JP2017163180A - ずれ判定プログラム、ずれ判定方法、及び、情報処理装置 - Google Patents

ずれ判定プログラム、ずれ判定方法、及び、情報処理装置 Download PDF

Info

Publication number
JP2017163180A
JP2017163180A JP2016043045A JP2016043045A JP2017163180A JP 2017163180 A JP2017163180 A JP 2017163180A JP 2016043045 A JP2016043045 A JP 2016043045A JP 2016043045 A JP2016043045 A JP 2016043045A JP 2017163180 A JP2017163180 A JP 2017163180A
Authority
JP
Japan
Prior art keywords
line
sight
sensor
sight position
feature point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016043045A
Other languages
English (en)
Inventor
英樹 冨森
Hideki Tomimori
英樹 冨森
哲 中島
Satoru Nakajima
哲 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016043045A priority Critical patent/JP2017163180A/ja
Priority to US15/408,103 priority patent/US20170255817A1/en
Priority to CA2955000A priority patent/CA2955000A1/en
Priority to EP17151970.5A priority patent/EP3217257A1/en
Publication of JP2017163180A publication Critical patent/JP2017163180A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/038Indexing scheme relating to G06F3/038
    • G06F2203/0382Plural input, i.e. interface arrangements in which a plurality of input device of the same type are in communication with a PC

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Human Computer Interaction (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)
  • Studio Devices (AREA)

Abstract

【課題】本発明の課題は、撮像装置の設置ずれの判定の処理負荷を低減することを目的とする。【解決手段】上記課題は、視線検出の有効範囲が重なる所定の位置に設置された第1の撮像装置および第2の撮像装置を用いて撮影した第1の画像および第2の画像の中からそれぞれ人物の第1の顔領域および第2の顔領域を抽出し、抽出した前記第1の顔領域および前記第2の顔領域それぞれにおける光反射に基づく第1の特徴点および第2の特徴点を検出し、検出した前記第1の特徴点および前記第2の特徴点に基づいて前記人物の第1の視線位置および第2の視線位置を算出し、算出した前記第1の視線位置と前記第2の視線位置の相対的な位置関係に基づいて前記第1の撮像装置、および/または前記第2の撮像装置の前記所定の位置からの設置ずれを判定する処理をコンピュータに行わせるずれ判定プログラムにより達成される。【選択図】図10

