSn alloy plating layer.SELECTED DRAWING: Figure 1

Description

本発明は、通電接触部材及びその製造方法に関する。本発明は、特には、比較的安価で、耐フレッティング性に優れた通電接触部材に関する   The present invention relates to an energizing contact member and a manufacturing method thereof. The present invention particularly relates to a current-carrying contact member that is relatively inexpensive and excellent in fretting resistance.

通電接触部材は通電部材間の接続において、ボルトなどの締結ではなく、部材自体、もしくは通電接触相手材のバネ性を利用したクリップ構造で一方を挟み込み、金属同士の接触により通電を確保している。この構造は組み立て時やメンテナンス、部品交換時に、ボルト締結よりも容易に取り外しが可能なため、しばしば通電部に使用されている。   In the connection between the energizing members, the energizing contact member is not fastened with bolts or the like, but is sandwiched by a clip structure using the spring property of the member itself or the energizing contact partner material, and energization is ensured by contact between metals. . Since this structure can be removed more easily than bolt fastening at the time of assembly, maintenance, and parts replacement, it is often used for a current-carrying part.

しかしながら、この構造においては、製品全体の微振動や通電のON/OFFに伴う温度サイクルにより微摺動が発生したときに、通電接触部が摩耗するフレッティング摩耗が発生し易い。特にSnめっきは軟質であるため、摩耗し易い。このフレッティング摩耗により生成されたSnの摩耗粉は摺動のため大気に晒され、通電による高温環境下で酸化され易い。そして、Snの酸化物となる摩耗粉が通電接触面に堆積することで接触抵抗が増大し、過剰な発熱、発火などの不具合を引き起こす場合があった。   However, in this structure, fretting wear, in which the current-carrying contact portion wears, is likely to occur when a slight sliding occurs due to a fine vibration of the entire product or a temperature cycle accompanying ON / OFF of current supply. In particular, since Sn plating is soft, it is easily worn. The wear powder of Sn generated by this fretting wear is exposed to the atmosphere for sliding, and is easily oxidized in a high temperature environment due to energization. In addition, the wear powder, which is an oxide of Sn, is deposited on the energized contact surface, so that the contact resistance increases, which may cause problems such as excessive heat generation and ignition.

そこで通常、通電接触部には、Agめっきなどの酸化し難い材料を用いる。しかし、Agは高価なため、より安価材料が求められてきた。その候補として、安価で低抵抗、かつフレッティング摩耗を起こし難い硬い材料としてCuSn合金が期待される。CuSn合金層は高硬度のため、耐フレッティング摩耗には優れているが、クリップとの挿抜において、摩擦力が大きく作業性に問題がある場合があった。   Therefore, normally, a material that is not easily oxidized, such as Ag plating, is used for the current-carrying contact portion. However, since Ag is expensive, a cheaper material has been demanded. As a candidate for this, a CuSn alloy is expected as a hard material that is inexpensive, has low resistance, and does not easily cause fretting wear. The CuSn alloy layer is excellent in fretting wear resistance due to its high hardness, but there are cases where the frictional force is large and there is a problem in workability in insertion / extraction with the clip.

そのため、CuSn最表層に酸化膜を形成させることで摺動性を上げて挿抜性を改善する技術が開発されてきた(特許文献1、2、3を参照)。他に、銅母材表面にSnめっきを形成し、これに150℃以上170℃以下の温度条件で熱処理を施すことにより、銅母材上にCuSn合金を形成し、表面にSnめっき層を薄く残留させてなる嵌合型接続端子の製造方法が知られている(特許文献4)。   For this reason, a technique has been developed that improves slidability and improves insertion / extraction by forming an oxide film on the outermost surface layer of CuSn (see Patent Documents 1, 2, and 3). In addition, Sn plating is formed on the surface of the copper base material, and this is subjected to heat treatment under a temperature condition of 150 ° C. or more and 170 ° C. or less, thereby forming a CuSn alloy on the copper base material and thinning the Sn plating layer on the surface. A manufacturing method of a fitting type connection terminal which is left is known (Patent Document 4).

特開2000-212720号公報JP 2000-212720 A 特開2000-226645号公報JP 2000-226645 A 特開2007-247060号公報Japanese Unexamined Patent Publication No. 2007-247060 特開平10-302867号公報Japanese Patent Laid-Open No. 10-302867

特許文献1〜3に開示された方法においては、酸化膜の厚みの制御が要求される。酸化膜が厚くなると、接触抵抗の増大に伴う発熱の不具合が懸念される。特に、500nmを超える酸化膜が部材表面に形成されると、通電による発熱で酸化膜の成長が過剰に進み、発熱、発火の不具合が起こる。さらにこの酸化膜厚の管理は、測定が難しく量産向きでない。一方、特許文献4に開示された方法においては、熱処理により合金層を成長させ、Sn層を残留させている。しかし、現在では、代表図に示されるような均一な層構造を加熱制御により製造することは、不可能であることが示されている。   In the methods disclosed in Patent Documents 1 to 3, control of the thickness of the oxide film is required. When the oxide film becomes thick, there is a concern about the problem of heat generation accompanying an increase in contact resistance. In particular, when an oxide film having a thickness of more than 500 nm is formed on the surface of the member, the oxide film grows excessively due to the heat generated by energization, causing problems of heat generation and ignition. Furthermore, this oxide film thickness is difficult to measure and is not suitable for mass production. On the other hand, in the method disclosed in Patent Document 4, the alloy layer is grown by heat treatment, and the Sn layer remains. However, at present, it has been shown that it is impossible to produce a uniform layer structure as shown in the representative diagram by heating control.

