JP2017159897A - 飛行スロットルの自動制御 - Google Patents

飛行スロットルの自動制御 Download PDF

Info

Publication number
JP2017159897A
JP2017159897A JP2017039996A JP2017039996A JP2017159897A JP 2017159897 A JP2017159897 A JP 2017159897A JP 2017039996 A JP2017039996 A JP 2017039996A JP 2017039996 A JP2017039996 A JP 2017039996A JP 2017159897 A JP2017159897 A JP 2017159897A
Authority
JP
Japan
Prior art keywords
throttle
aircraft
flight
range
limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017039996A
Other languages
English (en)
Other versions
JP6941453B2 (ja
Inventor
キャリー マーティンデール イアン
Carey Martindale Ian
キャリー マーティンデール イアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2017159897A publication Critical patent/JP2017159897A/ja
Application granted granted Critical
Publication of JP6941453B2 publication Critical patent/JP6941453B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/04Initiating means actuated personally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • B64D31/08Initiating means actuated automatically for keeping cruising speed constant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • B64D43/02Arrangements or adaptations of instruments for indicating aircraft speed or stalling conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • G05D1/0833Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability using limited authority control

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】既存のオートスロットルシステムは、一旦、ホールドモードに切り替えられると、パイロットからの命令なしに自動的に別のモードに変更されない。【解決手段】オートスロットルシステムの一例として、推力レゾルバ角を航空機の飛行状態602に基づいてプロセッサを用いて算出すること604と、推力レゾルバ角、又は、推力レゾルバ角で規定される範囲のうちの少なくとも一方を超えてスロットルが移動することを制限するよう制御して606、航空機を好適飛行モードに維持する。【選択図】図6

