JP2017156244A - Battery voltage detector - Google Patents

Battery voltage detector Download PDF

Info

Publication number
JP2017156244A
JP2017156244A JP2016040350A JP2016040350A JP2017156244A JP 2017156244 A JP2017156244 A JP 2017156244A JP 2016040350 A JP2016040350 A JP 2016040350A JP 2016040350 A JP2016040350 A JP 2016040350A JP 2017156244 A JP2017156244 A JP 2017156244A
Authority
JP
Japan
Prior art keywords
cell
cells
detection line
potential
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016040350A
Other languages
Japanese (ja)
Other versions
JP6593226B2 (en
Inventor
肥田 実
Minoru Hida
実 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016040350A priority Critical patent/JP6593226B2/en
Publication of JP2017156244A publication Critical patent/JP2017156244A/en
Application granted granted Critical
Publication of JP6593226B2 publication Critical patent/JP6593226B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure that the cell voltages of a plurality of cells connected in series do not significantly vary between each cell.SOLUTION: Provided is a battery voltage detector including a plurality of cells connected in series and also including for each cell a differential amplification circuit operating on the basis of the potential of a lowest order detection line as a point of reference that is connected to the negative pole of a lowest order cell whose potential is lowest among the plurality of cells, and differentially amplifying the cell voltage of a corresponding cell among the plurality of cells. A connection point between adjacent cells among the plurality of cells is connected, via an intercell detection line connected to the connection point, to a differential amplification circuit for differentially amplifying the cell voltage of a cell out of the adjacent cells whose potential is lower and a differential amplification circuit for differentially amplifying the cell voltage of a cell out of the adjacent cells whose potential is higher. A resistive element for pulling up the intercell detection line to a highest order detection line connected to the positive pole of a highest order cell whose potential is highest among the plurality of cells is provided for each intercell detection line.SELECTED DRAWING: Figure 1

Description

本発明は、電池電圧検出装置に関する。   The present invention relates to a battery voltage detection device.

従来、直列に接続された複数のセルのうち対応するセルのセル電圧を差動増幅する差動増幅回路をセル毎に備える、電池電圧検出装置が知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a battery voltage detection device is known that includes a differential amplifier circuit for differentially amplifying a cell voltage of a corresponding cell among a plurality of cells connected in series (see, for example, Patent Document 1). .

特開2012−47520公報JP 2012-47520 A

しかしながら、セル毎に備えられた各差動増幅回路が、直列に接続された複数のセルのうち最も電位の低いセルの負極に接続された検出線の電位を基準に動作する構成であると、セルから放電される放電電流は電位の低いセルほど大きくなる場合がある。この場合、セル電圧が各セル間でばらつき易くなる。   However, each differential amplifier circuit provided for each cell is configured to operate based on the potential of the detection line connected to the negative electrode of the cell having the lowest potential among the plurality of cells connected in series. The discharge current discharged from the cell may become larger as the cell has a lower potential. In this case, the cell voltage tends to vary from cell to cell.

例えば、図1は、直列に接続された複数のセルのうち対応するセルのセル電圧を差動増幅する差動増幅回路をセル毎に備える電池電圧検出装置の一比較例を示す図である。図1に示された電池電圧検出装置1は、4つのセル11〜14のうち最も電位の低い最下位セル11の負極に接続された最下位検出線30の電位41を基準に動作する4つの差動増幅回路21〜24を備える。差動増幅回路21〜24は、それぞれ、セル11〜14のうち対応するセルのセル電圧を差動増幅する。   For example, FIG. 1 is a diagram illustrating a comparative example of a battery voltage detection device including a differential amplifier circuit for each cell that differentially amplifies a cell voltage of a corresponding cell among a plurality of cells connected in series. The battery voltage detection apparatus 1 shown in FIG. 1 operates on the basis of the potential 41 of the lowest detection line 30 connected to the negative electrode of the lowest cell 11 having the lowest potential among the four cells 11 to 14. Differential amplifier circuits 21 to 24 are provided. The differential amplifier circuits 21 to 24 differentially amplify the cell voltages of the corresponding cells among the cells 11 to 14, respectively.

隣り合うセル11,12間の接続点51は、接続点51に接続されたセル間検出線31を介して、セル11のセル電圧を差動増幅する差動増幅回路21とセル12のセル電圧を差動増幅する差動増幅回路22とに接続されている。差動増幅回路21,22は共通の電位41を基準に動作するため、接続点51からセル間検出線31に流れ出る電流51aは、差動増幅回路21,22を経由して、最下位セル11の負極に流れ込む。つまり、電流51aには、セル11から放電される電流が含まれている。   The connection point 51 between the adjacent cells 11 and 12 is connected to the differential amplification circuit 21 that differentially amplifies the cell voltage of the cell 11 via the inter-cell detection line 31 connected to the connection point 51 and the cell voltage of the cell 12. Is connected to a differential amplifier circuit 22 that differentially amplifies the signal. Since the differential amplifier circuits 21 and 22 operate on the basis of the common potential 41, the current 51a flowing out from the connection point 51 to the inter-cell detection line 31 passes through the differential amplifier circuits 21 and 22 and the lowest cell 11 Flows into the negative electrode. That is, the current 51a includes a current discharged from the cell 11.

同様に、隣り合うセル12,13間の接続点52は、接続点52に接続されたセル間検出線32を介して、セル12のセル電圧を差動増幅する差動増幅回路22とセル13のセル電圧を差動増幅する差動増幅回路23とに接続されている。差動増幅回路22,23は共通の電位41を基準に動作するため、接続点52からセル間検出線32に流れ出る電流52aは、差動増幅回路22,23を経由して、最下位セル11の負極に流れ込む。つまり、電流52aには、セル11とセル12とから放電される電流が含まれている。   Similarly, the connection point 52 between the adjacent cells 12 and 13 is connected to the differential amplifier circuit 22 and the cell 13 which differentially amplifies the cell voltage of the cell 12 via the inter-cell detection line 32 connected to the connection point 52. Are connected to a differential amplifier circuit 23 for differentially amplifying the cell voltage. Since the differential amplifier circuits 22 and 23 operate based on the common potential 41, the current 52 a flowing out from the connection point 52 to the inter-cell detection line 32 passes through the differential amplifier circuits 22 and 23 and the lowest cell 11. Flows into the negative electrode. That is, the current 52a includes a current discharged from the cell 11 and the cell 12.

