JP2000356656A - Terminal voltage detector for battery - Google Patents

Terminal voltage detector for battery

Info

Publication number
JP2000356656A
JP2000356656A JP11167694A JP16769499A JP2000356656A JP 2000356656 A JP2000356656 A JP 2000356656A JP 11167694 A JP11167694 A JP 11167694A JP 16769499 A JP16769499 A JP 16769499A JP 2000356656 A JP2000356656 A JP 2000356656A
Authority
JP
Japan
Prior art keywords
battery
terminal voltage
operational amplifier
control power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11167694A
Other languages
Japanese (ja)
Inventor
Masaki Yugo
政樹 湯郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11167694A priority Critical patent/JP2000356656A/en
Publication of JP2000356656A publication Critical patent/JP2000356656A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks

Abstract

PROBLEM TO BE SOLVED: To provide a terminal voltage detector for battery which does not need an input line to an operational amplifier to be cut off, even if a control power source is in an off state. SOLUTION: The terminal voltage detector for battery 10 is provided with a battery pack 12 having a plurality of unit cells 12a-12c of a secondary battery connected in series with each other, an operational amplifier 18 detecting the terminal voltage accommodated in each cell, a control power source VCC providing a driving power source for the operational amplifier 18, and a bypass circuit 22 which consists of a resistance 14 with which a positive electrode end of each cell and a control power source line are connected so that a driving power source can be provided for an operational amplifier 18 when a control power source is off, and a diode 18, and moreover, is connected with a feedback resistor 26 between the input side negative electrode end and the output end side. For that reasons, since a switch part to cut off a voltage detection line from secondary battery cells, which a combination battery consists of, is unnecessary, a space-saving, low-cost terminal voltage detector for a battery can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は電池の端子電圧検出装
置に関し、特にたとえば電気自動車や携帯用電子機器な
どに搭載して使用される充電可能な電池の端子電圧検出
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a terminal voltage detecting device for a battery, and more particularly to a terminal voltage detecting device for a rechargeable battery used in an electric vehicle or a portable electronic device.

【0002】[0002]

【従来の技術】例えば、電気自動車は駆動モータのエネ
ルギー源として走行用電池(バッテリ)が必要であり、
一般的に充電可能な二次電池が利用される。その場合、
問題となるのは、電池の残存容量の正確な計測である。
すなわち、残りの放電能力が分からなければ電気自動車
の走行可能距離が把握できず、最悪の場合には充電施設
が無い場所で車がストップしてしまうという事態も発生
する。また、携帯用電子機器では使用途中に電池の容量
が不足すると使用不能となる。そして、電池の残存容量
は、この電池が所定電流を放電している時の電極間電圧
(端子間電圧)を基に演算により求められるものであ
る。
2. Description of the Related Art For example, an electric vehicle requires a driving battery (battery) as an energy source of a driving motor.
Generally, a rechargeable secondary battery is used. In that case,
The problem is accurate measurement of the remaining capacity of the battery.
That is, if the remaining discharge capacity is not known, the travelable distance of the electric vehicle cannot be determined, and in the worst case, the vehicle may stop at a place where there is no charging facility. In addition, portable electronic devices cannot be used if the battery capacity is insufficient during use. The remaining capacity of the battery is obtained by calculation based on the voltage between electrodes (voltage between terminals) when the battery is discharging a predetermined current.

【0003】また、この二次電池(単一の電池からなる
セルまたは複数のセルからなるブロック)を必要な容量
に相当する分だけ複数個直列または直並列に接続した組
電池(パック電池または電池パックともいう)が用いら
れる。このような組電池は、多数の電池、例えば電気自
動車では100〜250セル程度を用いているので、電
池系の信頼性を確保することが重要である。すなわち、
組電池を構成している電池のうち何れかが過放電や過充
電等によってその機能が低下すると、組電池全体として
の機能が低下することになる。図6の(a)および
(b)に単セルの一般的な充電特性と放電特性を示す。
なお、充電、放電特性とも充放電電流値によって端子電
圧は異なるものである。
[0003] Also, an assembled battery (pack battery or battery) in which a plurality of such secondary batteries (cells composed of a single battery or blocks composed of a plurality of cells) are connected in series or series-parallel by an amount corresponding to the required capacity (Also referred to as a pack). Since such a battery pack uses a large number of batteries, for example, about 100 to 250 cells in an electric vehicle, it is important to ensure the reliability of the battery system. That is,
If the function of any of the batteries constituting the assembled battery is reduced due to overdischarge, overcharge, or the like, the function of the entire assembled battery is reduced. 6A and 6B show general charging characteristics and discharging characteristics of a single cell.
Note that the terminal voltage differs depending on the charge / discharge current value in both the charge and discharge characteristics.