Description

本特許出願は、概して航空機に関し、より具体的には、飛行スロットルの自動制御に関する。
航空機の操舵時や巡航時の推力の大きさを制御/維持するオートスロットルシステム(autothrottle system)が知られている。通常、オートスロットルシステムをホールドモード(hold mode)に移行させて、航空機の推力自動調整を解除することが可能である。既存のオートスロットルシステムは、一旦、ホールドモードに切り替えられると、パイロットからの命令なしに自動的に別のモードに変更されることはない。
例示的な方法は、航空機の飛行状態に基づいて、プロセッサを用いて推力レゾルバ角を算出することと、前記推力レゾルバ角、又は、前記推力レゾルバ角で規定される範囲のうちの少なくとも一方を超えてスロットルが移動することを制限するよう制御して、前記航空機を好適飛行モードに維持することと、を含む。
例示的な別の方法は、受け付けた飛行入力及び少なくとも1つの飛行状態をプロセッサを用いて分析して、前記飛行入力が、前記航空機を好適飛行状態とは異なる状態に遷移させるものであるかを判定することを含む。前記例示的な別の方法は、前記飛行入力が前記航空機を前記好適飛行状態から別の状態に遷移させないと判定すれば、オートスロットルコントロールのホールドモードへの移行を有効化することをさらに含む。
例示的な機械読取可能な有形記憶媒体は命令を格納しており、前記命令の実行によりプロセッサは、航空機への飛行入力が、前記航空機を非好適飛行状態に遷移させるものであることを判定し、前記判定に基づいて、前記航空機のオートスロットルのモードを変更して、前記航空機を好適飛行状態に維持する。
例示的な装置は、航空機の飛行状態を特定する前記航空機のセンサと、許容可能なスロットル限界又はスロットル範囲のうちの少なくとも一方を算出すると共に、前記航空機を好適飛行状態に維持するプロセッサと、前記スロットル限界及びスロットル範囲のうちの少なくとも一方を超えてスロットルが移動することを制限するよう制御して、前記航空機を好適飛行状態に維持する電気機械システムと、を含む。
本発明に包含されうる方法は、航空機の飛行状態に基づいて、プロセッサを用いて推力レゾルバ角を算出することと、前記推力レゾルバ角、又は、前記推力レゾルバ角で規定される範囲のうちの少なくとも一方を超えてスロットルが移動することを制限するよう制御して、前記航空機を好適飛行モードに維持することと、を含む。前記推力レゾルバ角の算出は、前記航空機において選択されている自動モードにさらに基づいて行われうる。これにより、操作性が改善される。操作性を改善すべく、前記飛行状態は、前記航空機の速度、ピッチ、ヨー、ロール、高度のうちの少なくとも1つを含みうる。前記推力レゾルバ角の算出は、精度を高めるべく、速度範囲及び推力範囲によって規定される領域に基づいて行われうる。前記スロットルを制御することは、スロットルレバーの移動範囲を制限することを含みうるものであり、これにより本発明の効果が高められる。前記スロットルを制限することは、前記スロットルレバーを電気機械的に制限することを含みうる。前記スロットルを制御することは、オートスロットルシステムのホールドモードへの移行を制限するよう制御することを含みうる。前記好適飛行モードは、前記航空機を、前記航空機の失速警報速度上回る速度に維持することを含みうる。
本発明に包含されうる、航空機のオートスロットルコントロールを制御する方法は、受け付けた飛行入力及び少なくとも1つの飛行状態をプロセッサを用いて分析して、前記飛行入力が、前記航空機を好適飛行状態とは異なる状態に遷移させるものであるかを判定することと、前記飛行入力が前記航空機を前記好適飛行状態から別の状態に遷移させないと判定すれば、オートスロットルコントロールのホールドモードへの移行を有効化することを含みうる。本方法は、前記飛行入力が前記航空機を前記好適飛行状態から別の状態に遷移させると判定すれば、前記オートスロットルコントロールのモードを自動的に変更することをさらに含みうる。これにより、本発明の操作が改善される。本方法は、前記航空機が前記好適飛行状態から逸脱するタイミングに基づいて、前記オートスロットルのモードを前記ホールドモードから別のモードに自動的に変更することをさらに含みうる。本方法は、速度範囲及び推力範囲によって規定される領域に基づいてと特定されうる推力レゾルバ角を上回るようにスロットルレベルを制御することをさらに含みうる。前記好適飛行状態は、前記航空機の速度が失速警報速度より速いことを含みうる。
本発明に包含されうる機械読取可能な有形記憶媒体は命令を格納しており、前記命令の実行によりプロセッサは、航空機への飛行入力が、前記航空機を非好適飛行状態に遷移させるものであることを判定し、前記判定に基づいて、前記航空機のオートスロットルのモードを変更して、前記航空機を好適飛行状態に維持する。前記有形記憶媒体における前記命令の実行により、前記プロセッサは、許容可能なスロットル限界又はスロットル範囲のうちの少なくとも一方の算出をさらに行いうる。前記有形記憶媒体における前記命令の実行により、前記プロセッサは、電気機械システムに命令して、前記許容可能なスロットル限界又はスロットル範囲のうちの少なくとも一方を超えるスロットルの移動を制限させうる。前記飛行入力は、自動飛行プログラムの実行を指示するコマンドを含みうる。前記飛行入力は、その性能を改善する手動入力も含みうる。前記プロセッサは、前記航空機が前記好適飛行状態から逸脱しつつあることを判定して、前記飛行入力が前記航空機を非好適状態に遷移させるものであると判定しうる。
本発明に包含されうる装置は、航空機の飛行状態を特定する前記航空機のセンサと、許容可能なスロットル限界又はスロットル範囲のうちの少なくとも一方を算出すると共に、前記航空機を好適飛行状態に維持するプロセッサと、前記スロットル限界及びスロットル範囲のうちの少なくとも一方を超えてスロットルが移動することを制限するよう制御して、前記航空機を好適飛行状態に維持する電気機械システムと、を含みうる。前記プロセッサは、前記航空機の対気速度を、速度範囲及び推力範囲によって規定される領域と比較することによって、前記スロットル限界又はスロットル範囲のうちの少なくとも一方を算出しうる。前記プロセッサは、前記スロットル限界又はスロットル範囲のうちの少なくとも一方の算出を、さらに飛行入力に基づいて行いうる。前記プロセッサは、前記航空機のオートスロットルコントロールシステムのホールドモードを、前記飛行入力に基づいて有効化又は無効化しうる。
本開示の例を実施可能な航空機の例を示す。 図1の例示的なコックピットの内部を示す図である。 図1及び図2に示す例示的なコックピットのスロットルコントロールの詳細を示す図である。 本開示の教示による例示的なスロットルコントロールのグラフである。 本開示の例を実施するための例示的なアルゴリズムを概略的に示す図である。 本開示の例の実施に利用可能なスロットルコントロールシステムの例を示す図である。 図5のスロットルコントロールシステムを実施するのに利用可能な例示的な方法を示すフローチャートである。 図5のスロットルコントロールシステムを実施するのに利用可能な、別の例示的な方法を示すフローチャートである。 図5のスロットルコントロールシステムを実施するのに利用可能な、別の例示的な方法を示すフローチャートである。 図6〜図8に示す例示的な方法を実施するための機械読取可能な命令を実行するのに利用可能なプロセッサプラットフォームの例を示すブロック図である。
添付図面は、縮尺には従っておらず、添付図面においては、複数の層や領域を明瞭に示すため層の厚みを拡大して示している。同じ又は類似の部材については、図面全体及び対応する明細書の記述を通して、可能な限り同じ参照符号で示している。本特許出願において、任意の部材が任意の態様で他の部材上に配置(例えば、配置、位置、配設、形成など)されているとする記載は、言及した部材が他方の部材と接触している場合と、言及した部材が、他方の部材の上方にあって、その間に1つ又は複数の部材が介在している場合と、のいずれかを意味する。任意の部材が他の部材に接触しているとする記載は、2つの部材の間には他の部材が介在していないことを意味する。
本明細書では、飛行スロットルの自動制御が開示されている。例えば、航空機の操舵時や巡航時の推力の大きさを制御/維持するのに利用される航空機オートスロットルシステムが知られている。このような既知のオートスロットルシステムでは、パイロットからの飛行入力に基づいて、オートスロットルシステムをオーバーライドしたり、中断させることが可能なホールドモードに航空機を移行させることが可能である。このモードでは、パイロットが、航空機のスロットル設定を非好適状態(non-preferred condition)に遷移させたり、航空機を低出力モード(lower performance mode)に移行させる場合がある。既知のシステムでは、通常、オートスロットルシステムが一旦ホールドモードに設定されると、パイロットからの命令なしに自動的に別のモードに変更されることはない。
本開示の例では、オートスロットルのホールドモードが起動/実行されているか否かに関わらず、航空機が非好適状態に遷移することが制限される。本開示の例では、航空機の飛行状態及び/又は受け付けた飛行入力(例えば、飛行入力コマンド、コックピットコマンドなど)に基づいて、スロットル範囲やスロットル設定値の調整や設定が行われる。いくつかの例では、飛行状態を用いて推力レゾルバ角(thrust resolver angle)(例えば、推力レゾルバ限界)が算出され、これにより、スロットル(例えば、スロットルコントロール)が規制(例えば、移動を制限)及び/又は制限される。例えば、スロットルコントロール(例えば、自動スロットルコントロール)は、算出された推力レゾルバ角(TRA)や、その推力レゾルバ角で規定される範囲を超えないように移動を制限される。いくつかの例では、電気機械システムによってスロットル及び/又はスロットルレバー(例えば、スロットル桿)の物理的な動きを制限して、算出された推力レゾルバ角を超える移動を制限するようにしてもよい。例えば、アクチュエータやソレノイドを利用して、スロットルの回動軸及び/又はスロットルレバーの移動を制御して、算出された推力レゾルバ角で規定される角度や角度範囲を超える移動を制限するようにしてもよい。
