JP5681378B2 - Plating member and manufacturing method thereof - Google Patents

Plating member and manufacturing method thereof Download PDF

Info

Publication number
JP5681378B2
JP5681378B2 JP2010102372A JP2010102372A JP5681378B2 JP 5681378 B2 JP5681378 B2 JP 5681378B2 JP 2010102372 A JP2010102372 A JP 2010102372A JP 2010102372 A JP2010102372 A JP 2010102372A JP 5681378 B2 JP5681378 B2 JP 5681378B2
Authority
JP
Japan
Prior art keywords
plating layer
plating
silver
mass
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010102372A
Other languages
Japanese (ja)
Other versions
JP2011231369A (en
Inventor
雅史 尾形
雅史 尾形
尭 出野
尭 出野
宮澤 寛
寛 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2010102372A priority Critical patent/JP5681378B2/en
Publication of JP2011231369A publication Critical patent/JP2011231369A/en
Application granted granted Critical
Publication of JP5681378B2 publication Critical patent/JP5681378B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、銀−銅含有合金めっき層を含むめっき部材およびその製造方法に関し、さらに詳しくは耐熱性、耐久性に優れた銀−銅含有合金めっき層を含むめっき部材およびその製造方法に関する。   The present invention relates to a plating member including a silver-copper-containing alloy plating layer and a manufacturing method thereof, and more particularly to a plating member including a silver-copper-containing alloy plating layer excellent in heat resistance and durability and a manufacturing method thereof.

コネクター、スイッチなどの電気接点部には比較的に安価で、機械的特性、電気伝導性に優れる銅(Cu)合金やステンレス鋼などの金属部材に拡散防止や耐久性向上のためにニッケル(Ni)もしくはNi合金下地めっきを行い、その上に電気伝導性と耐食性にすぐれる銀(Ag)めっきを行った材料が多く使用されている。   Electrical contacts such as connectors and switches are relatively inexpensive, and nickel (Ni) is used to prevent diffusion and improve durability in metal parts such as copper (Cu) alloys and stainless steel, which have excellent mechanical properties and electrical conductivity. ) Or Ni alloy base plating, and a material on which silver (Ag) plating excellent in electrical conductivity and corrosion resistance is applied is often used.

しかしながら、Niめっき上にAgめっきを行った材料は、実装リフロー時や樹脂溶着、または、部材に通電する際に発生する電気抵抗による発熱などにより熱がかかるとAgとNi間の密着力(耐熱密着性)が低下するという問題点がある。この点を改善する方法としてAgめっき層とNiめっき層の間にCuめっき層を形成する方法が提案されている(例えば特許文献1参照。)。   However, when the material plated with Ag on Ni plating is heated by mounting reflow, resin welding, or heat generated by electric resistance generated when energizing the member, the adhesion between Ag and Ni (heat resistant) There is a problem that the adhesiveness is reduced. As a method for improving this point, a method of forming a Cu plating layer between an Ag plating layer and a Ni plating layer has been proposed (see, for example, Patent Document 1).

また、挿抜や摺動、打鍵が繰り返される部材ではさらなる高耐久性が要求されている。
めっき材の耐久性を向上させる方法として、表面に有機皮膜を形成させる方法が提案されている(例えば特許文献2参照。)。
Further, members with repeated insertion / extraction, sliding, and keystroke are required to have higher durability.
As a method for improving the durability of the plating material, a method of forming an organic film on the surface has been proposed (see, for example, Patent Document 2).

特開2004−263274号公報JP 2004-263274 A 特開平6−212491号公報JP-A-6-212491

特許文献1の方法では、材質が3種類の異なるめっき層を形成する必要があり、めっき工程が増えるため、コストや生産性の点で不利になることがある。また、特許文献1に記載のめっき材は、最表層がAgめっき層であり、材質である銀は硬度が低い材質であることから、耐久性を改善するために、Agめっき層を厚くすることが考えられる。しかし、Agめっきを厚くする方法では、高価な銀の消費量が増え製造コストが高くなる問題があった。   In the method of Patent Document 1, it is necessary to form three different types of plating layers, and the number of plating steps increases, which may be disadvantageous in terms of cost and productivity. Moreover, since the outermost layer is an Ag plating layer and the material silver is a material with low hardness, the plating material described in Patent Document 1 has a thick Ag plating layer in order to improve durability. Can be considered. However, the method of thickening the Ag plating has a problem that the consumption of expensive silver increases and the manufacturing cost increases.

特許文献2の方法では、耐久性は向上するものの、めっき材表面の接触抵抗が上昇することが課題であった。また、めっき材の製造工程において、表面に有機被膜を形成した後の有機被膜と洗浄の薬品や機械油との接触、リフローや樹脂溶着時の熱やプレス時のこすれなどめっき材の製造条件によっては、有機皮膜の分解や削れまたは剥がれが生じて、耐久性が十分向上できない懸念もあった。   In the method of Patent Document 2, the durability is improved, but the contact resistance on the surface of the plating material is increased. Also, in the plating material manufacturing process, depending on the plating material manufacturing conditions, such as contact between the organic film after forming the organic film on the surface and cleaning chemicals or machine oil, heat during reflow or resin welding, and rubbing during pressing There was also a concern that the durability could not be sufficiently improved due to the decomposition, shaving or peeling of the organic film.

本発明のめっき部材は、Cu、Cu合金、ステンレス鋼から成る板状の金属部材と、前記金属部材上に設けられ、ニッケルまたはニッケル合金から成る下地めっき層と、前記下地めっき層上に設けられ、厚みが0.2μm〜5μmであり、銅含有率が0.5質量%〜30質量%の銀−銅含有合金めっき層と、を具備することを特徴とする、コネクターまたはスイッチの電気接点部に使用される。
The plating member of the present invention includes a plate-like metal member made of Cu, Cu alloy, and stainless steel , a base plating layer made of nickel or a nickel alloy provided on the metal member, and provided on the base plating layer. And a silver-copper-containing alloy plating layer having a thickness of 0.2 μm to 5 μm and a copper content of 0.5% by mass to 30% by mass, and an electrical contact part of a connector or switch Used for.

本発明のめっき部材の製造方法は、Cu、Cu合金、ステンレス鋼から成る金属部材上に、電解めっき処理により、ニッケルから成る下地めっき層を形成する工程と、記下地めっき層の上面に、厚みが0.2μm〜5μmであり、銅含有率が0.5質量%〜30質量%の銀−銅含有合金めっき層を、シアン銀塩およびシアン銅塩を含みポリエチレンイミンが添加されためっき液を用いて電解めっき処理で形成する工程と、を具備することを特徴とする。
The method for producing a plated member according to the present invention includes a step of forming a base plating layer made of nickel on a metal member made of Cu, Cu alloy, and stainless steel by electrolytic plating, and a thickness on the upper surface of the base plating layer. Of a silver-copper-containing alloy plating layer having a copper content of 0.5 to 30% by mass and containing a cyanine silver salt and a cyanine copper salt and a polyethyleneimine added thereto. And a step of forming by electroplating treatment.