本発明者は、鋭意検討の結果、最表層を挿抜性を確保しうるSnで構成し、かつこの層を酸化が生じた場合であっても不具合の生じない厚みに構成することを考え、本発明に想到するに至った。すなわち、本発明は、一実施形態によれば、通電接触部材であって、基材上に、3〜10μmの厚みのCuSn合金めっき層と、0.1〜0.5μmの厚みのSnめっき層とを順に積層してなる。   As a result of intensive studies, the inventor considered that the outermost layer is made of Sn capable of ensuring insertion / extraction, and that this layer is formed to a thickness that does not cause a problem even when oxidation occurs. I came up with the invention. That is, the present invention, according to one embodiment, is an energizing contact member, on a substrate, a CuSn alloy plating layer having a thickness of 3 to 10 μm and an Sn plating layer having a thickness of 0.1 to 0.5 μm. Are laminated in order.

前記通電接触部材において、前記CuSn合金めっき層の組成が、CuSnであることが好ましい。 In the current-carrying contact member, the composition of the CuSn alloy plating layer is preferably Cu 6 Sn 5 .

前記通電接触部材において、前記基材が、Cu、Al、またはこれらを含む合金もしくは複合材であることが好ましい。   In the energization contact member, the base material is preferably Cu, Al, or an alloy or composite material containing these.

本発明は別の実施形態によれば、通電接触構造であって、前述のいずれかに記載の通電接触部材と、通電接触相手材とを組み合わせてなり、前記通電接触相手材の最表面層が酸化物層もしくは酸化物生成層である場合には、前記通電接触部材の前記Snめっき層と、前記通電接触相手材の前記最表面層との厚みの合計が、0.5μm以下であり、前記通電接触相手材の最表面層が酸化物非生成層である場合には、前記通電接触部材の前記Snめっき層の厚みが、0.5μm以下である。   According to another embodiment of the present invention, there is a current-carrying contact structure, which is a combination of the current-carrying contact member described above and a current-carrying contact material, and the outermost surface layer of the current-carrying contact material is In the case of an oxide layer or an oxide generation layer, the total thickness of the Sn plating layer of the current-carrying contact member and the outermost surface layer of the current-carrying contact material is 0.5 μm or less, When the outermost surface layer of the energization contact partner material is a non-oxide generation layer, the thickness of the Sn plating layer of the energization contact member is 0.5 μm or less.

本発明は、別の局面によれば、通電接触部材の製造方法であって、基材上に、3〜10μmの厚みのCuSn合金めっき層を形成する工程と、前記CuSn合金めっき層上に0.1〜0.5μm厚のSnめっき層を形成する工程とを含む。   According to another aspect of the present invention, there is provided a method for producing a current-carrying contact member, the step of forming a CuSn alloy plating layer having a thickness of 3 to 10 μm on a substrate, and 0 on the CuSn alloy plating layer. Forming a Sn plating layer having a thickness of 1 to 0.5 μm.

前記通電接触部材の製造方法において、前記CuSn合金めっき層を形成する工程が、電解めっきによりCuSn合金めっき層を形成する工程であることが好ましい。 In the method for manufacturing the energizing contact member, it is preferable that the step of forming the CuSn alloy plating layer is a step of forming a Cu 6 Sn 5 alloy plating layer by electrolytic plating.

本発明に係る通電接触部材及びその製造方法によれば、比較的安価で耐フレッティング性および挿抜性に優れた通電接触部材を提供することができる。本発明によれば、特に、基材上に略均一で平滑なCuSn合金めっき層、Sn層を積層することができ、その膜厚も製造段階で精確に制御することができる。ゆえに、製造後、経時的な金属表面の状態の変化が生じても、電気的な不具合を生じることのない通電接触部材及び通電接触構造を提供することができる。   According to the energizing contact member and the manufacturing method thereof according to the present invention, it is possible to provide an energizing contact member that is relatively inexpensive and excellent in fretting resistance and insertion / extraction. According to the present invention, in particular, a substantially uniform and smooth CuSn alloy plating layer and Sn layer can be laminated on a substrate, and the film thickness can also be accurately controlled at the manufacturing stage. Therefore, it is possible to provide an energizing contact member and an energizing contact structure that do not cause an electrical failure even if the state of the metal surface changes with time after manufacturing.