隣り合うセル13,14間の接続点53からセル間検出線33に流れ出る電流53aについても上記同様に考えることができるので、電流53aには、セル11とセル12とセル13とから放電される電流が含まれている。   Since the current 53a flowing out from the connection point 53 between the adjacent cells 13 and 14 to the inter-cell detection line 33 can be considered in the same manner as described above, the current 53a is discharged from the cell 11, the cell 12 and the cell 13. Current is included.

このように、電流51a,52a,53aのそれぞれに含まれる電流を放電するセルに着目すると、セルから放電される総放電量は、直列に接続された複数のセルのうち電位の低いセルほど大きいので、セル電圧が各セル間でばらつき易い。   Thus, when attention is paid to the cells that discharge the currents included in each of the currents 51a, 52a, and 53a, the total discharge amount discharged from the cells is larger in the cells having a lower potential among the plurality of cells connected in series. Therefore, the cell voltage tends to vary between cells.

そこで、本発明の一態様は、直列に接続された複数のセルのセル電圧を各セル間でばらつき難くすることを目的とする。   In view of the above, an object of one embodiment of the present invention is to make the cell voltages of a plurality of cells connected in series difficult to vary among cells.

上記目的を達成するためには、隣り合うセル間の接続点からセル間検出線に流れ出る電流をセル間検出線毎に低減することができればよい。   In order to achieve the above object, it is sufficient that the current flowing out from the connection point between adjacent cells to the inter-cell detection line can be reduced for each inter-cell detection line.

そこで、本発明の一態様では、
直列に接続された複数のセルを備えるとともに、
前記複数のセルのうち最も電位の低い最下位セルの負極に接続された最下位検出線の電位を基準に動作し、前記複数のセルのうち対応するセルのセル電圧を差動増幅する差動増幅回路をセル毎に備え、
前記複数のセルのうちで隣り合うセル間の接続点は、前記接続点に接続されたセル間検出線を介して、前記隣り合うセルの電位の低い方のセルのセル電圧を差動増幅する差動増幅回路と前記隣り合うセルの電位の高い方のセルのセル電圧を差動増幅する差動増幅回路とに接続された、電池電圧検出装置であって、
前記複数のセルのうち最も電位の高い最上位セルの正極に接続された最上位検出線に前記セル間検出線をプルアップする抵抗素子を前記セル間検出線毎に備える、電池電圧検出装置が提供される。
Therefore, in one embodiment of the present invention,
With a plurality of cells connected in series,
A differential that operates based on the potential of the lowest detection line connected to the negative electrode of the lowest cell having the lowest potential among the plurality of cells, and differentially amplifies the cell voltage of the corresponding cell among the plurality of cells. Amplifying circuit is provided for each cell,
A connection point between adjacent cells among the plurality of cells differentially amplifies a cell voltage of a cell having a lower potential of the adjacent cell via an inter-cell detection line connected to the connection point. A battery voltage detection device connected to a differential amplifier circuit and a differential amplifier circuit that differentially amplifies the cell voltage of the higher potential cell of the adjacent cell,
A battery voltage detection device comprising a resistance element for pulling up the inter-cell detection line to the uppermost detection line connected to the positive electrode of the highest cell having the highest potential among the plurality of cells. Provided.

本態様によれば、前記最上位検出線から前記抵抗素子を経由して前記セル間検出線に電流を流し出すことができるので、隣り合うセルの接続点からセル間検出線に流れ出る電流を低減することができる。そして、そのような前記抵抗素子がセル間検出線毎に備えられていることにより、隣り合うセル間の接続点からセル間検出線に流れ出る電流をセル間検出線毎に低減させることができる。セル間検出線に流れ出る電流をセル間検出線毎に低減することにより、前記最上位セルを経由して前記最上位検出線に流れ出る電流が増加する。その結果、各セルの総放電量は均等に近づくので、セル電圧が各セル間でばらつき難くなる。   According to this aspect, since the current can flow out from the uppermost detection line to the inter-cell detection line via the resistance element, the current flowing out from the connection point of adjacent cells to the inter-cell detection line is reduced. can do. And since the said resistive element is provided for every detection line between cells, the electric current which flows into the detection line between cells from the connection point between adjacent cells can be reduced for every detection line between cells. By reducing the current flowing to the inter-cell detection line for each inter-cell detection line, the current flowing to the uppermost detection line via the uppermost cell increases. As a result, the total discharge amount of each cell approaches evenly, so that the cell voltage is less likely to vary between cells.

本発明の一態様によれば、直列に接続された複数のセルのセル電圧が各セル間でばらつき難くなる。   According to one embodiment of the present invention, the cell voltages of a plurality of cells connected in series are less likely to vary between cells.