Description

本発明は、ずれ判定プログラム、ずれ判定方法、及び、情報処理装置に関する。
近年、流通分野等への視線検出の活用において、顧客が見ている商品などを把握して顧客が興味ある商品情報を収集し、その情報をマーケティングに活用する等が考えられている。このような視線検出の活用では、PC(Personal Computer)等に表示された画像に対する視線位置を検出する場合に比べて、検出範囲が大きい。
視線を検出するセンサとしてカメラを用い、カメラの出力結果から顧客の視線を検出できるようになっている。このことから、複数のカメラで撮像した画像を合成する技術や、複数のカメラで検出した視線座標の合成等を利用して、視線の検出範囲を拡大することが考えられる。
特開2005−251086号公報 特開2015−119372号公報
複数のカメラを用いた視線検出では、センサとしてのカメラが何らかの影響でずれた場合、視線方向の商品を特定できない、視線を計測できない等の問題がある。加速度センサ等をカメラに備えることでカメラのずれを検知できるが、加速度線センサ等を追加することなく、既存の複数のカメラを利用して視線の検出範囲を拡大した場合、カメラの設置ずれの判定処理が重くなると言った問題がある。
したがって、1つの側面では、本発明は、撮像装置の設置ずれの判定の処理負荷を低減することを目的とする。
一態様によれば、視線検出の有効範囲が重なる所定の位置に設置された第1の撮像装置および第2の撮像装置を用いて撮影した第1の画像および第2の画像の中からそれぞれ人物の第1の顔領域および第2の顔領域を抽出し、抽出した前記第1の顔領域および前記第2の顔領域それぞれにおける光反射に基づく第1の特徴点および第2の特徴点を検出し、検出した前記第1の特徴点および前記第2の特徴点に基づいて前記人物の第1の視線位置および第2の視線位置を算出し、算出した前記第1の視線位置と前記第2の視線位置の相対的な位置関係に基づいて前記第1の撮像装置、および/または前記第2の撮像装置の前記所定の位置からの設置ずれを判定する処理をコンピュータに行わせるずれ判定プログラムが提供される。
また、上記課題を解決するための手段として、ずれ判定方法、及び、情報処理装置とすることもできる。
撮像装置の設置ずれの判定の処理負荷を低減できる。
特徴点に基づくずれ検出方法を説明するための図である。 対応マップのデータ例を示す図である。 ずれ検出の処理フローの概要を説明するための図である。 視線検出の原理を説明するための図である。 視線検出方法を説明するための図である。 視線方式のずれ判定処理を説明するための図である。 システム構成の例を示す図である。 システム構成の他の例を示す図である。 情報処理装置のハードウェア構成を示す図である。 第1実施例における情報処理装置の機能構成例を示す図である。 第1実施例におけるずれ判定処理を説明するためのフローチャート図である。 第2実施例における情報処理装置の機能構成例を示す図である。 距離に応じた共通エリアのサイズ変化を説明するための図である。 共通エリアサイズテーブルのデータ構成例を示す図である。 共通エリア内判定部による第1判定処理を説明するためのフローチャート図である。 眼球の動作特性を説明するための図である。 視線位置ずれ判定部による第2判定処理を説明するためのフローチャート図である。 センサの視線位置の検出誤差を説明するための図である。 誤差閾値テーブルのデータ構成例を示す図である。 視線位置ずれ判定部による第3判定処理を説明するためのフローチャート図である。 垂直方向の検出範囲を広げる複数のセンサの設置方法を示す図である。 水平方向の検出範囲を広げる複数のセンサの設置方法を示す図である。 垂直方向及び水平方向の検出範囲を広げる設置例を示す図である。 3つ以上のセンサを1列に設置した場合のセンサの主従関係の例を説明するための図である。
以下、本発明の実施の形態を図面に基づいて説明する。本実施の形態では、カメラをセンサとして利用し、複数設置することで視線の検出範囲を拡大した場合において、設置した各カメラ(センサ)の位置のずれ検出の処理負荷を低減する手法について説明する。
本実施の形態の説明の前に、特徴点に基づくずれ検出について考察する。図1は、特徴点に基づくずれ検出方法を説明するための図である。特徴点に基づくずれ検出方法では、先ず、正位置にセンサA及びセンサBを配置し、人物の顔1aを撮像する。
図1(a)は、正位置にセンサA及びセンサBが設定された場合の撮影画像の例を示している。センサAの撮像画像Aでは、顔1aの顔画像9Gaは右よりに位置している。一方、センサBの撮像画像Bでは、顔1aの顔画像9Gbは左よりに位置している。
次に、センサBが正位置からずれた場合、図1(b)に示すような撮像画像Bを得る。センサAが正位置からずれていない場合、撮像画像Aでは、図1(a)と同様に、右よりに顔1aが写されている。一方、ずれたセンサBの撮像画像Bでは、顔1aが略中央に移されている。
図1(b)の撮像画像Bでは、顔1aが顔画像9Gbの位置ではなく顔画像9Geの位置に写されている。図1(a)の撮像画像Bと、図1(b)の撮像画像Bとにおいて顔1aが写される位置が異なっている。この差分を画像処理により検出することにより、センサBの設置ずれを検知する。
一方、図1(a)の撮像画像Bと、図1(b)の撮像画像Bとにおいて、顔1aの認識と、撮像画像B内の顔1aの位置を検出し、顔1aの位置の差分を画像処理で行うには、処理負荷が大きい。また、設置ずれのない図1(a)の撮像画像Aと、図1(b)の撮像画像Aに対しても同様に顔1aを認識して撮像画像A内での位置の変化を判定するため、センサの数が多くなれば、顔1aの認識し、顔1aの位置判定を行う画像処理の負荷は膨大となる。
特徴点を用いたずれ検出では、特徴点として顔、目輪郭、瞳孔等を用いることになるが、これらの形状は個人差のみならず、人物の顔1aとセンサとの距離に応じて大きさが変化する。精度良くずれ検出を行うために、角膜反射を特徴点とすることが考えられる。撮像画像内において、角膜反射の形状は小さく点として検出できる。以下、「角膜反射位置」という。
各センサの正位置の撮像画像における左右の眼の角膜反射位置を取得することで、顔1aの認識精度を改善可能である。例えば、図2に示すような撮像画像における顔1aの位置認識用にセンサ毎の角膜反射位置の対応マップを予め作成することで、顔1aの認識処理の負荷を軽減できると考えられる。
図2は、対応マップのデータ例を示す図である。図2に例示する対応マップ90mは、センサA及びセンサBが、正位置で略同時に顔1aを撮像した場合の人物の眼球での角膜反射位置の対応を示している。角膜反射位置は、左目及び右目の夫々においてxy座標で示される。
撮像画像から検出した角膜反射位置が、この対応マップ90mで示すxy座標の存在しない場合、センサの位置がずれていると判定する。
しかしながら、特徴点は、人物の顔1aの目とカメラとの距離(即ち、z座標)によって対応関係が変化するため、対応マップ90mは、距離毎に用意する必要がある。また、特徴点が検出される位置は、撮像画像内の全ての領域(x座標、y座標)に存在し得るため、全ての座標で対応関係を調べることになる。即ち、距離(z座標)に応じて、対応関係を調べる処理を行わなければならない。特徴点を用いた演算量の削減は困難であると言える。
本実施の形態では、センサ(カメラ)毎に、黒目(瞳孔)の位置と、角膜反射位置との差分から視線位置を特定し、特定した視線位置間の長さに基づいてセンサの設置ずれを検出する。本実施の形態の手法により、センサの設置ずれの検出に係る処理負荷を削減することができる。
先ず、上述した特徴点を用いたずれ検出と、以下に説明する本実施の形態における視線によるずれ検出との違いについて図3に示す。特徴点を用いた場合を「特徴点方式」と言い、視線を用いた場合を「視線方式」と言う。
図3は、ずれ検出の処理フローの概要を説明するための図である。図3(a)では、特徴点方式によるセンサの設置ずれを検出する処理フローの概要を示している。図3(b)では、本実施の形態における視線方式によるセンサの設置ずれを検出する処理フローの概要を示している。図3(a)及び図3(b)において、顔検出処理21、目輪郭検出処理22、及び瞳孔・角膜反射検出処理23は共通である。
図3(a)の特徴点によるずれ検出では、瞳孔・角膜反射検出処理23によって得られた瞳孔位置及び角膜反射位置を含む特徴点を用いた特徴点方式のずれ判定処理29が行われる。この特徴点方式のずれ判定処理29は、上述したように処理負荷が重い処理である。
本実施の形態では、この特徴点方式のずれ判定処理29の部分を、図3(b)に示す、視線特定処理24及び視線方式のずれ判定処理25に置き換えて、処理負荷を低減する。
図3(b)では、視線特定処理24が、瞳孔・角膜反射検出処理23によって得られた瞳孔位置及び角膜反射位置を用いて視線を特定し、視線方式のずれ判定処理25が、視線特定処理24が特定した視線に基づいて、センサが正位置からずれているか否かを判定する。
本実施の形態において、顔検出処理21、目輪郭検出処理22、瞳孔・角膜反射検出処理23、及び視線特定処理24は、視線検出処理部50で行われる。視線方式のずれ判定処理25は、ずれ判定処理部60で行われる。
以下に、図3(b)の視線検出処理部50とずれ判定処理部60とによる機能構成を第1実施例として説明する。先ず、視線検出処理部50による視線検出処理について説明する。
図4は、視線検出の原理を説明するための図である。図4では、第1実施例において使用される、LED(Light Emitting Diode)ライト3aと、カメラ3bとを有するセンサ3を用いた視線検出の原理を説明する。
センサ3は、LEDライト3aから赤外線LED光3fを照射し、顧客等の顔1aを撮像する。撮像した眼球1bから視線が検出される。照射された赤外線LED光3fは、眼球1b内で角膜反射を起こす。この角膜反射の位置は、眼球1bの動きに係らず、一定の位置で発生するため、基準点1cとする。
一方、眼球1bは視線に応じて動き、従って、瞳孔1e(黒目)も動く。眼球1bの動きに寄らず、一定位置を示す基準点1cと、瞳孔1eとの位置関係から眼球移動を検出することで、視線を算出できる。
図5は、視線検出方法を説明するための図である。視線検出方法では、先ず、センサ3のカメラ3bの撮像画像4gから顔1aを検出して顔画像4fを抽出する(図5(a))。次に、顔画像4fから目の輪郭を検出し、目輪郭画像4L及び4Rを抽出する(図5(b))。図5(b)において、目輪郭画像4Rは、検出した右目の輪郭部分を含む画像に相当し、目輪郭画像4Lは、検出した左目の輪郭部分を含む画像に相当する。
そして、目輪郭画像4R及び4Lの各々から、瞳孔1eと、角膜反射位置を基準点1cとして検出する。図5(c)では、目輪郭画像4Lから瞳孔1e及び基準点1cを検出した例を示している。目輪郭画像4Rからも同様に、瞳孔1e及び基準点1cを検出する。
瞳孔1e及び基準点1cを用いて、視線計算が行われる。撮像画像4gにおける基準点1cの位置と瞳孔1eの位置との差分と、視線との関係について説明する。基準点1cの位置と瞳孔1eの位置との差分は、x方向の画素差、及び、y方向の画素差で表される。
図5(d)では、眼球1bの画像と、上記画素差を示している。 画素差が正面範囲の眼球1bの場合には、顔1aの視線は正面方向であると判定できる。画素差が左下範囲の眼球1bの場合には、顔1aの視線は左下方向であると判定できる。画素差が左上範囲の眼球1bの場合には、顔1aの視線は左上方向であると判定できる。
また、画素差が右上範囲の眼球1bの場合には、顔1aの視線は右上方向であると判定できる。画素差が右下範囲の眼球1bの場合には、顔1aの視線は右下方向であると判定できる。