図1は、本発明の一実施形態による通電接触部材の模式的な断面図である。FIG. 1 is a schematic cross-sectional view of an energizing contact member according to an embodiment of the present invention. 図2は、本発明に係る通電接触部材における酸化膜厚と接触抵抗との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the oxide film thickness and the contact resistance in the energized contact member according to the present invention.

以下に、図面を参照して本発明の実施の形態を説明する。ただし、本発明は、以下に説明する実施の形態によって限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the embodiments described below.

[第1実施形態:通電接触部材及びその製造方法]
本発明は、一実施形態によれば通電接触部材に関する。図1は、本実施形態に係る通電接触部材の一例を示す概念的な断面図である。図1に示す、通電接触部材は、基材3と、CuSn合金めっき層2とSnめっき層1とから構成されている。
[First Embodiment: Energizing Contact Member and Manufacturing Method Thereof]
The present invention relates to an energizing contact member according to an embodiment. FIG. 1 is a conceptual cross-sectional view showing an example of an energizing contact member according to the present embodiment. The current-carrying contact member shown in FIG. 1 includes a base material 3, a CuSn alloy plating layer 2, and a Sn plating layer 1.

基材3は、一般的な導電性材料であればよく、例えば、Cu、Al、これらの少なくとも一方を含む合金、及びこれらの少なくとも一方を含む複合材であって良い。例えば、CuまたはAlと、Cr、Mg、Fe、P、Ni、Zn、Ti、Si、Mn等との合金が挙げられるが、これらには限定されない。基材3は、通電接触部材の目的及び用途に適合する任意の形状であってよく、その厚みや寸法は限定されるものではない。   The base material 3 may be a general conductive material, and may be, for example, Cu, Al, an alloy including at least one of these, and a composite material including at least one of these. For example, an alloy of Cu or Al and Cr, Mg, Fe, P, Ni, Zn, Ti, Si, Mn, or the like can be given, but is not limited thereto. The base material 3 may be in any shape suitable for the purpose and application of the energizing contact member, and the thickness and dimensions thereof are not limited.

CuSn合金めっき層2は、基材3に接触して、基材3上に形成されている。なお、図示はしないが、基材3とCuSn合金めっき層2との間に、他の層が介在してもよい。介在しうる他の層の組成としては、Cu、Ni、Sn、Ag、Zn、Co、もしくはこれらを含む合金および複合層などが挙げられ、その層厚みは特に限定されるものではなく、その機能などによって適宜決定することができるが、例えば、1〜15μmであってよい。本明細書において、CuSn合金とは、CuとSnとの任意の組成比の合金を包括的に指称するものである。CuSn合金めっき層2は、耐食性に優れ、フレッティング摩耗しにくいため、通電接触部材にフレッディング耐性を付与することができる。CuSn合金としては、例えば、CuSn、Cu3Sn、CuSn等が挙げられるが、これらには限定されない。中でも、好ましいCuSn合金は、CuSnである。CuSnの金属間化合物の中で安定してめっき析出可能であり、生産性が高いためである。 The CuSn alloy plating layer 2 is formed on the base material 3 in contact with the base material 3. Although not shown, another layer may be interposed between the base material 3 and the CuSn alloy plating layer 2. Examples of the composition of other layers that can intervene include Cu, Ni, Sn, Ag, Zn, Co, and alloys and composite layers containing these, and the thickness of the layer is not particularly limited, and its function For example, the thickness may be 1 to 15 μm. In this specification, the CuSn alloy is a generic term for an alloy having an arbitrary composition ratio of Cu and Sn. Since the CuSn alloy plating layer 2 is excellent in corrosion resistance and hardly fretting wear, it is possible to impart a flooding resistance to the energizing contact member. Examples of the CuSn alloy include, but are not limited to, Cu 6 Sn 5 , Cu 3 Sn, Cu 6 Sn, and the like. Among them, a preferable CuSn alloy is Cu 6 Sn 5 . This is because plating can be stably deposited in an intermetallic compound of CuSn and productivity is high.

CuSn合金めっき層2は、基材3上に、3〜10μmの厚みで設ける。厚みが3μmより薄いと、特に基材がCuの場合、通電に伴いCuとCuSnの間で拡散が進み、脆いCuSn組成がCuSn合金めっき層において支配的になる。これによりクラックなどの機械的不具合が発生することが懸念されるため、少なくとも3μm程度の厚みが必要となる。また、10μmより厚いと、CuSn合金めっき膜の残留応力が大きくなり剥がれなどが懸念される。 The CuSn alloy plating layer 2 is provided on the substrate 3 with a thickness of 3 to 10 μm. If the thickness is less than 3 μm, especially when the substrate is Cu, diffusion proceeds between Cu and Cu 6 Sn 5 with energization, and a brittle Cu 3 Sn composition becomes dominant in the CuSn alloy plating layer. As a result, there is a concern that mechanical troubles such as cracks may occur, so a thickness of at least about 3 μm is required. On the other hand, if it is thicker than 10 μm, the residual stress of the CuSn alloy plating film becomes large and there is a concern about peeling.