別の例では、飛行状態に基づいて算出した推力レゾルバ角を基準にして、航空機への飛行入力を比較/分析し、推力レゾルバ角の値によっては、その飛行入力を実行しないようにする。具体的には、飛行状態に基づいて算出された好適な推力/速度設定に対して飛行入力を比較することにより、この飛行入力を実行するか、及び/又は、スロットルのオーバーライド/ホールドモードを有効化するかが決定される。
別の例では、航空機の飛行状態が、その航空機の非好適飛行状態に相当する場合、その航空機は、ホールドモードから再びオートスロットルモードに戻される。オートスロットルモードへの変更が自動的に行われるのは、例えば、航空機が所定の推力範囲や設定を下回る推力で航行中に、その飛行速度が、許容可能あるいは好適な値として算出された推力レゾルバ角を下回る速度に設定された場合などである。
本明細書で用いられている「飛行入力コマンド」又は「飛行入力」なる用語は、コックピットで手動入力されるコマンドや、自動飛行モードへの移行命令(例えば、選択された自動モード、自動操縦、飛行レベル変更(「FLCH」)モード、離陸及びゴーアラウンド(「TOGA」:take-off and go around)コマンド、垂直方向ナビゲーション(「VNAV」、「VNAV IDLE」、「VNAV HOLD」コマンドなど)を指す。換言すると、「飛行入力コマンド」又は「飛行入力」なる用語は、例えば、手動制御や、自動飛行モードの起動をいう。本明細書で用いられている「飛行状態」なる用語は、限定するものではないが、対気速度、高度、地形、風速、大気状態(例えば、乱気流)、高度、ヨー、ピッチ、ロール、天候などを包含する。
図1は、本開示の例を実施可能な例示的な航空機100を示す。図示した例示的な航空機100は、コックピット104を有する機体102と、エンジン106及び操縦翼面(例えば、フラップ、エルロン、タブなど)108を有する翼部105と、を含む。操縦翼面は、例えば、翼部105の後縁に配置されており、離陸時の揚力を発生させるために、変位あるいは調整(角度付け)される。例示的な航空機100は、さらに、方向舵114及び昇降舵116を有するスタビライザ112を含む。いくつかの例では、各エンジン106のスロットルを制御して、航空機100の速度の変更や制御を行う。この例では、エンジン106からの推力を、操縦翼面108、方向舵114、及び/又は昇降舵116の動作と併せて利用することで、操縦中の航空機100の制御/方向づけを行う。操縦操作には、例えば、降下操作(例えば、高度の増減や高度増減速度の制御)及び/又は、TOGAプログラム、VNAVプログラムなどの自動飛行プログラムの実行操作などがある。
図2Aは、図1の例示的なコックピット104の内部を示す図である。図2Aの例からわかるように、コックピット104は、操縦桿202と、計器パネル204と、スロットルレバー(スロットル桿)208を含むスロットルコントロール(throttle control)206と、を含む。操作に際して、コックピット104のパイロットは、計器パネル204から、航空機100の飛行データ及び/又は飛行状態を読み取り、認識する。パイロットは、読み取ったデータに基づいて、航空機100の1つ又は複数の制御機能を利用して、航空機100の飛行を操作する。この例では、航空機100の推力は、概ね、スロットルレバー208及びスロットルコントロール206により制御され、これに加えて、あるいは、これに代えて、オートスロットル設定に関してコックピット104内部に設けられた制御部(例えば、計器パネル204に含まれる制御部など)により制御される。
図2Bは、図1及び図2Aに示す例示的なスロットルコントロール206の例示的なコックピット104の詳細を示す図である。図2Bの例では、航空機100の前後方向にスロットルレバー208を押して移動あるいは回動させることが可能であり、これによりエンジン106が出力する推力の大きさを変化させることができる。例えば、パイロットは、スロットルレバー208を航空機100の前方/機首側に押すことにより、エンジン106の推力を増加させる。同様に、パイロットは、スロットルレバー208を航空機100の後方/機尾側に引くことにより、エンジン106が出力する推力及び/又はスロットルを減少させる。
スロットルレバー208を前後に移動させることで、エンジン106が出力する推力が変化するので、図示した例では、スロットルレバー208の後方限界(aft limit)(例えば、スロットル設定の下限値)212及び前方限界(fore limit)(例えば、スロットル設定の上限値)214が定められている。この例では、後方限界212及び前方限界214は、スロットルレバー208の可動域の両端を規定するものであり、この例では、これらの限界は、飛行中には変更も、再設定されない。いくつかの例では、物理的及び/又は電磁気的なデバイスを用いて、スロットルレバー208の移動範囲を制限することもできる。これに加えて、あるいは、これに代えて、スロットルレバー208の移動範囲を物理的に制限する代わりに、スロットルレバー208の範囲を(例えば、フライ・バイ・ワイヤシステムにより)可変とする(例えば、前方及び後方限界の値の再設定や変更を行って、可動範囲を変更とする)こともできる。
いくつかの例では、図3を参照して後に詳細を記載するように、後方限界212及び/又は前方限界214を(例えば、飛行中に、及び/又は、飛行状態が変化した場合に)変更や再設定を行える構成にして、記号θで示す角度218の許容範囲を変更可能とすることもできる。この角度は、エンジン106の推力の大きさを決めるスロットルレバー208の位置を表す。本明細書に記載した例では、現在の(例えば、瞬時の)スロットル角、制御スロットル角、及び/又は、スロットル設定位置の値は、いずれも角度218についてのものである。具体的には、図示の例では、後方限界212は、水平に対して約31度に相当し、前方限界214は、水平に対して約70度に相当する。よって、スロットルレバー208の最大角度範囲(例えば、角度変位の範囲)は、約39度である。ただし、任意の適当な角度限界や範囲を代わりに利用することもできる。
図3は、本開示の教示による例示的なスロットルコントロールグラフ300である。例示的なスロットルコントロールグラフ300は、速度と推力範囲との関係を示すものであり、横軸302は、航空機100の較正対気速度(「CAS」)及び/又は速度を表す。また、例示的な制御のグラフ300の縦軸304は、航空機100のスロットル角(例えば、推力レゾルバ角、角度218)を表す。この例では、スロットル角は、度数で表されている。具体的には、この例のスロットル角は、30度前後(例えば、後方限界212である約31度)である。図3の例からわかるように、横軸302上には、失速警報速度(stick shaker velocity)306がVssで示されており、この限界速度になると、例えば、ヨーク桿(yoke stick)などの操縦桿202が振動してパイロットに警告を発する。具体的には、ヨーク桿に振動装置が通信可能に接続されており、飛行速度が例えば失速警報速度306に対応する閾値を下回ると振動するように構成することができる。この例では、境界速度(transition velocity)308は、最小速度の最大値(例えば、自動飛行制御システムで許容可能な最低速度)であるVcMinの値、あるいは、Vssで示す失速警報速度306に対して、この例では10ノットを余裕分として見込んだ余裕追加速度Vss+10の和を取ることによって規定される。ただし、余裕分の速度は、航空機の設計、大気の状態、航空機の操縦性などに基づいて、任意の適当な値とすることができる。この例では、航空機100の最大速度310を、VcMaxで示している。
この例では、制御グラフ300において、境界(例えば、包囲線、多角形領域線など)に囲まれた領域312は、オートスロットルシステムを手動制御でオーバーライド(例えば、ホールドコマンドの実行開始)することが可能な領域を規定している。換言すると、図示した例では、領域312内は、パイロットがオートスロットルシステムをオーバーライドして、オートスロットルシステムをホールドモードに移行させることが可能な領域である。これに加えて、あるいは、これに代えて、領域312によって、許容可能/有効なスロットル範囲を規定(例えば、飛行状態や飛行状態の更新に基づいて、後方限界212及び/又は前方限界214を連続的に再設定)してもよい。換言すると、領域312を利用して、有効スロットル範囲(例えば、許容可能/有効なスロットル範囲)を航空機100の速度に基づいて制限することができる。
領域312は、速度(例えば、VcMax)310により定まる第1境界又は端縁314、及び、スロットルの前方限界214により規定される第2境界又は端縁316を有しており、これらを規定することにより領域312が規定される。また、較正対気速度が失速警報速度306に近い場合のスロットル変化の関数を定義するには、第3境界又は端縁を規定する傾斜線分318を算出して、領域312のうち、手動制御によるオートスロットルのオーバーライドが有効でない部分を規定する。これに加えて、あるいは、これに代えて、傾斜線分318により、受け付けた飛行入力コマンド(例えば、手動コマンド又はTOGAなどの自動プログラムの開始コマンド)に従う動作が制限及び/又は制御されるスロットル限界を規定するようにしてもよい。線分318の勾配の算出については、図4を参照にして詳細に後述する。
