JP2017155961A - ヒートポンプ装置および空気調和機 - Google Patents

ヒートポンプ装置および空気調和機 Download PDF

Info

Publication number
JP2017155961A
JP2017155961A JP2016037302A JP2016037302A JP2017155961A JP 2017155961 A JP2017155961 A JP 2017155961A JP 2016037302 A JP2016037302 A JP 2016037302A JP 2016037302 A JP2016037302 A JP 2016037302A JP 2017155961 A JP2017155961 A JP 2017155961A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
refrigerant
port
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016037302A
Other languages
English (en)
Inventor
渡辺 耕輔
Kosuke Watanabe
耕輔 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2016037302A priority Critical patent/JP2017155961A/ja
Publication of JP2017155961A publication Critical patent/JP2017155961A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】簡易な構成で暖房除霜モードを実現することができ、暖房除霜モードにおける熱効率の低減を抑制できるヒートポンプ装置を提供すること。【解決手段】ヒートポンプ装置は、熱源側熱交換器と、利用側熱交換器と、圧縮機と、第1の減圧装置と、冷媒が保有する温熱の一部を吸収する熱部材とを備える。ヒートポンプ装置は、第1の運転モードにおいて、第1の減圧装置による減圧動作が有効化され、熱源側熱交換器から吐出されて減圧装置により減圧された冷媒を蓄熱材に接触させた後、蓄熱材に接触した後の冷媒が圧縮機により圧縮されて利用側熱交換器へ供給されるように第1の流路が形成され、利用側熱交換器から吐出された冷媒の圧力を実質的に維持しつつ、当該冷媒を熱源側熱交換器へ供給されるように第2の流路が形成される。【選択図】図3

Description

この開示は、ヒートポンプ装置に関し、より特定的には、蓄熱材を有するヒートポンプ装置に関する。
ヒートポンプサイクルを用いる空気調和機において、外気温が低いときに加熱運転を行うと、室外熱交換器に霜が降り、冷媒の温度制御が不安定になる可能性がある。そのため、室外熱交換器に付着した霜は取り除く必要がある。室外熱交換器における除霜を促進するために、蓄熱材をヒートポンプ装置に配置し、除霜時に蓄熱材に蓄えた熱を利用する構成が知られている。
蓄熱材を有する空気調和機に関し、特開2000−291985号公報(特許文献1)は、蓄熱材を設けると共に、蓄熱材に蓄熱する加熱部を主冷媒回路と独立して設け、逆サイクルデフロスト時に冷媒を蓄熱材の蓄熱によって蒸発させる空気調和機を開示している。
また、特開平2−251052号公報(特許文献2)は、圧縮機本体ハウジングの外周と略同心の円周に沿って熱交換器を配置するとともに、圧縮機本体ハウジングと熱交換器とを外部ケーシングで密閉し、圧縮機本体ハウジングと外部ケーシングとの間に生ずる空間に蓄熱材を注入する構成を開示している。
また、国際公開第2015/128980号(特許文献3)は、圧縮機と凝縮器との間から分岐し、蓄熱装置を通って減圧装置と蒸発器との間に接続される蓄熱回路を有することによって、蓄熱装置を蓄熱するための外部熱源を必要としない冷凍サイクル装置を開示している。
特開2000−291985号公報 特開平2−251052号公報 国際公開第2015/128980号
しかしながら、特許文献1に開示される技術は、蓄熱材に蓄熱するための熱源を独立して用意する必要があるため、追加の設備および電力を必要とするという問題があった。
特許文献2に開示される技術は、圧縮機の排熱を利用して蓄熱材に蓄熱する構成であるため、蓄熱材に蓄える熱量の制御、言い換えれば、蓄熱材を利用した冷媒の温度制御が難しいという問題がある。また、同技術は、暖房および除霜を同時に行う運転モード(以下、「暖房除霜モード」とも称する。)において実質的に冷媒の減圧を行わない。そのため、冷媒は、暖房除霜モードにおいて外気からの吸熱を行うことができない。よって、同技術は、暖房除霜モードにおける熱効率が悪いという問題がある。
特許文献3に開示される技術は、圧縮機によって圧縮された冷媒を利用熱交換器および室外熱交換器に供給するため、構成が複雑になるという問題がある。また、同技術は、暖房除霜モードにおいて利用熱交換器に供給される熱量が減ってしまうという問題がある。
本開示は、上記のような問題を解決するためになされたものであって、ある局面における目的は、簡易な構成で暖房除霜モードを実現することができるヒートポンプ装置を提供することである。他の局面における目的は、暖房除霜モードにおける熱効率の低減を抑制することができるヒートポンプ装置を提供することである。
他の局面における目的は、簡易な構成で暖房除霜モードを実現することができる空気調和機を提供することである。他の局面における目的は、暖房除霜モードにおける熱効率の低減を抑制することができる空気調和機を提供することである。
ある局面に従うヒートポンプ装置は、冷媒と熱源との間で熱交換を行う熱源側熱交換器と、冷媒と利用流体との間で熱交換を行う利用側熱交換器と、熱源側熱交換器の第1のポートと利用側熱交換器の第1のポートとを結ぶ第1の流路および熱源側熱交換器の第2のポートと利用側熱交換器の第2のポートとを結ぶ第2の流路を含む、冷媒が流れる主回路と、第1の流路上に配置される圧縮機と、第1の流路上の熱源側熱交換器と圧縮機との間に配置される第1の減圧装置と、主回路を流れる冷媒が保有する温熱の一部を吸収する熱部材とを備える。ヒートポンプ装置は、第1の運転モードにおいて、第1の減圧装置による減圧動作が有効化され、熱源側熱交換器の第1のポートから吐出されて減圧装置により減圧された冷媒を蓄熱材に接触させた後、蓄熱材に接触した後の冷媒が圧縮機により圧縮されて利用側熱交換器の第1のポートへ供給されるように第1の流路が形成され、利用側熱交換器の第2のポートから吐出された冷媒の圧力を実質的に維持しつつ、当該冷媒を熱源側熱交換器の第2のポートへ供給されるように第2の流路が形成される。
好ましくは、第2の流路上の主回路から分岐する分岐回路と、利用側熱交換器の第2のポートから吐出される冷媒の流れを主回路と分岐回路との間で切り替え可能に構成される第1の切替部をさらに備える。熱部材は分岐回路上に配置される。第2の運転モードにおいて、第1の切替部は、利用側熱交換器の第2のポートから吐出される冷媒の流れを分岐回路に切り替えるように構成される。
さらに好ましくは、第1の切替部は、利用側熱交換器の第2のポートから吐出される冷媒の流れが分岐する分岐先の主回路および分岐回路の少なくとも一方に設けられ、冷媒の流れを遮断可能に構成される遮断装置を含む。
好ましくは、第2の流路上に配置される第2の減圧装置をさらに備える。
好ましくは、第1の運転モードにおいて、冷媒の第1の減圧装置による減圧動作が有効化されるとともに、第2の減圧装置による減圧動作が無効化される。第2の運転モードにおいて、冷媒の第1の減圧装置による減圧動作が無効化されるとともに、第2の減圧装置による減圧動作が有効化される。