直列に接続された複数のセルのうち対応するセルのセル電圧を差動増幅する差動増幅回路をセル毎に備える電池電圧検出装置の一比較例を示す図である。It is a figure which shows the comparative example of the battery voltage detection apparatus provided with the differential amplifier circuit for differentially amplifying the cell voltage of a corresponding cell among the several cells connected in series for every cell. 直列に接続された複数のセルのうち対応するセルのセル電圧を差動増幅する差動増幅回路をセル毎に備える電池電圧検出装置の一実施例を示す図である。It is a figure which shows one Example of a battery voltage detection apparatus provided with the differential amplifier circuit for differentially amplifying the cell voltage of a corresponding cell among several cells connected in series for every cell. 直列に接続された複数のセルのうち対応するセルのセル電圧を差動増幅する差動増幅回路をセル毎に備える電池電圧検出装置の一具体例を示す図である。It is a figure which shows one specific example of the battery voltage detection apparatus provided with the differential amplifier circuit for differentially amplifying the cell voltage of a corresponding cell among the several cells connected in series for every cell. 直列に接続された複数のセルのうち対応するセルのセル電圧を差動増幅する差動増幅回路をセル毎に備える電池電圧検出装置の他の一具体例を示す図である。It is a figure which shows another specific example of the battery voltage detection apparatus provided with the differential amplifier circuit for differentially amplifying the cell voltage of a corresponding cell among the several cells connected in series for every cell.

図2は、直列に接続された複数のセルのうち対応するセルのセル電圧を差動増幅する差動増幅回路をセル毎に備える電池電圧検出装置の一実施例を示す図である。図2に示される電池電圧検出装置2は、直列に接続された4つのセル61〜64を含む組電池60と、セルと同数の4つの差動増幅回路71〜74とを備える。   FIG. 2 is a diagram illustrating an embodiment of a battery voltage detection device including, for each cell, a differential amplifier circuit that differentially amplifies the cell voltage of a corresponding cell among a plurality of cells connected in series. The battery voltage detection device 2 shown in FIG. 2 includes a battery pack 60 including four cells 61 to 64 connected in series, and four differential amplifier circuits 71 to 74 as many as the cells.

差動増幅回路71は、一対の検出線80,81を介して並列に接続されたセル61のセル電圧を検出する。差動増幅回路72は、一対の検出線81,82を介して並列に接続されたセル62のセル電圧を検出する。差動増幅回路73は、一対の検出線82,83を介して並列に接続されたセル63のセル電圧を検出する。差動増幅回路74は、一対の検出線83,84を介して並列に接続されたセル64のセル電圧を検出する。セルのセル電圧とは、そのセルの両極間の電圧である。   The differential amplifier circuit 71 detects the cell voltage of the cells 61 connected in parallel via a pair of detection lines 80 and 81. The differential amplifier circuit 72 detects the cell voltage of the cells 62 connected in parallel via the pair of detection lines 81 and 82. The differential amplifier circuit 73 detects the cell voltage of the cells 63 connected in parallel via the pair of detection lines 82 and 83. The differential amplifier circuit 74 detects the cell voltage of the cells 64 connected in parallel via the pair of detection lines 83 and 84. The cell voltage of a cell is the voltage between both poles of the cell.

差動増幅回路71〜74は、それぞれ、4つのセル61〜64のうち最も電位の低い最下位セル61の負極に接続された最下位検出線80の電位42(グランド電位)を基準に動作する。差動増幅回路71〜74は、それぞれ、セル61〜64のうち対応するセルのセル電圧を電位42を基準に差動増幅し、電位42を基準とした差動増幅後の電圧を出力する。   The differential amplifier circuits 71 to 74 operate on the basis of the potential 42 (ground potential) of the lowest detection line 80 connected to the negative electrode of the lowest cell 61 having the lowest potential among the four cells 61 to 64. . Each of the differential amplifier circuits 71 to 74 differentially amplifies the cell voltage of the corresponding cell among the cells 61 to 64 with reference to the potential 42, and outputs a voltage after differential amplification based on the potential 42.

隣り合うセル61,62間の接続点91は、接続点91に接続されたセル間検出線81を介して、セル61のセル電圧を差動増幅する差動増幅回路71とセル62のセル電圧を差動増幅する差動増幅回路72とに接続されている。接続点91は、隣り合うセル61,62のうち電位の低い方のセル61の正極と電位の高い方のセル62の負極とが接続されたノードである。   The connection point 91 between the adjacent cells 61 and 62 is connected to the differential amplification circuit 71 that differentially amplifies the cell voltage of the cell 61 and the cell voltage of the cell 62 via the inter-cell detection line 81 connected to the connection point 91. Is connected to a differential amplifier circuit 72 for differentially amplifying the signal. The connection point 91 is a node where the positive electrode of the cell 61 having the lower potential and the negative electrode of the cell 62 having the higher potential are connected to each other among the adjacent cells 61 and 62.

差動増幅回路71,72は共通の電位42を基準に動作するため、接続点91からセル間検出線81に流れ出る電流91aは、差動増幅回路71,72を経由して、最下位セル61の負極に流れ込む。つまり、電流91aには、セル61から放電される電流が含まれている。   Since the differential amplifier circuits 71 and 72 operate on the basis of the common potential 42, the current 91 a flowing out from the connection point 91 to the inter-cell detection line 81 passes through the differential amplifier circuits 71 and 72 and the lowest cell 61. Flows into the negative electrode. That is, the current 91a includes a current discharged from the cell 61.

隣り合うセル62,63間の接続点92は、接続点92に接続されたセル間検出線82を介して、セル62のセル電圧を差動増幅する差動増幅回路72とセル63のセル電圧を差動増幅する差動増幅回路73とに接続されている。接続点92は、隣り合うセル62,63のうち電位の低い方のセル62の正極と電位の高い方のセル63の負極とが接続されたノードである。   A connection point 92 between the adjacent cells 62 and 63 is connected to a differential amplification circuit 72 that differentially amplifies the cell voltage of the cell 62 and a cell voltage of the cell 63 via an inter-cell detection line 82 connected to the connection point 92. Is connected to a differential amplifier circuit 73 that differentially amplifies the signal. The connection point 92 is a node where the positive electrode of the cell 62 having the lower potential and the negative electrode of the cell 63 having the higher potential are connected to each other among the adjacent cells 62 and 63.