CuSn合金めっき層2は、基材3上に、厚みが略均一で平滑なめっき膜として形成されていることが好ましい。このようなCuSn合金めっき層2は、後述する電解めっき法により製造することができる。   The CuSn alloy plating layer 2 is preferably formed on the substrate 3 as a smooth plating film having a substantially uniform thickness. Such a CuSn alloy plating layer 2 can be manufactured by an electrolytic plating method to be described later.

Snめっき層1は、CuSn合金めっき層2に接触して、CuSn合金めっき層2上に形成されて、通電接触部材の最表面を構成する。Snめっき層1は、Snと、不可避不純物のみからなることが好ましい。   The Sn plating layer 1 is in contact with the CuSn alloy plating layer 2 and is formed on the CuSn alloy plating layer 2 to constitute the outermost surface of the energizing contact member. The Sn plating layer 1 is preferably composed only of Sn and inevitable impurities.

Snめっき層1の厚みは、0.1〜0.5μmである。膜厚が0.1μmよりも薄いと挿抜時の摺動性が確保できない他、未めっき部での基材の腐食などが懸念される。また厚すぎると、SnとCuSn合金との間の拡散が起きても通電接触面はSn単独層が残存する。このため、フレッティング摩耗による酸化した摩耗粉が厚く堆積することで接触抵抗増大による発熱の不具合が懸念される。また仮に拡散によるCuSnの金属間化合物の形成より先にフレッティング摩耗が進んだ場合においても、0.5μm厚程度のSn層であれば接触抵抗増大への影響が軽微であるため、この範囲が好ましい。なお、Snめっき層1の厚みは、0.1〜0.5μmの範囲で、さらに、通電接触部材の相手材となる通電接触相手材との関係で決定することができる。これについては後述する。   The thickness of the Sn plating layer 1 is 0.1 to 0.5 μm. If the film thickness is less than 0.1 μm, the slidability at the time of insertion / extraction cannot be ensured, and there is a concern about corrosion of the base material in the unplated portion. On the other hand, if the thickness is too thick, a Sn single layer remains on the current-carrying contact surface even if diffusion between Sn and the CuSn alloy occurs. For this reason, there is a concern about the problem of heat generation due to increased contact resistance due to the thick accumulation of oxidized wear powder due to fretting wear. Even if fretting wear has progressed prior to the formation of CuSn intermetallic compound by diffusion, if the Sn layer has a thickness of about 0.5 μm, the effect on the increase in contact resistance is negligible. preferable. In addition, the thickness of Sn plating layer 1 can be determined in the range of 0.1-0.5 micrometer, and also by the relationship with the energization contact partner material used as the partner material of an energization contact member. This will be described later.

最表層のSnめっきは柔らかく高い摺動性を有しているため、組み立て時の挿抜性に優れている。またこの最表層Snめっきは実使用に伴い下地Cu−Sn層との相互拡散が起こることで最表面にCuSn金属間化合物層が形成される。これにより高強度な通電接触面が形成され、耐フレッティング性が向上する。また、一部最表層にSnが残るが、膜厚が薄いため、フレッティング摩耗が進んでも接触抵抗に影響するほどの酸化物層は形成されない。さらにこの残存するSnにより、通電接触部材のメンテナンスなど、部品交換時においても再度挿抜性を確保できる。   Since the outermost layer Sn plating is soft and has high slidability, it is excellent in insertability during assembly. In addition, this outermost layer Sn plating causes mutual diffusion with the underlying Cu—Sn layer during actual use, whereby a CuSn intermetallic compound layer is formed on the outermost surface. Thereby, a high-strength energizing contact surface is formed, and the fretting resistance is improved. In addition, Sn remains in part of the outermost layer, but since the film thickness is thin, an oxide layer that affects the contact resistance is not formed even if fretting wear progresses. Further, the remaining Sn can secure the insertion / removability again at the time of parts replacement such as maintenance of the energizing contact member.

次に、本発明に係る通電接触部材を、製造方法の観点から説明する。通電接触部材の製造方法は、基材3上に、3〜10μmの厚みのCuSn合金めっき層2を形成する工程と、前記CuSn合金めっき層3上に0.1〜0.5μm厚のSnめっき層1を形成する工程とを含む。   Next, the energizing contact member according to the present invention will be described from the viewpoint of the manufacturing method. The method for manufacturing the current-carrying contact member includes a step of forming a CuSn alloy plating layer 2 having a thickness of 3 to 10 μm on the substrate 3, and a Sn plating having a thickness of 0.1 to 0.5 μm on the CuSn alloy plating layer 3. Forming the layer 1.