【0004】さらに、このような組電池の場合には、放
電容量(放電可能な電気量)の減少程度が各電池により
異なっている。そのためDOD(放電深度:全放電で1
00%、満充電で0%)0%からの放電容量には各電池
にバラツキが生じ、それによって組電池としての放電容
量が減少する。つまり、放電時には、放電容量の小さく
なった電池は早く放電終了して過放電状態となり、この
過放電になっている電池が他の電池の負荷となって、全
ての電池がDOD100%にならないうちに電圧が低下
し、組電池としては放電終了になってしまうことにな
る。
Further, in the case of such a battery pack, the degree of reduction in the discharge capacity (the amount of electricity that can be discharged) differs depending on the battery. Therefore, DOD (depth of discharge: 1 for all discharges)
The discharge capacity from 0% (00%, 0% at full charge) varies from battery to battery, thereby reducing the discharge capacity of the assembled battery. In other words, at the time of discharging, a battery having a reduced discharge capacity ends discharging quickly and enters an overdischarged state, and this overdischarged battery becomes a load of another battery, and all batteries do not reach a DOD of 100%. As a result, the voltage of the battery pack decreases, and the battery pack ends discharging.

【0005】一方、充電時には、放電時にDOD100
%にならなかった電池が先にDOD0%に達して電圧が
上昇し、充電が終了してしまうが、放電時に過放電にな
った電池はDOD0%にならないままで充電が終了する
ので、DODの差が広がり、各電池の放電容量の差も広
がる。そのために、充放電を繰り返すと、放電容量の小
さかった電池は常に充電不足になるので、バラツキが大
きくなって組電池全体としての放電容量が低下するとい
う問題や特定の電池が劣化し易いすいう問題があり、ま
た、過放電や過充電によって必要以上に発熱するおそれ
もある。
On the other hand, during charging, DOD 100
%, The battery first reaches DOD 0% and the voltage rises, and charging ends. However, the battery that has been overdischarged during discharging ends charging without reaching DOD 0%. The difference widens, and the difference in the discharge capacity of each battery also widens. Therefore, when charging and discharging are repeated, the battery having a small discharge capacity is always insufficiently charged, so that the variation is large and the discharge capacity of the battery pack as a whole is reduced, and the specific battery is liable to be deteriorated. There is a problem, and there is a possibility that heat is generated more than necessary due to overdischarge or overcharge.

【0006】このような問題を解決するために、例えば
組電池を構成する各セル毎に並列にツェナダイオードを
接続し、これらのツェナダイオードのツェナ電圧をセル
の充電終止電圧に設定している。この場合、充電が進ん
でセルの端子電圧が上昇し、それが充電終止電圧に達し
たものについては、並列に接続されたツェナダイオード
が導通して充電電流をバイパスするので、それ以上充電
が行われず、端子電圧が充電終止電圧に達しないセルは
充電が継続される。そのため、各セルがそれぞれ満充電
となるまで充電が行われ、バラツキを減少させることが
できる。
In order to solve such a problem, for example, zener diodes are connected in parallel for each cell constituting the battery pack, and the zener voltages of these zener diodes are set to the cell end-of-charge voltage. In this case, the charging proceeds and the terminal voltage of the cell rises, and when it reaches the charging end voltage, the Zener diode connected in parallel conducts and bypasses the charging current, so that further charging is performed. The cell in which the terminal voltage does not reach the charge end voltage is not charged and charging is continued. Therefore, charging is performed until each cell is fully charged, and variations can be reduced.

【0007】[0007]

【発明が解決しようとする課題】しかし、上述の解決策
においても次のような問題があった。すなわち、セルの
端子電圧が充電終止電圧に達した場合にバイパス電流が
流れるようになっているので、過充電を防止するには充
電器からの充電電流を完全にセルに流さないようにバイ
パスする必要がある。このため急速充電や回生充電のよ
うに充電電流の大きい場合には、バイパス回路を構成す
るツェナダイオードや抵抗としてこの充電電流に対応し
た大きさのものを用いる必要がある。また、これらのダ
イオードや抵抗は各セル毎に配置する必要があり、それ
に伴いスペースを大きくとると共に温度上昇にも対処し
なければならず、コストがアップする等の問題があっ
た。
However, the above-mentioned solutions have the following problems. In other words, since the bypass current flows when the terminal voltage of the cell reaches the charge end voltage, the bypass is performed so that the charging current from the charger does not completely flow to the cell to prevent overcharging. There is a need. Therefore, when the charging current is large as in the case of rapid charging or regenerative charging, it is necessary to use a zener diode and a resistor having a size corresponding to the charging current as a zener diode and a resistor constituting a bypass circuit. In addition, these diodes and resistors need to be arranged for each cell, and accordingly, a large space has to be taken and a rise in temperature has to be dealt with, resulting in problems such as an increase in cost.