本発明のめっき部材の製造方法は、Cu、Cu合金、ステンレス鋼から成る金属部材上に、電解めっき処理により、ニッケルから成る下地めっき層を形成する工程と、前記下地めっき層の上面に、銀ストライクめっき層を形成する工程と、前記銀ストライクめっき層の上面に、厚みが0.2μm〜5μmであり、銅含有率が0.5質量%〜30質量%の銀−銅含有合金めっき層を、シアン銀塩およびシアン銅塩を含みポリエチレンイミンが添加されためっき液を用いて電解めっき処理で形成する工程と、を具備することを特徴とする。
The method for producing a plated member of the present invention includes a step of forming a base plating layer made of nickel on a metal member made of Cu, Cu alloy, and stainless steel by electrolytic plating, and silver on the upper surface of the base plating layer. A step of forming a strike plating layer, and a silver-copper-containing alloy plating layer having a thickness of 0.2 μm to 5 μm and a copper content of 0.5% by mass to 30% by mass on the upper surface of the silver strike plating layer And a step of forming by electrolytic plating using a plating solution containing cyanogen silver salt and cyanogen copper salt and having polyethyleneimine added thereto.

本発明によれば、以下の効果が得られる。   According to the present invention, the following effects can be obtained.

第1に、本発明のめっき部材は、耐摩耗性などの耐久性に優れ、実装リフロー時の熱や電気抵抗による発熱に対する密着性(耐熱密着性)を高めることができる。   1stly, the plating member of this invention is excellent in durability, such as abrasion resistance, and can improve the adhesiveness (heat-resistant adhesiveness) with respect to the heat | fever at the time of mounting reflow, and the heat_generation | fever by an electrical resistance.

第2に、本発明のめっき部材は摺動や挿抜において耐久性が高く、耐熱密着性が優れるので、コネクターやスイッチ等の電気接点において適している。   Secondly, since the plated member of the present invention has high durability in sliding and insertion / extraction and excellent heat-resistant adhesion, it is suitable for electrical contacts such as connectors and switches.

第3に、本発明のめっき部材の製造方法によれば、金属部材上に下地めっき層と、Ag−Cu含有合金めっき層を形成すればよく、Ag−Cu含有合金めっき層の厚みは0.1μm〜15μm程度でよいので、高価な銀の消費量を抑え、製造コストも低廉にすることができる。   3rdly, according to the manufacturing method of the plating member of this invention, a base plating layer and an Ag-Cu containing alloy plating layer should just be formed on a metal member, and the thickness of an Ag-Cu containing alloy plating layer is 0.00. Since about 1 μm to 15 μm is sufficient, the consumption of expensive silver can be suppressed and the manufacturing cost can be reduced.

本発明の実施形態のめっき部材を説明するための断面概要図である。It is a section schematic diagram for explaining the plating member of the embodiment of the present invention. 本発明の実施形態のめっき部材および比較例について接触抵抗と擦動回数の関係を示す特性図である。It is a characteristic view which shows the relationship between contact resistance and the frequency | count of friction about the plating member and comparative example of embodiment of this invention.

以下、図1および図2を参照して、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2.

図1は、本発明の実施形態のめっき部材を説明する断面概要図である。   FIG. 1 is a schematic cross-sectional view illustrating a plated member according to an embodiment of the present invention.

本実施形態のめっき部材10は、金属部材1上に下地めっき層3が形成され、下地めっき層3上に銀(Ag)−銅(Cu)含有合金めっき層5が形成されたものである。   In the plated member 10 of this embodiment, the base plating layer 3 is formed on the metal member 1, and the silver (Ag) -copper (Cu) -containing alloy plating layer 5 is formed on the base plating layer 3.

金属部材1は、一般的にコネクタやスイッチに使用されてるものであり、材質は特に限定されないが、一例としてCu、Cu合金、ステンレス鋼を用いることができる。   The metal member 1 is generally used for a connector or a switch, and the material is not particularly limited, but Cu, Cu alloy, and stainless steel can be used as an example.

下地めっき層3は、金属部材1上に形成される。下地めっき層3の材質は、ニッケル(Ni)またはNi合金が好ましい。下地めっき層3が、金属部材1とAg−Cu含有合金めっき層5の間に存在することにより、Ag−Cu含有合金めっき層5の密着性を向上させることができる。また、下地めっき層3が金属部材1成分(構成元素)のAg−Cu含有合金めっき層5への拡散のバリア層となり、金属部材1成分のAg−Cu合金めっき層5への拡散を防ぐ。下地めっき層3がNi合金の場合は、Ni含有量が60質量%以上が好ましく、Ni含有量が60質量%未満の場合、金属部材1の構成元素のAg−Cu合金めっき層5への拡散を十分防止できないことがある。   The base plating layer 3 is formed on the metal member 1. The material of the base plating layer 3 is preferably nickel (Ni) or Ni alloy. The presence of the underlying plating layer 3 between the metal member 1 and the Ag—Cu-containing alloy plating layer 5 can improve the adhesion of the Ag—Cu-containing alloy plating layer 5. In addition, the base plating layer 3 serves as a barrier layer for diffusion of the metal member 1 component (constituent element) into the Ag—Cu-containing alloy plating layer 5, and prevents diffusion of the metal member 1 component into the Ag—Cu alloy plating layer 5. When the base plating layer 3 is a Ni alloy, the Ni content is preferably 60% by mass or more, and when the Ni content is less than 60% by mass, the constituent elements of the metal member 1 are diffused into the Ag—Cu alloy plating layer 5. May not be sufficiently prevented.

下地めっき層3の厚さは、0.01μm〜10μmであることが好ましい。厚さが0.01μmより薄い場合、金属部材1のAg−Cu含有合金めっき層5への拡散を十分に防げない場合があり、めっき部材10のハンダづけ性等の表面特性が損なわれる場合がある。また、厚さが、10μmより厚い場合には、めっき部材10を折り曲げた場合、加工割れが発生する場合がある。めっき部材10にプレス成型等による加工を施す場合、加工割れの発生を防止する観点から、下地めっき層3の厚さは、0.01μm〜5μmが好ましく、拡散防止と加工割れ防止の観点から、0.05μm〜1μmが一層好ましい。   The thickness of the base plating layer 3 is preferably 0.01 μm to 10 μm. If the thickness is less than 0.01 μm, diffusion of the metal member 1 to the Ag—Cu-containing alloy plating layer 5 may not be sufficiently prevented, and surface characteristics such as solderability of the plating member 10 may be impaired. is there. Further, when the thickness is greater than 10 μm, when the plated member 10 is bent, a working crack may occur. When the plating member 10 is processed by press molding or the like, from the viewpoint of preventing the occurrence of processing cracks, the thickness of the base plating layer 3 is preferably 0.01 μm to 5 μm, from the viewpoint of preventing diffusion and preventing processing cracks, 0.05 μm to 1 μm is more preferable.