撮像画像4gの座標系における画素差を実空間の座標系へと変換させる。図5(e)では、図5(d)に示す主な5つの視線方向の各々に対する視線位置の実空間の座標系への変換例を示す。
図5(d)ではカメラ3bで検出した特徴点の差分の座標系であったのに対して、図5(e)では顔1aから見える実空間の座標系となる。つまり、左右は逆に示される。
具体的には、図5(d)の中心の眼球1bの画素差分は、図5(e)の中心の視線位置1rにマッピングされ、図5(d)の視線が右下の眼球1bの画素差分は、図5(e)の左下の視線位置1rにマッピングされ、図5(d)の視線が右上の眼球1bの画素差分は、図5(e)の左上の視線位置1rにマッピングされる。
また、図5(d)の視線が左上の眼球1bの画素差分は、図5(e)の右上の視線位置1rにマッピングされ、図5(d)の視線が左下の眼球1bの画素差分は、図5(e)の右下の視線位置1rにマッピングされる。
第1実施例では、2つのセンサ3の撮像画像4gが重なり合う領域では、各センサ3が特定した視線は一致することを利用する。即ち、重なり合う領域では、2つのセンサ3のいずれかの位置がずれたとき、夫々のセンサ3で特定した視線は一致しない。よって、センサ3の設置ずれを検出できる。
第1実施例におけるずれ判定処理部60による視線方式のずれ判定処理25を説明する。図6は、視線方式のずれ判定処理を説明するための図である。センサ3A及び3Bは、図4に示すセンサ3である。
図6(a)では、センサ3Aとセンサ3Bとは、センサ3Aの有効エリア3Aqとセンサ3Bの有効エリア3Bqとが重なる共通エリア3ABを有するように正位置に設置される。設置ずれのない場合に相当する。
有効エリア3Aqは、センサ3Aが正位置に設置された場合に、センサ3Aの撮像画像4gから顔1aの視線方向1adの先の視線位置を特定可能な、実空間のxy平面の領域である。有効エリア3Bqは、センサ3Bが正位置に設置された場合に、センサ3Bの撮像画像4gから顔1aの視線方向1adの先の視線位置を特定可能な、実空間のxy平面の領域である。共通エリア3ABは、センサAとセンサB共に視線方向1adの先の視線位置を特定可能な、有効エリア3Aqと有効エリア3Bqとが重なる領域である。
撮像エリア3Agは、センサ3Aの焦点距離でセンサ3Aが撮像する領域を示し、撮像エリア3Bgは、センサ3Bの焦点距離でセンサ3Bが撮像する領域を示している。
視線位置3Auは、センサ3Aの撮像画像4Agから得た、顔1aの視線方向1adの視線位置を示し、センサ3Aの撮像画像4Agに対してなされた視線特定処理24の出力結果に相当する。
視線位置3Buは、センサ3Bの撮像画像4Bgから得た、顔1aの視線方向1adの視線位置を示し、センサ3Bの撮像画像4Bgに対してなされた視線特定処理24の出力結果に相当する。
設置ずれのない場合は、視線位置3Auと視線位置3Buとの間の距離が予め定められた誤差範囲3ER内に収まる。即ち、視線位置3Auと視線位置3Bu間の距離が誤差範囲3ER内であれば、センサA及びセンサBともにその設置位置にずれはないと判定する。
図6(b)では、正位置に設置されセンサ3Aとセンサ3Bのうち、センサBがずれている場合を示している。顔1aは、図6(a)に示す同じ視線方向1adである。
センサ3Aはずれていないため、図6(a)と同様の視線位置3Auが視線特定処理24によって出力される。一方、センサ3Bは設置位置がずれたことで、センサBの撮像エリア3Bgが傾き、図6(a)の撮像画像4Bgとは異なる撮像画像4Bg’を得る。センサ3Bの撮像画像4Bg’に対してなされた視線特定処理24の出力結果は、視線位置3Bu’となる。
視線位置3Auと視線位置3Bu’の距離は、誤差範囲3ERを超えているため、センサ3A及びセンサ3Bの少なくとも1つがずれていると判定する。
このように、センサ3A又はセンサ3Bのいずれか一方、又は、両方がずれている場合、視線方向1adを検出できない、又は、検出できたとしても、視線計算の光学パラメータが実体と異なっているため、センサAの視線位置3AuとセンサBの視線位置3Buは誤差範囲3ER内に収まらない。従って、少なくとも1以上のセンサ3の設置ずれを検出することができる。
視線方式のずれ判定処理では、人物の顔1aのセンサ3からの距離が変化しても、顔1aが同じところを見ていれば、視線位置を示す出力結果は変化しない。従って、特徴点方式のずれ判定処理29に比べて、演算量を少なくとも1次元(距離の次元を)減らすことができる。また、視線位置間の距離で、センサ3の設置ずれを判定するため、対応マップが不要となり、演算量を削減できる。
次に、複数のセンサ3を配置したシステム構成について説明する。図7は、システム構成の例を示す図である。図7に示すシステム1001では、2以上のセンサ3と、1つの情報処理装置7とを1つのグループとし、複数のグループを構成する。
各グループG1、G2、・・・内において、隣接するセンサ3の撮像画像4gを用いて、設置ずれを判定する。グループG1では、情報処理装置7が各センサ3から撮像画像4gを入力し、隣接するセンサ3の撮像画像4gを用いて、2つのセンサ3に関して設置ずれがあるか否かを判定する。他グループGi(iは2以上)においても同様である。この観点において、各グループG1、G2、・・・の情報処理装置7は、ずれ検出装置と言える。
以下グループG1を例として説明するが、他グループGiについても同様である。情報処理装置7は、PC(Personal Computer)等である。センサ3は、赤外線LED光3fを照射するLEDライト3aと、カメラ3bとを有し、情報処理装置7とUSB(Universal Serial Bus)ケーブル6a等により接続される。LEDライト3aと、カメラ3bとは、同一筐体内に実装されている必要はなく、個別に設置されていてもよい。LEDライト3aと、カメラ3bとのペアを1つのセンサ3と定義する。
各センサ3は、USBケーブル6aを介して撮像画像4gを情報処理装置7へ送信する。情報処理装置7は、USBケーブル6aを介して受信した撮像画像4gを用いて隣接するセンサ3のペア毎に設置ずれを判定し、ずれ判定結果9rを取得する。
情報処理装置7は、LAN(Local Area Network)6b等を介して、他の情報処理装置7と通信可能とすることが望ましい。LAN6bを介して、各情報処理装置7にて得られたセンサ3に関するずれ判定結果9rを、LAN6bを介して、予め管理サーバとして定めた複数の情報処理装置7の1つに送信する。管理サーバに集約することで、設置したセンサ3全体の設置ずれ状態を把握し易くなる。
図8は、システム構成の他の例を示す図である。図8に示すシステム1002は、情報処理装置7と、LEDライト3aと、及びカメラ3bとを有するセンサ3−1と、センサ3とを有する。センサ3−1と、センサ3とは、隣接して配置されているものとする。
センサ3−1と、センサ3とは、無線LAN6c等を介して接続される。センサ3が、センサ3−1へと撮像画像4gを送信することで、センサ3−1が設置ずれを判定する。
センサ3−1は、LEDライト3aと、カメラ3bと、情報処理装置7とを有し、情報処理装置7とバス6d等により接続される。LEDライト3aと、カメラ3bとは、同一筐体内に実装されている必要はなく、個別に設置し、USB(Universal Serial Bus)ケーブル6a等により情報処理装置7に接続されてもよい。
センサ3は、LEDライト3aと、カメラ3bとを有し、図4及び図7に示すセンサ3の構成と同様に、赤外線LED光3fを照射するLEDライト3aと、カメラ3bとを有する。センサ3は、撮像画像4gを無線LAN6c等を介してセンサ3−1へと送信する。
センサ3−1は、センサ3から受信した撮像画像4gと、センサ3−1で入力した撮像画像4gとから設置ずれを判定し、ずれ判定結果9rを出力する。ずれ判定結果9rは、ユーザに通知される。定められた送信先へずれ判定結果9rを示すメッセージが送信されればよい。
図9は、情報処理装置のハードウェア構成を示す図である。図9に示す情報処理装置7は、コンピュータによって制御される端末であって、CPU(Central Processing Unit)11bと、主記憶装置12bと、通信I/F17bと、ドライブ装置18bとを有し、バスB2に接続される。
CPU11bは、主記憶装置12bに格納されたプログラムに従って情報処理装置7を制御するプロセッサに相当する。組み込みプロセッサ、SoC(System on Chip)、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)、専用ASIC(Application Specific Integrated Circuit)等であってもよい。
主記憶装置12bには、RAM(Random Access Memory)、ROM(Read Only Memory)等が用いられ、CPU11bにて実行されるプログラム、CPU11bでの処理に必要なデータ、CPU11bでの処理にて得られたデータ等を記憶又は一時保存する。主記憶装置12bに格納されているプログラムが、CPU11bに実行されることによって、各種処理が実現される。
通信I/F17bによる通信は無線又は有線に限定されるものではない。本実施例では、通信I/F17bは、センサ3との種々の接続形態(LAN、USB、無線LAN、Bluetooth(登録商標)等の近距離無線通信等)に対応しているものとする。
情報処理装置7によって行われる処理を実現するプログラムは、ネットワーク2を介して外部装置からダウンロードされる。或いは、予め情報処理装置7の主記憶装置12b又は記憶媒体19bに記憶されていても良い。主記憶装置12b及び/又は記憶媒体19bが記憶部130bに相当する。
ドライブ装置18bは、ドライブ装置18bにセットされた記憶媒体19b(例えば、SD(Secure Digital)メモリカード等)と情報処理装置7とのインターフェースを行う。尚、記憶媒体19bは、コンピュータが読み取り可能な、構造(structure)を有する1つ以上の非一時的(non-transitory)な、有形(tangible)な媒体であればよい。
図10は、第1実施例における情報処理装置の機能構成例を示す図である。図10では、センサ3Aと、センサ3Bとが、情報処理装置7に接続される場合で説明する。情報処理装置7は、主に、視線検出処理部50A及び50Bと、ずれ判定処理部60と、通知処理部90とを有する。
視線検出処理部50A及び50Bの各々は、図3の視線検出処理部50に相当する。視線検出処理部50Aは、センサ3Aから受信した撮像画像4Agに基づいて視線方向1ad(図6)を特定し、顔1a(図6)が注視している実空間のxy平面における位置を算出して、視線位置3Auを記憶部130bに出力する。
視線検出処理部50Bも、同様に、センサ3Bから受信した撮像画像4Bgから視線方向1adを特定することで、実空間における顔1aが注視している位置を算出し、視線位置3Buを記憶部130bに出力する。
すれ判定処理部60は、記憶部130bから視線位置3Auと視線位置3Buとを取得して、視線位置3Auと視線位置3Buとに基づいて、センサ3A及び3Bに関して設置ずれの有無を判定するずれ判定処理25を行う処理部であり、共通エリア内判定部70と、視線位置ずれ判定部80とを有する。
共通エリア内判定部70は、視線位置3Auと視線位置3Buとが共に、予め定めた共通エリア3AB内であるか否かを判定する。視線位置3Auと視線位置3Buの少なくとも1つが共通エリア3AB外である場合、ずれ判定処理25は終了する。次の撮像画像4Agの視線位置3Au及び次の撮像画像4Bgの視線位置3Buに対してずれ判定処理25が行われる。