差動増幅回路72,73は共通の電位42を基準に動作するため、接続点92からセル間検出線82に流れ出る電流92aは、差動増幅回路72,73を経由して、最下位セル61の負極に流れ込む。つまり、電流92aには、セル61とセル62とから放電される電流が含まれている。   Since the differential amplifier circuits 72 and 73 operate on the basis of the common potential 42, the current 92 a flowing out from the connection point 92 to the inter-cell detection line 82 passes through the differential amplifier circuits 72 and 73 and the lowest cell 61. Flows into the negative electrode. That is, the current 92a includes a current discharged from the cell 61 and the cell 62.

隣り合うセル63,64間の接続点93は、接続点93に接続されたセル間検出線83を介して、セル63のセル電圧を差動増幅する差動増幅回路73とセル64のセル電圧を差動増幅する差動増幅回路74とに接続されている。接続点93は、隣り合うセル63,64のうち電位の低い方のセル63の正極と電位の高い方のセル64の負極とが接続されたノードである。   A connection point 93 between adjacent cells 63 and 64 is connected to a differential amplifier circuit 73 for differentially amplifying the cell voltage of the cell 63 and a cell voltage of the cell 64 via an inter-cell detection line 83 connected to the connection point 93. Is connected to a differential amplifier circuit 74 that differentially amplifies the signal. The connection point 93 is a node where the positive electrode of the cell 63 having a lower potential and the negative electrode of the cell 64 having a higher potential are connected to each other among the adjacent cells 63 and 64.

差動増幅回路73,74は共通の電位42を基準に動作するため、接続点93からセル間検出線83に流れ出る電流93aは、差動増幅回路73,74を経由して、最下位セル61の負極に流れ込む。つまり、電流93aには、セル61とセル62とセル63とから放電される電流が含まれている。   Since the differential amplifier circuits 73 and 74 operate based on the common potential 42, the current 93 a flowing out from the connection point 93 to the inter-cell detection line 83 passes through the differential amplifier circuits 73 and 74, and the lowest cell 61. Flows into the negative electrode. That is, the current 93a includes a current discharged from the cell 61, the cell 62, and the cell 63.

電池電圧検出装置2は、セル61〜64のうち最も電位の高い最上位セル64の正極に接続された最上位検出線84にセル間検出線をプルアップする抵抗素子をセル間検出線毎に備える。抵抗素子は、抵抗成分を有する素子である。電池電圧検出装置2は、3つの抵抗素子101〜103を備える。抵抗素子101は、最上位検出線84にセル間検出線81をプルアップする。抵抗素子102は、最上位検出線84にセル間検出線82をプルアップする。抵抗素子103は、最上位検出線84にセル間検出線83をプルアップする。   The battery voltage detection device 2 includes, for each inter-cell detection line, a resistance element that pulls up the inter-cell detection line to the uppermost detection line 84 connected to the positive electrode of the uppermost cell 64 having the highest potential among the cells 61 to 64. Prepare. The resistance element is an element having a resistance component. The battery voltage detection device 2 includes three resistance elements 101 to 103. The resistance element 101 pulls up the inter-cell detection line 81 to the uppermost detection line 84. The resistance element 102 pulls up the inter-cell detection line 82 to the uppermost detection line 84. The resistance element 103 pulls up the inter-cell detection line 83 to the uppermost detection line 84.

このように、セル間検出線81と最上位検出線84とが抵抗素子101を介して接続されることにより、最上位検出線84から抵抗素子101を経由してセル間検出線81に電流101aを流し出すことができる。電流101aがセル間検出線81に流し出される分だけ、接続点91からセル間検出線81に流れ出る電流91aを低減することができる。   As described above, the inter-cell detection line 81 and the uppermost detection line 84 are connected via the resistance element 101, whereby the current 101 a flows from the uppermost detection line 84 to the inter-cell detection line 81 via the resistance element 101. Can be washed out. The current 91 a flowing out from the connection point 91 to the inter-cell detection line 81 can be reduced by the amount that the current 101 a flows out to the inter-cell detection line 81.

同様に、最上位検出線84から抵抗素子102を経由してセル間検出線82に電流102aを流し出すことができるので、電流102aがセル間検出線82に流し出される分だけ、接続点92からセル間検出線82に流れ出る電流92aを低減することができる。同様に、最上位検出線84から抵抗素子103を経由してセル間検出線83に電流103aを流し出すことができる。電流103aがセル間検出線83に流し出される分だけ、接続点93からセル間検出線83に流れ出る電流93aを低減することができる。   Similarly, since the current 102a can flow from the uppermost detection line 84 to the inter-cell detection line 82 via the resistance element 102, the connection point 92 is equivalent to the amount that the current 102a flows to the inter-cell detection line 82. The current 92a flowing out from the cell to the inter-cell detection line 82 can be reduced. Similarly, the current 103 a can flow from the uppermost detection line 84 to the inter-cell detection line 83 via the resistance element 103. The current 93a flowing out from the connection point 93 to the inter-cell detection line 83 can be reduced by the amount that the current 103a flows out to the inter-cell detection line 83.

このように、セル間検出線に流れ出る電流91a,92a,93aのそれぞれが低減することにより、最上位セル64を経由して最上位検出線84に流れ出る電流が増加する。その結果、各セル61〜64の総放電量は均等に近づくので、セル電圧が各セル61〜64間でばらつき難くなる。   As described above, each of the currents 91a, 92a, and 93a flowing out to the inter-cell detection line is reduced, so that the current flowing out to the uppermost detection line 84 via the uppermost cell 64 is increased. As a result, the total discharge amount of each of the cells 61 to 64 approaches evenly, so that the cell voltage is less likely to vary between the cells 61 to 64.