Ag−Cu含有合金めっき層5は、下地めっき層3上に形成される。Ag−Cu含有合金めっき層5を形成することにより、めっき部材10の耐熱密着性と耐久性を向上することができる。   The Ag—Cu-containing alloy plating layer 5 is formed on the base plating layer 3. By forming the Ag—Cu-containing alloy plating layer 5, the heat-resistant adhesion and durability of the plating member 10 can be improved.

Ag−Cu合金めっき層のCu含有率は、0.5質量%〜30質量%とすることが好ましい。Cu含有率が0.5質量%未満の場合は、めっき部材10を加熱した場合にAg−Cu含有合金めっき層5と下地めっき層3との密着性を十分に高くすることができない場合があり、Ag−Cu含有合金めっき層5の硬度が十分に高くならず、めっき部材10の耐久性を十分高くできないことがある。密着性の観点から、Cu含有率は、1質量%〜30質量%とすることが更に好ましい。   The Cu content of the Ag—Cu alloy plating layer is preferably 0.5% by mass to 30% by mass. When the Cu content is less than 0.5% by mass, the adhesion between the Ag-Cu-containing alloy plating layer 5 and the underlying plating layer 3 may not be sufficiently increased when the plating member 10 is heated. The hardness of the Ag—Cu-containing alloy plating layer 5 may not be sufficiently high, and the durability of the plating member 10 may not be sufficiently high. From the viewpoint of adhesion, the Cu content is more preferably 1% by mass to 30% by mass.

それに対して、Cu含有率が30質量%より高い場合は、めっき部材10の耐食性が低下することや、加熱処理後のめっき部材の接触抵抗が高くなることがある。これは、Cuの組成比が高くなりすぎると、Ag−Cu含有合金めっき層5の表面が酸化しやすくなることが1つの要因として考えられる。Ag−Cu含有合金めっき層5は、Ag、Cu以外の金属元素を5質量%以下含むことができる。耐食性や導電性の観点から、Ag、Cu以外の金属元素の含有量は1質量%以下が更に好ましく、0.5質量%以下が一層好ましい。この金属元素は例えば、スズ(Sn)、ビスマス(Bi)等である。   On the other hand, when Cu content rate is higher than 30 mass%, the corrosion resistance of the plating member 10 may fall, or the contact resistance of the plating member after heat processing may become high. One possible reason for this is that the surface of the Ag—Cu-containing alloy plating layer 5 is likely to be oxidized if the Cu composition ratio becomes too high. The Ag—Cu-containing alloy plating layer 5 can contain 5% by mass or less of a metal element other than Ag and Cu. From the viewpoint of corrosion resistance and conductivity, the content of metal elements other than Ag and Cu is more preferably 1% by mass or less, and further preferably 0.5% by mass or less. This metal element is, for example, tin (Sn), bismuth (Bi), or the like.

Ag−Cu含有合金めっき層5の厚さは、0.1μm〜15μmとすることができる。厚さが0.1μm未満の場合には、めっき部材10の耐久性が低下することがあり、厚さが15μm超の場合には、Agの消費量が増加して不経済となる。耐久性と経済性を考慮すると、 Ag−Cu含有合金めっき層5の厚さは0.2μm〜10μmが更に好ましく、0.2μm〜5μmが一層好ましい。   The thickness of the Ag—Cu-containing alloy plating layer 5 can be 0.1 μm to 15 μm. When the thickness is less than 0.1 μm, the durability of the plated member 10 may be lowered. When the thickness is more than 15 μm, the consumption of Ag increases, which is uneconomical. Considering durability and economy, the thickness of the Ag—Cu-containing alloy plating layer 5 is more preferably 0.2 μm to 10 μm, and further preferably 0.2 μm to 5 μm.

尚、金属部材1がCuまたはCu合金以外の材料の場合、これと下地めっき層3の密着性を向上させるため、これらの間にNiストライクめっき層が設けられてもよい。   When the metal member 1 is a material other than Cu or Cu alloy, a Ni strike plating layer may be provided between them in order to improve adhesion between the metal member 1 and the underlying plating layer 3.

また、下地めっき層3とAg−Cu含有合金めっき層3との密着性を向上させるため、これらの間にAgストライクめっき層(またはAg−Cu合金ストライクめっき層)が設けられてもよい。   Moreover, in order to improve the adhesiveness of the base plating layer 3 and the Ag-Cu containing alloy plating layer 3, an Ag strike plating layer (or an Ag-Cu alloy strike plating layer) may be provided therebetween.

次に、図1を参照して、本発明のめっき部材の製造方法を以下に説明する。
<金属部材のめっき前処理>
金属部材1は、脱脂、酸洗浄をおこなうことができる。脱脂、酸洗浄は、公知の方法を用いることができる。例えば、アルカリ電解脱脂、有機溶媒または洗浄液用いた脱脂、塩酸または硫酸を用いた酸洗浄等である。
<Niストライクめっき>
NiまたはNi合金からなる下地めっき層3を形成する前の金属部材1に対して、Niストライクめっきを施すことが好ましい。Niストライクめっき層の形成により、金属部材1と下地めっき層3の密着性を向上することができる。金属部材1がCuまたはCu合金の場合には、Niストライクめっきは省略することができる。
Next, with reference to FIG. 1, the manufacturing method of the plating member of this invention is demonstrated below.
<Pre-plating of metal parts>
The metal member 1 can be degreased and acid cleaned. A known method can be used for degreasing and acid cleaning. For example, alkaline electrolytic degreasing, degreasing using an organic solvent or a cleaning solution, acid cleaning using hydrochloric acid or sulfuric acid, and the like.
<Ni strike plating>
Ni strike plating is preferably performed on the metal member 1 before the base plating layer 3 made of Ni or Ni alloy is formed. By forming the Ni strike plating layer, the adhesion between the metal member 1 and the base plating layer 3 can be improved. When the metal member 1 is Cu or Cu alloy, Ni strike plating can be omitted.