基材3は、前述したとおり、CuもしくはAl、これらの合金、または複合材であってよく、CuSn合金めっき層2を形成する工程を実施する前に、基材3の表面に対して、他のめっき層の形成し、他のめっき層上にCuSn合金めっき層2を形成してもよい。この場合の他のめっき層については、介在しうる他の層の組成として先述したとおりであり、その製法は、電解めっき法や無電解めっき法など、各組成のめっき層の形成に適した方法とすることができる。   As described above, the base material 3 may be Cu or Al, an alloy thereof, or a composite material. Before the step of forming the CuSn alloy plating layer 2 is performed, the surface of the base material 3 may be Alternatively, the CuSn alloy plating layer 2 may be formed on another plating layer. The other plating layers in this case are as described above as the composition of other layers that can be interposed, and the production method is a method suitable for forming a plating layer of each composition, such as an electrolytic plating method or an electroless plating method. It can be.

CuSn合金めっき層2を形成する工程は、電解めっき法により、基材3上に、3〜10μmの厚みのCuSn合金めっき層2を形成することが好ましい。このときに用いるめっき浴の組成は、目的とするCuSn合金の組成により決定することができる。好ましい態様において、CuSn合金めっき層を析出させる場合には、公知のあるいは市販のめっき浴を用いることができる。また、CuSn合金めっき層2の厚みも、通常の方法で制御することができ、膜厚が略均一で平滑なCuSn合金めっき層2が得られる。 In the step of forming the CuSn alloy plating layer 2, the CuSn alloy plating layer 2 having a thickness of 3 to 10 μm is preferably formed on the base material 3 by an electrolytic plating method. The composition of the plating bath used at this time can be determined by the composition of the target CuSn alloy. In a preferred embodiment, when a Cu 6 Sn 5 alloy plating layer is deposited, a known or commercially available plating bath can be used. Moreover, the thickness of the CuSn alloy plating layer 2 can also be controlled by a normal method, and the CuSn alloy plating layer 2 having a substantially uniform and smooth thickness can be obtained.

次いで、CuSn合金めっき層3上に0.1〜0.5μm厚のSnめっき層1を形成する工程を実施する。Snめっき層1は、電解めっき法、無電解めっき法のいずれを用いても生成することができ、公知のあるいは市販のめっき浴を用いることができる。また、Snめっき層1の厚みも、通常の方法で制御することができる。そして、膜厚が略均一で平滑な最表面層をもつ通電接触部材を得ることができる。   Next, a step of forming the Sn plating layer 1 having a thickness of 0.1 to 0.5 μm on the CuSn alloy plating layer 3 is performed. The Sn plating layer 1 can be formed by using either an electroplating method or an electroless plating method, and a known or commercially available plating bath can be used. Moreover, the thickness of the Sn plating layer 1 can also be controlled by a normal method. And the electricity supply contact member which has a substantially uniform and smooth outermost surface layer can be obtained.

本実施形態による製造方法においては、例えば、150℃以上といった高温での熱処理工程を含まないことが好ましい。高温での熱処理工程を実施すると、CuSn合金めっき層の厚みや組成の制御が実質的に不可能となり、不均一で、耐食性が極めて低い層が生成する可能性が高いためである。   In the manufacturing method according to the present embodiment, it is preferable not to include a heat treatment step at a high temperature such as 150 ° C. or higher. This is because when the heat treatment step at a high temperature is performed, the thickness and composition of the CuSn alloy plating layer are substantially impossible to control, and there is a high possibility that a non-uniform and extremely low corrosion resistance layer is generated.

本実施形態による通電接触部材、およびその製造方法によれば、基材上に略均一で平滑なCuSn合金めっき層、Sn層を積層してなる通電接触部材を得ることができる。これにより、経時的に不具合を生じることもなく。比較的安価で、挿抜性及び耐フレッディング性に優れた通電接触部材を得ることができる。   According to the current-carrying contact member and the manufacturing method thereof according to the present embodiment, a current-carrying contact member formed by laminating a substantially uniform and smooth CuSn alloy plating layer and Sn layer on a base material can be obtained. As a result, no problems occur over time. It is possible to obtain a current-carrying contact member that is relatively inexpensive and excellent in insertion / extraction properties and anti-fredding properties.

[第2実施形態:通電接触構造]
本発明は、また別の実施形態によれば、通電接触構造である。通電接触構造は、通電接触部材と、通電接触相手材とを備えてなる。通電接触構造は、通電接触部材自体、もしくは通電接触相手材のバネ性を利用したクリップ構造で、一方が他方を挟み込み、通電接触部材と通電接触相手材との接触により通電を確保している。クリップ構造については、公知の任意の構造であってよく、例えば、特許文献4に開示された構造であってもよいが、これらには限定されない。
[Second Embodiment: Energizing Contact Structure]
The present invention, according to yet another embodiment, is an energizing contact structure. The energization contact structure includes an energization contact member and an energization contact partner material. The energizing contact structure is a clip structure using the energizing contact member itself or the spring property of the energizing contact partner material, one of which sandwiches the other, and ensures energization by contact between the energizing contact member and the energized contact partner material. The clip structure may be any known structure, such as the structure disclosed in Patent Document 4, but is not limited thereto.