さらに好ましくは、利用側熱交換器の第2のポートから吐出される冷媒を、第1の運転モードにおいて第1の減圧装置を介して熱源側交換器に流れるように、第2の運転モードにおいて第2の減圧装置を介して熱源側熱交換器に流れるように切り替え可能に構成される第2の切替部をさらに備える。第1の運転モードにおいて、冷媒の第1の減圧装置による減圧動作が無効化されるとともに、第2の減圧装置による減圧動作が有効化される。第2の運転モードにおいて、冷媒の第1の減圧装置による減圧動作が有効化されるとともに、第2の減圧装置による減圧動作が無効化される。
好ましくは、利用側熱交換器の第2のポートから吐出される冷媒を、第1の運転モードにおいて熱源側熱交換器を介して蓄熱材へと流れるように、第2の運転モードにおいて熱部材または熱部材と並列に配置される回路を介して熱源側熱交換器へと流れるように切り替え可能に構成される第2の切替部をさらに備える。
さらに好ましくは、第2の切替部は、第1の四方弁を含む。
好ましくは、第1の流路上に設けられ、圧縮機から吐出された冷媒の流れが利用側熱交換器の第1のポートから利用側熱交換器の第2のポートへと流れるか、利用側熱交換器の第2のポートから利用側熱交換器の第1のポートへと流れるかを切り替え可能に構成される第2の四方弁をさらに備える。
好ましくは、熱部材は、冷媒が保有する温熱の一部を吸収し蓄える蓄熱材を含む。
他の局面に従うと、空気調和機は、ヒートポンプ装置を備える。ヒートポンプ装置は、冷媒と熱源との間で熱交換を行う熱源側熱交換器と、冷媒と利用流体との間で熱交換を行う利用側熱交換器と、熱源側熱交換器の第1のポートと利用側熱交換器の第1のポートとを結ぶ第1の流路および熱源側熱交換器の第2のポートと利用側熱交換器の第2のポートとを結ぶ第2の流路を含む、冷媒が流れる主回路と、第1の流路上に配置される圧縮機と、第1の流路上の熱源側熱交換器と圧縮機との間に配置される第1の減圧装置と、主回路を流れる冷媒が保有する温熱の一部を吸収する熱部材とを備える。ヒートポンプ装置は、第1の運転モードにおいて、第1の減圧装置による減圧動作が有効化され、熱源側熱交換器の第1のポートから吐出されて減圧装置により減圧された冷媒を蓄熱材に接触させた後、蓄熱材に接触した後の冷媒が圧縮機により圧縮されて利用側熱交換器の第1のポートへ供給されるように第1の流路が形成され、利用側熱交換器の第2のポートから吐出された冷媒の圧力を実質的に維持しつつ、当該冷媒を熱源側熱交換器の第2のポートへ供給されるように第2の流路が形成される。
ある局面に従うヒートポンプ装置によれば、簡易な構成で、暖房除霜モードを実現することができる。この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。
実施形態1に従うヒートポンプ装置の構成例を説明する図である。 実施形態1に従うヒートポンプ装置の暖房蓄熱モードにおける冷媒の流れについて説明する図である。 実施形態1に従うヒートポンプ装置の暖房除霜モードにおける冷媒の流れについて説明する図である。 実施形態1に従うヒートポンプ装置の各運転モードにおける制御を比較する図である。 実施形態1に従うヒートポンプ装置の運転モードの切替制御の一例について説明するフローチャートである。 実施形態1に従うヒートポンプ装置の蓄熱モードにおける冷媒の流れについて説明する図である。 実施形態1に従うヒートポンプ装置の冷房モードにおける冷媒の流れについて説明する図である。 実施形態2に従うヒートポンプ装置の構成を説明する図である。 実施形態3に従うヒートポンプ装置の構成例を説明する図である。 実施形態4に従うヒートポンプ装置の構成例を説明する図である。 実施形態4に従うヒートポンプ装置の暖房蓄熱モードにおける冷媒の流れについて説明する図である。 実施形態4に従うヒートポンプ装置の各運転モードにおける制御を比較する図である。 実施形態4に従うヒートポンプ装置の蓄熱モードにおける冷媒の流れについて説明する図である。 実施形態4に従うヒートポンプ装置の冷房モードにおける冷媒の流れについて説明する図である。 実施形態5に従うヒートポンプ装置の構成例を説明する図である。 実施形態5に従うヒートポンプ装置の暖房除霜モードにおける冷媒の流れについて説明する図である。 実施形態6に従うヒートポンプ装置の構成例を説明する図である。 実施形態6に従うヒートポンプ装置の暖房除霜モードにおける冷媒の流れについて説明する図である。
以下、この発明の実施形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、その説明は繰り返さない。
[A.実施形態1]
(a1.ヒートポンプ装置10)
図1は、実施形態1に従うヒートポンプ装置10の構成例を説明する図である。図1に示されるように、実施形態1に従うヒートポンプ装置10は、室外機100と室内機200とを有する。
室外機100は、制御部50と、圧縮機110と、第1四方弁120と、第1電磁弁130と、第1膨張弁140と、室外熱交換器150と、第2膨張弁160と、第2電磁弁170と、蓄熱槽180と、送風機190とを有する。蓄熱槽180は蓄熱材182を含む。蓄熱材182は、顕熱蓄熱材および潜熱蓄熱材のいずれであってもよいが、潜熱蓄熱材であることが好ましい。室内機200は、利用熱交換器210と、送風機220とを有する。
室外熱交換器150は、冷媒と外気(熱源)との間で熱交換を行う。利用熱交換器は、冷媒と利用流体との間で熱交換を行う。ヒートポンプ装置10は、室外熱交換器150の第1ポート151と利用熱交換器210の第1ポート211とを結ぶ第1流路310と、室外熱交換器150の第2ポート152と利用熱交換器210の第2ポート212とを結ぶ第1流路320とから構成される主回路を有する。
第1流路310上には、圧縮機110が配置される。第1四方弁120は、第1流路310上の圧縮機110と利用熱交換器210との間に配置される。第2膨張弁160は、第1流路310上の圧縮機110と室外熱交換器150との間に配置される。第2電磁弁170は、第1流路310上の圧縮機110と第2膨張弁160との間に配置される。第1流路310上には、第2電磁弁170をバイパスする分岐回路340が形成される。
第2流路320上には、第1膨張弁140が配置される。第1電磁弁130は、第2流路320上の利用熱交換器210と第1膨張弁140との間に配置される。第2流路320上には、第1電磁弁130をバイパスする分岐回路330が形成される。蓄熱槽180は、分岐回路330および340に渡って配置される。分岐回路330および340は、互いに独立して構成されているため、蓄熱槽180の内部で冷媒が混ざり合うことはない。
第1四方弁120は、圧縮機110から吐出される冷媒の流れる方向を切り替え可能に構成される。より具体的には、第1四方弁120は、圧縮機110から吐出された冷媒の流れが利用熱交換器210の第1ポート211から第2ポート212へ流れるか、第2ポート212から第1ポート211へ流れるかを切り替え可能に構成される。
第1電磁弁130,第2電磁弁170は弁を閉じることにより流路上を流れる冷媒の流れを遮断可能に構成される。第1膨張弁140,第2膨張弁160は、流路上を流れる冷媒の流量を制限可能に構成される。より具体的には、第1膨張弁140,第2膨張弁160は弁の開度を調整可能に構成される。換言すれば、第1膨張弁140および第2膨張弁160は、減圧装置として機能する。なお、第1膨張弁140および第2膨張弁160ともに、弁を全開にされることで、通過する冷媒の減圧を無効化する。