これに代えて、いくつかの例では、第4境界又は端縁320は、領域312の除外部分及び/又は外限を規定する。このような例では、較正対気速度が一旦、境界点(transition point)322まで下がると、前方限界(例えば、前方限界214)を下回るような移動は、自動設定/制御による推力限界により制限され、また、これに加えて/あるいはこれに代えて、いくつかの例では、パイロットがホールドモードへの移行を行って、前方限界を下回る推力を設定することが制限される。換言すると、これらの例では、航空機100の速度が境界点322に対応する閾値を一旦下回ると、制御モード及びマニュアルモードのいずれにおいても、推力レゾルバ角が推力前方限界を下回るような操作は有効化/許可されない。
いくつかの例では、領域312は、飛行状態の変化に基づいて連続的に特定/更新される。また、図3に示した領域312の形状は一例であり、任意の適切な形状であってもよい。
図4は、本開示の例を実施する例示的なアルゴリズム400を概略的に示す図である。図4に示した例では、CASとして示す較正対気速度402、及び、Vssとして示す失速警報速度306が、関数演算部408に入力として送られる。いくつかの例では、(VCMIN,Vss+10)の最大値として算出される下限速度値(low end speed value)406も、関数演算部408に入力される。上述したように、VCMINは、航空機の最小操縦速度(minimum control speed)を表す。また、Vssは、失速警報速度306を表し、Vss+10は、この例では10ノットである公称余裕速度を失速警報速度306に加えた値と等しい余裕追加速度を表す。ただし、航空機の設計、飛行状態、飛行モードなどに基づいて、任意の他の適当な値を公称余裕速度とすることができる。この例では、関数演算部408を用いて勾配の算出や、傾斜線分318の特定(例えば、傾斜線分318の一次関数の定義)を行っている。関数演算部408の演算は、下記の式1により表される。
Figure 2017159897
この例では、失速警報速度306(Vss)は、航空機の1つ又は複数のセンサにより測定される航空機飛行状態の関数である。具体的には、失速警報速度306は、航空機の高度及び/又は姿勢に基づいて算出される。いくつかの例では、Vssは、例えば、最小操縦速度などの下限速度値の関数(例えば、最小操縦速度の1.3倍)である。
この例では、関数演算部408の勾配が算出されれば、ラグフィルタ(lag filter)409を用いて、関数演算部408の出力に対する平滑化及び/又はノイズ除去を行う。いくつかの例では、レートリミッタ(rate limiter)410を用いて、スロットル角度の変化率を制限してもよい。次に、関数演算部408によって算出された勾配が、限界範囲(range limit)412の関数に適用され、この例では0〜39度となるスロットルの角度範囲が得られるので、最小角度値(lower angular limit)が決まる。具体的には、この例における角度範囲が0〜39度であることは、オートスロットルの後方限界が31度であって、後方停止位置(aft stop)が33度で、上昇推力点(climb thrust point)が68度であることから算出される。この例では、最大オートスロットル位置(highest autothrottle point)は、70度であり、これに対応する物理的なレバー位置は80度である。つまり、最大オートスロットル位置である70度から、オートスロットルにおける後方限界である31度を差し引けば、角度範囲として39度が算出される。
次に、最大スロットル角の限界値(例えば、後方限界の最大値)414は、範囲限界412からの最小角度値と共に、演算処理部(例えば、加算又は減算など)416に入力される。これにより、航空機の性能を向上させ、及び/又は、航空機を好適飛行状態に保つ(例えば、速度を失速警報速度Vssに、あるいは、失速警報速度の整数倍より速い速度に保つ)よう算出/修正された後方限界(例えば、後方限界212の限界値)418が得られる。算出演算416は、例えば下記の式2のように表すことができる。
Figure 2017159897
上述の例において、例示的な算出及び/又は信号フィルタリングについて図4を参照して説明したが、任意の適当な数式、値、演算、及び/又は、フィルタリングを利用可能である。
図5は、本開示の例を実施可能するのに利用可能な例示的なスロットルコントロールシステム(例えば、自動スロットルコントロールシステム)500を示す図である。例示的なスロットルコントロールシステム500は、飛行スロットル算出システム502を含み、これは、飛行スロットル算出部504、飛行センサインターフェース506、及び、飛行入力インターフェース508を含む。図示した例のコントロールシステム500は、航空機スロットルシステム510をさらに含み、これは、通信回線512を介して飛行入力インターフェース508に、また、通信回線514を介して飛行スロットル算出部504に、通信可能に接続されている。
動作中、この例示的な飛行センサインターフェース506は、例えば航空機100などの航空機の飛行状態を特定する。具体的には、飛行センサインターフェース506は、較正対気速度、高度、風速、姿勢、地形、気象条件、外気温、及び/又は、飛行方向(例えば、ヨー、ピッチ、ロールなど)などの飛行状態を、センサデータやセンサデータの分析に基づいて特定する。この例では、飛行入力インターフェース508は、手動制御操作(例えば、飛行スロットルの手動制御)及び/又は飛行モードコマンド(例えば、自動FLCHモードや自動VNAVモードへの航空機の切り換え)などの、飛行入力を受け取る。
好適な、あるいは許容可能なスロットル設定位置や範囲を特定/算出するために、記載した例の飛行スロットル算出部504は、較正対気速度に加えて、上述した飛行状態、及び/又は、失速警報速度(Vss)を利用して、許容可能なスロットル範囲(例えば、調整後の後方限界212)を特定/算出する。例えば、飛行スロットル算出部504は、図3に示した領域312のように規定された領域を利用する。好適な、あるいは許容可能なスロットル範囲が一旦決定されれば、記載した例の飛行スロットル算出部504は、好適な、あるいは許容可能な推力範囲に推力を維持するよう航空機スロットルシステム510に命令する。例えば、飛行スロットル算出部504は、好適な、あるいは許容可能なスロットル範囲外にスロットルを移動させるような飛行入力を受け付けた場合には、ホールドモードの起動を有効化しないようスロットルシステム510に命令する。具体的には、飛行スロットルコントロールシステム502及び/又は飛行スロットル算出部504は、航空機スロットルシステム510を制御して、航空機をオートスロットルモードからホールド/手動制御モードに移行させる入力コマンドの実行を、例えば、算出された好適な、あるいは許容可能なスロットル範囲に基づいて制限する。これに加えて、あるいは、これに代えて、飛行スロットル算出部504及び/又は飛行入力インターフェース508は、例えば、スロットルの後方限界を変更し、これによって、スロットルを好適な、あるいは許容可能なスロットル範囲内に維持するよう航空機スロットルシステム510に命令する。
図5には、図5の例示的なスロットルコントロールシステム500の例示的な態様を示したが、図5に示した要素、プロセッサ、及び/又はデバイスのうちの1つ又は複数を、組み合わせたり、分割したり、再配置したり、省略したり、不要としたり、他の方法で実施したりすることが可能である。さらに、例示的な飛行スロットル算出システム502、例示的な飛行スロットル算出部504、例示的な飛行センサインターフェース506、例示的な飛行入力インターフェース508、及び/又は、より概括的には、図5の例示的なスロットルコントロールシステム500は、ハードウェア、ソフトウェア、及び/又は、ファームウェアにより、あるいは、ハードウェア、ソフトウェア、ファームウェアの任意の組み合わせにより実現することが可能である。よって、例えば、例示的な飛行スロットル算出システム502、例示的な飛行スロットル算出部504、例示的な飛行センサインターフェース506、例示的な飛行入力インターフェース508、及び/又は、より概括的には、例示的なスロットルコントロールシステム500は、1つ又は複数のアナログ又はデジタル回路、論理回路、プログラマブルプロセッサ、特定用途向け集積回路(ASIC)、プログラマブルロジックデバイス(PLD)、及び/又は、フィールドプログラマブルロジックデバイス(FPLD)により実現することが可能である。本特許出願における装置又はシステムに関する請求項が、ソフトウェアのみによる実施、及び/又はファームウェアによる実施も包含する場合は、例示的な飛行スロットル算出システム502、例示的な飛行スロットル算出部504、例示的な飛行センサインターフェース506、及び、例示的な飛行入力インターフェース508のうちの少なくとも1つは、ソフトウェア及び/又はファームウェアを記憶するメモリ、デジタル多目的ディスク(DVD)、コンパクトディスク(CD)、ブルーレイディスクなどのようなコンピュータ読取可能な有形記憶装置又は記憶ディスクを含むものあることを明示的に定義しておく。さらに、図5の例示的なスロットルコントロールシステム500は、1つ又は複数の要素、プロセッサ、及び/又はデバイスを、図5に示したものに加えて、あるいは代わりに含むことができ、図示の要素、プロセッサ、及びデバイスのいずれかあるいは全てを複数個含んでもよい。