【0008】ところで、電池の残存容量を測定する場
合、上述のように電池が所定電流で放電している時の端
子電圧を検出して行われるが、常時端子電圧を検出する
わけではなく、必要に応じて検出される。そのため図4
に示されるように、従来の電池の端子電圧検出装置1
は、例えば、電池2の端子部と電圧検出回路部3とはス
イッチング装置4を介して接続される。すなわち、この
電圧検出回路部3は、電池2の端子電圧VB1(=10
V)を検出するオペアンプ3aを含む。このオペアンプ
3aの制御電源VCCがON時の動作では、入力INA
とINBが等しくなるように動作し、その差が出力とな
る。オペアンプ出力VOUT=INA−INB=VB1
(=10V)で、この時、制御電源(回路電源)VCC
がOFFするとオペアンプ入力INA、INBへ電池2
の端子電圧が直接印加されて、オペアンプ3aを破壊す
る可能性がある。
When the remaining capacity of a battery is measured, the terminal voltage is detected when the battery is discharging at a predetermined current, as described above. However, the terminal voltage is not always detected, but is required. Is detected according to Therefore FIG.
As shown in FIG.
For example, the terminal of the battery 2 and the voltage detection circuit 3 are connected via a switching device 4. That is, the voltage detection circuit unit 3 supplies the terminal voltage VB1 (= 10
V) is included. In the operation when the control power supply VCC of the operational amplifier 3a is ON, the input INA
And INB are equalized, and the difference is the output. Operational amplifier output VOUT = INA-INB = VB1
(= 10V) at this time, the control power supply (circuit power supply) VCC
Is OFF, battery 2 goes to operational amplifier inputs INA and INB
May be directly applied to break the operational amplifier 3a.

【0009】また、オペアンプ3aの出力側に設けたA
/Dコンバータ5の入力にもオペアンプ3aのフィード
バック抵抗Rfを介して入力電圧が印加している関係で
破壊の可能性がある。そのために、制御電源VCCのO
FF時ではオペアンプ3aおよびA/Dコンバータ5に
対する電池2からの入力ラインを切り離すために上述の
スイッチ装置4が必要となるものである。
[0009] Also, A is provided on the output side of the operational amplifier 3a.
Since the input voltage is applied to the input of the / D converter 5 via the feedback resistor Rf of the operational amplifier 3a, there is a possibility of destruction. Therefore, O of the control power supply VCC
At the time of FF, the above-described switch device 4 is required to disconnect the input line from the battery 2 to the operational amplifier 3a and the A / D converter 5.

【0010】このスイッチ装置4としては、例えばリレ
ー等の機械式スイッチとFET等の半導体スイッチがあ
る。しかし、前者のスイッチでは開閉寿命やスペースの
問題があり、また、後者のスイッチでは内部抵抗による
電圧降下の問題があった。
The switching device 4 includes, for example, a mechanical switch such as a relay and a semiconductor switch such as an FET. However, the former switch has problems of opening / closing life and space, and the latter switch has a problem of voltage drop due to internal resistance.

【0011】また、図5に示される他の従来例の端子電
圧検出装置1は、制御電源VCCがOFF時にオペアン
プ3aに対する入力電圧を抵抗RINA、RINBおよ
びダイオードDAとDBを介して夫々制御電源VCCラ
インへバイパスさせて、オペアンプ3aの入出力電圧を
ゼロにすることを可能としている。これは、制御電源V
CCがOFFの時、オペアンプ3aへの入力電圧を抵抗
RINAおよびダイオードDAを介して制御電源VCC
ラインへ、また、抵抗RINBとダイオードDBを介し
て制御電源VCCラインへ夫々バイパスし、制御電源V
CCに電圧を印加する。
Another conventional terminal voltage detecting device 1 shown in FIG. 5 is configured such that when the control power supply VCC is turned off, the input voltage to the operational amplifier 3a is controlled by the control power supply VCC via resistors RINA and RINB and diodes DA and DB, respectively. By bypassing to the line, the input / output voltage of the operational amplifier 3a can be reduced to zero. This is the control power supply V
When CC is OFF, the input voltage to the operational amplifier 3a is controlled by the control power supply VCC via the resistor RINA and the diode DA.
To the control power supply VCC line via the resistor RINB and the diode DB.
Apply voltage to CC.

【0012】この時、オペアンプ3aの電源電流が流れ
ようとするため、抵抗RINAとRINBによって入力
電圧分の電圧降下が発生し、両抵抗RINA、RINB
の電圧がゼロになる。
At this time, since the power supply current of the operational amplifier 3a tends to flow, a voltage drop corresponding to the input voltage is generated by the resistors RINA and RINB.
Voltage becomes zero.

【0013】しかし、この構成は、電圧降下を発生させ
るに十分な抵抗値が必要であること、反面、抵抗値をあ
まり大きくするとラインノイズが大きくなり、誤動作の
原因となる。例えば低消費オペアンプを使用するため、
数μA程度しか消費せず、十分な電圧降下を得るために
は、入力抵抗を1MΩ以上にする必要がある。
However, this configuration requires a sufficient resistance value to generate a voltage drop. On the other hand, if the resistance value is too large, line noise increases, which causes a malfunction. For example, to use a low-consumption operational amplifier,
It consumes only a few μA and the input resistance must be 1 MΩ or more to obtain a sufficient voltage drop.

【0014】このような問題から、ダイオードDAおよ
びDBではクランプしきれずに電圧がゼロにならないこ
とがあった。
[0014] Due to such a problem, the diodes DA and DB may not be completely clamped and the voltage may not become zero.