制御部50は、第1四方弁120と、第1電磁弁130,第2電磁弁170と、第1膨張弁140,第2膨張弁160と、送風機190,220とそれぞれ電気的に接続される。これにより、制御部50は、第1四方弁120の流路切替制御、第1電磁弁130,第2電磁弁170の開閉制御、第1膨張弁140,第2膨張弁160の開度制御、送風機190,220の送風制御を行なう。以下に、このヒートポンプ装置10の各動作モードにおける冷媒の流れおよび制御を説明する。
(a2.暖房モード)
まず、ヒートポンプ装置10の運転モードが暖房モードのときの、冷媒の流れおよび制御部50の制御について、図1を用いて説明する。
図1を参照して、制御部50は、圧縮機110から吐出された冷媒が利用熱交換器210の第1ポート211に導かれるように、第1四方弁120の切替制御を行なう。圧縮機から吐出された冷媒は、利用熱交換器210により凝縮される。このとき、送風機220の作用により、利用熱交換器210によって温められた利用流体が室内機200から送風される。
制御部50は、暖房モードにおいて、第1電磁弁130および第2電磁弁170を開き、第1膨張弁140の開度を絞り、第2膨張弁160を全開にする。これにより、利用熱交換器210の第2ポート212から吐出される冷媒は、第1電磁弁130を通過し、その後、第1膨張弁140により減圧される。このとき、制御部50は、利用熱交換器210、室外熱交換器150内の冷媒の温度および圧力が所定値となるように第1膨張弁140の開度を調節する。
また、分岐回路330がバイパスする主回路上の配管経路に比して、蓄熱槽180内の熱交換部の配管経路を含む分岐回路330の配管経路の方が長い。そのため、分岐回路330がバイパスする主回路上の圧力損失よりも分岐回路330の圧力損失の方が大きくなる。したがって、利用熱交換器210の第2ポート212から吐出される冷媒は、分岐回路330に流れにくくなっている。
第1膨張弁140を通過した冷媒は、送風機190の作用により、室外熱交換器150によって外気から温熱を受け取るとともに蒸発する。室外熱交換器150の第1ポート151から吐出される冷媒は、第2膨張弁160、第2電磁弁170、および第1四方弁120を介して再び圧縮機110に入力される。これにより、主回路上で冷媒の圧縮、凝縮、減圧、蒸発の一連の冷凍サイクルが行われる。ヒートポンプ装置10は、暖房モードにおいて、蓄熱材182への蓄熱を実質的に行わずに暖房のみを行う。
(a3.暖房蓄熱モード)
次に、ヒートポンプ装置10の運転モードが暖房蓄熱モードのときの、冷媒の流れおよび制御部50の制御について説明する。図2は、実施形態1に従うヒートポンプ装置10の暖房蓄熱モードにおける冷媒の流れについて説明する図である。
図2を参照して、暖房蓄熱モードにおいて、圧縮機110から吐出された冷媒は、利用熱交換器210の第1ポート211に供給される。このとき、送風機220の作用により、利用熱交換器210によって温められた利用流体が室内機200から送風される。
制御部50は、暖房蓄熱モードにおいて、第1電磁弁130を閉じ、第2電磁弁170を開き、第1膨張弁140の開度を絞り、第2膨張弁160を全開にする。これにより、利用熱交換器210の第2ポート212から吐出される高温高圧の冷媒は、分岐回路330に流れ、蓄熱槽180の蓄熱材182に接する。蓄熱材182は、この高温高圧の冷媒が保有する温熱の一部を吸収するとともに、当該熱を蓄える。制御部50は、蓄熱材182の温度が所定温度に到達すると、運転モードを暖房モードを切り替えるとともに、第1電磁弁130を開く。なお、他の局面において、制御部50は、蓄熱材182の温度が所定温度に到達した後も、第1電磁弁130を閉じ、冷媒と蓄熱材182との間で熱交換を行うように制御してもよい。
蓄熱槽180で熱交換を行った冷媒は、第1膨張弁140により減圧される。この後の冷媒の流れは暖房モードと同じであるので、その部分についての説明は繰り返さない。これにより、ヒートポンプ装置10は、暖房蓄熱モードにおいて、室内機200から温風を送風する暖房と、蓄熱材182への蓄熱を同時に行うことができる。
また、ヒートポンプ装置10は、暖房蓄熱モードにおいて、利用熱交換器210から吐出される高温高圧の冷媒との熱交換によって蓄熱材182に蓄熱することができる。そのため、ヒートポンプ装置10は、外部熱源を必要とすることなく蓄熱材に蓄熱することができる。
また、ヒートポンプ装置10は、冷媒との熱交換により蓄熱材182に蓄熱する構成を採用する。そのため、制御部50は、圧縮機110の回転数、第2膨張弁160の開度などを制御することによって、蓄熱材182に蓄熱する熱量を制御することができる。
(a4.暖房除霜モード)
上記の暖房モード、および暖房蓄熱モードにおいて、室外熱交換器150には、減圧され低温低圧の冷媒が供給される。そのため、外気温が低い(たとえば、氷点下)場合に、室外熱交換器150に霜が降りる可能性がある。室外熱交換器150に霜が降りると、冷媒の温度制御が不安定になる。そのため、室外熱交換器150に付着した霜は取り除く必要がある。そこで、次に、利用熱交換器210を利用した暖房を行いつつ、室外熱交換器150に降りた霜を取り除くための暖房除霜モードについて説明を行う。図3は、実施形態1に従うヒートポンプ装置10の暖房除霜モードにおける冷媒の流れについて説明する図である。
図3を参照して、暖房除霜モードにおいて、圧縮機110から吐出された冷媒は、利用熱交換器210の第1ポート211に供給される。このとき、送風機220の作用により、利用熱交換器210によって温められた利用流体が室内機200から送風される。このとき、圧縮機110から吐出される冷媒は、管路上での僅かな損失はあるものの、その温度を実質的に維持しつつ、利用熱交換器210に供給される。そのため、ヒートポンプ装置10は、暖房除霜モードにおいて、室内機200から送風される温風の熱量を維持することができる。
制御部50は、暖房除霜モードにおいて、第1電磁弁130を開き、第2電磁弁170を閉じ、第1膨張弁140を全開にし、第2膨張弁160の開度を絞る。また、制御部50は、同モードにおいて、送風機190の駆動を停止する。これにより、利用熱交換器210の第2ポート212から吐出される高温高圧の冷媒は、管路上での僅かな損失はあるものの、その圧力を実質的に維持しつつ、室外熱交換器150の第2ポートへと供給される。これにより、高温高圧の冷媒と室外熱交換器150との間で熱交換が行われるとともに、室外熱交換器150に付着した霜が融解される。このとき、室外熱交換器150の第2ポートへと供給される冷媒は、液相または液相の割合が高い気液混合相である。すなわち、室外熱交換器150における冷媒の密度が高い。そのため、ヒートポンプ装置10は、室外熱交換器150における除霜を効率的に行うことができる。
室外熱交換器150の第1ポート151から吐出される冷媒は、第2膨張弁を通過することにより減圧される。このとき、制御部50は、利用熱交換器210および蓄熱槽180における冷媒の温度および圧力が所定値となるように第2膨張弁160の開度を調節する。
第2膨張弁160により減圧された冷媒は、分岐回路340に流れるとともに、蓄熱材182と接触する。これにより、冷媒は蓄熱材182から温熱を受け取り、蒸発する。蓄熱槽180で蒸発した冷媒は、第1四方弁120を介して再び圧縮機110に入力される。すなわち、暖房除霜モードにおいて、室外熱交換器150の第1ポート151から吐出される冷媒の流路は、第2膨張弁160により減圧された後に、蓄熱材182と接触し、その後に圧縮機110により圧縮され、利用熱交換器210の第1ポート211に供給されるように形成される。
上記によれば、ヒートポンプ装置10は、暖房除霜モードにおいて、室内機200から温風を送風する暖房と、室外熱交換器150における除霜を同時に行うことができる。一般的なヒートポンプ装置は、第1流路310と第2流路320とが構成する主回路上で、冷媒の圧縮、凝縮、減圧、蒸発を繰り返す冷凍サイクルを実現する。実施形態1に従うヒートポンプ装置10は、一般的なヒートポンプ装置に、分岐回路330,340と、蓄熱槽180と、第1電磁弁130,第2電磁弁170と、第1膨張弁140とを追加するだけで、言い換えれば、既存のヒートポンプ装置に僅かな変更を加えるだけの簡易な構成で暖房除霜モードを実現することができる。