Niストライクめっきは、例えば、塩化ニッケル50g/L〜300g/L、濃塩酸50mL/L〜200mL/Lを含有する水溶液をめっき液として、電流密度1A/dm2〜10A/dm2にて、行う。これにより、膜厚0.1μm程度以下のNiストライクめっき層を形成させることができる。尚、濃塩酸100mL/Lは、溶液1L中に濃塩酸(37質量%塩酸(HCL)水溶液)を含む液である。濃塩酸は比重1.19であり、濃塩酸100mL中にはHClが44g含まれることになり、濃塩酸100mL/L溶液は、塩酸(HCL)4.4質量%溶液である。
<下地めっき層の形成>
金属部材1(Niストライクめっき層)上に、下地めっき層3を形成する。下地めっき層3の形成は、NiまたはNi合金めっき層を形成できる公知のめっき方法により形成することができる。好ましい例として、めっき液に金属部材1を浸漬して電解めっき処理が行われる。ここで、めっき液としては、Niイオンを含む液が使用される。めっき液に添加するNi化合物としては、硫酸ニッケル6水和物やスルファミン酸ニッケル等、公知のNi化合物を用いることができる。この他、市販の光沢剤等の添加剤をめっき液に添加してもよい。
Ni strike plating is performed at a current density of 1 A / dm 2 to 10 A / dm 2 using , for example, an aqueous solution containing nickel chloride 50 g / L to 300 g / L and concentrated hydrochloric acid 50 mL / L to 200 mL / L as a plating solution. . Thereby, a Ni strike plating layer with a film thickness of about 0.1 μm or less can be formed. Concentrated hydrochloric acid 100 mL / L is a liquid containing concentrated hydrochloric acid (37 mass% hydrochloric acid (HCL) aqueous solution) in 1 L of solution. Concentrated hydrochloric acid has a specific gravity of 1.19, and 44 mL of HCl is contained in 100 mL of concentrated hydrochloric acid, and the concentrated hydrochloric acid 100 mL / L solution is a 4.4 mass% hydrochloric acid (HCL) solution.
<Formation of base plating layer>
A base plating layer 3 is formed on the metal member 1 (Ni strike plating layer). The base plating layer 3 can be formed by a known plating method capable of forming a Ni or Ni alloy plating layer. As a preferred example, the electrolytic plating treatment is performed by immersing the metal member 1 in a plating solution. Here, as the plating solution, a solution containing Ni ions is used. As the Ni compound added to the plating solution, a known Ni compound such as nickel sulfate hexahydrate or nickel sulfamate can be used. In addition, an additive such as a commercially available brightener may be added to the plating solution.

電解めっき処理の電解電流密度は、1.0A/dm以上10.0A/dm以下が好適である。電流密度が1.0A/dm未満となると下地めっき層3の成膜速度が遅く、10.0A/dmよりも大きいとめっきヤケ等の不具合が発生する恐れがある。
<Agストライクめっき>
下地めっき層3を形成した後、Agストライクめっきを施すことが好ましい。Agストライクめっき層により、下地めっき層3とAg−Cu含有合金めっき層5の密着性を向上させることができる。Agストライクめっきは、例えば、シアン化銀塩1g/L〜10g/L、シアン化カリウム30g/L〜120g/L含有する水溶液をめっき液として、電流密度0.2A/dm2〜10A/dm2にて、行う。これにより、膜厚0.1μm程度以下のAgストライクめっき層を形成させることができる。シアン化銀塩およびシアン化カリウムを含有するめっき液に、シアン化銅塩を添加して、形成されるストライクめっき層のCu含有量が30質量%以下になるようにして、Ag−Cu合金ストライクめっきを施してもよい。
<Ag−Cu含有合金めっき層の形成>
下地めっき層3(Agストライクめっき層またはAg−Cu合金ストライクめっき層)上にAg−Cu含有合金めっき層5を形成する。Ag−Cu含有合金めっき層5の形成は、めっき液に下地めっき層3を形成した金属部材1を浸漬して電解めっき処理をすることにより行われる。ここで、めっき液としては、シアン銀塩およびシアン銅塩を含む液を使用することができる。この他、ポリエチレンイミン、酒石酸アンチモンカリウム、シアン化セレン酸カリウム等の添加剤をめっき液に添加してもよい。めっき液にポリエチレンイミンを添加することにより、Ag−Cu含有合金めっき層表面に「ヤケ」が発生しにくくなる効果がある。ポリエチレンイミンの添加量は、めっき液中の濃度が0.05g/L〜10g/Lとすることができる。ポリエチレンイミンは平均分子量が、300〜30000であるものを使用することができる。
The electrolytic current density in the electrolytic plating process is preferably 1.0 A / dm 2 or more and 10.0 A / dm 2 or less. If the current density is less than 1.0 A / dm 2, the film formation rate of the base plating layer 3 is slow, and if it is greater than 10.0 A / dm 2 , defects such as plating burns may occur.
<Ag strike plating>
After forming the base plating layer 3, it is preferable to perform Ag strike plating. The adhesion between the base plating layer 3 and the Ag—Cu-containing alloy plating layer 5 can be improved by the Ag strike plating layer. Ag strike plating is performed at a current density of 0.2 A / dm 2 to 10 A / dm 2 using , for example, an aqueous solution containing silver cyanide 1 g / L to 10 g / L and potassium cyanide 30 g / L to 120 g / L as plating solution. Do. Thereby, an Ag strike plating layer having a film thickness of about 0.1 μm or less can be formed. Ag-Cu alloy strike plating is carried out by adding copper cyanide salt to a plating solution containing silver cyanide salt and potassium cyanide so that the Cu content of the formed strike plating layer is 30% by mass or less. You may give it.
<Formation of Ag-Cu-containing alloy plating layer>
An Ag—Cu-containing alloy plating layer 5 is formed on the base plating layer 3 (Ag strike plating layer or Ag—Cu alloy strike plating layer). Formation of the Ag—Cu-containing alloy plating layer 5 is performed by immersing the metal member 1 on which the base plating layer 3 is formed in a plating solution and performing electrolytic plating treatment. Here, as the plating solution, a solution containing cyan silver salt and cyan copper salt can be used. In addition, additives such as polyethyleneimine, potassium antimony tartrate, and potassium selenate cyanate may be added to the plating solution. By adding polyethyleneimine to the plating solution, there is an effect that “burning” hardly occurs on the surface of the Ag—Cu-containing alloy plating layer. The amount of polyethyleneimine added can be 0.05 g / L to 10 g / L in the plating solution. Polyethyleneimine having an average molecular weight of 300 to 30,000 can be used.

電解めっき処理の電解電流密度は、0.5A/dm以上10.0A/dm以下が好適である。電流密度が0.5A/dm未満となるとAg−Cu含有合金めっき層5の成膜速度が遅く、10.0A/dmよりも大きいとめっきヤケ等の不具合が発生する恐れがある。また、電流密度を変更することにより、Ag−Cu含有合金めっき層中のCu含有量を調整することができる。 The electrolytic current density of the electrolytic plating treatment is preferably 0.5 A / dm 2 or more and 10.0 A / dm 2 or less. If the current density is less than 0.5 A / dm 2, the deposition rate of the Ag—Cu-containing alloy plating layer 5 is slow, and if it exceeds 10.0 A / dm 2 , defects such as plating burns may occur. Moreover, Cu content in an Ag-Cu containing alloy plating layer can be adjusted by changing a current density.