【0015】そのために、上述の如きスイッチ装置が必
要となり、それに伴いスイッチ装置の配置スペースも必
要となりコスト的にも高くなるという問題がある。
[0015] For this reason, the above-described switch device is required, and accordingly, a space for disposing the switch device is required, resulting in a problem that the cost is increased.

【0016】それゆえに、この発明の主たる目的は、電
池の端子電圧検出回路において、制御電源がOFFの状
態でもオペアンプへの入力ラインを切り離す必要がない
電池の端子電圧検出装置を提供することである。
SUMMARY OF THE INVENTION Therefore, a main object of the present invention is to provide a battery terminal voltage detecting device in a battery terminal voltage detecting circuit which does not need to disconnect an input line to an operational amplifier even when a control power supply is OFF. .

【0017】[0017]

【課題を解決するための手段】この発明は、複数の二次
電池セルを直列または直並列に接続した組電池、この組
電池を1つまたは複数の二次電池セルを単位として分割
した複数のブロック毎に設けられかつ前記ブロック毎の
正極端および負極端をそれぞれ入力端に接続して入力端
間の電圧差を検出する差動アンプ、この差動アンプに制
御電源ラインを介して駆動電源を供給する制御電源、お
よび、制御電源のオフ時に前記差動アンプに駆動電源を
供給するため前記各ブロックの正極端と制御電源ライン
とを接続するバイパス手段を備えることを特徴とする、
電池の端子電圧検出装置である。
SUMMARY OF THE INVENTION The present invention provides an assembled battery in which a plurality of secondary battery cells are connected in series or in series / parallel, and a plurality of divided battery units each divided into one or more secondary battery cells. A differential amplifier that is provided for each block and connects a positive terminal and a negative terminal of each block to an input terminal to detect a voltage difference between the input terminals. A driving power supply is supplied to the differential amplifier via a control power line. Control power to be supplied, and comprising a bypass unit that connects a positive terminal of each of the blocks and a control power line to supply drive power to the differential amplifier when the control power is off,
It is a battery terminal voltage detection device.

【0018】[0018]

【作用】制御電源のオフ時に各ブロックから差動アンプ
に対する駆動電源を供給するために、例えば抵抗とダイ
オードの直列回路で構成するバイパス手段を介して接続
するので、差動アンプを構成するオペアンプのみ低電源
電圧で動作を継続させることにより出力電圧をゼロにす
る。
In order to supply drive power to the differential amplifier from each block when the control power supply is turned off, connection is made through, for example, bypass means composed of a series circuit of a resistor and a diode, so that only the operational amplifier constituting the differential amplifier is provided. The output voltage is reduced to zero by continuing operation at a low power supply voltage.

【0019】[0019]

【発明の効果】この発明によれば、二次電池セルの各ブ
ロックから電圧検出ラインを切り離すためのスイッチ部
は不要となり、それに伴い省スペース、低コストで電池
の端子電圧検出装置が提供できる。
According to the present invention, there is no need for a switch for separating the voltage detection line from each block of the secondary battery cell, so that a space-saving and low-cost battery terminal voltage detection device can be provided.

【0020】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

【0021】[0021]

【実施例】図1に示すこの発明による一実施例の電池の
端子電圧検出装置10は、複数の単セル12a,12
b,12c、…を直列接続した電気自動車用組電池1
2、この組電池12の単セル12aの両端(正極端と負
極端)に夫々抵抗14(RINA)および16(RIN
B)を介して接続される端子電圧を検出する差動アンプ
としてのオペアンプ18、このオペアンプ18に駆動電
源を付与する制御電源VCC、およびオペアンプ18の
正極端側入力電圧を抵抗14とダイオード20の直列回
路を介して制御電源VCCラインへバイパスさせるバイ
パス回路22を含む。この組電池12を構成する各単セ
ル12a…は、たとえばニッケルカドミウム電池、ニッ
ケル水素電池あるいはリチウムイオン二次電池などの充
電可能な電池である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A battery terminal voltage detecting device 10 according to one embodiment of the present invention shown in FIG.
b, 12c,... connected in series for electric vehicle 1
2. Resistors 14 (RINA) and 16 (RIN) are provided at both ends (positive end and negative end) of the unit cell 12a of the battery pack 12, respectively.
B), an operational amplifier 18 as a differential amplifier for detecting a terminal voltage connected via the control amplifier VCC, a control power supply VCC for providing a driving power supply to the operational amplifier 18, and a positive-side input voltage of the operational amplifier 18 to the resistor 14 and the diode 20. A bypass circuit 22 for bypassing to the control power supply VCC line via a series circuit is included. Each of the unit cells 12a of the assembled battery 12 is a rechargeable battery such as a nickel cadmium battery, a nickel hydride battery, or a lithium ion secondary battery.

【0022】なお、組電池12は単セル12a、12b
および12cを並列に接続したブロックを複数組直列に
接続して構成してもよい。
The assembled battery 12 includes single cells 12a and 12b.
And 12c may be configured by connecting a plurality of blocks connected in parallel.