また、抵抗素子101〜103は、いずれも、セル間検出線を最上位検出線84にプルアップするため、抵抗素子101〜103のうち電位の低いセル間検出線をプルアップする素子ほど印加電圧が高い。例えば、抵抗素子101には、セル62〜64までの各セルのセル電圧を足した総セル電圧が印加されるが、抵抗素子103には、セル64のセル電圧が印加される。   In addition, since each of the resistance elements 101 to 103 pulls up the inter-cell detection line to the uppermost detection line 84, the applied voltage increases as the element pulls up the inter-cell detection line having a lower potential among the resistance elements 101 to 103. Is expensive. For example, the total cell voltage obtained by adding the cell voltages of the cells 62 to 64 is applied to the resistance element 101, while the cell voltage of the cell 64 is applied to the resistance element 103.

そこで、抵抗素子101〜103のうち電位の低いセル間検出線をプルアップする素子ほど抵抗値が高く設定されることが好適である。つまり、抵抗素子101の抵抗値は、抵抗素子102の抵抗値よりも高く、抵抗素子102の抵抗値は、抵抗素子103の抵抗値よりも高い。このような大小関係で各抵抗素子の抵抗値が設定されることにより、隣り合うセル間の接続点から流し出される電流と抵抗素子を経由して流し出される電流との相殺がし易くなる。したがって、電流91a,92a,93aをいずれも零まで低減し易くなるので、セル電圧を各セル61〜64間で一層ばらつき難くすることができる。   Therefore, it is preferable that the resistance value is set higher for the element that pulls up the inter-cell detection line having a lower potential among the resistance elements 101 to 103. That is, the resistance value of the resistance element 101 is higher than the resistance value of the resistance element 102, and the resistance value of the resistance element 102 is higher than the resistance value of the resistance element 103. By setting the resistance value of each resistance element in such a magnitude relationship, it becomes easy to cancel the current flowing out from the connection point between adjacent cells and the current flowing out through the resistance element. Therefore, the currents 91a, 92a, and 93a can all be easily reduced to zero, so that the cell voltage can be made more difficult to vary between the cells 61 to 64.

図3は、直列に接続された複数のセルのうち対応するセルのセル電圧を差動増幅する差動増幅回路をセル毎に備える電池電圧検出装置3の一具体例を示す図である。図3には、差動増幅回路71〜74の具体例が例示されている。   FIG. 3 is a diagram illustrating a specific example of the battery voltage detection device 3 including, for each cell, a differential amplifier circuit that differentially amplifies a cell voltage of a corresponding cell among a plurality of cells connected in series. FIG. 3 illustrates a specific example of the differential amplifier circuits 71 to 74.

差動増幅回路70は、それぞれ、最も電位の低い最下位セルの負極に接続された最下位検出線120の電位44(グランド電位)を基準に動作する。差動増幅回路70は、それぞれ、直列に接続された複数のセルのうち対応するセルのセル電圧を電位44を基準に差動増幅し、電位44を基準とした差動増幅後の電圧を出力する。   Each of the differential amplifier circuits 70 operates based on the potential 44 (ground potential) of the lowest detection line 120 connected to the negative electrode of the lowest cell having the lowest potential. The differential amplifier circuit 70 differentially amplifies the cell voltage of the corresponding cell among a plurality of cells connected in series with respect to the potential 44, and outputs the voltage after differential amplification with the potential 44 as a reference. To do.

図3に例示された差動増幅回路70は、それぞれ、同一の回路構成を有する。差動増幅回路70は、それぞれ、オペアンプ111と、抵抗体112〜115とを有する。抵抗体は、抵抗成分を有する素子である。   The differential amplifier circuits 70 illustrated in FIG. 3 each have the same circuit configuration. Each of the differential amplifier circuits 70 includes an operational amplifier 111 and resistors 112 to 115. The resistor is an element having a resistance component.

オペアンプ111の電源電圧は、最も電位の高い最上位セルの正極に接続された最上位検出線130の電位43(電源電位)と、最も電位の低い最下位セルの負極に接続された最下位検出線120の電位44(グランド電位)との間の電圧である。オペアンプ111の非反転入力端子は、抵抗体112を介して、セルの正極に一端が接続された検出線の他端に接続され、オペアンプ111の反転入力端子は、抵抗体113を介して、当該セルの負極に一端が接続された検出線の他端に接続されている。抵抗体112とオペアンプ111の非反転入力端子との間のノードは、抵抗体114を介して、電位44に接続され、抵抗体113とオペアンプ111の反転入力端子との間のノードは、抵抗体115を介して、差動増幅回路70の出力端子(オペアンプ111の出力端子)に接続されている。   The power supply voltage of the operational amplifier 111 includes the potential 43 (power supply potential) of the highest detection line 130 connected to the positive electrode of the highest cell having the highest potential and the lowest detection signal connected to the negative electrode of the lowest cell having the lowest potential. This is a voltage between the potential 44 (ground potential) of the line 120. The non-inverting input terminal of the operational amplifier 111 is connected to the other end of the detection line whose one end is connected to the positive electrode of the cell via the resistor 112, and the inverting input terminal of the operational amplifier 111 is connected to the relevant terminal via the resistor 113. It is connected to the other end of the detection line having one end connected to the negative electrode of the cell. A node between the resistor 112 and the non-inverting input terminal of the operational amplifier 111 is connected to the potential 44 via the resistor 114, and a node between the resistor 113 and the inverting input terminal of the operational amplifier 111 is connected to the resistor. 115 is connected to the output terminal of the differential amplifier circuit 70 (the output terminal of the operational amplifier 111).

ここで、直列に接続されたセルの個数をA,各セルのセル電圧をV1とする。また、抵抗体112,113の各抵抗値をR1,抵抗体114,115の各抵抗値をR2とすると、各差動増幅回路のゲインGは、周知のとおり、(R2/R1)と表すことができる。   Here, the number of cells connected in series is A, and the cell voltage of each cell is V1. Further, when each resistance value of the resistors 112 and 113 is R1, and each resistance value of the resistors 114 and 115 is R2, the gain G of each differential amplifier circuit is expressed as (R2 / R1) as is well known. Can do.