本実施形態においては、通電接触部材を第1実施形態による構成とする。通電接触相手材は、通電部材として通常使用され得る任意の材質からなるのものであってよい。しかし、通電接触部材と、通電接触相手材との少なくとも接触箇所においては、通電接触部材の最表面層のSnめっき層1の厚みは、通電接触相手材の最表層の材料との関係で決定される。   In the present embodiment, the energizing contact member is configured according to the first embodiment. The energizing contact partner material may be made of any material that can be normally used as an energizing member. However, at least at the contact point between the energizing contact member and the energizing contact partner material, the thickness of the Sn plating layer 1 of the outermost surface layer of the energizing contact member is determined in relation to the material of the outermost layer of the energizing contact partner material. The

具体的には、通電接触相手材の最表面層が酸化物層もしくは酸化物生成層である場合には、通電接触部材の前記Snめっき層1と、前記通電接触相手材の前記最表面層との厚みの合計が、0.5μm以下である。前述の酸化物摩耗粉による不具合の発生は、通電接触部材と、通電接触相手材との両者で生成しうる酸化物の総量に起因するためである。なお、ここでいう酸化物生成層とは、通電接触部材の通常の使用条件において、酸化物を生成しうる導電性部材の層であって、主にSnが挙げられるが、これらには限定されない。したがって、例えば、通電接触部材と、通電接触相手材とが、同じ構成を持つ場合には、通電接触部材のSnめっき層1の厚みは、0.1μm以上であって、0.25μm以下の範囲であってよい。下限を0.1μm以上とする理由は、第1実施形態におけるSn層と同様に、薄すぎてもSn層の特性を発揮できないおそれがあるためである。   Specifically, when the outermost surface layer of the energization contact partner material is an oxide layer or an oxide generation layer, the Sn plating layer 1 of the energization contact member, and the outermost surface layer of the energization contact partner material The total thickness is 0.5 μm or less. This is because the occurrence of the trouble due to the oxide wear powder is caused by the total amount of oxide that can be generated by both the energizing contact member and the energizing contact partner material. The oxide generation layer referred to here is a layer of a conductive member capable of generating an oxide under normal use conditions of the energizing contact member, and mainly includes Sn, but is not limited thereto. . Therefore, for example, when the current-carrying contact member and the current-carrying contact partner material have the same configuration, the thickness of the Sn plating layer 1 of the current-carrying contact member is 0.1 μm or more and 0.25 μm or less. It may be. The reason why the lower limit is 0.1 μm or more is that, as with the Sn layer in the first embodiment, there is a possibility that the characteristics of the Sn layer may not be exhibited even if it is too thin.

一方、通電接触相手材の最表面層が酸化物非生成層である場合には、通電接触部材のSnめっき層1の厚みは、0.1μm以上であって、0.5μm以下の範囲であってよい。ここで、酸化物非生成層とは、経時的使用や通電接触材部材と通電接触相手材との挿抜等により、酸化摩耗粉の生成が軽微で実質的に接触抵抗に影響ない金属もしくは合金層であって、CuSn層、CuSn層、CuSn層、Ag、Ni等が、挙げられるがこれらには限定されない。Snめっき層1の厚みを上記範囲とする理由は、通電接触相手材に由来する酸化物摩耗粉について考慮する必要がないためである。 On the other hand, when the outermost surface layer of the current-carrying contact partner is a non-oxide generation layer, the thickness of the Sn plating layer 1 of the current-carrying contact member is 0.1 μm or more and 0.5 μm or less. It's okay. Here, the non-oxide generation layer is a metal or alloy layer that generates little oxidized wear powder and does not substantially affect the contact resistance due to the use over time or insertion / extraction of the current contact member and the current contact material. However, Cu 6 Sn 5 layer, Cu 3 Sn layer, Cu 6 Sn layer, Ag, Ni and the like can be mentioned, but not limited thereto. The reason why the thickness of the Sn plating layer 1 is in the above range is that there is no need to consider oxide wear powder derived from the energized contact partner material.

本実施形態による通電接触構造によれば、通電接触部材と、通電接触相手材との接触箇所において、酸化物摩耗粉を生じても、接触抵抗を過大に増加させることがなく、安定な通電を可能にすることができる。   According to the current-carrying contact structure according to this embodiment, even if oxide wear powder is generated at the contact point between the current-carrying contact member and the current-carrying contact partner material, the contact resistance is not excessively increased, and stable current conduction is performed. Can be possible.

以下、実施例により本発明をより詳細に説明する。しかしながら、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

[1.通電接触部材の作製]
本発明の実施形態において説明した方法にて、基材にめっき層を積層させてなる通電接触部材を作製した。厚みが3mmのCuからなる基材に、電解めっき法により、5μmのCuSn層を形成した。めっき浴は、市販のものを用い、電解条件は、1A/dmとした。次いで、CuSn層上に、電解めっき法により、0.5μmのSn層を形成した。得られた積層体は、CuSn層、Sn層ともに、均一で平滑な層となっていることが視認できる。
[1. Production of energized contact member]
By the method described in the embodiment of the present invention, an energizing contact member formed by laminating a plating layer on a base material was produced. A 5 μm-thick Cu 6 Sn 5 layer was formed on a base material made of Cu having a thickness of 3 mm by electrolytic plating. A commercially available plating bath was used, and the electrolysis conditions were 1 A / dm 2 . Next, a 0.5 μm Sn layer was formed on the Cu 6 Sn 5 layer by electrolytic plating. It can be visually recognized that the obtained laminate is a uniform and smooth layer in both the Cu 6 Sn 5 layer and the Sn layer.