視線位置ずれ判定部80は、共通エリア3AB内の視線位置3Auと視線位置3Buの距離が、誤差範囲3ER(図6)を超える場合に、センサ3A及びセンサ3Bの1つ以上で位置がずれていると判定し、ずれ判定結果9rを記憶部130bに出力する。誤差範囲3ER以下である場合、処理中の視線位置3Auと視線位置3Buに対するずれ判定処理25は終了し、次の撮像画像4Agの視線位置3Au及び次の撮像画像4Bgの視線位置3Buに対してずれ判定処理25が行われる。
通知処理部90は、予め定めた送信先にずれ判定結果9rを示すメッセージを送信する。電子メール、データファイル等により、判定結果9rを示すメッセージが送信されればよい。
図11は、第1実施例におけるずれ判定処理を説明するためのフローチャート図である。図11において、ずれ判定処理部60の共通エリア内判定部70は、記憶部130bから、センサ3Aの撮像画像4Agから得られた視線位置3Auを入力し(ステップS101a)、センサ3Bの撮像画像4Bgから得られた視線位置3Buを入力する(ステップS101b)。視線位置3Auと視線位置3Buの入力順は問わない。
共通エリア内判定部70は、視線位置3Auと視線位置3Buとが共通エリア3AB(図6)内か否かを判定する(ステップS102)。視線位置3Auと視線位置3Buとの少なくとも1つが共通エリア3AB(図6)外の場合(ステップS102のNo)、ずれ判定処理25は、ステップS101a及びステップS101bへと戻り、共通エリア内判定部70によって、次の視線位置3Au及び次の視線位置3Buを入力し、上記同様の処理を行う。
一方、視線位置3Auと視線位置3Buとが共通エリア3AB内の場合(ステップS102のYes)、視線位置ずれ判定部80によって、視線位置3Auと視線位置3Buの距離が誤差範囲を超えるか否かを判定する(ステップS103)。
視線位置3Auと視線位置3Buの距離が誤差範囲以下の場合(ステップS103のNo)、ずれ判定処理25は、ステップS101a及びステップS101bへと戻り、共通エリア内判定部70によって、次の視線位置3Au及び次の視線位置3Buを入力し、上記同様の処理を行う。
視線位置3Auと視線位置3Buの距離が誤差範囲を超える場合(ステップS103のYes)、共通エリア内判定部70は、ずれ判定結果9rを記憶部130bに出力する(ステップS104)。そして、ずれ判定処理25が終了する。その後、通知処理部90によって、ずれ判定結果9rを示すメッセージが予め定めた送信先へ送信される。
ずれ判定結果9rは、センサ3Aとセンサ3Bを夫々特定するセンサ識別情報、時刻等の情報を含むことが望ましい。センサ識別情報及び時刻は、センサ3A及び3Bにて撮像画像4Agに付加するようにし、各視線検出処理部50A及び50Bが、視線位置3Au及び3Buにセンサ識別情報及び時刻を付加して、記憶部130bに出力すればよい。
ずれ判定処理部60の機能構成例を第2実施例として以下に詳述する。図12は、第2実施例における情報処理装置の機能構成例を示す図である。図12では、主に、ずれ判定処理部60の機能構成について詳述する。
視線検出処理部50A及び50Bは、撮像画像4Ag及び4Bgから視線位置3Au及び3Buを得る毎に、撮像画像4Ag及び4Bgに付加された時刻を取得する。取得した時刻と、視線位置3Au及び3Buとを示す視線位置データ53が、記憶部130b内の視線位置DB55に時系列に記憶される。
一方、視線検出処理部50A及び50Bが撮像画像4Ag及び4Bgから抽出した複数の画像特徴点の情報を示す画像特徴点データ57が記憶部130bに出力される。画像特徴点データ57には、顔1aの輪郭、目輪郭、瞳孔1e、角膜反射位置に相当する基準点1c等に関する特徴点の情報が含まれる。
ずれ判定処理部60の共通エリア内判定部70は、距離計測部72と、共通エリア設定部74とを有する。共通エリア内判定部70は、視線検出処理部50A及び視線検出処理部50Bからの検出通知に応じて、記憶部130bから視線位置3Au及び3Buを入力する。第1判定処理P1は、距離計測部72と、共通エリア設定部74とに相当する。
距離計測部72は、記憶部130bから画像特徴点データ57を取得して、画像特徴点データ57を用いて、センサ3A及びセンサ3Bと人物の顔1aまでの距離59を算出する。距離59は記憶部130bに記憶される。
共通エリア設定部74は、予め設定された共通エリアテーブル76を参照して、距離計測部72が計測したセンサと顔1aまでの距離59に対応する、センサ3A及び3Bの共通エリア3ABのサイズを取得して、取得した共通エリア3ABのサイズに基づいて、センサ3A及び3Bの正位置に基づいて、図6(a)に示すような実空間に共通エリア3ABを設定する。
共通エリア設定部74は、視線位置3Auと視線位置3Buとが設定した共通エリア3AB内にあるか否かを判定する。視線位置3Auと視線位置3Buの1つ以上が共通エリア3AB内にある場合、視線位置ずれ判定部80による処理が有効となる。
ずれ判定処理部60の視線位置ずれ判定部80は、共通エリア内判定部70によって、視線位置3Auと視線位置3Buとが共通エリア3AB内にある場合に有効となり、ばらつき判定部82と、視線位置選択部84と、視線位置誤差想定部86と、ずれ有無判定部88とを有する。第2判定処理P2は、ばらつき判定部82と、視線位置選択部84とに相当する。第3判定処理P3は、視線位置誤差想定部86と、ずれ有無判定部88とに相当する。
眼球1bの動作特性として、視線位置が一気にジャンプするサッカード状態と、視線位置が留まっている停留状態とがある。第2判定処理P2では、眼球1bの動きが停留状態の視線位置3Au及び3Buを選択する。
ばらつき判定部82は、時間区間を設定し、設定した時間区間に相当する複数の視線位置3Au及び複数の視線位置3Buを視線位置DB55から取得して視線位置の分散量を計算する。
視線位置選択部84は、ばらつき判定部82によって計算された分散量が分散量閾値以上である場合、視線位置が停留していないと判断し、時間区間の複数の視線位置3Au及び複数の視線位置3Buを採用しない。この場合、次の直近の時間区間で、ばらつき判定部82による処理が繰り返し行われる。計算された分散量が分散量閾値未満である場合、視線位置選択部84は、視線位置が停留していると判断し、この時間区間の複数の視線位置3Au及び複数の視線位置3Buを採用する。
第2判定処理P2によって視線位置が停留していると判断された場合に、第3判定処理P3にて、選択された視線位置3Au及び3Buを用いて、センサ3A及びセンサ3Bに係る設置ずれが判定される。センサ3A及び3Bの夫々の出力は、誤差を含んでおり、かつ、顔1aまでの距離、角膜形状の個人差等により精度が悪化する場合がある。顔1aまでの距離が離れる程、誤差は大きくなる(精度が悪化する)。また、角膜形状が標準値から離れると、誤差は大きくなる(精度が悪化する)。角膜形状の標準値は、平均7.7mmと言われている。
視線位置誤差想定部86は、記憶部130bから距離計測部72によって算出された距離59を取得して、誤差閾値テーブル89を参照することで、距離59に対応する誤差閾値を取得することで、停留状態の視線位置の誤差を想定する。
誤差閾値テーブル89では、距離59の所定間隔で、誤差閾値を縦及び横の長さ(cm)で示したテーブルである。男女夫々の身長の平均値、角膜形状の平均値等に基づいて、男女各々に対して誤差閾値を対応付けても良い。1以上の各個人に対して、身長、角膜形状等を測定し、誤差閾値を対応付けても良い。
ずれ有無判定部88は、視線位置誤差想定部86によって得られた誤差閾値を用いて、視線位置選択部84が選択した複数の視線位置3Au及び複数の視線位置3Buが誤差閾値以上で分散している場合、センサ3A及び3Bに関して設置ずれが発生したと判定する。ずれ判定結果9rが記憶部130bに出力される。
ずれ判定結果9rには、時刻と、センサ3A及び3Bのセンサ識別情報とが示される。時刻として、複数の視線位置3Au及び複数の視線位置3Buを採用した時間区間が示されてもよいし、時間区間の開始時刻又は終了時刻のいずれかであってもよい。視線位置ずれ判定部80からずれ判定結果9rが出力されると、通知処理部90によって、予め定められた送信先へとずれ判定結果9rが送信される。ずれ判定結果9rは、センサの設置ずれを検知したアラームとして通知される。
距離59による共通エリア3ABのサイズの違いについて説明する。図13は、距離に応じた共通エリアのサイズ変化を説明するための図である。
図13(a)では、距離が短い例として焦点距離FLより短い距離59−1の場合の共通エリア3AB−1を示している。図13(b)では、距離が長い例として焦点距離FLと略同じ距離59−2の場合の共通エリア3AB−2を示している。
図13(a)の距離59−1によって定まるセンサ3Aの有効エリア3Aq−1は、図13(b)の距離59−2によって定まるセンサ3Aの有効エリア3Aq−2より小さくなる。また、図13(a)の距離59−1によって定まるセンサ3Bの有効エリア3Bq−1は、図13(b)の距離59−2によって定まるセンサ3Bの有効エリア3Bq−2より小さくなる。
従って、図13(a)の距離59−1の場合の、センサ3Aの有効エリア3Aq−1とセンサ3Bの有効エリア3Bq−1とが重なる共通エリア3AB−1のサイズは、図13(b)の距離59−2の場合の、センサ3Aの有効エリア3Aq−2とセンサ3Bの有効エリア3Bq−2とが重なる共通エリア3AB−2のサイズより小さくなる。このように、距離59に応じて、共通エリア3ABのサイズは変化する。
図14は、共通エリアサイズテーブルのデータ構成例を示す図である。図14において、共通エリアサイズテーブル76は、センサ3毎に、人物との距離に応じた共通エリア3ABのサイズを示すテーブルであって、距離、センサ3毎に縦及び横等の項目を有する。
距離は、各センサ3から顔1aまでの距離を所定間隔で示している。この例では、単位をcmとし、「50」cmまでの距離から「10」cm単位で、「100」cmまでの距離を示している。センサ3からの最短距離及び距離間隔の値は、この例に限定されない。
センサ3のセンサ識別情報毎に、共通エリア3ABがcm単位で縦及び横の長さで示される。この例では、隣接するセンサAとセンサBの例を示している。距離「50」cmまでの場合、センサAの有効エリア3Aqにおいて共通エリア3ABは、縦「30」cm及び横「50」cmであり、センサBの有効エリア3Bqにおいて共通エリア3ABは、縦「30」cm及び横「40」cmである。所定の距離間隔毎に、共通エリア3ABが示される。
視線位置データ53の視線位置3Au及び視線位置3Buがベクトルで与えられる場合、センサ3毎の共通エリア3ABを計算により求めることができる。この場合には、共通エリアサイズテーブル76を省略してもよい。
第2実施例では、隣接するセンサAとセンサBについて、縦の値のうち小さい値、及び、横の値のうち小さい値をとって、センサAとセンサBとの共通エリア3ABとする。具体的には、距離「50」cmの場合、縦「30」cm及び横「40」cmが共通エリア3ABに設定される。他の距離についても同様である。
共通エリア内判定部70による第1判定処理P1について説明する。図15は、共通エリア内判定部による第1判定処理を説明するためのフローチャート図である。