電位の最も低い最下位セルからn番目のセルの正極と(n+1)番目のセルの負極との間の接続点について考えると、当該接続点に一端が接続されたセル間検出線には、当該接続点から電流I0が流れ出る。電流I0は、電流I1と電流I2とに分流する。   Considering the connection point between the positive electrode of the nth cell and the negative electrode of the (n + 1) th cell from the lowest cell having the lowest potential, the inter-cell detection line having one end connected to the connection point includes Current I0 flows out from the connection point. The current I0 is divided into a current I1 and a current I2.

n番目のセルのセル電圧を差動増幅する差動増幅回路70に流入する電流I1は、当該差動増幅回路70の抵抗体112,114を経由して、電位44に流れる。したがって、電流I1は、オームの法則により、
I1=(n×V1)/(R1+R2)
と表すことができる。
A current I1 flowing into the differential amplifier circuit 70 that differentially amplifies the cell voltage of the nth cell flows to the potential 44 via the resistors 112 and 114 of the differential amplifier circuit 70. Therefore, the current I1 is given by Ohm's law:
I1 = (n × V1) / (R1 + R2)
It can be expressed as.

一方、(n+1)番目のセルのセル電圧を差動増幅する差動増幅回路70に流入する電流I2は、当該差動増幅回路70の抵抗体113,115を経由して、当該差動増幅回路70のオペアンプ111の出力端子に流れ込み、電位44に流れる。差動増幅回路70の出力電圧(オペアンプ111の出力電圧)は、(G×V1)であるので、電流I2は、オームの法則により、
I2=(n×V1−G×V1)/(R1+R2)
と表すことができる。
On the other hand, the current I2 flowing into the differential amplifier circuit 70 that differentially amplifies the cell voltage of the (n + 1) th cell passes through the resistors 113 and 115 of the differential amplifier circuit 70, and the differential amplifier circuit 70 70 flows into the output terminal of the operational amplifier 111 and flows to the potential 44. Since the output voltage of the differential amplifier circuit 70 (the output voltage of the operational amplifier 111) is (G × V1), the current I2 is calculated according to Ohm's law.
I2 = (n × V1−G × V1) / (R1 + R2)
It can be expressed as.

電流I1と電流I2との和(電流I3)は、
I3=I1+I2=(2n−G)×V1/(R1+R2)
と表すことができる。
The sum of the current I1 and the current I2 (current I3) is
I3 = I1 + I2 = (2n−G) × V1 / (R1 + R2)
It can be expressed as.

n番目のセルの正極と(n+1)番目のセルの負極との間の接続点に一端が接続されたセル間検出線を最上位検出線130にプルアップする抵抗素子Rの抵抗値をRpnとすると、抵抗素子Rに流れる電流I4は、
I4=((A−n)×V1)/Rpn
と表すことができる。
The resistance value of the resistance element R that pulls up the inter-cell detection line whose one end is connected to the connection point between the positive electrode of the nth cell and the negative electrode of the (n + 1) th cell to the highest detection line 130 is represented by Rpn. Then, the current I4 flowing through the resistance element R is
I4 = ((A−n) × V1) / Rpn
It can be expressed as.

電流I4と電流I3(=I1+I2)とが一致すれば、電流I0を零にすることができるので、
((A−n)×V1)/Rpn=(2n−G)×V1/(R1+R2)
という関係式が得られる。この関係式をRpnについて変形すると、
Rpn=(A−n)×(R1+R2)/(2n−G)
と表すことができる。
If the current I4 and the current I3 (= I1 + I2) match, the current I0 can be made zero.
((A−n) × V1) / Rpn = (2n−G) × V1 / (R1 + R2)
Is obtained. When this relational expression is transformed with respect to Rpn,
Rpn = (A−n) × (R1 + R2) / (2n−G)
It can be expressed as.

したがって、例えば、A=4,R1=R2(G=1)とすると、
Rpn=2(4−n)×R1/(2n−1)
という関係が導出されるので、
n=1の場合、Rp1=6×R1
n=2の場合、Rp2=(4/3)×R1
n=3の場合、Rp3=(2/5)×R1
という関係が成立する。よって、A=4,R1=R2(G=1)の場合、図3に記載の抵抗体及びプルアップ抵抗素子の各抵抗値を、
R1:R2:Rp1:Rp2:Rp3
=R1:R1:6×R1:(4/3)×R1:(2/5)×R1
=15:15:90:20:6
という比率に設定されることにより、隣り合うセル間の接続点から流れ出る電流をいずれの接続点についても零にすることができる。よって、各セルの総放電量は均等に近づくので、セル電圧が各セル間でばらつき難くなる。
Therefore, for example, if A = 4, R1 = R2 (G = 1),
Rpn = 2 (4-n) × R1 / (2n−1)
Is derived, so
When n = 1, Rp1 = 6 × R1
In the case of n = 2, Rp2 = (4/3) × R1
In the case of n = 3, Rp3 = (2/5) × R1
The relationship is established. Therefore, when A = 4, R1 = R2 (G = 1), the resistance values of the resistor and the pull-up resistor element shown in FIG.
R1: R2: Rp1: Rp2: Rp3
= R1: R1: 6 × R1: (4/3) × R1: (2/5) × R1
= 15: 15: 90: 20: 6
By setting the ratio, the current flowing out from the connection point between adjacent cells can be made zero at any connection point. Therefore, since the total discharge amount of each cell approaches equally, the cell voltage is less likely to vary between cells.