図5のスロットルコントロールシステム500を実施する方法の代表的な例のフローチャートを図6〜図8に示す。これらの例における方法は、機械読取可能な命令により構成され、プロセッサにより実行されるプログラムとして実現されている。斯かるプログラムは、図9を参照して後述する例示的なプロセッサプラットフォーム900に示すプロセッサ912などにより実行される。プログラムは、コンピュータ読取可能な有形記憶媒体に格納されたソフトウェアとして実現することができ、斯かる記憶媒体としては、CD−ROM、フロッピーディスク、ハードディスクドライブ、デジタル多目的ディスク(DVD)、ブルーレイディスク、又は、プロセッサ912に関連づけられたメモリなどがある。ただし、プログラムの全体やその一部が、プロセッサ912以外のデバイスにより実行されてもよく、あるいは、ファームウェアや専用のハードウェアにより構成されるデバイスにおいて具体化されてもよい。さらに、図6〜図8のフローチャートを参照して例示的なプログラムを説明したが、例示的なスロットルコントロールシステム500の実施には、この他にも多くの方法が利用可能である。例えば、ブロックの実行順序は変更可能であり、また、記載したいくつかのブロックを変更したり、省略したり、組み合わせたりすることが可能である。
上述したように、図6〜図8に示す例示的な方法は、コンピュータ読取可能な有形記憶媒体にコード化して格納した命令(例えば、コンピュータ読取又は機械読取可能な命令)を用いて実施可能である。斯かる記憶媒体には、ハードディスクドライブ、フラッシュメモリ、読出し専用メモリ(CD−ROM)、コンパクトディスク(CD)、デジタル多目的ディスク(DVD)、キャッシュ、ランダムアクセスメモリ(RAM)、及び/又は、その他の任意の記憶デバイス又は記憶ディスクなど、情報を任意の期間保持(例えば、長期的、永続的、短期的、あるいは一時的なバッファリング、情報のキャッシング)するものがある。本明細書に用いるコンピュータ読取可能な有形記憶媒体なる用語は、任意の種類のコンピュータ読取可能な記憶デバイスや記憶ディスクを包含し、搬送波や伝送媒体は包含しないものであることを明示的に定義しておく。本明細書では、「コンピュータ読取可能な有形記憶媒体」と「機械読取可能な有形記憶媒体」とは、互換的に用いられる。これに加えて、あるいは、これに代えて、図6〜図8に示した例示的な方法は、コンピュータ読取又は機械読取可能な非一時的媒体にコード化して格納した命令(例えば、コンピュータ読取又は機械読取可能な命令)を用いて実施可能である。斯かる記憶媒体には、ハードディスクドライブ、フラッシュメモリ、読出し専用メモリ(CD−ROM)、コンパクトディスク(CD)、デジタル多目的ディスク(DVD)、キャッシュ、ランダムアクセスメモリ(RAM)、及び/又は、その他の任意の記憶デバイス又は記憶ディスクなど、情報を任意の期間保持(例えば、長期的、永続的、短期的、あるいは一時的なバッファリング、情報のキャッシング)するものがある。本明細書において用いる、コンピュータ読取可能な非一時的媒体なる用語は、任意の種類のコンピュータ読取可能な記憶デバイスや記憶ディスクを包含し、搬送波や伝送媒体は包含しないものであることを明示的に定義しておく。本明細書で「少なくとも」なる語句は、請求項において修飾語として用いる場合、「を含む」なる表現と同様に、非排他的(open-ended)である。
図6に示す例示的な方法では、開始時のブロック600において、航空機100などの航空機が自動飛行レベル変更モード(FLCH)に設定されており、航空機が高度を変更中(例えば、自動降下中)である(ブロック600)。この例では、自動航行は解除されているが、フライト・ディレクター(flight director)はオンにされたままであり、航空機のパイロットにガイドコマンド(guidance command)を提供する。ただし、図6に示す例示的な方法は、記載した例では、航空機が自動飛行モードである場合も、ない場合も含みうる。
次に、航空機の飛行状態が特定される(ブロック602)。具体的には、飛行センサインターフェース506などのセンサインターフェースに通信可能に接続されたセンサにより、航空機の速度(例えば、較正航空機速度)、姿勢、高度、方向、及び/又は、大気状態を含む、航空機に関連する情報が提供される。いくつかの例では、好適な、あるいは許容可能なスロットル限界の算出に利用される失速警報速度(Vss)及び/又は最低速度(Vcmin)などの変数は、この情報に基づいて算出される。
次に、許容可能なスロットル限界(例えば、後方限界212)及び/又はスロットル範囲が、飛行状態に基づいて算出される(ブロック604)。例えば、図4に示したアルゴリズム400のようなアルゴリズムを使用して、スロットル限界及び/又は許容可能なスロットル範囲を算出することができる。これに加えて、あるいは、これに代えて、図3に示す領域312のような境界を利用して、この算出を行ってもよい。
この例では、スロットルコントロール(例えば、オートスロットルコントロール)は、算出したスロットル限界及び/又は範囲に基づいて制限される(ブロック606)。いくつかの例では、スロットルコントロール(例えば、スロットルレバー208)は、算出したスロットル限界及び/又はスロットル範囲に基づいて、電気機械システム(例えば、電気機械式の制限システム)によって物理的に制限及び/又は調整されてもよい。いくつかの例では、スロットルコントロールの物理的な可動範囲を変更するのではなく、後方限界(例えば、後方限界212)及び/又は前方限界(例えば、前方限界214)に対応するスロットル限界を、算出したスロットル限界及び/又は範囲に基づいて変更してもよい。この結果、スロットルの物理的な位置に関わらず、航空機を非好適状態や低出力状態に移行させるようなスロットルに設定することが制限される。
この例では、スロットルコントロールを制限した後、処理は終了する(ブロック608)。しかしながら、いくつかの例では、この処理を飛行中に繰り返し実行する場合がある。これに加えて、あるいは、これに代えて、航空機が所定のモード(例えば、オートスロットルモード)にある場合に処理を開始、継続してもよい。
次に、図7を参照すると、図7に示す例示的な方法の開始時のブロック700において、図1の航空機100などの航空機が自動操縦モードで巡航中である(ブロック700)。この例では、航空機のオートスロットルシステムが稼働中である。図6に示した例とは対象的に、飛行状態及び/又はセンサデータに基づいてスロットル限界及び/又はスロットル範囲を制限するのではなく、飛行入力の比較や分析を行って、その飛行入力がオートスロットルシステムをオーバーライドしたり、オートスロットルコントロールをホールドモードにしたりすることが許容できるかどうかを判定する。
この例では、航空機の飛行状態が特定される(ブロック702)。具体的には、飛行センサインターフェース506などの飛行センサインターフェースに通信可能に接続されたセンサから取得したセンサデータを利用して飛行状態が特定される。
次に、飛行入力を受け付ける(ブロック704)。具体的には、航空機のコックピットにおける制御部から入力されるコマンドは、飛行入力インターフェース508のような飛行入力インターフェースにより受信される。例えば、この入力は、指定の高度への飛行レベル変更(FLCH)(例えば、降下操作)の指示である。いくつかの例では、飛行入力は、手動でのスロットル変更(例えば、スロットルを下げる)などの手動入力である。
いくつかの例では、航空機のオートスロットルコントロールのステータスが特定される(ブロック706)。そのような例では、飛行入力インターフェース508などの飛行入力インターフェースに問い合わせを行い、オートスロットルコントロールが稼働しているか否かを判定する。尚、この例では、航空機のオートスロットルコントロールが稼働しており、よって、オートスロットルコントロールのステータスがそのように特定される。
次に、スロットル限界(例えば、後方限界212)及び/又はスロットル範囲(例えば、許容可能なスロットル限界及び/又は範囲、推力レゾルバ角など)が、飛行状態に基づいて算出される(ブロック708)。この例では、飛行スロットル算出部504のような飛行スロットル算出部を利用して、飛行状態(例えば、較正対気速度、高度、飛行モード、大気状態、風況など)に基づいて、スロットル限界及び/又はスロットル範囲を特定する。航空機を好適飛行状態(例えば、好適飛行状態、好適飛行モードなど)に維持するのに許容可能なスロットル限界及び/又はスロットル範囲の算出は、記載した例の飛行スロットル算出部により、図4に示したアルゴリズム400などのアルゴリズムを利用して行われる。これに加えて、あるいは、これに代えて、飛行入力を利用してこの算出を行うことも可能である。
次に、オートスロットルをホールドモードに移行させるかどうかが判定される(ブロック710)。この例では、飛行入力を、算出した許容可能なスロットル限界及び/又はスロットル範囲と比較する。具体的には、飛行入力(例えば、手動のスロットル変更、自動航行モードやプログラムの開始など)に従うと、航空機が非好適モードに移行する(例えば、Vss速度306などのVss速度を下回る)場合には、オートスロットルをホールドモードに移行させることは許可されない。例えば、図3のスロットルコントロールグラフ300に示される比較や分析を利用して、オートスロットルのステータス変更(例えば、オートスロットルモードの遮断、解除、維持、起動、変更)を許可するかどうかを判定することができる。
オートスロットルをホールドモードに移行させない場合(ブロック710)、処理はブロック702に戻る。一方、オートスロットルをホールドモードに移行させる場合(ブロック710)は、処理はブロック712に進み、オートスロットルをホールドモードに移行させ(ブロック712)、その後、処理が終了する(ブロック714)。