図15において、共通エリア内判定部70の距離計測部72は、画像特徴点データ57を入力し(ステップS211)、センサ3A又は3Bと顔1a間の距離59を計算する(ステップS212)。センサ3A及び3Bは隣接するセンサ3であるとする。センサ3A又は3Bのいずれか1つと顔1a間の距離59を計算しても良いし、センサ3A及び3Bの各々と顔1a間の距離の平均値を算出して距離59としてもよい。センサ3A及び/又は3Bを、以下、単に、センサ3と言う場合がある。
距離計測部72は、画像特徴点57から、右目と左目の瞳孔又は角膜反射点の特徴点を取得する。一般的には、瞳孔又は角膜反射点間の距離の平均は64mmである。この平均値を採用し、センサ3の画角と解像度とから距離59を計算する。
次に、共通エリア設定部74は、共通エリアサイズテーブル76を参照して、距離計測部72によって計算された距離59に基づいて、センサ3Aに設定された共通エリア3ABの縦及び横の値と、センサ3Bに設定された共通エリア3ABの縦及び横の値とを取得する(ステップS213)。
そして、共通エリア設定部74は、小さい方の縦の値と横の値とによりセンサ3Aと3Bとの間の共通エリア3ABを設定し(ステップS214)、2つの視線位置3Au及び3Buが共通エリア3AB内か否かを判定する(ステップS215)。2つの視線位置3Au及び3Buは、画像特徴点データ57から取得できる。
共通エリア設定部74が、2つの視線位置3Au及び3Buが共通エリア3AB外であると判定した場合(ステップS215のNo)、共通エリア内判定部70は、ステップS211へと戻り、次の撮像画像4Ag及び撮像画像4Bg(次のフレーム)に対して、距離計測部72による処理から繰り返す。
一方、共通エリア設定部74が、2つの視線位置3Au及び3Buが共通エリア3AB内であると判定した場合(ステップS215のYes)、共通エリア内判定部70は、視線位置ずれ判定部80による視線位置ずれ判定処理の第2判定処理P2を有効にする(ステップS216)。視線位置ずれ判定部80には、共通エリア3ABのサイズが通知される。第2判定処理P2の終了後に、この第1判定処理P1は終了する。
視線位置ずれ判定部80での第2判定処理P2に関して、先ず、眼球1bの動作特性について説明する。図16は、眼球の動作特性を説明するための図である。眼球1bの動作状態によって、視線位置が定まらない瞬間時刻がある。
図16(a)では、視線位置が一気にジャンプするサッカード状態を示し、ある時間区間において検出した複数の視線位置3Au及び複数の視線位置3Buの例を示している。共通エリア3AB内及び共通エリア3AB外の広い範囲に渡って、複数の視線位置3Au及び複数の視線位置3Buが分散している。視線位置が左から右へと一気にジャンプ等の眼球1bの動きがあったことを示している。サッカード状態では、眼球1bの動きが速すぎて、同号がぶれてしまい、視線位置を正しく検出できない。
図16(b)では、視線位置が定まっている間の停留状態を示し、ある時間区間において検出した複数の視線位置3Au及び複数の視線位置3Buの例を示している。複数の視線位置3Au及び複数の視線位置3Buが纏まった範囲に集中して検出されている。眼球1bの向き方向が安定し、視線位置が定まっていることを示している。このように視線位置が定まっている時間区間で、視線位置を特定することが望ましい。
視線位置ずれ判定部80による第2判定処理P2について説明する。図17は、視線位置ずれ判定部による第2判定処理を説明するためのフローチャート図である。
図17において、共通エリア内判定部70からの共通エリア3ABのサイズの通知に応じて、視線位置ずれ判定部80のばらつき判定部82は、現在時刻から遡って予め定められた時間長で時系列な時間区間を決定する(ステップS221)。時間長は、ユーザによって設定されてもよい。
ばらつき判定部82は、視線位置DB55からステップS221で決定した時間区間の複数の視線位置3Au及び複数の視線位置3Buを取得して(ステップS222)、複数の視線位置3Auの分散量と複数の視線位置3Buの分散量とを計算する(ステップS223)。複数の視線位置3Auには、直近の視線位置データ53の視線位置3Auが含まれ、複数の視線位置3Buには、直近の視線位置データ53の視線位置3Buが含まれる。
ばらつき判定部82は、2つの分散量共に分散閾値以上であるか否かを判定する(ステップS224)。2つの分散量共に分散閾値以上である場合(ステップS224のYes)、ばらつき判定部82は、ステップS221から上記同様の処理を繰り返す。
一方、ばらつき判定部82によって2つの分散量の少なくとも1つが分散閾値未満であると判断された場合(ステップS224のNo)、視線位置選択部84が、視線位置DB55から直近の視線位置データ53の視線位置3Auと視線位置3Buとを選択する(ステップS225)。
視線位置選択部84によって、選択した視線位置3Au及び視線位置3Buが視線位置誤差想定部86に通知され、第3判定処理が有効となる(ステップS226)。第3判定処理の終了後に、この第2判定処理は終了する。
視線位置ずれ判定部80での第3判定処理P3を説明する前に、センサ3の視線位置の検出誤差について説明する。図18は、センサの視線位置の検出誤差を説明するための図である。各センサ3の出力は、誤差を含み、距離59、角膜形状の個人差等により精度が悪化する場合がある。図18(a)及び図18(b)において、視線方向1adは同じ視線を示す。
図18(a)では、視線位置の検出誤差が大きい場合の例を示している。顔1a−1からの視線方向1adが同じであっても、焦点距離FLより短い距離59−3の立ち位置、及び角膜形状の個人差によって、視線位置の検出誤差が誤差範囲3ER−3のように大きくなる場合がある。
図18(b)では、視線位置の検出誤差が小さい場合の例を示している。顔1a−2からの視線方向1adが同じであっても、焦点距離FLと略同じ距離59−4の立ち位置、及び角膜形状の個人差によって、視線位置の検出誤差が誤差範囲3ER−4のように小さくなる場合がある。
同一人物であっても、距離59の違いによって、誤差範囲3ER−4と誤差範囲3ER−4のように検出精度が変化し得る。
第2実施例では、距離59と、各人物の角膜形状パターン毎に、センサ3の誤差範囲3ERを誤差閾値として設定した誤差閾値テーブル89を予め用意しておく。角膜形状は、画像特徴点データ57を用いて算出すればよい。
図19は、誤差閾値テーブルのデータ構成例を示す図である。図19において、誤差閾値テーブル89は、距離、各人物の角膜形状パターン毎に縦及び横等の項目を有する。
距離は、各センサ3から顔1aまでの距離を所定間隔で示している。この例では、単位をcmとし、「50」cmまでの距離から「10」cm単位で、「100」cmまでの距離を示している。センサ3からの最短距離及び距離間隔の値は、この例に限定されない。
各人物の角膜形状パターン毎に、センサ3の誤差範囲3ERがcm単位で縦及び横の長さで示される。この例では、少なくとも、人物Aの角膜形状パターンAと、人物Bの角膜形状パターンBとに対するセンサ3の誤差範囲3ERが示されている。
センサ3から距離「50」cmまでの場合、人物Aの角膜形状パターンAに対する誤差範囲3ERは、縦「20」cm及び横「20」cmであり、人物Bの角膜形状パターンBに対する誤差範囲3ERは、縦「25」cm及び横「25」cmである。所定の距離間隔毎に、誤差範囲3ERが示される。
予め人物A、B等の複数の人物の角膜形状パターンを取得し、取得した角膜形状パターンに対するセンサ3の視線位置の検出の誤差範囲3ERを算出して、誤差閾値テーブル89を作成しておく。センサ3のずれ検出の際には、最も類似する角膜形状パターンを誤差閾値テーブル89から特定して、計測した距離に対応付けられた誤差範囲3ERを取得すればよい。
各個人又は人物のグループを特定できる場合、個人又はグループの識別情報毎に、距離に応じた誤差範囲3ERを誤差閾値テーブル89に設定し、センサ3のずれ検出の際には、個人又はグループの識別情報を用いて誤差範囲3ERを誤差閾値テーブル89から取得するようにしてもよい。
視線位置ずれ判定部80による第3判定処理P3について説明する。図20は、視線位置ずれ判定部による第3判定処理を説明するためのフローチャート図である。第3判定処理P3は、眼球1bの動きが停留状態であると判定された場合に有効となる。
図20において、視線位置誤差想定部86は、視線位置選択部84からの視線位置3Au及び視線位置3Buの通知により、通知された視線位置3Auと視線位置3Buとをずれ判定用として設定する(ステップS231)。
そして、視線位置誤差想定部86は、第1判定処理で算出された距離59の値を記憶部130bから取得し対象距離として設定し(ステップS232)、誤差閾値テーブル89から距離59に対応付けられた誤差閾値を取得し誤差範囲3ERに設定する(ステップS233)。
次に、ずれ有無判定部88が、2つの視線位置3Au及び視線位置3Buの間の距離が判定閾値以上であるか否かを判定する(ステップS234)。2つの視線位置3Au及び視線位置3Buの間の距離が判定閾値未満である場合(ステップS234のNo)、ずれ有無判定部88は、隣接する2つのセンサ3にずれはないと判定する。この場合、2つの視線位置3Au及び視線位置3Buに対する第3判定処理は終了し、第3判定処理は、視線位置選択部84からの次の通知を受けることで有効となる。
一方、2つの視線位置3Au及び視線位置3Buの間の距離が判定閾値以上である場合(ステップS234のYes)、ずれ有無判定部88は、隣接する2つのセンサ3のうち1つ以上がずれていると判定し、ずれ有りを示すずれ判定結果9rを記憶部130bに出力する(ステップS235)。ずれ判定結果9rは、2つのセンサ3の識別情報を示すようにしてもよい。そして、第3判定処理は終了し、第3判定処理は、視線位置選択部84からの次の通知を受けることで有効となる。
記憶部130bに出力された判定結果9rは、通知処理部90によって、予め定められた送信先に送信される。
上述した第1実施例及び第2実施例では、隣接された各センサ3が撮像する撮像画像4gが重なる共通エリア3ABを利用して設置ずれの判定が行われる。システム1002(図8)のように、情報処理装置7を含むセンサ3−1が設置ずれの判定を行う場合には、センサ3−1が主となり、センサ3が従となる主従関係において第1実施例又は第2実施例に係る処理が行われる。
次に、検出範囲を広げるための複数のセンサ3の設置方法について説明する。図21は、垂直方向の検出範囲を広げる複数のセンサの設置方法を示す図である。図21中、センサAとセンサBで表される2つのセンサ3で説明するが、センサ3は3つ以上であってもよい。
図21(a)では、センサAとセンサBとを接近させ、かつ、垂直方向に設置角度差θを持たせて配置させることで、垂直方向の検出範囲を広げる設置方法イを示している。図21(b)では、センサAとセンサBとを離し、設置角度を同一にしセンサA及びBの向きを略平行にして配置させることで、垂直方向の検出範囲を広げる設置方法ロを示している。この例では、センサAとセンサBとを垂直方向に離して、センサAとセンサBの夫々の向きを地面に対して平行に設置している。
センサA又はBに対して視線方向(即ち、顔1aの向き)が大きくなると検知範囲をこえるため視線位置を精度良く計測できない場合がある。顔1aの位置によらず一定の位置を見る場合、一例としてスーパーマーケットのワゴンを見る場合等では、商品の位置が有る程度一定であるため、設置方法イでセンサA及びBを配置し、垂直方向の検知範囲を広げる。
センサA又はBの正面を見る状況、一例として、靴屋のように、上から下まで商品が陳列してあり、顔1aが上方にあるときに上方の対象物を見る場合、また、顔1aが下方にあるときに地面の近くの対象物を見る場合では、設置方法ロのようにセンサA及びBを配置して、検知範囲を広げる。