また、ヒートポンプ装置10は、暖房除霜モードにおいて、室外熱交換器150から吐出された冷媒は第2膨張弁160により減圧される。そのため、第2膨張弁160を通過した冷媒は、蓄熱槽180を含む圧縮機110までの経路において、管路や外気などから温熱を受け取ることができる。したがって、実施形態1に従うヒートポンプ装置10は、暖房除霜モードにおいても、熱効率の低減を抑制することができる。
なお、上記の例において、暖房除霜モードにおいて第2膨張弁160を通過した冷媒を、蓄熱材182と接触させることで蒸発させる構成を採用しているがこれに限られない。他の局面において、蓄熱槽180の代わりに、冷媒と外気との熱交換を行う熱交換器が設けられてもよい。当該熱交換器は、暖房除霜モードにおいて第2膨張弁160を通過した冷媒を蒸発させる蒸発器として機能する。
(a5.小括)
図4は、実施形態1に従うヒートポンプ装置10の各運転モードにおける制御を比較する図である。制御部50は、暖房モード、暖房蓄熱モード、暖房除霜モードのそれぞれにおいて、第1電磁弁130,第2電磁弁170の開閉制御と、第1膨張弁140,第2膨張弁160の開度制御とを、図4に示されるように行う。
制御部50は、第1電磁弁130,第2電磁弁170の開閉制御によって、冷媒が流れる流路を制御する。また、制御部50は、第1膨張弁140,第2膨張弁160の開度制御によって、冷媒の相状態を制御する。
(a6.運転モードの切り替え)
次に、上記に説明した運転モードの切り替えについて説明する。図5は、実施形態1に従うヒートポンプ装置10の運転モードの切替制御の一例について説明するフローチャートである。図5に示される処理は、制御部50が図示しない記憶装置に格納される制御プログラムを実行することにより実現される。他の局面において、処理の一部または全部が、回路素子その他のハードウェアによって実行されてもよい。
図5を参照して、制御部50は、ステップS12において、運転モードが暖房モードか否かを判断する。なお、ヒートポンプ装置10のユーザーは、暖房蓄熱モードおよび暖房除霜モードを選択することができないものとする。制御部50は、運転モードが暖房モードであると判断する場合(ステップS12においてYES)、処理をステップS14に進め、図示しない第1の温度センサによって室外熱交換器150の温度T1を測定する。運転モードが暖房モードでないと判断する場合(ステップS12においてNO)、制御部50は、処理を終了する。
ステップS16において、制御部50は、温度T1がしきい値温度Tth1(たとえば、0℃)未満であるか否かを判断する。制御部50は、温度T1がしきい値温度Tth1未満であると判断する場合(ステップS16においてYES)、処理をステップS18に進め、運転モードを暖房モードから暖房蓄熱モードに切り替える。一方、温度T1がしきい値温度Tth1以上であると判断する場合、制御部50は、処理をステップS14に戻す。
ステップS20において、制御部50は、図示しない第2の温度センサによって測定される蓄熱材182の温度T2がしきい値温度Tth2(たとえば、40℃)未満であるか否かを判断する。制御部50は、温度T2がしきい値温度Tth2より高いと判断する場合(ステップS20においてYES)、処理をステップS22に進め、運転モードを暖房蓄熱モードから暖房モードに切り替える。一方、温度T2がしきい値温度Tth2以下であると判断する場合(ステップS20においてNO)、制御部50は、処理をステップS20に戻す。
ステップS24において、制御部50は、温度T1がしきい値温度Tth1未満の状態の暖房運転時間tがしきい値時間t0(たとえば、30分)を超えたか否かを判断する。ここで、「暖房運転時間」とは、ヒートポンプ装置10の暖房モードを起動した時点、または、暖房除霜モードから暖房モードに復帰した時点から、暖房モード/暖房蓄熱モードを継続している時間と定義する。制御部50は、暖房運転時間tがしきい値時間t0を超えたと判断すると、処理をステップS26に進め、運転モードを暖房モードから暖房除霜モードへと切り替える。一方、暖房運転時間tがしきい値時間t0以下であると判断すると、制御部50は、処理をステップS24に戻す。
ステップS28において、制御部50は、室外熱交換器150の温度T1がしきい値温度Tth3(たとえば、5℃)を超えたか否かを判断する。制御部50は、温度T1がしきい値温度Tth3を超えたと判断する場合(ステップS28においてYES)、処理をステップS30に進め、運転モードを暖房除霜モードから暖房モードに切り替えるとともに、処理をステップS14に戻す。一方、温度T1がしきい値温度Tth3以下であると判断する場合(ステップS28においてNO)、制御部50は、処理をステップS28に戻す。
上記によれば、実施形態1に従うヒートポンプ装置10は、暖房蓄熱モードおよび暖房除霜モードを必要最小限の時間だけ実行することができる。そのため、実施形態1に従うヒートポンプ装置10は、暖房蓄熱モードおよび暖房除霜モードにおける熱効率の低減を抑制することができる。
(a7.蓄熱モード)
上記の例において、ヒートポンプ装置10は、蓄熱材182に蓄熱を行うにあたって、利用熱交換器210を利用した暖房も同時に行う構成(暖房蓄熱モード)であったが、これに限られない。他の局面において、ヒートポンプ装置10は、蓄熱材182への蓄熱動作のみを行う構成であってもよい。
図6は、実施形態1に従うヒートポンプ装置10の蓄熱モードにおける冷媒の流れについて説明する図である。図6を参照して、蓄熱モードにおいて、制御部50は、第1電磁弁130、第2電磁弁170を閉じ、第1膨張弁140、第2膨張弁160を全開にする。また、制御部50は、同モードにおいて、送風機190,220の駆動を停止する。
これにより、圧縮機110から吐出される冷媒は、第1四方弁120を介して利用熱交換器210に到達する。しかし、送風機220が停止されているため、冷媒は、実質的に利用流体との熱交換を行うことなく利用熱交換器210を通過する。利用熱交換器210を通過した冷媒は、分岐回路330を通り蓄熱材182と接触する。これにより、蓄熱材182は冷媒から温熱を受け取るとともに、この熱を蓄える。蓄熱槽180を通過した冷媒は、室外熱交換器150を通過し、分岐回路340を通り再び蓄熱材182と接触し、その後圧縮機110へと入力される。
上記によれば、ヒートポンプ装置10は、蓄熱モードにおいて、より高温の冷媒を蓄熱材182に供給することができるため、暖房蓄熱モードに比してより効率的に蓄熱材182への蓄熱を行うことができる。
なお、上記の例において、制御部50は、圧縮機110から吐出された冷媒が利用熱交換器210の第1ポート211に導かれるように第1四方弁120を切替制御しているが、これに限られない。他の局面において、制御部50は、圧縮機110から吐出された冷媒が、第1流路310と分岐回路340との分岐点に導かれるように第1四方弁120を切替制御してもよい。
また、他の局面において、制御部50は、第1電磁弁130および第2電磁弁170のうちいずれか一方を開き、他方を閉じるように制御してもよい。当該構成においても、高温の冷媒は蓄熱材182と接するため、蓄熱材182への蓄熱を行うことができる。
(a8.冷房モード)
実施形態1に従うヒートポンプ装置10は、第1四方弁120の切替制御を利用して、室内機200から冷風を送り出す冷房モードを実現することができる。図7は、実施形態1に従うヒートポンプ装置10の冷房モードにおける冷媒の流れについて説明する図である。