このように、本実施形態のめっき部材10は、金属部材1上にNiまたはNi合金による下地めっき層3と、Cu含有率が0.5質量%〜30質量%のAg−Cu含有合金めっき層5とを順次積層したものである。   Thus, the plating member 10 of this embodiment includes the base plating layer 3 made of Ni or Ni alloy on the metal member 1 and the Ag—Cu-containing alloy plating layer having a Cu content of 0.5 mass% to 30 mass%. 5 are sequentially laminated.

これにより、電気伝導性に優れ、特に、金属部材1上にNi下地めっき層が形成され、下地めっき層上にAgめっき層が形成されためっき部材と比較して、耐熱密着性、耐久性及び硬度が向上しためっき材を提供できる。   Thereby, it is excellent in electrical conductivity, in particular, compared with a plating member in which a Ni undercoat layer is formed on the metal member 1 and an Ag plating layer is formed on the undercoat layer, heat resistance adhesion, durability and A plating material with improved hardness can be provided.

また、表面に有機皮膜を形成させる特許文献2の方法と比較して、硬度と耐久性を向上させることができる。   Moreover, compared with the method of patent document 2 which forms an organic membrane | film | coat on the surface, hardness and durability can be improved.

尚、図1においては金属部材1の一主面上に下地めっき層3およびAg−Cu含有合金めっき層5を形成した場合を示したが、金属部材1の両主面にこれらのめっき層が形成されてもよい。すなわち、金属部材1の両主面に下地めっき層3が形成され、下地メッキ層3の両主面にそれぞれAg−Cu含有合金めっき層5が形成されてもよい。   Although FIG. 1 shows the case where the base plating layer 3 and the Ag—Cu-containing alloy plating layer 5 are formed on one main surface of the metal member 1, these plating layers are formed on both main surfaces of the metal member 1. It may be formed. That is, the base plating layer 3 may be formed on both main surfaces of the metal member 1, and the Ag—Cu-containing alloy plating layer 5 may be formed on both main surfaces of the base plating layer 3.

次に本発明の実施例を記載するが本発明はこの実施例に限定されるものではない。   Next, although the Example of this invention is described, this invention is not limited to this Example.

<金属部材の電解脱脂と酸洗>
金属部材1として縦70mm、横70mm、厚さ0.06mmのステンレス鋼(SUS301)を準備した。金属部材1を陽極、他のSUS板を陰極とし、金属部材1をアルカリ脱脂液中で、電圧5Vで15秒の電解脱脂を行った後、金属部材1を陰極、他のSUS板を陽極にして、電圧5Vで15秒の電解脱脂を行った。電解脱脂後、金属部材1を水洗し、その後10質量%塩酸水溶液中で、15秒間の酸洗を行い、水洗した。
<Niストライクめっき>
塩化ニッケル(150g/L)および濃塩酸(100ml/L)を含有する水溶液をめっき液とした。マグネチックスターラによる撹拌(400rpm)をおこなっているめっき液中で、酸洗をおこなった金属部材1を陰極、Ni電極板を陽極として、電流密度2A/dmの条件で10秒間、Niストライクめっきを行った。
<下地めっき>
スルファミン酸ニッケル(350g/L)および、塩化ニッケル(20g/L)、ホウ酸(35g/L)を含有する水溶液からなるめっき液を準備した。マグネチックスターラによる撹拌(400rpm)をおこなっているめっき液中で、Niストライクめっきをおこなった金属部材1を陰極、Ni電極板を陽極として電流密度2A/dmの条件で、下地めっき層3の厚さが0.2μmになるように、下地めっきを施した。
<Agストライクめっき>
シアン化銀カリウム(3g/L)、シアン化カリウム(90g/L)を含む水溶液からなるめっき液を準備した。マグネチックスターラによる撹拌(400rpm)をおこなっているめっき液中で、下地めっきをおこなった金属部材1を陰極、白金でコーティングされたチタン電極板を陽極として、電流密度1A/dmの条件で10秒間Agストライクめっきを行った。
<Ag−Cu含有合金めっき>
シアン化銀カリウム(18g/L)、シアン化銅カリウム(120g/L)、ポリエチレンイミン(分子量600、5g/L)を含有する水溶液からなるめっき液を準備した。マグネチックスターラによる撹拌(400rpm)をおこなっているめっき液中で、Agストライクめっきをおこなった金属部材1を陰極、Ag電極板を陽極として電流密度1A/dmの条件で、Ag−Cu含有合金めっき層5の厚さが0.5μmになるまで、めっきをおこなって、めっき部材10を得た。実施例1のAg−Cu含有合金めっき層5のCu含有量は1質量%である。
<めっき部材の評価>
上記で得られためっき部材10について、以下に示す評価方法で、耐熱密着性、硬度、耐摺動性(耐久性)、接触抵抗、Ag−Cu含有合金めっき層5のCu含有量について評価した。
<Electrolytic degreasing and pickling of metal parts>
As the metal member 1, stainless steel (SUS301) having a length of 70 mm, a width of 70 mm, and a thickness of 0.06 mm was prepared. The metal member 1 is used as an anode, the other SUS plate as a cathode, the metal member 1 is subjected to electrolytic degreasing in an alkaline degreasing solution at a voltage of 5 V for 15 seconds, and then the metal member 1 is used as a cathode and the other SUS plate is used as an anode. Then, electrolytic degreasing was performed at a voltage of 5 V for 15 seconds. After electrolytic degreasing, the metal member 1 was washed with water, then pickled for 15 seconds in a 10 mass% hydrochloric acid aqueous solution, and washed with water.
<Ni strike plating>
An aqueous solution containing nickel chloride (150 g / L) and concentrated hydrochloric acid (100 ml / L) was used as a plating solution. Ni strike plating for 10 seconds at a current density of 2 A / dm 2 using a metal member 1 that has been pickled as a cathode and a Ni electrode plate as an anode in a plating solution that is stirred (400 rpm) by a magnetic stirrer. Went.
<Under plating>
A plating solution composed of an aqueous solution containing nickel sulfamate (350 g / L), nickel chloride (20 g / L), and boric acid (35 g / L) was prepared. In the plating solution that is stirred (400 rpm) by a magnetic stirrer, the metal member 1 subjected to Ni strike plating is used as a cathode, the Ni electrode plate is used as an anode, and a current density of 2 A / dm 2 is applied. Base plating was applied so that the thickness was 0.2 μm.
<Ag strike plating>
A plating solution comprising an aqueous solution containing potassium potassium cyanide (3 g / L) and potassium cyanide (90 g / L) was prepared. In a plating solution agitated by a magnetic stirrer (400 rpm), the metal member 1 on which the base plating was performed was used as a cathode, and a titanium electrode plate coated with platinum was used as an anode, with a current density of 1 A / dm 2. Ag strike plating was performed for 2 seconds.
<Ag-Cu containing alloy plating>
A plating solution comprising an aqueous solution containing potassium potassium cyanide (18 g / L), copper potassium cyanide (120 g / L), and polyethyleneimine (molecular weight 600, 5 g / L) was prepared. An Ag-Cu-containing alloy under the conditions of a current density of 1 A / dm 2 using a metal member 1 subjected to Ag strike plating as a cathode and an Ag electrode plate as an anode in a plating solution stirred (400 rpm) with a magnetic stirrer Plating was performed until the thickness of the plating layer 5 became 0.5 μm, and the plated member 10 was obtained. The Cu content of the Ag—Cu-containing alloy plating layer 5 of Example 1 is 1% by mass.
<Evaluation of plating member>
About the plating member 10 obtained above, the evaluation method shown below evaluated the heat-resistant adhesion, hardness, sliding resistance (durability), contact resistance, and Cu content of the Ag-Cu-containing alloy plating layer 5. .