次に、図8を参照すると、図8に示す例示的な方法の開始時のブロック800において、飛行中の航空機が、(例えば、操縦操作及び/又は高度変化により)非好適な飛行状態や低出力の飛行状態に移行しつつある傾向を(補完により)示している(ブロック800)。この例では、航空機が非好適な飛行状態や低出力の飛行状態に移行すると、オートスロットルモードは自動的に変更される。
いくつかの例では、航空機のオートスロットルシステムのステータスが検出される(ブロック802)。例えば、飛行入力インターフェース508のような飛行入力インターフェースは、航空機のコックピット制御部と通信して、例えば、オートスロットルシステムが稼働中であるかどうか判定する。
いくつかの例では、受け付け中の飛行入力(例えば、手動制御、自動飛行プログラムの起動など)に基づいて、オートスロットルがホールドモードに設定されたり、解除されたりする(ブロック804)。
この例では、飛行状態に基づいて飛行入力を分析する(ブロック806)。例えば、飛行入力を、図4に示した例示的なアルゴリズム400を利用して算出されたスロットル限界と比較する。これに加えて、あるいは、これに代えて、飛行入力を、特定された好適飛行状態に基づいて規定された速度/推力境界(例えば、領域312)と比較する。この比較により、飛行入力が、航空機のスロットルを所定の推力/速度範囲あるいは領域から逸脱させるかどうかを判定できる。
次に、オートスロットルのモードを変更するかどうかを判定する(ブロック808)。この例では、受け付けた飛行入力に従うと、算出されたスロットル限界を航空機のスロットルが下回るかどうかに基づき、オートスロットルモードは自動的に変更される。これに加えて、あるいは、これに代えて、航空機がまだ実際には非好適状態(例えば、急激な高度上昇や減速、好適飛行状態からの逸脱の傾向)に至っていなくとも、非好適状態に移行しつつあると判定した際に、オートスロットルモードを自動的に変更するようにしてもよい。オートスロットルモードを変更しない場合(ブロック808)には、ブロック802に処理は戻る。
一方、オートスロットルモードを変更する場合(ブロック808)は、ブロック810に処理は進み、オートスロットルモードの変更を行う(ブロック810)。いくつかの例では、オートスロットルシステムのホールドモードでオーバーライドすることによって、オートスロットルモードを変更(自動的に変更)してもよい。
オートスロットルモードの変更後(ブロック810)、航空機が好適飛行状態にあるかどうか判定する(ブロック812)。例えば、飛行センサインターフェース506などのセンサインターフェースを利用して、航空機が好適飛行状態にあるか(例えば、飛行制御グラフ300の境界やアルゴリズム400を利用して、航空機のスロットルレベルが、算出された許容可能なスロットル限界/推力レゾルバ角を上回っていることを示しているか)を判定する。この代わりに、いくつかの例では、航空機の速度が失速警報速度Vssを上回っていれば(例えば、失速警報速度の1.1倍〜1.5倍を上回っていれば)、航空機が好適飛行状態にあると判定する。
航空機が好適飛行状態から外れていれば(ブロック812)、ブロック814に処理は進み、航空機が好適飛行状態になるまでオートスロットルモードが維持される(ブロック814)。いくつかの例では、航空機が好適飛行状態(例えば、航空機の速度が、航空機高度及び/又は飛行方向に対して適切な速度)になるまで、オートスロットルをホールドモードに移行させることは制限される。航空機が好適飛行状態になると、ブロック802に処理は戻る。
いくつかの例では、航空機が好適飛行状態にあれば(ブロック812)、ブロック816に処理は進み、手動制御によるオートスロットルシステムのオーバーライドを有効化するかどうか判定する(ブロック816)。具体的には、記載した例のオートスロットルシステムのモードを変更して、航空機が好適飛行状態から逸脱する傾向を示していない間は、オートスロットルシステムを手動制御でオーバーライド可能なモードにする。換言すると、オートスロットルシステムのホールドモードは、航空機が好適飛行状態から逸脱する傾向を示していないことを条件に有効化される。この例では、手動オーバーライドを有効化すると判定されれば、手動オーバーライドを実行し(ブロック817)、その後、ブロック802に処理は進む。
代わりに、航空機が現時点では好適飛行状態にあっても、好適飛行状態から逸脱する傾向にある場合、オートスロットルシステムの手動オーバーライドは有効化されない(ブロック816)、その後、ブロック814に処理は進む。
図9は、図6〜図8に示す例示的な方法を実行して、図5に示す例示的なスロットルコントロールシステム500を実施可能な例示的なプロセッサプラットフォーム900を示すブロック図である。プロセッサプラットフォーム900の例としては、サーバ、パーソナルコンピュータ、移動デバイス(例えば、携帯電話、スマートフォン、iPad(登録商標)などのタブレット)、携帯情報端末(PDA)、インターネット機器、デジタルビデオレコーダ、セットトップボックス、その他の任意の演算デバイスなどがある。
図示した例のプロセッサプラットフォーム900は、プロセッサ912を含む。図示した例のプロセッサ912は、ハードウェアである。例えば、プロセッサ912は、所望の関連企業や製造業者から入手可能な1つ又は複数の集積回路、論理回路、マイクロプロセッサやコントローラにより実現可能である。
図示した例のプロセッサ912は、ローカルメモリ913(例えば、キャッシュ)を含む。この例では、プロセッサ912は、さらに、飛行スロットル算出部504、飛行センサインターフェース506、飛行入力インターフェース508、及び航空機スロットルシステム510を含む。図示した例のプロセッサ912は、揮発性メモリ914及び不揮発性メモリ916を含むメインメモリに対して、バス918を介して通信可能である。揮発性メモリ914は、同期型ダイナミック・ランダムアクセスメモリ(SDRAM)、ダイナミック・ランダムアクセスメモリ(DRAM)、ラムバスダイナミック・ランダムアクセスメモリ(RDRAM)、及び/又は他の任意の種類のランダムアクセスメモリ機器により実現可能である。不揮発性メモリ916は、フラッシュメモリ、及び/又は他の任意の所望の種類のメモリデバイスで実現可能である。メインメモリ914、916へのアクセスは、メモリコントローラにより制御される。
図示した例のプロセッサプラットフォーム900は、さらに、インターフェース回路920を含む。インターフェース回路920は、イーサネット(登録商標)インターフェース、ユニバーサルシリアルバス(USB)、及び/又はPCIエクスプレスインターフェースなどの任意の種類のインターフェース規格で実現可能である。
図示した例では、1つ又は複数の入力装置922が、インターフェース回路920に接続されている。入力装置922は、ユーザがプロセッサ912にデータやコマンドの入力を行うのに利用される。入力装置は、例えば、音響センサ、マイク、カメラ(静止画又は動画)、キーボード、ボタン、マウス、タッチスクリーン、タッチパッド、トラックボール、アイソポイント、及び/又は、音声認識システムなどにより実現可能である。
図示した例のインターフェース回路920には、1つ又は複数の出力装置924も接続されている。出力装置924は、例えば、表示装置(例えば、発光ダイオード(LED)、有機発光ダイオード(OLED)、液晶ディスプレイ、ブラウン管ディスプレイ、タッチスクリーン、触覚出力デバイス、プリンタ、及び/又はスピーカを含む)により、実現可能である。したがって、図示した例のインターフェース回路920は、通常、グラフィック・ドライバカード、グラフィック・ドライバチップ、又は、グラフィック・ドライバプロセッサを含む。
図示した例のインターフェース回路920は、例えば、送信機、受信器、送受信器、モデム、及び/又は、ネットワークインターフェースカードなどの通信デバイスも含み、これにより、ネットワーク926(例えば、イーサネット(登録商標)接続、デジタル加入者線(DSL)、電話回線、同軸ケーブル、携帯電話システムなど)を介して、外部装置(例えば、任意の種類の演算装置)と通信することが可能である。
図示した例のプロセッサプラットフォーム900は、さらに、ソフトウェアやデータを記憶するための1つ又は複数の大容量記憶装置928を含む。大容量記憶装置928の例には、フロッピーディスクドライブ、ハードディスクドライブ、コンパクトディスクドライブ、ブルーレイディスクドライブ、RAIDシステム、デジタル多目的ディスク(DVD)ドライブがある。
図6〜図8に示す命令コード932は、大容量記憶装置928、揮発性メモリ914、不揮発性メモリ916、及び/又は、CDやDVDなどの、有形で着脱可能なコンピュータ読取可能な記憶媒体に格納されている。
以上の記載から、上記に開示した方法、装置、物品によれば、スロットルシステムの自動制御によって、航空機を好適状態に自動的に維持し、及び/又は、航空機の性能を自動的に向上させることが可能であると理解されよう。本明細書に開示した例によれば、算出された好適なスロットル範囲を超えるスロットルの移動を、自動スロットル範囲の制御及び/又はシステムにより制限することができる。さらに、本明細書に開示した例によれば、飛行状態及び/又は飛行入力に基づいて、オートスロットルシステムのホールド/オーバーライドモードへの移行をシステムにより制限することができる。本明細書に開示した例によれば、オートスロットルシステムのモードを自動的に変更することで航空機が非好適状態に移行することを防止できる。
例示的な方法、装置、物品の特定の例について開示したが、本特許出願の範囲は、これらの例に限定されない。むしろ、本特許出願は、請求の範囲に包含されて然るべきすべての方法、装置、物品を網羅するものである。本明細書では、航空機に関する例を開示しているが、本開示の例は、宇宙船、潜水艦などのあらゆる輸送体に適用可能である。