制御部50は、冷房モードにおいて、圧縮機110から吐出された冷媒が、第1流路310と分岐回路340との分岐点に導かれるように第1四方弁120を切替制御する。制御部50は、第1四方弁120の切替制御を行なうことによって、圧縮機110から吐出される冷媒が利用熱交換器210の第1ポート211から第2ポート212へと流れるか、第2ポート212から第1ポート211へと流れるかを制御することができる。
また、制御部50は、同モードにおいて、第1電磁弁130、第2電磁弁170を開き、第1膨張弁140の開度を絞り、第2膨張弁160を全開にする。これにより、圧縮機110から吐出される冷媒は第1四方弁120、第2電磁弁170、第2膨張弁160を介して室外熱交換器150に供給されるとともに、送風機190の作用により外気と熱交換を行い凝縮される。室外熱交換器150の第2ポート152から吐出される冷媒は、第1膨張弁140により減圧され、第1電磁弁130を介して利用熱交換器210に供給される。このとき、送風機220の作用により、利用熱交換器210によって冷やされた利用流体が室内機200から送風される。
[B.実施形態2]
他の局面において、図8に示されるように、実施形態2に従うヒートポンプ装置11は、第1電磁弁130,第2電磁弁170を用いる代わりに、第1三方弁130Aと第2三方弁170Aとを用いることによって冷媒が流れる流路を制御してもよい。図8は、実施形態2に従うヒートポンプ装置11の構成を説明する図である。第1三方弁130Aは、利用熱交換器210により近い、第2流路320と分岐回路330との分岐点に配置される。第2三方弁170Aは、室外熱交換器150により近い、第1流路310と分岐回路340との分岐点に配置される。当該構成によれば、ヒートポンプ装置11は、ヒートポンプ装置10に比して、より冷媒の流れを正確に制御することができる。
[C.実施形態3]
実施形態1に従うヒートポンプ装置10は、第1四方弁120によって主回路における冷媒の流れる方向を制御することによって、暖房運転(暖房モード/暖房蓄熱モード/暖房除霜モード)および冷房モードを切り替え可能に構成される。他の局面において、暖房運転のみを行うヒートポンプ装置であってもよい。図9は、実施形態3に従うヒートポンプ装置12の構成例を説明する図である。ヒートポンプ装置12は、ヒートポンプ装置10に比して第1四方弁120を有していない。そのため、圧縮機110から吐出される冷媒は利用熱交換器210の第1ポート211から第2ポート212にしか流れない。このような構成であっても、上記の暖房モード、暖房蓄熱モード、暖房除霜モードにおける制御を実行することができる。
[D.実施形態4]
実施形態1に従うヒートポンプ装置10は、分岐回路330,340および第1電磁弁130,第2電磁弁170を用いることによって、冷媒が流れる流路を制御する構成であった。実施形態4に従うヒートポンプ装置10Aは、これらの構成を四方弁にまとめることで、より簡易な構成を実現する。以下、実施形態4に従うヒートポンプ装置10Aの構成および制御について説明を行う。
(d1.ヒートポンプ装置10A)
図10は、実施形態4に従うヒートポンプ装置10Aの構成例を説明する図である。なお、図1と同一符号を付している部分については同じであるため、その部分についての説明は繰り返さない。
ヒートポンプ装置10Aは、室外機100Aと室内機200Aとを有する。室外機100Aは、実施形態1に従う室外機100に比して、分岐回路330,340および第1電磁弁130,第2電磁弁170が省略されている代わりに、第2四方弁125を有する。
ヒートポンプ装置10Aは、室外熱交換器150の第1ポート151と第2四方弁125とを結ぶ第1流路310Aと、利用熱交換器210の第1ポート211と第2四方弁とを結ぶ第1流路310Bと、利用熱交換器210の第2ポート212と第2四方弁125とを結ぶ第2流路320Aと、室外熱交換器150の第2ポート152と第2四方弁125とを結ぶ第2流路320Bとを有する。第1膨張弁140および蓄熱槽180は、第1流路310A上に配置される。第2膨張弁160は第2流路320B上に配置される。
(d2.暖房蓄熱モード)
ヒートポンプ装置10Aの運転モードが暖房蓄熱モードのときの、冷媒の流れおよび制御部50の制御について、図10を用いて説明する。図10を参照して、制御部50は、暖房蓄熱モードにおいて、圧縮機110から吐出された冷媒が利用熱交換器210の第1ポート211に導かれるように、第1四方弁120の切替制御を行なう。利用熱交換器210に供給される冷媒は、利用流体との熱交換を行い、凝縮する。このとき、送風機220の作用により、利用熱交換器210によって温められた利用流体が室内機200Aから送風される。
暖房蓄熱モードにおいて、制御部50は、利用熱交換器210の第2ポート212から吐出される冷媒が、蓄熱槽180に導かれるように、すなわち、第1流路310Aに流れるように第2四方弁125の切替制御を行なう。これにより、蓄熱槽180内部の蓄熱材182に、高温高圧の冷媒が供給される。その結果、蓄熱材182は冷媒が保有する温熱の一部を吸収するとともに、当該熱を蓄える。
蓄熱槽180で熱交換を行った冷媒は、第1膨張弁140により減圧される。このとき、制御部50は、利用熱交換器210、室外熱交換器150内の冷媒の温度および圧力が所定値となるように第1膨張弁140の開度を調節する。第1膨張弁140を通過した冷媒は、送風機190の作用により、室外熱交換器150によって外気から温熱を受け取るとともに蒸発する。室外熱交換器150の第2ポート152から吐出される冷媒は、第2膨張弁160、および第2四方弁125を介して再び圧縮機110に入力される。
これにより、ヒートポンプ装置10Aは、暖房蓄熱モードにおいて、室内機200Aから温風を送風する暖房と、蓄熱材182への蓄熱を同時に行うことができる。また、実施形態4に従うヒートポンプ装置10Aは、実施形態1に従うヒートポンプ装置10と同様の理由で、暖房蓄熱モードにおいて、室内機200Aから送風される熱量を維持することができる。また、ヒートポンプ装置10Aは、外部熱源を必要とすることなく蓄熱材182に蓄熱することができる。また、ヒートポンプ装置10Aは、蓄熱材182に蓄熱する熱量を制御することができる。
(d3.暖房除霜モード)
次に、ヒートポンプ装置10Aの運転モードが暖房除霜モードのときの、冷媒の流れおよび制御部50の制御について説明する。図11は、実施形態4に従うヒートポンプ装置10Aの暖房除霜モードにおける冷媒の流れについて説明する図である。
図11を参照して、暖房除霜モードにおいて、圧縮機110から吐出された冷媒は、第1四方弁120を介して利用熱交換器210の第1ポート211に供給される。このとき、送風機220の作用により、利用熱交換器210によって温められた利用流体が室内機200から送風される。
暖房除霜モードにおいて、制御部50は、利用熱交換器210の第2ポート212から吐出される冷媒が、第2膨張弁160に導かれるように、すなわち第2流路320Bに流れるように第2四方弁125の切替制御を行なう。また、制御部50は、同モードにおいて、第1膨張弁140の開度を絞り、第2膨張弁160を全開にし、送風機190の駆動を停止する。これにより、利用熱交換器210の第2ポート212から吐出される高温高圧の冷媒は、管路上での僅かな損失はあるものの、その圧力を実質的に維持しつつ、室外熱交換器150の第2ポート152へと供給される。その結果、高温高圧の冷媒と室外熱交換器150との間で熱交換が行われるとともに、室外熱交換器150に付着した霜が融解される。このとき、室外熱交換器150へと供給される冷媒は、液相または液相の割合が高い気液混合相である。したがって、ヒートポンプ装置10Aは、室外熱交換器150における除霜を効率的に行うことができる。