[2.酸化膜厚と接触抵抗の関係]
上記と同様にして、Cu基材、CuSn層を形成した。厚みも同様とした。これに対し、膜厚を、0.15μm、0.3μm、0.4μm、0.55μm、0.8μm、1.3μmで変化させて、電解めっき法によりSn層を形成した。このSn層を、大気加熱で酸化して、接触抵抗測定用の試料を作製した。次いで、試料の接触抵抗を測定した。図2は、酸化膜厚と接触抵抗の関係を示すグラフである。図2から、酸化膜厚が0.5μm以下であれば、過剰な接触抵抗増は見られず、一般的に使用される際のSn上自然酸化膜厚と同等の接触抵抗が確保できることがわかった。
[2. Relationship between oxide film thickness and contact resistance]
In the same manner as described above, a Cu base material and a Cu 6 Sn 5 layer were formed. The thickness was also the same. On the other hand, the Sn layer was formed by electrolytic plating while changing the film thickness from 0.15 μm, 0.3 μm, 0.4 μm, 0.55 μm, 0.8 μm, and 1.3 μm. This Sn layer was oxidized by atmospheric heating to prepare a sample for contact resistance measurement. Next, the contact resistance of the sample was measured. FIG. 2 is a graph showing the relationship between the oxide film thickness and the contact resistance. As can be seen from FIG. 2, when the oxide film thickness is 0.5 μm or less, an excessive increase in contact resistance is not observed, and a contact resistance equivalent to the natural oxide film thickness on Sn can be secured when used in general. It was.

1 Snめっき層
2 CnSn合金めっき層
3 基材
1 Sn plating layer 2 CnSn alloy plating layer 3 Base material

Claims (6)

基材上に、3〜10μmの厚みのCuSn合金めっき層と、0.1〜0.5μmの厚みのSnめっき層とを順に積層してなる通電接触部材。   An energizing contact member formed by sequentially laminating a CuSn alloy plating layer having a thickness of 3 to 10 μm and an Sn plating layer having a thickness of 0.1 to 0.5 μm on a base material. 前記CuSn合金めっき層の組成が、CuSnである、請求項1に記載の通電接触部材。 The composition of the CuSn alloy plating layer is a Cu 6 Sn 5, energization contact member according to claim 1. 前記基材が、Cu、Al、またはこれらを含む合金もしくは複合材である、請求項1に記載の通電接触部材。   The energizing contact member according to claim 1, wherein the base material is Cu, Al, or an alloy or composite material containing these. 請求項1〜3のいずれか1項に記載の通電接触部材と、通電接触相手材とを組み合わせてなる通電接触構造であって、
前記通電接触相手材の最表面層が酸化物層もしくは酸化物生成層である場合には、前記通電接触部材の前記Snめっき層と、前記通電接触相手材の前記最表面層との厚みの合計が、0.5μm以下であり、
前記通電接触相手材の最表面層が酸化物非生成層である場合には、前記通電接触部材の前記Snめっき層の厚みが、0.5μm以下である、通電接触構造。
An energization contact structure comprising a combination of the energization contact member according to any one of claims 1 to 3 and an energization contact partner material,
When the outermost surface layer of the energization contact partner material is an oxide layer or an oxide generation layer, the total thickness of the Sn plating layer of the energization contact member and the outermost surface layer of the energization contact partner material Is 0.5 μm or less,
When the outermost surface layer of the current-carrying contact material is a non-oxide generation layer, the current-carrying contact structure is such that the thickness of the Sn plating layer of the current-carrying contact member is 0.5 μm or less.
基材上に、3〜10μmの厚みのCuSn合金めっき層を形成する工程と、
前記CuSn合金めっき層上に0.1〜0.5μm厚のSnめっき層を形成する工程と
を含む、通電接触部材の製造方法。
Forming a CuSn alloy plating layer having a thickness of 3 to 10 μm on the substrate;
Forming a Sn plating layer having a thickness of 0.1 to 0.5 μm on the CuSn alloy plating layer.
前記CuSn合金めっき層を形成する工程が、電解めっきによりCuSn合金めっき層を形成する工程である、請求項5に記載の方法。 The method according to claim 5, wherein the step of forming the CuSn alloy plating layer is a step of forming a Cu 6 Sn 5 alloy plating layer by electrolytic plating.
JP2016053785A 2016-03-17 2016-03-17 Current contact member Active JP6741446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053785A JP6741446B2 (en) 2016-03-17 2016-03-17 Current contact member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053785A JP6741446B2 (en) 2016-03-17 2016-03-17 Current contact member