【0023】そして、単セル12aの端子電圧はオペア
ンプ18で検出増幅されアナログ電圧出力としてA/D
コンバータ24に入力されてデジタル値に変換される。
その後はたとえば、後述の使用例で示すマイクロコンピ
ュータで演算処理されドライバを介して検出されたセル
の状態が表示器に表示される。また、オペアンプ18の
入力側負極端と出力端側との間には帰還抵抗26(R
B)が接続されている。さらに、オペアンプ18の入力
側正極端は抵抗28(RA)を介して接地され、またオ
ペアンプ18の負電源も接地されている。
Then, the terminal voltage of the single cell 12a is detected and amplified by the operational amplifier 18 and converted into an analog voltage output by the A / D converter.
The data is input to the converter 24 and converted into a digital value.
After that, for example, the state of the cell detected by the arithmetic processing by the microcomputer shown in the usage example described later via the driver is displayed on the display. A feedback resistor 26 (R) is connected between the input-side negative terminal and the output terminal of the operational amplifier 18.
B) is connected. Further, the input-side positive terminal of the operational amplifier 18 is grounded via a resistor 28 (RA), and the negative power supply of the operational amplifier 18 is also grounded.

【0024】このように、オペアンプ18の入力電圧を
抵抗14(RINA)とダイオード20を直列接続して
構成するバイパス回路22により制御電源VCCのライ
ンへバイパスさせ、制御電源VCCがOFF時にオペア
ンプ18のみ低電源電圧で動作を継続させることによ
り、出力電圧をゼロに維持する。これは、オペアンプ1
8の出力電圧VOUT=VINA−VINBであること
から、制御電源VCCのOFF時ではVINA=ICC
×RINAより、VOUT=VINA−VINB<0と
なるように抵抗14(RINA)を設定すれば、出力電
圧はゼロ(単電源で使用すれば負電圧は出力されない)
となる。
As described above, the input voltage of the operational amplifier 18 is bypassed to the line of the control power supply VCC by the bypass circuit 22 configured by connecting the resistor 14 (RINA) and the diode 20 in series. The output voltage is maintained at zero by continuing operation at a low power supply voltage. This is operational amplifier 1
8, the output voltage VOUT = VINA-VINB, so that when the control power supply VCC is OFF, VINA = ICC
If the resistor 14 (RINA) is set so that VOUT = VINA-VINB <0 from × RINA, the output voltage is zero (a negative voltage is not output when used with a single power supply).
Becomes

【0025】また、低消費タイプのオペアンプ18の消
費電流はICC=10μA程度であり、単セル12aの
自己放電を考慮するとほとんど無視できる。
The current consumption of the low-consumption type operational amplifier 18 is about 10 μA, which is almost negligible considering the self-discharge of the single cell 12a.

【0026】例えば、RINA=RINB=300k
Ω、RA=RB=100kΩ、VCC=15V、ICC
=10μAとすると、VCCがON時の動作、VINA
=VINB=30V×1/4=7.5V VOUT=10×1/3=3.333V VCCがOFF時の動作、 VINA=VINB=7.5V−300kΩ×10μA
=4.5V、 VOUT=0V ここで、本来は、VINB=20V×1/4=5Vであ
り、 VOUT=(VINA−VINB)×4/3―(−0.5) =(4.5−5)×4/3―(−0.5) =―0.5V となるが、単電源なので、ゼロ電圧未満(負電圧)は出
力できない。
For example, RINA = RINB = 300k
Ω, RA = RB = 100 kΩ, VCC = 15 V, ICC
= 10μA, operation when VCC is ON, VINA
= VINB = 30V × 1/4 = 7.5V VOUT = 10 × 1/3 = 3.333V Operation when VCC is OFF, VINA = VINB = 7.5V-300kΩ × 10μA
= 4.5 V, VOUT = 0 V Here, originally, VINB = 20 V × 1 / = 5 V, and VOUT = (VINA−VINB) × 4/3 − (− 0.5) = (4.5− 5) × 4/3 − (− 0.5) = − 0.5 V However, since it is a single power supply, a voltage less than zero voltage (negative voltage) cannot be output.

【0027】この時、VCC=4V程度(通常動作電圧
範囲内であること)である。
At this time, VCC = approximately 4 V (must be within the normal operation voltage range).

【0028】上述のように、単セル12aに接続して設
けた端子電圧検出装置10が、他の単セル12bおよび
12c、…にも同様に設けられる。
As described above, the terminal voltage detecting device 10 connected to the single cell 12a is provided in the other single cells 12b and 12c,.

【0029】次に、この発明による端子電圧検出装置1
0を用いた電池残量推定システムの概略構成を図2につ
いて説明する。
Next, the terminal voltage detecting device 1 according to the present invention
A schematic configuration of a battery remaining amount estimation system using 0 will be described with reference to FIG.

【0030】複数個の二次電池セルにより構成される蓄
電池としての組電池12には、例えば電気自動車の駆動
モータおよびその制御回路等を含む負荷30および発電
機32が接続されており、さらに電池残量推定システム
34内の電源回路(制御電源VCC)36に接続されて
いる。また、組電池12と負荷30および発電機32と
を結ぶケーブル線38は電池残量推定システム34内の
電流検出器40に直列に接続されている。
A battery 30 as a storage battery composed of a plurality of secondary battery cells is connected to a load 30 and a generator 32 including, for example, a drive motor of an electric vehicle and a control circuit therefor. The power supply circuit (control power supply VCC) 36 in the remaining amount estimation system 34 is connected. A cable line 38 connecting the assembled battery 12 with the load 30 and the generator 32 is connected in series to a current detector 40 in the battery remaining amount estimation system 34.