室外熱交換器150の第1ポート151から吐出される冷媒は、第1膨張弁140を通過することにより減圧される。このとき、制御部50は、利用熱交換器210および蓄熱槽180における冷媒の温度および圧力が所定値となるように第1膨張弁140の開度を調節する。
第1膨張弁140により減圧された冷媒は、蓄熱材182と接触する。これにより、冷媒は蓄熱材182から温熱を受け取り、蒸発する。蓄熱槽180で蒸発した冷媒は、第2四方弁125を介して再び圧縮機110に入力される。すなわち、暖房除霜モードにおいて、室外熱交換器150の第1ポート151から吐出される冷媒の流路は、第1膨張弁140により減圧された後に、蓄熱材182と接触し、その後に圧縮機110により圧縮され、利用熱交換器210の第1ポート211に供給されるように形成される。
上記によれば、実施形態4に従うヒートポンプ装置10Aは、暖房除霜モードにおいて、室内機200から温風を送風する暖房と、室外熱交換器150における除霜を同時に行うことができる。また、実施形態4に従うヒートポンプ装置10Aは、実施形態1に従うヒートポンプ装置10と同様の理由で、暖房除霜モードにおいて、熱効率の低減を抑制することができる。
(d4.小括)
図12は、実施形態4に従うヒートポンプ装置10Aの各運転モードにおける制御を比較する図である。制御部50は、暖房蓄熱モード、暖房除霜モードのそれぞれにおいて、第1膨張弁140,第2膨張弁160の開度制御と、第2四方弁125の切替制御を、図12に示されるように行う。
実施形態4に従うヒートポンプ装置10Aは、実施形態1に従うヒートポンプ装置10に比して、分岐回路330,340と第1電磁弁130,第2電磁弁170との代わりに第2四方弁125を用いる。そのため、実施形態4に従うヒートポンプ装置10Aは、より簡易な構成で暖房蓄熱モードおよび暖房除霜モードを実現することができる。
(d5.蓄熱モード)
他の局面において、実施形態4に従うヒートポンプ装置10Aは、蓄熱材182への蓄熱動作のみを行う蓄熱モードを有する。図13は、実施形態4に従うヒートポンプ装置10Aの蓄熱モードにおける冷媒の流れについて説明する図である。図13を参照して、蓄熱モードにおいて、制御部50は、第1膨張弁140、第2膨張弁160を全開にする。また、制御部50は、同モードにおいて、送風機190,220の駆動を停止する。
これにより、圧縮機110から吐出される冷媒は、室外熱交換器150および利用熱交換器210において実質的に熱交換を行うことなく、高温かつ気相状態のまま蓄熱材182に供給される。その結果、蓄熱材182は冷媒から温熱の一部を吸収するとともに、当該熱を蓄えることができる。
なお、図13に示される例において、第1四方弁120は、圧縮機110から吐出される冷媒を第1流路310Bに導くように、第2四方弁125は、第1流路310Aに導くように切替制御されているが、これに限られない。蓄熱モードにおいて、第1四方弁120および第2四方弁125の切替制御に関わらず、蓄熱材182には、高温かつ気相状態の冷媒が供給される。
さらに他の局面において、制御部50は、蓄熱モードにおいて、圧縮機110から吐出される冷媒を第1流路310Bに導くように第1四方弁120を切替制御し、第2四方弁に到達した冷媒を第1流路310Aに導くように第2四方弁125を切替制御し、第1膨張弁140の開度を絞り、第2膨張弁160を全開にしてもよい。これによると、高温かつ気相状態の冷媒が蓄熱槽180を通過することとなる。また、蓄熱槽180を通過した冷媒は、室外熱交換器150および利用熱交換器210において外気から熱を受け取る。したがって、当該構成は蓄熱モードの熱効率を向上させることができる。
(d6.冷房モード)
図14は、実施形態4に従うヒートポンプ装置10Aの冷房モードにおける冷媒の流れについて説明する図である。制御部50は、冷房モードにおいて、圧縮機110から吐出された冷媒が第2四方弁125に導かれるように第1四方弁120を切替制御する。
また、制御部50は、同モードにおいて、第1四方弁120から流れてくる冷媒を、蓄熱槽180に導かれるように、すなわち第1流路310Aに流れるように第2四方弁125の切替制御を行なう。さらに、制御部50は、同モードにおいて、第1膨張弁140を全開にし、第2膨張弁160の開度を絞る。これにより、圧縮機110から吐出される冷媒は、第2四方弁125、蓄熱槽180、第1膨張弁140を介して室外熱交換器150に供給されるとともに、凝縮される。室外熱交換器150の第2ポート152から吐出される冷媒は、第2膨張弁160により減圧され、第2四方弁125を介して利用熱交換器210に供給される。このとき、送風機220の作用により、利用熱交換器210によって冷やされた利用流体が室内機200から送風される。
[E.実施形態5]
以下、ヒートポンプ装置10Aの変形例(実施形態5)について説明する。図15は、実施形態5に従うヒートポンプ装置10Bの構成例を説明する図である。なお、ヒートポンプ装置10Bの基本構成はヒートポンプ装置10Aと略同じであるため、相違する点についてのみ説明する。ヒートポンプ装置10Bは、室外機100Bと室内機200Bとを有する。室外機100Bは、第1流路310Aに配置される蓄熱槽180をバイパスする分岐回路350を有する。また、室外機100Bは、分岐回路350によってバイパスされる流路上であって、蓄熱槽180と第1膨張弁140との間に配置される第1電磁弁132と、分岐回路350に配置される第2電磁弁134とを有する。室外機100Bは、これらの部材を有する代わりに、第2膨張弁160を有さない。
(e1.暖房蓄熱モード)
次に、実施形態5に従うヒートポンプ装置10Bの運転モードが暖房蓄熱モードのときの、冷媒の流れおよび制御部50の制御について、図15を用いて説明する。なお、図10と同一符号を付している部分については、ヒートポンプ装置10Aの暖房蓄熱モードと同じであるため、その部分についての説明は繰り返さない。図15を参照して、制御部50は、暖房蓄熱モードにおいて、第1電磁弁132を開き、第2電磁弁134を閉じ、第1膨張弁140の開度を絞る。これにより、第2四方弁125を介して第1流路310Aに流れる冷媒は、分岐回路350に流れることなく蓄熱槽180に供給される。その結果、蓄熱材182は、冷媒が保有する温熱の一部を吸収するとともに、当該熱を蓄える。
蓄熱槽180で熱交換を行った冷媒は、第1膨張弁140により減圧される。第1膨張弁140を通過した冷媒は、送風機190の作用により室外熱交換器150によって外気から温熱を受け取るとともに蒸発する。室外熱交換器150の第2ポート152から吐出される冷媒は、第2四方弁125を介して再び圧縮機110に入力される。これにより、ヒートポンプ装置10Bは、暖房蓄熱モードにおいて、室内機200Bから温風を送風する暖房と、蓄熱材182への蓄熱を同時に行うことができる。
なお、上記において、第1電磁弁132を閉じ、第2電磁弁134を開くことによって、ヒートポンプ装置10Bは、蓄熱材182への蓄熱を行うことなく、室内機200Bから温風を送風する暖房のみを行う暖房モードを実現することができる。
(e2.暖房除霜モード)
次に、ヒートポンプ装置10Bの運転モードが暖房除霜モードのときの、冷媒の流れおよび制御部50の制御について説明する。図16は、実施形態5に従うヒートポンプ装置10Bの暖房除霜モードにおける冷媒の流れについて説明する図である。なお、図11と同一符号を付している部分については、ヒートポンプ装置10Aの暖房除霜モードと同じであるため、その部分についての説明は繰り返さない。