表1は、上記の実施例1のめっき部材10と、後述の実施例2によるめっき部材10、比較例1および比較例2のそれぞれのめっき部材についての評価結果を示す。   Table 1 shows the evaluation results for the plated member 10 of Example 1 described above, the plated member 10 of Example 2 described later, and the plated members of Comparative Example 1 and Comparative Example 2.

Figure 0005681378
図2は、摺動回数と接触抵抗の関係を示し、横軸が摺動回数[回]であり、縦軸が接触抵抗[mΩ]である。実線が実施例1の結果であり、一点鎖線が実施例2の結果である。細実線および細破線がそれぞれ、比較例1および比較例2の結果である。
<Ag−Cu含有合金めっき層のCu含有量>
得られためっき部材10を硝酸水溶液と混合して、溶解液を得た。この溶解液中のAgの含有量A1(mg/L)、Cuの含有量C1(mg/L)を、ICP装置(ジャーレルアッシュ社製のIRIS/AR)を用いてプラズマ分光分析法によって測定した。そして、Ag−Cu含有合金めっき層5に含まれるCuの含有量Cを以下の式1により算出し、表1に示した。
Figure 0005681378
FIG. 2 shows the relationship between the number of sliding times and the contact resistance, where the horizontal axis is the number of sliding times [times] and the vertical axis is the contact resistance [mΩ]. The solid line is the result of Example 1, and the alternate long and short dash line is the result of Example 2. A thin solid line and a thin broken line are the results of Comparative Example 1 and Comparative Example 2, respectively.
<Cu content of Ag-Cu-containing alloy plating layer>
The obtained plated member 10 was mixed with an aqueous nitric acid solution to obtain a solution. The Ag content A1 (mg / L) and the Cu content C1 (mg / L) in this solution were measured by plasma spectroscopy using an ICP device (IRIS / AR manufactured by Jarrel Ash). did. The Cu content C contained in the Ag—Cu-containing alloy plating layer 5 was calculated by the following formula 1 and shown in Table 1.

C=(C1)/(C1+A1) (式1)
<耐熱密着性の評価方法>
得られためっき部材10をホットプレート上で260℃、5分間加熱をおこない、25℃まで冷却後、めっき部材10表面にカッターを用いて2mm間隔で切り込み(クロスカット)を入れ、クロスカットした部分について、JIS−H8504に記載のめっきの密着性の試験方法(テープ試験方法)に準拠して、引き剥がし試験を実施した。この際、テープは、ニチバン株式会社製、No.405を用いた。目視にて、Ag−Cu含有合金めっき層5の剥がれが認められなかった場合、耐熱密着性良好と判定した。Ag−Cu含有合金めっき層5の剥がれが認められた場合、耐熱密着性不良と判定した。
<硬度の評価方法>
微小硬度計(松沢精機株式会社製、DMH−1)を用いて、荷重10gf、押し付け時間15秒の条件でビッカース硬度を測定した。
<耐摺動性(耐久性)の評価方法>
電気接点シミュレータ(株式会社山崎精機研究所製、CRS−1型)を用い、測定条件は荷重30gf、摺動速度50mm/min、摺動距離1000μm、摺動回数500回、圧子Agリベット電流10mA、開放電圧100mVで、めっき部材10の接触抵抗の測定を行った。
C = (C1) / (C1 + A1) (Formula 1)
<Method for evaluating heat-resistant adhesion>
The obtained plated member 10 is heated on a hot plate at 260 ° C. for 5 minutes, cooled to 25 ° C., and then the surface of the plated member 10 is cut with a cutter at 2 mm intervals (cross cut), and the cross cut portion In accordance with the plating adhesion test method (tape test method) described in JIS-H8504, a peeling test was performed. At this time, the tape was manufactured by Nichiban Co., Ltd., No. 405 was used. When peeling of the Ag-Cu-containing alloy plating layer 5 was not visually confirmed, it was determined that the heat-resistant adhesion was good. When peeling of the Ag—Cu-containing alloy plating layer 5 was observed, it was determined that the heat-resistant adhesion was poor.
<Evaluation method of hardness>
Vickers hardness was measured using a micro hardness meter (manufactured by Matsuzawa Seiki Co., Ltd., DMH-1) under conditions of a load of 10 gf and a pressing time of 15 seconds.
<Sliding resistance (durability) evaluation method>
Using an electrical contact simulator (manufactured by Yamazaki Seiki Laboratory Co., Ltd., CRS-1 type), the measurement conditions were a load of 30 gf, a sliding speed of 50 mm / min, a sliding distance of 1000 μm, a sliding frequency of 500 times, an indenter Ag rivet current of 10 mA, The contact resistance of the plated member 10 was measured at an open voltage of 100 mV.

接触抵抗が50mΩ以上に上昇した時点で、Ag−Cu含有合金めっき層5が摺動により部分的に除去されたと判断した。表1には、接触抵抗が50mΩ以上となった時の摺動回数を示した。摺銅回数500回でも、接触抵抗が50mΩ未満の場合には、表1に摺動回数を>500回と記載した。また図2に、摺動回数と接触抵抗の関係を示した。
<接触抵抗の評価方法>
山崎精機研究所製電気接点シミュレータCRS−1を用い、荷重100gfの条件で、めっき部材の接触抵抗を測定した。
When the contact resistance increased to 50 mΩ or more, it was determined that the Ag—Cu-containing alloy plating layer 5 was partially removed by sliding. Table 1 shows the number of sliding times when the contact resistance is 50 mΩ or more. When the contact resistance was less than 50 mΩ even when the number of times of sliding copper was 500 times, the number of sliding times was listed as> 500 times in Table 1. FIG. 2 shows the relationship between the number of sliding times and the contact resistance.
<Evaluation method of contact resistance>
The contact resistance of the plated member was measured under the condition of a load of 100 gf using an electrical contact simulator CRS-1 manufactured by Yamazaki Seiki Laboratory.