図22は、水平方向の検出範囲を広げる複数のセンサの設置方法を示す図である。図22中、センサAとセンサBで表される2つのセンサ3で説明するが、センサ3は3つ以上であってもよい。
図22(a)では、センサAとセンサBとを接近させ、かつ、水平方向に設置角度差θを持たせて配置させることで、水平方向の検出範囲を広げる設置方法ハを示している。図22(b)では、センサAとセンサBとを離し、設置角度を同一にしセンサA及びBの向きを略平行にして配置させることで、水平方向の検出範囲を広げる設置方法ニを示している。この例では、センサAとセンサBとを水平方向に離して、センサAとセンサBの夫々の向きを地面に対して平行に設置している。
対象物が左右方向から注視される場合には、設置方法ハでセンサA及びBを配置し、水平方向の検知範囲を広げる。正面の対象物を見る場合には、設置方法ニでセンサA及びBを配置し、水平方向の検知範囲を広げる。
図21(a)の設置方法イと図22(b)の設置方法ニとを組み合わせることにより、垂直方向及び水平方向の検出範囲を広げることができる。図23は、垂直方向及び水平方向の検出範囲を広げる設置例を示す図である。
図23では、センサ3A、3B、3C、及び3bの4つのセンサ3を用いて、垂直方向及び水平方向の検出範囲を広げる設置例を示している。4つのセンサ3は、商品61p、62p、及び63pの近傍に設置され、無線又は有線により予め定められた情報処理装置7とに接続される。
センサ3A及び3Bは、商品61pの側に設置方法イにより、垂直方向の検出範囲を広げて設定される。設置方法イにより、視線位置の縦方向の検出範囲を広くでき、センサ3A及び3Bの共通エリアに視線位置を検出した場合、センサ3A及び3Bに係る設置ずれの有無を判定できる。
センサ3C及び3Dも、同様に、商品63pの側に設置方法イにより、垂直方向の検出範囲を広げて設定される。設置方法イにより、視線位置の縦方向の検出範囲を広くでき、センサ3C及び3Dの共通エリアに視線位置を検出した場合、センサ3C及び3Dに係る設置ずれの有無を判定できる。
また、センサ3A及び3Bと、センサ3C及び3Dとを、設置方法ニにより、水平方向の検出範囲を広げて設置する。センサ3A及び3Cの共通エリアに視線位置を検出した場合、センサ3A及び3Cに係る設置ずれの有無を判定できる。センサ3B及び3Dの共通エリアに視線位置を検出した場合、センサ3B及び3Dに係る設置ずれの有無を判定できる。
図23では、酒類等のボトル形状の商品61p、62p、及び63pを陳列した例を示している。商品61p〜63pの各々には、価格61r、銘柄61mが示されている。顧客が、どのボトルに関心を示し、その理由が何かを、視線位置を検出することで、マーケティングを行うことができる。
このような陳列において、顧客が関心を持つボトルの特定は、設置方法ニによって可能となる。また、顧客が関心を示した理由が、価格61rであるのか、銘柄61mであるのかの調査は、設置方法イによって可能となる。
このように比較的安価なセンサ3を複数用いて検知範囲を拡大した場合であっても、第1実施例又は第2実施例により、センサ3の設置ずれを検出できる。
上述では、2つのセンサ3を隣接させた場合で説明したが、3つ以上のセンサ3を隣接させてもよい。その場合の複数センサ間の主従関係について説明する。
図24は、3つ以上のセンサを1列に設置した場合のセンサの主従関係の例を説明するための図である。図24中、隣接する3つのセンサを、センサA、センサB、及びセンサCとする。
図24において、検出範囲68が、センサA、センサB、及びセンサCを組み合せることによって得られる範囲を示す。検出範囲68において、予め、各センサA、B、及びC毎に、顔1aが隣接する2つのセンサ3で撮像される共通エリア3AB及び3BCを定義しておく。
センサAに対して共通エリア3ABが設定され、センサCに対して共通エリア3BCが設定される。センサBに対しては、共通エリア3AB及び共通エリア3BCの2つの共通エリアが設定される。
この例では、共通エリア3ABはセンサAのメイン領域21Aに含まれる。また、共通エリア3ABと共通エリア3BCの間のエリア9Bと、共通エリア3BCとが、センサBのメイン領域21Bに含まれる。センサCのメイン領域21Cは、共通エリア3BCを含まない。
顔1aが共通エリア3AB以外のセンサAのメイン領域21Aに位置する場合、センサAのみで検知可能なため、設置ずれ判定は行われない。
顔1aが共通エリア3ABに位置する場合、センサAとセンサBとで検知可能であるが、共通エリア3ABはセンサAのメイン領域21Aに含まれるため、センサAがメインとなり、センサBはサブとなる。
顔1aがエリア9Bに位置する場合、センサBのみで検知可能なため、設置ずれ判定は行われない。
顔1aが共通エリア3BCに位置する場合、センサBとセンサCとで検知可能であるが、共通エリア3BCはセンサBのメイン領域21Bに含まれるため、センサBがメインとなり、センサCはサブとなる。
顔1aがセンサCのメイン領域21Cに位置する場合、センサCのみで検知可能なため、設置ずれ判定は行われない。
図24に示す主従関係では、少なくともセンサA及びBは、システム1002(図8)のセンサ3−1の構成を有することが望ましく、センサCは、システム1002(図8)のセンサ3の構成でよい。上述した主従関係に従って、センサBは、撮像画像4BgをセンサAへ送信する。サンサCは、撮像画像4CgをセンサBへ送信する。
サンサA、B、及びCを水平方向に1列に設置した場合、及び、垂直方向に1列に設置した場合においても、上述した図24の例のように主従関係を定めればよい。
上述したように、第1実施例及び第2実施例によって、LEDライト3aと、カメラ3bとを有する、2つのセンサ3(撮像装置)を用いて検出範囲を拡大した場合においても、各センサ3の撮像画像4g毎に、撮像画像4gから得た特徴点に基づいて視線位置を計算し、計算した結果を用いてセンサ3の設置ずれを検出することにより、計算負荷を低減できる。
なお、流通分野で複数の人物の視線を検出する様々な状況においては、センサ3のコストの削減、及び、計算負荷の低減が求められており、第1実施例及び第2実施例によりこれらの課題を解決できる。
本発明は、具体的に開示された実施例に限定されるものではなく、特許請求の範囲から逸脱することなく、主々の変形や変更が可能である。
以上の第1実施例及び第2実施例を含む実施形態に関し、更に以下の付記を開示する。
(付記1)
視線検出の有効範囲が重なる所定の位置に設置された第1の撮像装置および第2の撮像装置を用いて撮影した第1の画像および第2の画像の中からそれぞれ人物の第1の顔領域および第2の顔領域を抽出し、
抽出した前記第1の顔領域および前記第2の顔領域それぞれにおける光反射に基づく第1の特徴点および第2の特徴点を検出し、
検出した前記第1の特徴点および前記第2の特徴点に基づいて前記人物の第1の視線位置および第2の視線位置を算出し、
算出した前記第1の視線位置と前記第2の視線位置の相対的な位置関係に基づいて前記第1の撮像装置、および/または前記第2の撮像装置の前記所定の位置からの設置ずれを判定する
処理をコンピュータに行わせるずれ判定プログラム。
(付記2)
前記第1の視線位置と前記第2の視線位置とが、前記第1の撮像装置と前記第2の撮像装置との前記視線検出の前記有効範囲が重なる共通範囲内であるか否かを判定し、
前記第1の視線位置と前記第2の視線位置とが前記共通範囲内である場合に、前記設置ずれを判定する
ことを特徴とする付記1記載のずれ判定プログラム。
(付記3)
前記第1の視線位置と前記第2の視線位置とが前記共通範囲内である場合に、更に、該第1の視線位置と該第2の視線位置との間の距離が誤差範囲以上である場合、前記第1の撮像装置、および/または前記第2の撮像装置が前記所定の位置からずれていると判定し、ずれ判定結果を出力する
処理を前記コンピュータに行わせる付記2記載のずれ判定プログラム。
(付記4)
前記第1の画像および前記第2の画像の1つ以上から抽出した複数の前記第1の特徴点及び複数の前記第2の特徴点に基づいて、前記第1の撮像装置又は前記第2の撮像装置から前記人物までの距離を計算し、
前記第1の撮像装置又は前記第2の撮像装置から前記人物までの処理の距離毎に、前記共通範囲のサイズを対応付けたテーブルを参照して、計算した前記距離に対応する該共通範囲のサイズを取得し、
取得した前記サイズに基づいて、前記第1の視線位置と前記第2の視線位置とを含む領域に前記共通範囲を定める
処理を前記コンピュータに行わせる付記2又は3記載のずれ判定プログラム。
(付記5)
算出した前記第1の視線位置および前記第2の視線位置を時系列に記憶部に記憶し、
前記記憶部に記憶された、現時刻から所定の時間区間の複数の前記第1の視線位置および複数の前記第2の視線位置を取得して第1の分散量及び第2の分散量を計算し、
前記第1の分散量及び前記第2の分散量が分散閾値未満である場合、現時刻の前記第1の視線位置および前記第2の視線位置をずれ判定用として選択する
処理を前記コンピュータに行わせる付記2記載のずれ判定プログラム。
(付記6)
前記誤差範囲を、前記第1の視線位置と前記第2の視線位置との間の距離と、前記人物の角膜形状とに基づいて取得する
処理を前記コンピュータに行わせる付記2乃至4記載のずれ判定プログラム。
(付記7)
視線検出の有効範囲が重なる所定の位置に設置された第1の撮像装置および第2の撮像装置を用いて撮影した第1の画像および第2の画像の中からそれぞれ人物の第1の顔領域および第2の顔領域を抽出し、
抽出した前記第1の顔領域および前記第2の顔領域それぞれにおける光反射に基づく第1の特徴点および第2の特徴点を検出し、
検出した前記第1の特徴点および前記第2の特徴点に基づいて前記人物の第1の視線位置および第2の視線位置を算出し、
算出した前記第1の視線位置と前記第2の視線位置の相対的な位置関係に基づいて前記第1の撮像装置、および/または前記第2の撮像装置の前記所定の位置からの設置ずれを判定する
処理をコンピュータが行うずれ判定方法。
(付記8)
視線検出の有効範囲が重なる所定の位置に設置された第1の撮像装置および第2の撮像装置を用いて撮影した第1の画像および第2の画像の中からそれぞれ人物の第1の顔領域および第2の顔領域を抽出する顔領域抽出部と、
抽出した前記第1の顔領域および前記第2の顔領域それぞれにおける光反射に基づく第1の特徴点および第2の特徴点を検出する検出部と、
検出した前記第1の特徴点および前記第2の特徴点に基づいて前記人物の第1の視線位置および第2の視線位置を特定する視線特定部と、
算出した前記第1の視線位置と前記第2の視線位置の相対的な位置関係に基づいて前記第1の撮像装置、および/または前記第2の撮像装置の前記所定の位置からの設置ずれを判定するずれ判定部と
を有する情報処理装置。
(付記9)
前記第1の特徴点及び前記第2の特徴点は、夫々、瞳孔及び角膜反射の特徴点であることを特徴とする付記8記載の情報処理装置。
(付記10)
前記第1の撮像装置および前記第2の撮像装置は、赤外線LEDライトと、デジタルカメラとを有するセンサであることを特徴とする付記8又は9記載の情報処理装置。
1a 顔、 1b 眼球
1c 基準点(角膜反射位置)、 1e 瞳孔
3、3A、3B、3C、3D センサ
3a LEDライト、 3b カメラ
3Au、3Bu 視線位置
4g、4Ag、4Bg 撮像画像
7 情報処理装置
50、50A、50B 視線検出処理部
60 ずれ判定処理部
70 共通エリア内判定部
80 視線位置ずれ判定部
90 通知処理部
90m 対応マップ