制御部50は、暖房除霜モードにおいて、第1電磁弁132を開き、第2電磁弁134を閉じ、第1膨張弁140の開度を絞る。これにより、利用熱交換器210の第2ポート212から吐出される高温高圧の冷媒は、管路上での僅かな損失はあるものの、その圧力を実質的に維持しつつ、室外熱交換器150の第2ポート152へと供給される。その結果、高温高圧の冷媒と室外熱交換器150との間で熱交換が行われるとともに、室外熱交換器150に付着した霜が融解される。このとき、室外熱交換器150へと供給される冷媒は、液相または液相の割合が高い気液混合相である。したがって、ヒートポンプ装置10Bは、室外熱交換器150における除霜を効率的に行うことができる。
室外熱交換器150の第1ポート151から吐出される冷媒は、第1膨張弁140を通過することにより減圧される。このとき、制御部50は、利用熱交換器210および蓄熱槽180における冷媒の温度および圧力が所定値となるように第1膨張弁140の開度を調節する。
第1膨張弁140により減圧された冷媒は、分岐回路350に流れることなく、蓄熱槽180を通過する。これにより、冷媒は蓄熱材182から温熱を受け取り、蒸発する。蓄熱槽180で蒸発した冷媒は、第2四方弁125を介して再び圧縮機110に入力される。すなわち、暖房除霜モードにおいて、室外熱交換器150の第1ポート151から吐出される冷媒の流路は、第1膨張弁140により減圧された後に、蓄熱材182と接触し、その後に圧縮機110により圧縮され、利用熱交換器210の第1ポート211に供給されるように形成される。
上記によれば、実施形態5に従うヒートポンプ装置10Bは、暖房除霜モードにおいて、室内機200から温風を送風する暖房と、室外熱交換器150における除霜を同時に行うことができる。また、実施形態5に従うヒートポンプ装置10Bは、実施形態1に従うヒートポンプ装置10と同様の理由で、暖房除霜モードにおいて、熱効率の低減を抑制することができる。さらに、実施形態5に従うヒートポンプ装置10Bは、ヒートポンプ装置10Aに比して、暖房モードを実現することができる。そのため、実施形態5に従うヒートポンプ装置10Bは、蓄熱材182への過剰な蓄熱を避けることができるため、ヒートポンプ装置10Aに比して、より熱効率を向上させることができる。
(e3.蓄熱モードおよび冷房モード)
なお、特に図示はしないが、ヒートポンプ装置10Bは、蓄熱材182への蓄熱動作のみを行う蓄熱モード、および室内機200Bから冷やされた利用流体を送風する冷房モードを実現することができる。
まず、蓄熱モードについて説明する。制御部50は、蓄熱モードにおいて、第1電磁弁132を開き、第2電磁弁を閉じ、第1膨張弁140を全開にし、送風機190,220の駆動を停止する。第1四方弁120および第2四方弁125は、いずれの流路に切り替えられてもよい。この条件において、圧縮機110から吐出される冷媒は、室外熱交換器150および利用熱交換器210において実質的に熱交換を行うことなく、高温かつ気相状態のまま蓄熱材182に供給される。その結果、蓄熱材182は冷媒から温熱の一部を吸収するとともに、当該熱を蓄えることができる。
次に、冷房モードについて説明する。実施形態5に従うヒートポンプ装置10Bの冷房モードにおける制御は、図14に示されるヒートポンプ装置10Aの冷房モードにおける制御と略同じであるため、相違する点についてのみ説明する。制御部50は、冷房モードにおいて、第1四方弁120から流れてくる冷媒を、第2流路320Bに流れるように第2四方弁125の切替制御を行なう。また、制御部50は、同モードにおいて、第1電磁弁132を閉じ、第2電磁弁134を開き、第1膨張弁140の開度を絞る。これにより、圧縮機110から吐出される冷媒は、第2四方弁125を介して室外熱交換器150に供給されるとともに、凝縮される。室外熱交換器150の第1ポート151から吐出される冷媒は、第1膨張弁140により減圧され、分岐回路350、第2四方弁125を介して利用熱交換器210に供給される。このとき、送風機220の作用により、利用熱交換器210によって冷やされた利用流体が室内機200から送風される。上記によれば、実施形態5に従うヒートポンプ装置10Bは、蓄熱モードおよび冷房モードを実現することができる。
[F.実施形態6]
図17は、実施形態6に従うヒートポンプ装置10Cの構成例を説明する図である。なお、ヒートポンプ装置10Cの基本構成はヒートポンプ装置10Bと略同じであるため、相違する点についてのみ説明する。ヒートポンプ装置10Cは、ヒートポンプ装置10Bに比して、分岐回路350上に第1電磁弁132,第2電磁弁134の代わりに第1膨張弁142,第2膨張弁144を配置する構成である。また、ヒートポンプ装置10Cは、ヒートポンプ装置10Bにおいて第1流路310A上に配置されていた第1膨張弁140を有しない。
(b7−1.暖房蓄熱モード)
次に、実施形態6に従うヒートポンプ装置10Cの運転モードが暖房蓄熱モードのときの、冷媒の流れおよび制御部50の制御について、図17を用いて説明する。なお、図15と同一符号を付している部分については、ヒートポンプ装置10Bの暖房蓄熱モードと同じであるため、その部分についての説明は繰り返さない。
図17を参照して、制御部50は、暖房蓄熱モードにおいて、第1膨張弁142,第2膨張弁144の開度を絞る。これにより、ヒートポンプ装置10Cは、第2四方弁125を介して第1流路310Aに流れる冷媒のうち、蓄熱槽180に流れる冷媒の流量を制御することができる。より具体的には、蓄熱槽180に流れる冷媒の流量を増やす場合、制御部50は、第1膨張弁142の開度をより開くように、または/および第2膨張弁144の開度をより絞るように制御する。ヒートポンプ装置10Cは、蓄熱材182に蓄熱される熱量を上記のヒートポンプ装置に比して、より細やかに制御することができる。
蓄熱槽180および分岐回路350を通過した冷媒は、送風機190の作用により室外熱交換器150によって外気から温熱を受け取るとともに蒸発する。これにより、ヒートポンプ装置10Cは、暖房蓄熱モードにおいて、室内機200Cから温風を送風する暖房と、蓄熱材182への蓄熱を同時に行うことができる。
なお、上記の例において、第1膨張弁142および第2膨張弁144の開度を絞る構成であったが、他の局面において、第1膨張弁142の開度を絞り、第2膨張弁144を完全に閉じる構成であってもよい。当該構成において、蓄熱材182は、単位時間当たりに蓄熱できる熱量を増やすことができる。
また、上記の例において、第1膨張弁142を完全に閉じ、第2膨張弁144の開度を絞ることによって、ヒートポンプ装置10Cは、蓄熱材182への蓄熱を行うことなく、室内機200Cから温風を送風する暖房のみを行う暖房モードを実現することができる。
(b7−2.暖房除霜モード)
次に、ヒートポンプ装置10Cの運転モードが暖房除霜モードのときの、冷媒の流れおよび制御部50の制御について説明する。図18は、実施形態6に従うヒートポンプ装置10Cの暖房除霜モードにおける冷媒の流れについて説明する図である。なお、図16と同一符号を付している部分については、ヒートポンプ装置10Bの暖房除霜モードと同じであるため、その部分についての説明は繰り返さない。
制御部50は、暖房除霜モードにおいて、第1膨張弁142の開度を絞り、第2膨張弁144を完全に閉じる。これにより、利用熱交換器210の第2ポート212から吐出される高温高圧の冷媒は、管路上での僅かな損失はあるものの、その圧力を実質的に維持しつつ、室外熱交換器150の第2ポート152へと供給される。その結果、高温高圧の冷媒と室外熱交換器150との間で熱交換が行われるとともに、室外熱交換器150に付着した霜が融解される。このとき、室外熱交換器150へと供給される冷媒は、液相または液相の割合が高い気液混合相である。したがって、ヒートポンプ装置10Cは、室外熱交換器150における除霜を効率的に行うことができる。