【0031】組電池12に接続された電池残量推定シス
テム34内の端子電圧検出装置10で検出された出力電
圧はA/Dコンバータ24によりデジタル値に変換され
てマイクロコンピュータ42で読み込み、電圧変化と通
電時間から計算してケーブル線38の通電量を算出す
る。マイクロコンピュータ42は、図示されないCPU
(中央処理装置),ROM,RAM、および入出力I/
F(インターフェース)を含む。
The output voltage detected by the terminal voltage detecting device 10 in the battery remaining amount estimation system 34 connected to the battery pack 12 is converted into a digital value by the A / D converter 24, read by the microcomputer 42, and And the energizing time to calculate the energizing amount of the cable wire 38. The microcomputer 42 has a CPU (not shown)
(Central processing unit), ROM, RAM, and input / output I / O
F (interface).

【0032】そして組電池12で構成される蓄電池に流
れ込む電流、つまり充電電流を正、蓄電池から流れ出る
電流、つまり放電電流を負とすると、充電量と放電量が
算出され、その結果、蓄電池の残存容量が求められる。
この残存容量は、ドライバ44を介して表示器46によ
って、例えば%等の割合で表示される。また、この表示
は、割合に限らず残存容量(Ah)や、電気自動車の場
合には走行可能距離や走行時間で表示してもよい。
Assuming that the current flowing into the storage battery composed of the assembled battery 12, ie, the charging current, is positive and the current flowing out of the storage battery, ie, the discharge current, is negative, the amount of charge and the amount of discharge are calculated. Capacity is required.
This remaining capacity is displayed on the display 46 via the driver 44, for example, in a percentage such as%. In addition, this display may be displayed not only by the ratio but also by the remaining capacity (Ah) or, in the case of an electric vehicle, the possible travel distance or travel time.

【0033】また、端子電圧検出装置10は、回生制動
など発電機32により充電されているときの電池電圧を
検出して過充電状態を認識し、その時の電流を積算しな
いようにし、放電時の電池電圧を検出して、過放電状態
を認識し、警告する機能を有する。さらに、電池残量推
定システム34内の温度検出回路48は、温度センサー
50を介して蓄電池を構成する組電池12の温度を検出
し、電池電圧を補正するものである。
The terminal voltage detecting device 10 detects a battery voltage when the battery 32 is being charged by the generator 32 such as regenerative braking, recognizes an overcharged state, does not accumulate the current at that time, and does not integrate the current at that time. It has a function of detecting battery voltage, recognizing an overdischarge state, and issuing a warning. Further, the temperature detection circuit 48 in the battery remaining amount estimation system 34 detects the temperature of the assembled battery 12 constituting the storage battery via the temperature sensor 50, and corrects the battery voltage.

【0034】ここで、図3に示すフローチャートに基づ
き端子電圧検出後の動作について概要を説明する。
Here, an outline of the operation after the detection of the terminal voltage will be described based on the flowchart shown in FIG.

【0035】まず、ステップS1で端子電圧検出装置1
0により組電池12の端子電圧検出を行い、ステップS
3でマイクロコンピュータ42により組電池の端子電圧
が過放電設定値以下か否かを判断する。その結果、“N
O"であればステップS5に進み、“YES"であればス
テップS7でマイクロコンピュータ42により過放電・
過充電処理を行いステップS9に進む。ステップS5で
はマイクロコンピュータ42により組電池の端子電圧が
満充電設定値以上か否かを判断する。その結果、“YE
S"であればステップS7に進み、“NO"であればステ
ップS9に進む。ステップS9ではマイクロコンピュー
タ42により電池の残量推定を行い、ステップS1に戻
る。以降は上述の動作を繰り返す。
First, in step S1, the terminal voltage detecting device 1
0, the terminal voltage of the assembled battery 12 is detected, and step S
At 3, the microcomputer 42 determines whether or not the terminal voltage of the battery pack is equal to or less than the overdischarge set value. As a result, "N
If "O", the process proceeds to step S5, and if "YES", the microcomputer 42 performs overdischarge in step S7.
An overcharge process is performed and the process proceeds to step S9. In step S5, the microcomputer 42 determines whether or not the terminal voltage of the battery pack is equal to or higher than the full charge set value. As a result, "YE
If “S”, the process proceeds to step S7, and if “NO”, the process proceeds to step S9.In step S9, the remaining capacity of the battery is estimated by the microcomputer 42, and the process returns to step S1.

【0036】なお、ステップS7でマイクロコンピュー
タ42により過放電・過充電処理を行った後、ステップ
S11で充放電禁止要求により一連の動作を終了する。
After performing the overdischarge / overcharge process by the microcomputer 42 in step S7, a series of operations is terminated by a charge / discharge prohibition request in step S11.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例を示す電池の端子電圧検出
装置の要部回路図である。
FIG. 1 is a main part circuit diagram of a battery terminal voltage detecting device showing one embodiment of the present invention.