図3では、セル電圧V1が全て等しい場合を例示して説明したが、各セル電圧のバランスが崩れた場合について説明する。例えば、最下位のセルからn番目のセルのセル電圧だけが上昇した場合、そのn番目のセルの正極に接続されたプルアップ抵抗素子(例えばA=4の場合、Rp2)に印加される総セル電圧は変化しないので、当該プルアップ抵抗素子に流れる電流I4も変化しない。これに対し、n番目のセルのセル電圧の上昇により、電流I1及び電流I2は増加するため、電流I0に含まれる、n番目のセルの正極から吐き出される電流は増加する。   In FIG. 3, the case where the cell voltages V1 are all equal is described as an example, but the case where the balance of the cell voltages is lost will be described. For example, when only the cell voltage of the nth cell rises from the lowest cell, the total applied to the pull-up resistor element connected to the positive electrode of the nth cell (for example, Rp2 when A = 4) Since the cell voltage does not change, the current I4 flowing through the pull-up resistor element does not change. On the other hand, since the current I1 and the current I2 increase as the cell voltage of the nth cell increases, the current discharged from the positive electrode of the nth cell included in the current I0 increases.

一方、最下位のセルからn番目のセルのセル電圧だけが上昇した場合、n番目のセルの負極((n−1)番目のセルの正極)に接続されたプルアップ抵抗素子(例えばA=4の場合、Rp1)に印加される総セル電圧は増加する。よって、当該プルアップ抵抗素子に流れる電流も増加し、(n−1)番目のセルのセル電圧を差動増幅する差動増幅回路に流入する電流は減少するため、n番目のセルの負極に吸い込まれる電流が増加する。すなわち、n番目のセルを放電するように機能する。セル電圧が上昇していない他のセルへの影響もあるが、セル電圧が上昇したセルの放電を促すように動作するため、セル電圧の各セル間の均等化を図ることができる。   On the other hand, when only the cell voltage of the nth cell rises from the lowest cell, a pull-up resistor element connected to the negative electrode of the nth cell (the positive electrode of the (n−1) th cell) (for example, A = In the case of 4, the total cell voltage applied to Rp1) increases. Therefore, the current flowing through the pull-up resistor element also increases, and the current flowing into the differential amplifier circuit that differentially amplifies the cell voltage of the (n−1) th cell decreases, so that the negative electrode of the nth cell The current drawn is increased. That is, it functions to discharge the nth cell. Although there is an influence on other cells in which the cell voltage has not risen, the operation is performed so as to promote the discharge of the cell in which the cell voltage has risen, so that the cell voltage can be equalized between the cells.

図4は、直列に接続された複数のセルのうち対応するセルのセル電圧を差動増幅する差動増幅回路をセル毎に備える電池電圧検出装置4の一具体例を示す図である。図4に示される電池電圧検出装置4は、図3に示される電池電圧検出装置3に対して、遮断回路140が追加されている。   FIG. 4 is a diagram illustrating a specific example of the battery voltage detection device 4 including, for each cell, a differential amplifier circuit that differentially amplifies a cell voltage of a corresponding cell among a plurality of cells connected in series. In the battery voltage detection device 4 shown in FIG. 4, a blocking circuit 140 is added to the battery voltage detection device 3 shown in FIG.

電池電圧検出装置4は、セル間検出線を最上位検出線にプルアップする抵抗素子と、差動増幅回路とに流れる電流を遮断する遮断回路140と、遮断回路140の遮断動作を制御する制御回路150とを備える。遮断回路140は、例えば、最下位検出線に直列に挿入された最下位スイッチ141と、最上位検出線に直列に挿入された最上位スイッチ145と、セル間検出線に直列に挿入されたスイッチ142〜144とを有する。制御回路150は、例えば、各セルのセル電圧の検出が不要な場合、スイッチ141〜145の一部又は全部をオフすることにより、各セルの無駄な放電を防止できる。スイッチ142〜145は、プルアップ抵抗素子に無駄な電流が流れないようにするため、プルアップ抵抗素子と検出線との接続点に対してセル側に挿入されている。   The battery voltage detection device 4 includes a resistance element that pulls up the inter-cell detection line to the highest detection line, a cutoff circuit 140 that cuts off a current flowing through the differential amplifier circuit, and a control that controls a cutoff operation of the cutoff circuit 140. Circuit 150. The blocking circuit 140 includes, for example, the lowest switch 141 inserted in series with the lowest detection line, the highest switch 145 inserted in series with the highest detection line, and the switch inserted in series with the inter-cell detection line. 142-144. For example, when the detection of the cell voltage of each cell is unnecessary, the control circuit 150 can prevent wasteful discharge of each cell by turning off some or all of the switches 141 to 145. The switches 142 to 145 are inserted on the cell side with respect to the connection point between the pull-up resistor element and the detection line in order to prevent a wasteful current from flowing through the pull-up resistor element.

以上、電池電圧検出装置を実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。   The battery voltage detection device has been described above by way of the embodiment, but the present invention is not limited to the above embodiment. Various modifications and improvements such as combinations and substitutions with some or all of the other embodiments are possible within the scope of the present invention.

例えば、直列に接続された複数のセルを複数のグループに分け、複数のグループのそれぞれについて本実施形態の電池電圧検出装置が適用されてもよい。   For example, a plurality of cells connected in series may be divided into a plurality of groups, and the battery voltage detection device of this embodiment may be applied to each of the plurality of groups.

60 組電池
61〜64 セル
71〜74 差動増幅回路
80 最下位検出線
81〜83 セル間検出線
84 最上位検出線
91〜93 接続点
101〜103 抵抗素子
140 遮断回路
60 assembled batteries 61-64 cells 71-74 differential amplifier circuit 80 lowest detection lines 81-83 inter-cell detection lines 84 highest detection lines 91-93 connection points 101-103 resistance element 140 cutoff circuit

Claims (3)