Claims (7)

  1. 視線検出の有効範囲が重なる所定の位置に設置された第1の撮像装置および第2の撮像装置を用いて撮影した第1の画像および第2の画像の中からそれぞれ人物の第1の顔領域および第2の顔領域を抽出し、
    抽出した前記第1の顔領域および前記第2の顔領域それぞれにおける光反射に基づく第1の特徴点および第2の特徴点を検出し、
    検出した前記第1の特徴点および前記第2の特徴点に基づいて前記人物の第1の視線位置および第2の視線位置を算出し、
    算出した前記第1の視線位置と前記第2の視線位置の相対的な位置関係に基づいて前記第1の撮像装置、および/または前記第2の撮像装置の前記所定の位置からの設置ずれを判定する
    処理をコンピュータに行わせるずれ判定プログラム。
  2. 前記第1の視線位置と前記第2の視線位置とが、前記第1の撮像装置と前記第2の撮像装置との前記視線検出の前記有効範囲が重なる共通範囲内であるか否かを判定し、
    前記第1の視線位置と前記第2の視線位置とが前記共通範囲内である場合に、前記設置ずれを判定する
    ことを特徴とする請求項1記載のずれ判定プログラム。
  3. 前記第1の視線位置と前記第2の視線位置とが前記共通範囲内である場合に、更に、該第1の視線位置と該第2の視線位置との間の距離が誤差範囲以上である場合、前記第1の撮像装置、および/または前記第2の撮像装置が前記所定の位置からずれていると判定し、ずれ判定結果を出力する
    処理を前記コンピュータに行わせる請求項2記載のずれ判定プログラム。
  4. 前記第1の画像および前記第2の画像の1つ以上から抽出した複数の前記第1の特徴点及び複数の前記第2の特徴点に基づいて、前記第1の撮像装置又は前記第2の撮像装置から前記人物までの距離を計算し、
    前記第1の撮像装置又は前記第2の撮像装置から前記人物までの処理の距離毎に、前記共通範囲のサイズを対応付けたテーブルを参照して、計算した前記距離に対応する該共通範囲のサイズを取得し、
    取得した前記サイズに基づいて、前記第1の視線位置と前記第2の視線位置とを含む領域に前記共通範囲を定める
    処理を前記コンピュータに行わせる請求項2又は3記載のずれ判定プログラム。
  5. 算出した前記第1の視線位置および前記第2の視線位置を時系列に記憶部に記憶し、
    前記記憶部に記憶された、現時刻から所定の時間区間の複数の前記第1の視線位置および複数の前記第2の視線位置を取得して第1の分散量及び第2の分散量を計算し、
    前記第1の分散量及び前記第2の分散量が分散閾値未満である場合、現時刻の前記第1の視線位置および前記第2の視線位置をずれ判定用として選択する
    処理を前記コンピュータに行わせる請求項3又は4記載のずれ判定プログラム。
  6. 視線検出の有効範囲が重なる所定の位置に設置された第1の撮像装置および第2の撮像装置を用いて撮影した第1の画像および第2の画像の中からそれぞれ人物の第1の顔領域および第2の顔領域を抽出し、
    抽出した前記第1の顔領域および前記第2の顔領域それぞれにおける光反射に基づく第1の特徴点および第2の特徴点を検出し、
    検出した前記第1の特徴点および前記第2の特徴点に基づいて前記人物の第1の視線位置および第2の視線位置を算出し、
    算出した前記第1の視線位置と前記第2の視線位置の相対的な位置関係に基づいて前記第1の撮像装置、および/または前記第2の撮像装置の前記所定の位置からの設置ずれを判定する
    処理をコンピュータが行うずれ判定方法。
  7. 視線検出の有効範囲が重なる所定の位置に設置された第1の撮像装置および第2の撮像装置を用いて撮影した第1の画像および第2の画像の中からそれぞれ人物の第1の顔領域および第2の顔領域を抽出する顔領域抽出部と、
    抽出した前記第1の顔領域および前記第2の顔領域それぞれにおける光反射に基づく第1の特徴点および第2の特徴点を検出する検出部と、
    検出した前記第1の特徴点および前記第2の特徴点に基づいて前記人物の第1の視線位置および第2の視線位置を特定する視線特定部と、
    算出した前記第1の視線位置と前記第2の視線位置の相対的な位置関係に基づいて前記第1の撮像装置、および/または前記第2の撮像装置の前記所定の位置からの設置ずれを判定するずれ判定部と
    を有する情報処理装置。
JP2016043045A 2016-03-07 2016-03-07 ずれ判定プログラム、ずれ判定方法、及び、情報処理装置 Pending JP2017163180A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016043045A JP2017163180A (ja) 2016-03-07 2016-03-07 ずれ判定プログラム、ずれ判定方法、及び、情報処理装置
US15/408,103 US20170255817A1 (en) 2016-03-07 2017-01-17 Recording medium, displacement determination method, and information processing apparatus
CA2955000A CA2955000A1 (en) 2016-03-07 2017-01-17 Displacement determination program, method, and information processing apparatus
EP17151970.5A EP3217257A1 (en) 2016-03-07 2017-01-18 Displacement determination program, method, and information processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016043045A JP2017163180A (ja) 2016-03-07 2016-03-07 ずれ判定プログラム、ずれ判定方法、及び、情報処理装置