【図2】この発明による電池の端子電圧検出装置を用い
た電池残量推定システムの概略構成を示すブロック図で
ある。
FIG. 2 is a block diagram showing a schematic configuration of a battery remaining amount estimation system using the battery terminal voltage detection device according to the present invention.

【図3】図2に示す電池残量推定システムの動作概要を
示すフローチャートである。
FIG. 3 is a flowchart showing an operation outline of the battery remaining amount estimation system shown in FIG. 2;

【図4】図1に対応する電池の端子電圧検出装置の従来
例を示す要部回路図である。
4 is a main part circuit diagram showing a conventional example of a battery terminal voltage detection device corresponding to FIG.

【図5】図1に対応する他の従来例を示す要部回路図で
ある。
FIG. 5 is a main part circuit diagram showing another conventional example corresponding to FIG. 1;

【図6】(a)および(b)は、一般的な単セルの放電
特性図と充電特性図である。
FIGS. 6A and 6B are a discharge characteristic diagram and a charge characteristic diagram of a general single cell.

【符号の説明】[Explanation of symbols]

10 …端子電圧検出装置 12 …組電池(蓄電池) 12a、12b、12c …単セル 14、16 …抵抗 18 …オペアンプ(差動アンプ) 20 …ダイオード 22 …バイパス回路 24 …A/Dコンバータ(A/D変換器) 26 …帰還抵抗(フィードバック抵抗) 30 …負荷(例えば駆動モータ等) 34 …電池残量推定システム 36 …電源回路(制御電源VCC) 40 …電流検出器 42 …マイクロコンピュータ(CPU,ROM、RA
Mを含む) 48 …温度検出回路
DESCRIPTION OF SYMBOLS 10 ... Terminal voltage detection device 12 ... Battery pack (storage battery) 12a, 12b, 12c ... Single cell 14, 16 ... Resistance 18 ... Operational amplifier (differential amplifier) 20 ... Diode 22 ... Bypass circuit 24 ... A / D converter (A / D D converter) 26 Feedback resistance (feedback resistance) 30 Load (for example, drive motor) 34 Battery remaining amount estimation system 36 Power supply circuit (control power supply VCC) 40 Current detector 42 Microcomputer (CPU, ROM) , RA
48… Temperature detection circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数の二次電池セルを直列または直並列に
接続した組電池、 前記組電池を1つまたは複数の二次電池セルを単位とし
て分割した複数のブロック毎に設けられかつ前記ブロッ
ク毎の正極端および負極端をそれぞれ入力端に接続して
入力端間の電圧差を検出する差動アンプ、 前記各差動アンプに制御電源ラインを介して駆動電源を
供給する制御電源、および前記制御電源のオフ時に前記
差動アンプに駆動電源を供給するため前記各ブロックの
正極端と前記制御電源ラインとを接続するバイパス手段
を備えることを特徴とする、電池の端子電圧検出装置。
1. An assembled battery in which a plurality of secondary battery cells are connected in series or in series / parallel, wherein the assembled battery is provided for each of a plurality of blocks obtained by dividing one or a plurality of secondary battery cells as a unit, and A differential amplifier for connecting a positive terminal and a negative terminal to each input terminal to detect a voltage difference between the input terminals, a control power supply for supplying drive power to each of the differential amplifiers via a control power line, and A terminal voltage detecting device for a battery, comprising: bypass means for connecting a positive terminal of each of the blocks and the control power supply line to supply drive power to the differential amplifier when the control power supply is turned off.
【請求項2】前記差動アンプはオペアンプを含む、請求
項1記載の電池の端子電圧検出装置。
2. The battery terminal voltage detecting device according to claim 1, wherein said differential amplifier includes an operational amplifier.
【請求項3】前記バイパス手段は抵抗とダイオードの直
列回路を含む、請求項1または2記載の電池の端子電圧
検出装置。
3. The battery terminal voltage detecting device according to claim 1, wherein said bypass means includes a series circuit of a resistor and a diode.
【請求項4】前記バイパス手段の抵抗は、前記オペアン
プの入力端に接続される抵抗と共用することを特徴とす
る、請求項3記載の電池の端子電圧検出装置。
4. The battery terminal voltage detecting device according to claim 3, wherein a resistance of said bypass means is shared with a resistance connected to an input terminal of said operational amplifier.
【請求項5】前記抵抗は、前記制御電源のオフ時に前記
バイパス手段を介して前記オペアンプに流入する電流値
が前記オペアンプの許容値以内となる値に設定されるこ
とを特徴とする、請求項3または4記載の電池の端子電
圧検出装置。
5. The method according to claim 1, wherein the resistance value of the resistor is set to a value such that a current value flowing into the operational amplifier via the bypass means when the control power supply is turned off is within an allowable value of the operational amplifier. 5. The battery terminal voltage detection device according to 3 or 4.
JP11167694A 1999-06-15 1999-06-15 Terminal voltage detector for battery Withdrawn JP2000356656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11167694A JP2000356656A (en) 1999-06-15 1999-06-15 Terminal voltage detector for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11167694A JP2000356656A (en) 1999-06-15 1999-06-15 Terminal voltage detector for battery