Claims (22)

  1. 航空機の飛行状態に基づいて、プロセッサを用いて推力レゾルバ角を算出することと、
    前記推力レゾルバ角、又は、前記推力レゾルバ角で規定される範囲のうちの少なくとも一方を超えてスロットルが移動することを制限するよう制御して、前記航空機を好適飛行モードに維持することと、を含む方法。
  2. 前記推力レゾルバ角の算出は、前記航空機において選択されている自動モードにさらに基づいて行われる、請求項1に記載の方法。
  3. 前記飛行状態は、前記航空機の速度、ピッチ、ヨー、ロール、高度のうちの少なくとも1つを含む、請求項1又は2に記載の方法。
  4. 前記推力レゾルバ角の算出は、速度範囲及び推力範囲によって規定される領域に基づいて行われる、請求項1〜3のいずれかに記載の方法。
  5. 前記スロットルを制御することは、スロットルレバーの移動範囲を制限することを含む、請求項1〜4のいずれかに記載の方法。
  6. 前記スロットルを制限することは、前記スロットルレバーを電気機械的に制限することを含む、請求項5に記載の方法。
  7. 前記スロットルを制御することは、オートスロットルシステムのホールドモードへの移行を制限するよう制御することを含む、請求項1〜5のいずれかに記載の方法。
  8. 前記好適飛行モードは、前記航空機を、前記航空機の失速警報速度上回る速度に維持することを含む、請求項1〜5及び7のいずれかに記載の方法。
  9. 航空機のオートスロットルコントロールを制御する方法であって、
    受け付けた飛行入力及び少なくとも1つの飛行状態をプロセッサを用いて分析して、前記飛行入力が、前記航空機を好適飛行状態とは異なる状態に遷移させるものであるかを判定することと、
    前記飛行入力が前記航空機を前記好適飛行状態から別の状態に遷移させないと判定すれば、前記オートスロットルコントロールのホールドモードへの移行を有効化することと、を含む方法。
  10. 前記飛行入力が前記航空機を前記好適飛行状態から別の状態に遷移させると判定すれば、前記オートスロットルコントロールのモードを自動的に変更することをさらに含む、請求項9に記載の方法。
  11. 前記航空機が前記好適飛行状態から逸脱するタイミングに基づいて、前記オートスロットルのモードを前記ホールドモードから別のモードに自動的に変更することをさらに含む、請求項9又は10に記載の方法。
  12. 速度範囲及び推力範囲によって規定される領域に基づいて特定される推力レゾルバ角を上回るようにスロットルレベルを制御することをさらに含む、請求項9〜11のいずれかに記載の方法。
  13. 前記好適飛行状態は、前記航空機の速度が失速警報速度より速いことを含む、請求項9〜12のいずれかに記載の方法。
  14. 命令を格納した機械読取可能な有形記憶媒体であって、前記命令の実行によりプロセッサは、
    航空機への飛行入力が、前記航空機を非好適飛行状態に遷移させるものであることを判定し、
    前記判定に基づいて、前記航空機のオートスロットルのモードを変更して、前記航空機を好適飛行状態に維持する、記憶媒体。
  15. 前記命令の実行により、前記プロセッサは、許容可能なスロットル限界又はスロットル範囲のうちの少なくとも一方の算出をさらに行う、請求項14に記載の機械読取可能な媒体。
  16. 前記命令の実行により、前記プロセッサは、電気機械システムに命令して、前記許容可能なスロットル限界又はスロットル範囲のうちの少なくとも一方を超えるスロットルの移動を制限させる、請求項15に記載の機械読取可能な媒体。
  17. 前記飛行入力は、自動飛行プログラムの実行を指示するコマンドを含む、請求項14又は15に記載の機械読取可能な媒体。
  18. 前記プロセッサは、前記航空機が前記好適飛行状態から逸脱しつつあることを判定して、前記飛行入力が前記航空機を非好適状態に遷移させるものであると判定する、請求項14〜17のいずれかに記載の機械読取可能な媒体。
  19. 航空機の飛行状態を特定する前記航空機のセンサと、
    許容可能なスロットル限界又はスロットル範囲のうちの少なくとも一方を前記飛行状態に基づいて算出すると共に、前記航空機を好適飛行状態に維持するプロセッサと、
    前記スロットル限界及びスロットル範囲のうちの少なくとも一方を超えてスロットルが移動することを制限するよう制御する電気機械システムと、
    を含む、例示的な装置。
  20. 前記プロセッサは、前記航空機の対気速度を、速度範囲及び推力範囲によって規定される領域と比較することによって、前記スロットル限界又はスロットル範囲のうちの少なくとも一方を算出する、請求項19に記載の装置。
  21. 前記プロセッサは、前記スロットル限界又はスロットル範囲のうちの少なくとも一方の算出を、さらに飛行入力に基づいて行う、請求項19又は20に記載の装置。
  22. 前記プロセッサは、前記航空機のオートスロットルコントロールシステムのホールドモードを、前記飛行入力に基づいて有効化又は無効化する、請求項21に記載の装置。
JP2017039996A 2016-03-10 2017-03-03 飛行スロットルの自動制御 Active JP6941453B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/066,929 2016-03-10
US15/066,929 US9828108B2 (en) 2016-03-10 2016-03-10 Automated flight throttle control