実施例1で、Ag−Cu含有合金めっき層5を形成する際の電流密度を1A/dmから、3A/dmに変更した以外は、実施例1と同様にしてめっき部材10を得て、評価をおこなった。結果を表1および図2に示す。実施例2のAg−Cu含有合金めっき層5のCu含有量は30質量%である。
[比較例1]
実施例1におけるAg−Cu含有合金めっき層5の形成工程を下記に変更して、Agめっき層を形成した以外は、実施例1と同様にしてめっき部材を得て、評価をおこなった。結果を表1および図2に示す。
<Agめっき層形成>
シアン化銀カリウム(150g/L)、シアン化カリウム(90g/L)を含有する水溶液からなるめっき液を準備した。マグネチックスターラによる撹拌(400rpm)をおこなっているめっき液中で、NiストライクめっきおよびNi下地めっき層を形成し、Agストライクめっきをおこなった金属部材を陰極、Ag電極板を陽極として電流密度3A/dmの条件で、Agめっき層の厚さが0.5μmになるまで、めっきをおこなった。
[比較例2]
比較例1でNi下地めっき層を形成後に、下記の方法でCuめっきを行った後、Agめっきを形成した以外は、比較例1と同様にしてめっき部材を得て、評価をおこなった。結果を表および図2に示す。
<Cuめっき層形成>
シアン銅カリウム(40g/L)、シアン化カリウム(40g/L)を含有する水溶液からなるめっき液を準備した。マグネチックスターラによる撹拌(400rpm)をおこなっているめっき液中で、Ni下地めっきをおこなった金属部材を陰極、Cu電極板を陽極として電流密度3A/dmの条件で、Agめっき層の厚さが0.1μmになるまで、めっきをおこなった。
A plating member 10 was obtained in the same manner as in Example 1 except that the current density in forming the Ag—Cu-containing alloy plating layer 5 in Example 1 was changed from 1 A / dm 2 to 3 A / dm 2. And evaluated. The results are shown in Table 1 and FIG. The Cu content of the Ag—Cu-containing alloy plating layer 5 of Example 2 is 30% by mass.
[Comparative Example 1]
Except having changed the formation process of the Ag-Cu containing alloy plating layer 5 in Example 1 into the following and forming Ag plating layer, the plating member was obtained similarly to Example 1 and evaluated. The results are shown in Table 1 and FIG.
<Ag plating layer formation>
A plating solution comprising an aqueous solution containing potassium potassium cyanide (150 g / L) and potassium cyanide (90 g / L) was prepared. In a plating solution that is stirred by a magnetic stirrer (400 rpm), a Ni strike plating and a Ni undercoat layer are formed, and the Ag strike plated metal member is used as a cathode, and the Ag electrode plate is used as an anode. Plating was performed under the condition of dm 2 until the thickness of the Ag plating layer became 0.5 μm.
[Comparative Example 2]
A plated member was obtained and evaluated in the same manner as in Comparative Example 1 except that after the Ni undercoat layer was formed in Comparative Example 1 and Cu plating was performed by the following method, Ag plating was then formed. The results are shown in the table and FIG.
<Cu plating layer formation>
A plating solution comprising an aqueous solution containing potassium potassium cyanide (40 g / L) and potassium cyanide (40 g / L) was prepared. The thickness of the Ag plating layer under the condition of a current density of 3 A / dm 2 using a metal member plated with Ni as a cathode and a Cu electrode plate as an anode in a plating solution agitated by a magnetic stirrer (400 rpm). The plating was performed until the thickness became 0.1 μm.

表1を参照して、評価結果について説明する。   The evaluation results will be described with reference to Table 1.

比較例1では耐熱密着性に劣り、加熱処理後のめっき部材に対して剥離試験をおこなった場合、Agめっき層の剥離が発生している。また、耐摺動試験においても200回で接触抵抗が40mΩ以上まで上昇しており、実施例1および実施例2のめっき部材より耐久性に劣っていることがわかる。   In Comparative Example 1, the heat-resistant adhesion is inferior, and when the peel test is performed on the plated member after the heat treatment, the Ag plating layer is peeled off. Further, in the sliding resistance test, the contact resistance increased to 40 mΩ or more after 200 times, and it was found that the durability was inferior to the plated members of Example 1 and Example 2.

比較例2では耐熱密着性は良好であるが、耐摺動試験においては230回で接触抵抗が40mΩ以上まで上昇している。これに対して、実施例1および実施例2は耐熱密着性に優れ、硬度が高く、500回の摺動試験後においても接触抵抗の大きな上昇は見られなかった。   In Comparative Example 2, the heat resistant adhesion is good, but in the sliding resistance test, the contact resistance increases to 40 mΩ or more after 230 times. On the other hand, Example 1 and Example 2 were excellent in heat-resistant adhesion and high in hardness, and no significant increase in contact resistance was observed even after 500 sliding tests.

このように、本実施形態によれば、耐熱密着性と耐摺動性が向上するので、リフローなどで熱がかかる部品や、耐久性が要求される部品に好適な材料を提供することができる。   Thus, according to this embodiment, since heat-resistant adhesion and sliding resistance are improved, it is possible to provide a material suitable for a component that is heated by reflow or a component that requires durability. .

1 金属部材
3 下層めっき層
5 Ag−Cu含有合金めっき層
10 めっき部材
DESCRIPTION OF SYMBOLS 1 Metal member 3 Lower layer plating layer 5 Ag-Cu containing alloy plating layer 10 Plating member

Claims (6)