Publications (1)

Publication Number Publication Date
JP2000356656A true JP2000356656A (en) 2000-12-26

Family

ID=15854506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11167694A Withdrawn JP2000356656A (en) 1999-06-15 1999-06-15 Terminal voltage detector for battery

Country Status (1)

Country Link
JP (1) JP2000356656A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319286A (en) * 2006-05-31 2007-12-13 Hitachi Medical Corp Ultrasonic diagnostic system
JP2010110156A (en) * 2008-10-31 2010-05-13 Sanyo Electric Co Ltd Pack battery
EP2211412A1 (en) 2009-01-23 2010-07-28 Honda Motor Co., Ltd. Cell voltage detecting system and drive voltage maintaining method
JP2010283918A (en) * 2009-06-02 2010-12-16 Mitsubishi Motors Corp Battery module of electric automobile
JP2011232161A (en) * 2010-04-27 2011-11-17 Oki Semiconductor Co Ltd Semiconductor device and monitoring method of battery voltage
WO2011151700A1 (en) * 2010-06-02 2011-12-08 Toyota Jidosha Kabushiki Kaisha Voltage monitoring apparatus and voltage monitoring method
JP2012078136A (en) * 2010-09-30 2012-04-19 Lapis Semiconductor Co Ltd Semiconductor device, and abnormality diagnosis method of booster circuit of semiconductor device
CN103487628A (en) * 2012-06-12 2014-01-01 赵恩海 Simple circuit for measuring voltage of each single cell in series-connected battery pack containing any number of cells

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319286A (en) * 2006-05-31 2007-12-13 Hitachi Medical Corp Ultrasonic diagnostic system
JP2010110156A (en) * 2008-10-31 2010-05-13 Sanyo Electric Co Ltd Pack battery
EP2211412A1 (en) 2009-01-23 2010-07-28 Honda Motor Co., Ltd. Cell voltage detecting system and drive voltage maintaining method
US8274292B2 (en) 2009-01-23 2012-09-25 Honda Motor Co., Ltd. Cell voltage detecting system and drive voltage maintaining method
JP2010283918A (en) * 2009-06-02 2010-12-16 Mitsubishi Motors Corp Battery module of electric automobile
JP2011232161A (en) * 2010-04-27 2011-11-17 Oki Semiconductor Co Ltd Semiconductor device and monitoring method of battery voltage
US8786289B2 (en) 2010-04-27 2014-07-22 Oki Semiconductor Co., Ltd. Method and semiconductor device for monitoring battery voltages
WO2011151700A1 (en) * 2010-06-02 2011-12-08 Toyota Jidosha Kabushiki Kaisha Voltage monitoring apparatus and voltage monitoring method
JP2012078136A (en) * 2010-09-30 2012-04-19 Lapis Semiconductor Co Ltd Semiconductor device, and abnormality diagnosis method of booster circuit of semiconductor device
CN102445613A (en) * 2010-09-30 2012-05-09 拉碧斯半导体株式会社 Semiconductor device, and method of diagnosing abnormality of boosting circuit of semiconductor device
CN103487628A (en) * 2012-06-12 2014-01-01 赵恩海 Simple circuit for measuring voltage of each single cell in series-connected battery pack containing any number of cells

Similar Documents

Publication Publication Date Title
JP3870577B2 (en) Variation determination method for battery pack and battery device
EP2618454B1 (en) Device for averaging cell voltage of plurality of battery packs
JP4798548B2 (en) Battery pack
KR101497602B1 (en) Balancing system for battery and Method for balancing of battery using the same
US9108521B2 (en) Battery control apparatus and method
JP3867581B2 (en) Assembled battery system
CN101459267B (en) Battery pack
JP5274110B2 (en) Power supply for vehicle
JP4667276B2 (en) A battery pack in which multiple secondary batteries are connected in series or in parallel
EP3379279B1 (en) Current measurement apparatus using shunt resistor
KR20200041711A (en) Apparatus and method for battery management
JPH09140066A (en) Secondary battery pack
JP2015518141A (en) Battery insulation resistance measuring apparatus and method
JP2000228832A (en) Control method of charging and discharging
KR20130081215A (en) Power supply device
JP2003079059A (en) On vehicle battery pack control device
JPH1198698A (en) Charging/discharging device for battery assembly
JP2000134805A (en) Battery assembly charge/discharge state deciding method and battery assembly charge/discharge state deciding device
JP2003257501A (en) Secondary battery residual capacity meter
JP2000356656A (en) Terminal voltage detector for battery
JP3633412B2 (en) Battery pack control device and battery pack
JPH07264780A (en) Charge-discharge controller for set battery
KR20190073925A (en) Apparatus and method for pre-charging
EP3974247A1 (en) Device and method for controlling output of parallel multi-pack system
CN111357167A (en) Battery management apparatus and method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905