Publications (2)

Publication Number Publication Date
JP2017159897A true JP2017159897A (ja) 2017-09-14
JP6941453B2 JP6941453B2 (ja) 2021-09-29

Family

ID=58387615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039996A Active JP6941453B2 (ja) 2016-03-10 2017-03-03 飛行スロットルの自動制御

Country Status (9)

Country Link
US (3) US9828108B2 (ja)
EP (1) EP3235734B1 (ja)
JP (1) JP6941453B2 (ja)
KR (1) KR102603931B1 (ja)
CN (1) CN107176304B (ja)
AU (1) AU2017200308B2 (ja)
CA (2) CA3128552C (ja)
ES (1) ES2960231T3 (ja)
RU (1) RU2734364C2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019142480A (ja) * 2018-02-23 2019-08-29 ザ・ボーイング・カンパニーThe Boeing Company 着陸装置格納ブレーキを制御する方法および装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828108B2 (en) 2016-03-10 2017-11-28 The Boeing Company Automated flight throttle control
FR3064602B1 (fr) * 2017-03-29 2019-06-07 Airbus Operations Mode de fonctionnement degrade d'un groupe propulseur d'aeronef permettant le deplafonnement d'une consigne de poussee
US20220258872A1 (en) * 2021-02-18 2022-08-18 Geoffrey S.M. Hedrick Pilot interface for aircraft autothrottle control
RU2689054C1 (ru) * 2018-08-30 2019-05-23 Публичное акционерное общество "Московский институт электромеханики и автоматики" (ПАО "МИЭА") Способ управления скоростью полёта самолёта с учетом стабилизации скорости
US11377223B2 (en) * 2018-10-29 2022-07-05 Pratt & Whitney Canada Corp. Autothrottle control system on turbopropeller-powered aircraft
CN111293951A (zh) * 2019-04-17 2020-06-16 天津深之蓝海洋设备科技有限公司 振动发生装置、振动发生方法和潜水器
KR20230028367A (ko) * 2020-06-26 2023-02-28 이노베이티브 솔루션즈 앤드 서포트 인코포레이티드 항속 시간 및 연료 경제를 위한 항공기 제어
US20220024601A1 (en) * 2020-07-23 2022-01-27 Gulfstream Aerospace Corporation Controllers and aircraft with variable engine thrust takeoff system
CN111846250B (zh) * 2020-07-23 2022-02-22 中国商用飞机有限责任公司 用于控制飞机的航速和姿态模式的方法及系统
CN112558625B (zh) * 2020-12-17 2021-07-20 北京北航天宇长鹰无人机科技有限公司 一种航空飞行器巡航的控制方法及航空飞行器
KR102266184B1 (ko) * 2021-04-08 2021-06-18 국방과학연구소 항공기의 조종을 위한 제어 장치 및 그의 동작 방법
EP4320043A2 (en) * 2021-10-22 2024-02-14 Innovative Solutions & Support, Inc. Retrofit aircraft autothrottle control for aircraft with engine controllers
CN114882142B (zh) * 2022-05-13 2022-12-06 北京天译科技有限公司 气象数据的图形产品加工方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516970A (ja) * 2000-05-16 2004-06-10 ベル ヘリコプター テクストロン インコーポレイテッド 出力レバー触覚キューイングシステム
US20050151672A1 (en) * 2002-03-21 2005-07-14 Augustin Michael J. Method and apparatus for tactile cueing of aircraft controls
US20090326745A1 (en) * 2006-12-22 2009-12-31 Embraer-Empresa Brasileira De Aeronautica S.A. Aircraft cruise speed control
US20100125378A1 (en) * 2008-11-20 2010-05-20 Frederick Charles Henry Blechen Automatic throttle roll angle compensation
US8195346B1 (en) * 2009-01-21 2012-06-05 Garmin International, Inc. Envelope protection for mechanically-controlled aircraft

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1707896C (ru) * 1990-04-06 1995-02-09 Авиационный комплекс им.С.В.Ильюшина Система управления двигателем летательного аппарата
AU2002334708A1 (en) * 2001-10-01 2003-04-14 Kline And Walker, Llc Pfn/trac system faa upgrades for accountable remote and robotics control
US7711455B1 (en) * 2006-08-09 2010-05-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Propulsion controlled aircraft computer
RU2325304C1 (ru) * 2006-09-22 2008-05-27 Открытое акционерное общество Московский научно-производственный комплекс "Авионика" (ОАО МНПК "Авионика") Способ автоматического управления полетом высокоманевренного самолета
US8965601B1 (en) * 2008-09-23 2015-02-24 Rockwell Collins, Inc. System, module, and method for presenting a flight director-dependent hits pathway on an aircraft display unit
US8634972B2 (en) * 2011-08-30 2014-01-21 General Electric Company Method and system for integrating engine control and flight control system
US9828108B2 (en) 2016-03-10 2017-11-28 The Boeing Company Automated flight throttle control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516970A (ja) * 2000-05-16 2004-06-10 ベル ヘリコプター テクストロン インコーポレイテッド 出力レバー触覚キューイングシステム
US20050151672A1 (en) * 2002-03-21 2005-07-14 Augustin Michael J. Method and apparatus for tactile cueing of aircraft controls
US20090326745A1 (en) * 2006-12-22 2009-12-31 Embraer-Empresa Brasileira De Aeronautica S.A. Aircraft cruise speed control
US20100125378A1 (en) * 2008-11-20 2010-05-20 Frederick Charles Henry Blechen Automatic throttle roll angle compensation
US8195346B1 (en) * 2009-01-21 2012-06-05 Garmin International, Inc. Envelope protection for mechanically-controlled aircraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
運輸省航空機事故調査委員会: "中華航空公司所属エアバス・インダストリー式A300B4-622R型B1816 名古屋空港 平成6年4月26日", 航空機事故調査報告書, JPN7020004165, 19 July 1996 (1996-07-19), JP, pages 1, ISSN: 0004413617 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019142480A (ja) * 2018-02-23 2019-08-29 ザ・ボーイング・カンパニーThe Boeing Company 着陸装置格納ブレーキを制御する方法および装置
JP7197341B2 (ja) 2018-02-23 2022-12-27 ザ・ボーイング・カンパニー 着陸装置格納ブレーキを制御する方法および装置

Also Published As

Publication number Publication date
CA3128552C (en) 2023-04-04
EP3235734B1 (en) 2023-08-02
CN107176304A (zh) 2017-09-19
CA2954827C (en) 2021-10-19
AU2017200308A1 (en) 2017-09-28
JP6941453B2 (ja) 2021-09-29
ES2960231T3 (es) 2024-03-01
US9828108B2 (en) 2017-11-28
BR102017003488A2 (pt) 2018-03-06
RU2734364C2 (ru) 2020-10-15
US20170259931A1 (en) 2017-09-14
CN107176304B (zh) 2023-04-07
US10106270B2 (en) 2018-10-23
AU2017200308B2 (en) 2022-02-03
RU2017100583A (ru) 2018-07-11
EP3235734A1 (en) 2017-10-25
US20180050808A1 (en) 2018-02-22
US20190055028A1 (en) 2019-02-21
KR102603931B1 (ko) 2023-11-17
RU2017100583A3 (ja) 2020-04-30
KR20170106191A (ko) 2017-09-20
CA2954827A1 (en) 2017-09-10
US10507933B2 (en) 2019-12-17
CA3128552A1 (en) 2017-09-10

Similar Documents

Publication Publication Date Title
JP6941453B2 (ja) 飛行スロットルの自動制御
EP2662744B1 (fr) Procédé de commande de pilotage d'un aéronef
US8025256B2 (en) Precision adjust split detent for a vehicle
US8442701B2 (en) Dynamic roll angle stall protection for an aircraft
EP2787408B1 (en) Flight director flare guidance
US9085371B2 (en) Automatic throttle roll angle compensation
US10331120B2 (en) Remote control device, control system and method of controlling
CA2951908A1 (en) Systems and methods to prevent an aircraft from tail contact with the ground
JP2016153296A (ja) 航空機の水平安定板を制御する方法及び装置
EP2746887B1 (en) Aircraft steep approach performance improvements and optimization
JP2021075268A (ja) 航空機のピッチ軸エンベロープ制限のシステムと方法
CN113885581B (zh) 协调飞行控制方法、装置、电子设备及可读存储介质
JP7482756B2 (ja) 航空機の制御システム、航空機、航空機の制御方法及びプログラム
CN114902151A (zh) 无人机控制方法、装置、无人机、终端、系统及存储介质
BR102017003488B1 (pt) Método para calcular um ângulo de resolução de empuxo com base em uma condição de voo de uma aeronave, e, aparelho
US20180043975A1 (en) Vehicle control system for watercraft using a microchip based processor and control surfaces
KR20160074239A (ko) 항공기의 지형추적비행용 디스플레이 방법 및 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6941453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150