Cu、Cu合金、ステンレス鋼から成る板状の金属部材と、
前記金属部材上に設けられ、ニッケルまたはニッケル合金から成る下地めっき層と、
前記下地めっき層上に設けられ、厚みが0.2μm〜5μmであり、銅含有率が0.5質量%〜30質量%の銀−銅含有合金めっき層と、
を具備することを特徴とする、コネクターまたはスイッチの電気接点部に使用されるめっき部材。
A plate-like metal member made of Cu, Cu alloy, stainless steel ;
An undercoat layer provided on the metal member and made of nickel or a nickel alloy;
A silver-copper-containing alloy plating layer which is provided on the base plating layer and has a thickness of 0.2 μm to 5 μm and a copper content of 0.5% by mass to 30% by mass;
The plating member used for the electrical contact part of a connector or a switch characterized by comprising.
前記下地めっき層は、ニッケルであることを特徴とする請求項1に記載のめっき部材。   The plated member according to claim 1, wherein the base plating layer is nickel. 前記めっき部材のビッカース硬度Hvが177〜193であることを特徴とする、請求項1または請求項2に記載のめっき部材。   The plated member according to claim 1 or 2, wherein the plated member has a Vickers hardness Hv of 177 to 193. 前記下地めっき層の上に銀ストライクめっき層が形成され、前記銀ストライクめっき層の上に前記銀−銅含有合金めっき層を具備することを特徴とする、請求項1から請求項3のいずれかに記載のめっき部材。   The silver strike plating layer is formed on the base plating layer, and the silver-copper-containing alloy plating layer is provided on the silver strike plating layer. The plating member as described in. Cu、Cu合金、ステンレス鋼から成る金属部材上に、電解めっき処理により、ニッケルから成る下地めっき層を形成する工程と、
前記下地めっき層の上面に、厚みが0.2μm〜5μmであり、銅含有率が0.5質量%〜30質量%の銀−銅含有合金めっき層を、シアン銀塩およびシアン銅塩を含みポリエチレンイミンが添加されためっき液を用いて電解めっき処理で形成する工程と、
を具備することを特徴とする請求項1から請求項3のいずれかに記載のめっき部材の製造方法。
Forming a base plating layer made of nickel on a metal member made of Cu, Cu alloy, stainless steel by electrolytic plating;
A silver-copper-containing alloy plating layer having a thickness of 0.2 μm to 5 μm and a copper content of 0.5% by mass to 30% by mass on the upper surface of the base plating layer, including cyan silver salt and cyan copper salt Forming by electrolytic plating using a plating solution to which polyethyleneimine is added;
The method for producing a plated member according to any one of claims 1 to 3, further comprising:
Cu、Cu合金、ステンレス鋼から成る金属部材上に、電解めっき処理により、ニッケルから成る下地めっき層を形成する工程と、
前記下地めっき層の上面に、銀ストライクめっき層を形成する工程と、
前記銀ストライクめっき層の上面に、厚みが0.2μm〜5μmであり、銅含有率が0.5質量%〜30質量%の銀−銅含有合金めっき層を、シアン銀塩およびシアン銅塩を含みポリエチレンイミンが添加されためっき液を用いて電解めっき処理で形成する工程と、
を具備することを特徴とする請求項4に記載のめっき部材の製造方法。
Forming a base plating layer made of nickel on a metal member made of Cu, Cu alloy, stainless steel by electrolytic plating;
Forming a silver strike plating layer on the upper surface of the base plating layer;
On the upper surface of the silver strike plating layer, a silver-copper-containing alloy plating layer having a thickness of 0.2 μm to 5 μm and a copper content of 0.5% by mass to 30% by mass is added with cyan silver salt and cyan copper salt. A step of forming by electroplating using a plating solution to which polyethyleneimine is added,
The method for producing a plated member according to claim 4, comprising:
JP2010102372A 2010-04-27 2010-04-27 Plating member and manufacturing method thereof Active JP5681378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102372A JP5681378B2 (en) 2010-04-27 2010-04-27 Plating member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102372A JP5681378B2 (en) 2010-04-27 2010-04-27 Plating member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011231369A JP2011231369A (en) 2011-11-17
JP5681378B2 true JP5681378B2 (en) 2015-03-04

Family

ID=45320987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102372A Active JP5681378B2 (en) 2010-04-27 2010-04-27 Plating member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5681378B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652649B2 (en) * 2009-07-10 2014-02-18 Xtalic Corporation Coated articles and methods
CN105358741B (en) * 2013-06-10 2018-04-20 东方镀金株式会社 The manufacture method and plating laminated body of plating laminated body
JP7175077B2 (en) * 2016-09-12 2022-11-18 マクセル株式会社 Mold for plastic working and manufacturing method thereof
JP7353249B2 (en) * 2020-08-19 2023-09-29 Eeja株式会社 Cyan-based electrolytic silver alloy plating solution

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5060792A (en) * 1973-09-28 1975-05-24
JPS5757886A (en) * 1980-09-24 1982-04-07 Hitachi Cable Ltd Heat resistant silver coated conductor
DE19852481C2 (en) * 1998-11-13 2002-09-12 Federal Mogul Wiesbaden Gmbh Layered composite material for sliding elements and process for its manufacture
JP3748846B2 (en) * 2002-10-16 2006-02-22 福田金属箔粉工業株式会社 Composite alloy metal spheres used as connection terminals for electrical / electronic circuit components and manufacturing method thereof
JP2007291510A (en) * 2006-03-28 2007-11-08 Furukawa Electric Co Ltd:The Silver coated composite material for movable contact and method for producing the same
JP4834022B2 (en) * 2007-03-27 2011-12-07 古河電気工業株式会社 Silver coating material for movable contact parts and manufacturing method thereof
JP5019591B2 (en) * 2007-03-29 2012-09-05 古河電気工業株式会社 Plating material having lubricating particles, method for producing the same, and electric / electronic component using the same

Also Published As

Publication number Publication date
JP2011231369A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP6046406B2 (en) High temperature resistant silver coated substrate
JP4834023B2 (en) Silver coating material for movable contact parts and manufacturing method thereof
KR20090127405A (en) Silver-coated material for movable contact component and method for manufacturing such silver-coated material
TW201732839A (en) Tin-plated copper terminal material, terminal, and wire terminal part structure
JP2014077190A (en) Surface treatment plating material and method for manufacturing the same, and electronic component
JP6450639B2 (en) Silver plating material and method for producing the same
JP5681378B2 (en) Plating member and manufacturing method thereof
JP2009099548A (en) Silver-clad composite material for movable contact and its manufacturing method
JP5209550B2 (en) Silver plating material manufacturing method
JP2011099128A (en) Plated member and method for manufacturing the same
JP2014181354A (en) Silver plating material
JP6532323B2 (en) Silver plating material and method for manufacturing the same
JP7313600B2 (en) Connector terminal materials and connector terminals
JP7040544B2 (en) Terminal material for connectors
JP7302364B2 (en) Connector terminal materials and connector terminals
JP2014084476A (en) Surface treatment plated material and production method of the same, and electronic component
JP2009099550A (en) Silver-clad composite material for movable contact and its manufacturing method
JP5442385B2 (en) Conductive member and manufacturing method thereof
JP4558823B2 (en) Silver-coated composite material for movable contact and method for producing the same
JP6743556B2 (en) Method for manufacturing tin-plated copper terminal material
KR20210116422A (en) Terminal materials for connectors and terminals for connectors
JP6809856B2 (en) Silver plating material and its manufacturing method
JP6532322B2 (en) Silver plating material and method for manufacturing the same
JP7395389B2 (en) Silver plating material and its manufacturing method
JP3561504B2 (en) Stainless steel conductive member and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150109

R150 Certificate of patent or registration of utility model

Ref document number: 5681378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250