直列に接続された複数のセルを備えるとともに、
前記複数のセルのうち最も電位の低い最下位セルの負極に接続された最下位検出線の電位を基準に動作し、前記複数のセルのうち対応するセルのセル電圧を差動増幅する差動増幅回路をセル毎に備え、
前記複数のセルのうちで隣り合うセル間の接続点は、前記接続点に接続されたセル間検出線を介して、前記隣り合うセルの電位の低い方のセルのセル電圧を差動増幅する差動増幅回路と前記隣り合うセルの電位の高い方のセルのセル電圧を差動増幅する差動増幅回路とに接続された、電池電圧検出装置であって、
前記複数のセルのうち最も電位の高い最上位セルの正極に接続された最上位検出線に前記セル間検出線をプルアップする抵抗素子を前記セル間検出線毎に備える、電池電圧検出装置。
With a plurality of cells connected in series,
A differential that operates based on the potential of the lowest detection line connected to the negative electrode of the lowest cell having the lowest potential among the plurality of cells, and differentially amplifies the cell voltage of the corresponding cell among the plurality of cells. Amplifying circuit is provided for each cell,
A connection point between adjacent cells among the plurality of cells differentially amplifies a cell voltage of a cell having a lower potential of the adjacent cell via an inter-cell detection line connected to the connection point. A battery voltage detection device connected to a differential amplifier circuit and a differential amplifier circuit that differentially amplifies the cell voltage of the higher potential cell of the adjacent cell,
A battery voltage detection device, comprising: a resistance element that pulls up the inter-cell detection line to an uppermost detection line connected to a positive electrode of an uppermost cell having the highest potential among the plurality of cells.
前記抵抗素子のうち電位の低いセル間検出線をプルアップする素子ほど抵抗値が高い、請求項1に記載の電池電圧検出装置。   The battery voltage detection device according to claim 1, wherein an element that pulls up a detection line between cells having a low potential among the resistance elements has a higher resistance value. 前記抵抗素子に流れる電流を遮断する遮断回路を備える、請求項1又は2に記載の電池電圧検出装置。   The battery voltage detection apparatus of Claim 1 or 2 provided with the interruption | blocking circuit which interrupts | blocks the electric current which flows into the said resistance element.
JP2016040350A 2016-03-02 2016-03-02 Battery voltage detector Active JP6593226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016040350A JP6593226B2 (en) 2016-03-02 2016-03-02 Battery voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016040350A JP6593226B2 (en) 2016-03-02 2016-03-02 Battery voltage detector

Publications (2)

Publication Number Publication Date
JP2017156244A true JP2017156244A (en) 2017-09-07
JP6593226B2 JP6593226B2 (en) 2019-10-23

Family

ID=59808734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040350A Active JP6593226B2 (en) 2016-03-02 2016-03-02 Battery voltage detector

Country Status (1)

Country Link
JP (1) JP6593226B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024093811A1 (en) * 2022-11-01 2024-05-10 维沃移动通信有限公司 Battery electric quantity measurement circuit, electronic device, and electric quantity metering method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313152A (en) * 1992-06-19 1994-05-17 Ford Motor Company Network for minimizing current imbalances in a faradaic battery
JPH11233154A (en) * 1998-02-19 1999-08-27 Sony Corp Battery voltage detecting circuit
JP2000014027A (en) * 1998-06-23 2000-01-14 Hitachi Ltd Control device for capacitor
JP2000356656A (en) * 1999-06-15 2000-12-26 Sanyo Electric Co Ltd Terminal voltage detector for battery
JP2007010465A (en) * 2005-06-30 2007-01-18 Fuji Heavy Ind Ltd Voltage detection device of power storage element
JP2015036649A (en) * 2013-08-13 2015-02-23 ラピスセミコンダクタ株式会社 Voltage measuring apparatus and voltage measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5313152A (en) * 1992-06-19 1994-05-17 Ford Motor Company Network for minimizing current imbalances in a faradaic battery
JPH11233154A (en) * 1998-02-19 1999-08-27 Sony Corp Battery voltage detecting circuit
JP2000014027A (en) * 1998-06-23 2000-01-14 Hitachi Ltd Control device for capacitor
JP2000356656A (en) * 1999-06-15 2000-12-26 Sanyo Electric Co Ltd Terminal voltage detector for battery
JP2007010465A (en) * 2005-06-30 2007-01-18 Fuji Heavy Ind Ltd Voltage detection device of power storage element
JP2015036649A (en) * 2013-08-13 2015-02-23 ラピスセミコンダクタ株式会社 Voltage measuring apparatus and voltage measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024093811A1 (en) * 2022-11-01 2024-05-10 维沃移动通信有限公司 Battery electric quantity measurement circuit, electronic device, and electric quantity metering method

Also Published As

Publication number Publication date
JP6593226B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
TWI448041B (en) Circuit and method for balancing battery cells
CN109256827B (en) Secondary battery protection circuit, secondary battery protection integrated circuit, and battery pack
JP5219486B2 (en) Pack battery
CN101739054B (en) Active current limiting circuit and power supply regulator using same
JP2011072177A (en) Charge/discharge control circuit and charging type power supply device
CN115598410B (en) Power consumption acquisition system and method
JP6593226B2 (en) Battery voltage detector
JP2015186331A (en) balance correction circuit, power storage module and balance correction method
US9977092B2 (en) Voltage monitoring device
JP2012163356A5 (en)
JP6794042B2 (en) Charge / discharge control circuit and battery device
CN111322233B (en) Sampling circuit and method for improving precision, compressor and air conditioning equipment
JP5638428B2 (en) Antenna connection state detection circuit
TWI623192B (en) Circuit and amplifier with deterministic noise cancellation
CN108604816B (en) Battery arrangement with improved balancing
JP2009072038A (en) Voltage detector for battery pack and method of controlling the same
JP2017225049A (en) Semiconductor physical quantity sensor device
JPH0236728A (en) Gain one current limiter
JPS6228606B2 (en)
JP2015036649A (en) Voltage measuring apparatus and voltage measuring method
CN214011829U (en) Direct current source
JP2016042627A (en) Fully differential switched capacitor circuit
JP2018201323A (en) Charge and discharge control circuit and battery device having the same
CN206389342U (en) A kind of voltage step signal turns ramp signal circuit
JP2008129977A (en) Voltage shift circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R151 Written notification of patent or utility model registration

Ref document number: 6593226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151