Publications (1)

Publication Number Publication Date
JP2017163180A true JP2017163180A (ja) 2017-09-14

Family

ID=57850931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016043045A Pending JP2017163180A (ja) 2016-03-07 2016-03-07 ずれ判定プログラム、ずれ判定方法、及び、情報処理装置

Country Status (4)

Country Link
US (1) US20170255817A1 (ja)
EP (1) EP3217257A1 (ja)
JP (1) JP2017163180A (ja)
CA (1) CA2955000A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018033137A1 (zh) * 2016-08-19 2018-02-22 北京市商汤科技开发有限公司 在视频图像中展示业务对象的方法、装置和电子设备
JP6822482B2 (ja) * 2016-10-31 2021-01-27 日本電気株式会社 視線推定装置、視線推定方法及びプログラム記録媒体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4220920B2 (ja) 2004-03-08 2009-02-04 ファナック株式会社 視覚センサ
RU2322771C2 (ru) * 2005-04-25 2008-04-20 Святослав Иванович АРСЕНИЧ Стереопроекционная система
US7542210B2 (en) * 2006-06-29 2009-06-02 Chirieleison Sr Anthony Eye tracking head mounted display
US7682026B2 (en) * 2006-08-22 2010-03-23 Southwest Research Institute Eye location and gaze detection system and method
US8648897B2 (en) * 2006-10-10 2014-02-11 Exelis, Inc. System and method for dynamically enhancing depth perception in head borne video systems
WO2010057304A1 (en) * 2008-11-21 2010-05-27 London Health Sciences Centre Research Inc. Hands-free pointer system
EP2499962B1 (en) * 2011-03-18 2015-09-09 SensoMotoric Instruments Gesellschaft für innovative Sensorik mbH Optical measuring device and method for capturing at least one parameter of at least one eye wherein an illumination characteristic is adjustable
US20130016186A1 (en) * 2011-07-13 2013-01-17 Qualcomm Incorporated Method and apparatus for calibrating an imaging device
FR2989482B1 (fr) * 2012-04-12 2022-12-23 Marc Massonneau Procede de determination de la direction du regard d'un utilisateur.
US9693684B2 (en) * 2013-02-14 2017-07-04 Facebook, Inc. Systems and methods of eye tracking calibration
US9297945B2 (en) * 2013-07-26 2016-03-29 Citizen Holdings Co., Ltd. Light source device and projection device
US9483143B2 (en) * 2013-09-27 2016-11-01 International Business Machines Corporation Method and system providing viewing-angle sensitive graphics interface selection compensation
JP2015119372A (ja) 2013-12-19 2015-06-25 株式会社日立製作所 マルチカメラ撮影システムおよびマルチカメラ撮影画像の合成方法
US9843713B2 (en) * 2014-04-02 2017-12-12 Nebulys Technologies, Inc. Systems and methods for video communication
JP6256165B2 (ja) * 2014-04-09 2018-01-10 富士通株式会社 視線検出装置、視線検出プログラム及び視線検出方法

Also Published As

Publication number Publication date
EP3217257A1 (en) 2017-09-13
CA2955000A1 (en) 2017-09-07
US20170255817A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
US10499808B2 (en) Pupil detection system, gaze detection system, pupil detection method, and pupil detection program
US9395195B2 (en) System, method and program for managing and displaying product information
JP4173902B2 (ja) 車両周辺監視装置
KR20170089743A (ko) 포인트 클라우드 데이터에 기반하는 차량 윤곽 검출 방법과 장치
US10304250B2 (en) Danger avoidance support program
JPWO2018030515A1 (ja) 視線検出装置
US20170344110A1 (en) Line-of-sight detector and line-of-sight detection method
JP2011220732A (ja) 車両の周辺監視装置
JP6566768B2 (ja) 情報処理装置、情報処理方法、プログラム
US11057606B2 (en) Method and display system for information display based on positions of human gaze and object
JP2013024662A (ja) 3次元範囲計測システム、3次元範囲計測プログラムおよび記録媒体
JP2007304033A (ja) 車両の周辺監視装置、車両、車両の周辺監視方法、および車両の周辺監視用プログラム
US11869162B2 (en) Apparatus and method with virtual content adjustment
US10642353B2 (en) Non-transitory computer-readable storage medium, information processing apparatus, and information processing method
JP2017163180A (ja) ずれ判定プログラム、ずれ判定方法、及び、情報処理装置
JP2013196492A (ja) 画像重畳処理装置、方法およびプログラム
US20220076399A1 (en) Photographing guide device
JP6179447B2 (ja) 視線検出装置、視線検出方法
EP3336799A2 (en) Image processing apparatus and image processing method combining views of the same subject taken at different ranges
KR101316387B1 (ko) 비전 센싱과 거리측정 센싱을 이용한 오브젝트 인식 방법
JP2012058353A (ja) 画像表示装置、及びその制御方法
JP5786539B2 (ja) 目視対象物判定装置、目視対象物判定方法および目視対象物判定プログラム
JP2024013469A (ja) 重複状態判別装置、方法及びプログラム
JP2024017717A (ja) 画像処理装置、画像処理装置の制御方法、及びプログラム
JP4394053B2 (ja) 画像認識装置