Publications (2)

Publication Number Publication Date
JP2017166038A true JP2017166038A (en) 2017-09-21
JP6741446B2 JP6741446B2 (en) 2020-08-19

Family

ID=59912688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053785A Active JP6741446B2 (en) 2016-03-17 2016-03-17 Current contact member

Country Status (1)

Country Link
JP (1) JP6741446B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164930A (en) * 2018-03-20 2019-09-26 古河電気工業株式会社 Terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164279A (en) * 1998-11-30 2000-06-16 Kobe Steel Ltd Sn PLATED COPPER ALLOY MATERIAL FOR TERMINAL CONNECTOR
JP2005344157A (en) * 2004-06-02 2005-12-15 Yuken Industry Co Ltd Method for suppressing production of whisker from tin or tin alloy plating layer, and contact member
JP2015151570A (en) * 2014-02-13 2015-08-24 株式会社神戸製鋼所 Copper alloy sheet strip with surface coating layer excellent in heat resistance
JP2016211031A (en) * 2015-05-07 2016-12-15 Dowaメタルテック株式会社 Sn-PLATED MATERIAL AND METHOD OF PRODUCING THE SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164279A (en) * 1998-11-30 2000-06-16 Kobe Steel Ltd Sn PLATED COPPER ALLOY MATERIAL FOR TERMINAL CONNECTOR
JP2005344157A (en) * 2004-06-02 2005-12-15 Yuken Industry Co Ltd Method for suppressing production of whisker from tin or tin alloy plating layer, and contact member
JP2015151570A (en) * 2014-02-13 2015-08-24 株式会社神戸製鋼所 Copper alloy sheet strip with surface coating layer excellent in heat resistance
JP2016211031A (en) * 2015-05-07 2016-12-15 Dowaメタルテック株式会社 Sn-PLATED MATERIAL AND METHOD OF PRODUCING THE SAME

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
中野 博昭ほか: "自動車接点材料用のSn-Cu合金電析とその電気的接続性", 日本金属学会誌, vol. 第75巻, 第1号, JPN6018031132, 2011, JP, pages 61 - 68, ISSN: 0004165616 *
吉田 和生ほか: "摺動性と耐食性に優れるCu-Sn合金めっきの開発", 古河電工時報, vol. 128号, JPN6018031133, 2011, JP, pages 7 - 10, ISSN: 0004165617 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164930A (en) * 2018-03-20 2019-09-26 古河電気工業株式会社 Terminal
JP7382702B2 (en) 2018-03-20 2023-11-17 古河電気工業株式会社 terminal

Also Published As

Publication number Publication date
JP6741446B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
AU2012310742B2 (en) Metal material for electronic components and method for producing same
JP5460585B2 (en) Sliding member manufacturing method, sliding member and sliding member base material
JP4279285B2 (en) Silver-coated stainless steel strip for movable contact and method for producing the same
JP2009057630A (en) Sn-PLATED CONDUCTIVE MATERIAL, METHOD FOR PRODUCING THE SAME, AND ELECTRICITY CARRYING COMPONENT
JP2009079250A (en) Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor
JP5956240B2 (en) Plating material and method for producing the same
CN102667989A (en) Silver-coated composite material for movable contact component, method for producing same, and movable contact component
TW200948526A (en) Tinned copper alloy bar with excellent abrasion resistance, insertion properties, and heat resistance
JP2010037629A (en) Conducting material for terminal and connector, and fitting-type connecting terminal
JP2009135097A (en) Metal material for electric and electronic equipment, method of manufacturing metal material for electric and electronic equipment
JP6472191B2 (en) Plug connector
JP2017110290A (en) Manufacturing method of copper terminal material with tin plating
WO2007126010A1 (en) HEAT-RESISTANT Sn-PLATED Cu-Zn ALLOY STRIP SUPPRESSED IN WHISKERING
JP6281451B2 (en) TERMINAL MEMBER, ITS MANUFACTURING METHOD, AND CONNECTOR TERMINAL
JP2010146925A (en) Contactor material for electric motor and method of manufacturing the same
JP6123655B2 (en) Copper foil and manufacturing method thereof
JP2017166038A (en) Energizing contact member
JP5681378B2 (en) Plating member and manufacturing method thereof
CN113166964A (en) Anti-corrosion terminal material, terminal and wire terminal structure
JP2021055163A (en) Connector terminal material
JP2013036072A (en) Coated composite material for moving contact part, moving contact part, switch, and method for production thereof
JP2020056056A (en) Copper terminal material, copper terminal, and manufacturing method of copper terminal material
JP2012057212A (en) Composite plated material, and electric component and electronic component using the same
JP6099673B2 (en) Method for manufacturing electrode material for thermal fuse
JP6099672B2 (en) Electrode material for thermal fuse and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R150 Certificate of patent or registration of utility model

Ref document number: 6741446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250