室外熱交換器150の第1ポート151から吐出される冷媒は、分岐回路350に流れることなく、第1膨張弁142を通過することにより減圧される。このとき、制御部50は、利用熱交換器210および蓄熱槽180における冷媒の温度および圧力が所定値となるように第1膨張弁142の開度を調節する。
第1膨張弁142により減圧された冷媒は、蓄熱槽180を通過する。これにより、冷媒は蓄熱材182から温熱を受け取り、蒸発する。蓄熱槽180で蒸発した冷媒は、第2四方弁125を介して再び圧縮機110に入力される。すなわち、暖房除霜モードにおいて、室外熱交換器150の第1ポート151から吐出される冷媒の流路は、第1膨張弁142により減圧された後に、蓄熱材182と接触し、その後に圧縮機110により圧縮され、利用熱交換器210の第1ポート211に供給されるように形成される。
上記によれば、実施形態6に従うヒートポンプ装置10Cは、暖房除霜モードにおいて、室内機200から温風を送風する暖房と、室外熱交換器150における除霜を同時に行うことができる。また、実施形態6に従うヒートポンプ装置10Cは、実施形態1に従うヒートポンプ装置10と同様の理由で、暖房除霜モードにおいて、熱効率の低減を抑制することができる。さらに、実施形態6に従うヒートポンプ装置10Cは、暖房モードを実現することができる。そのため、実施形態6に従うヒートポンプ装置10Cは、蓄熱材182への過剰な蓄熱を避けることができるため、ヒートポンプ装置10Aに比して、より熱効率を向上させることができる。
(b7−3.蓄熱モードおよび冷房モード)
なお、特に図示はしないが、ヒートポンプ装置10Cは、蓄熱材182への蓄熱動作のみを行う蓄熱モード、および室内機200Cから冷やされた利用流体を送風する冷房モードを実現することができる。
まず、蓄熱モードについて説明する。制御部50は、蓄熱モードにおいて、第1膨張弁142を全開にし、第2膨張弁144を完全に閉じ、送風機190,220の駆動を停止する。第1四方弁120および第2四方弁125は、いずれの流路に切り替えられてもよい。この条件において、圧縮機110から吐出される冷媒は、室外熱交換器150および利用熱交換器210において実質的に熱交換を行うことなく、高温かつ気相状態のまま蓄熱材182に供給される。その結果、蓄熱材182は冷媒から温熱の一部を吸収するとともに、当該熱を蓄えることができる。
なお、他の局面において、制御部50は、蓄熱モードにおいて、圧縮機110から吐出される冷媒を第1流路310Bに導くように第1四方弁120を切替制御し、第2四方弁に到達した冷媒を第1流路310Aに導くように第2四方弁125を切替制御し、第1膨張弁140の開度を絞り、第2膨張弁160を完全に閉じてもよい。これによると、高温かつ気相状態の冷媒が蓄熱槽180を通過することとなる。また、蓄熱槽180を通過した冷媒は、室外熱交換器150および利用熱交換器210において外気から熱を受け取る。したがって、当該構成は蓄熱モードの熱効率を向上させることができる。
次に、冷房モードについて説明する。実施形態6に従うヒートポンプ装置10Cの冷房モードにおける制御は、ヒートポンプ装置10Bの冷房モードにおける制御と略同じであるため、相違する点についてのみ説明する。制御部50は、冷房モードにおいて、第1膨張弁142を完全に閉じ、第2膨張弁144の開度を絞る。これにより、室外熱交換器150の第1ポート151から吐出される冷媒は分岐回路350に流れ、第2膨張弁144により減圧される。第2膨張弁144を通過した冷媒は、第2四方弁125を介して利用熱交換器210に供給される。このとき、送風機220の作用により、利用熱交換器210によって冷やされた利用流体が室内機200から送風される。上記によれば、実施形態6に従うヒートポンプ装置10Cは、蓄熱モードおよび冷房モードを実現することができる。
実施形態4、5、6で説明したヒートポンプ装置10A,10B,10Cはいずれも、実施形態1に従うヒートポンプ装置10と同様、図5に示されるフローチャートに従って各運転モードを切り替え可能に構成される。なお、ヒートポンプ装置10Aについては、暖房モードを有さないため、暖房モードの代わりに暖房蓄熱モードが用いられる。
また、他の局面において、ヒートポンプ装置10A,10B,10Cはいずれも、第1四方弁120を取り除くことによって、暖房運転のみ行う構成でもあってよい。
また、上記説明を行ったヒートポンプ装置10,10A,10B,10Cは、空気調和機の他にも、冷凍庫、冷蔵庫、衣類乾燥機、給湯器など、一方の熱交換器で外気から熱をうけとり、他方の熱交換器で熱を放出する冷凍サイクルを利用する機器であれば適用することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10,10A,10B,10C ヒートポンプ装置、50 制御部、100,100A,100B,100C 室外機、110 圧縮機、120 第1四方弁、125 第2四方弁、130,132 第1電磁弁、134,170 第2電磁弁、140,142 第1膨張弁、144,160 第2膨張弁、150 室外熱交換器、180 蓄熱槽、182 蓄熱材、190,220 送風機、200,200A,200B,200C 室内機、210 利用熱交換器、310,310A,310B 第1流路、320,320A,320B 第2流路、330,340,350 分岐回路。

Claims (5)

  1. ヒートポンプ装置であって、
    冷媒と熱源との間で熱交換を行う熱源側熱交換器と、
    前記冷媒と利用流体との間で熱交換を行う利用側熱交換器と、
    前記熱源側熱交換器の第1のポートと前記利用側熱交換器の第1のポートとを結ぶ第1の流路および前記熱源側熱交換器の第2のポートと前記利用側熱交換器の第2のポートとを結ぶ第2の流路を含む、前記冷媒が流れる主回路と、
    前記第1の流路上に配置される圧縮機と、
    前記第1の流路上の前記熱源側熱交換器と前記圧縮機との間に配置される第1の減圧装置と、
    前記主回路を流れる前記冷媒が保有する温熱の一部を吸収する熱部材(蓄熱材)とを備え、
    第1の運転モード(暖房除霜)において、
    前記第1の減圧装置による減圧動作が有効化され、
    前記熱源側熱交換器の前記第1のポートから吐出されて前記第1の減圧装置により減圧された冷媒を前記蓄熱材に接触させた後、前記蓄熱材に接触した後の冷媒が前記圧縮機により圧縮されて前記利用側熱交換器の前記第1のポートへ供給されるように前記第1の流路が形成され、
    前記利用側熱交換器の前記第2のポートから吐出された冷媒の圧力を実質的に維持しつつ、当該冷媒を前記熱源側熱交換器の前記第2のポートへ供給されるように前記第2の流路が形成される、ヒートポンプ装置。
  2. 前記第2の流路上の主回路から分岐する分岐回路と、
    前記利用側熱交換器の前記第2のポートから吐出される前記冷媒の流れを前記主回路と前記分岐回路との間で切り替え可能に構成される第1の切替部をさらに備え、
    前記熱部材は前記分岐回路上に配置され、
    第2の運転モード(蓄熱/暖房蓄熱)において、前記第1の切替部は、前記利用側熱交換器の前記第2のポートから吐出される前記冷媒の流れを前記分岐回路に切り替えるように構成される、請求項1に記載のヒートポンプ装置。
  3. 前記第2の流路上に配置される第2の減圧装置をさらに備える、請求項1に記載のヒートポンプ装置。
  4. 前記利用側熱交換器の前記第2のポートから吐出される前記冷媒を、前記第1の運転モード(暖房除霜)において前記第1の減圧装置を介して前記熱源側熱交換器に流れるように、第2の運転モード(蓄熱/暖房蓄熱)において前記第2の減圧装置を介して前記熱源側熱交換器に流れるように切り替え可能に構成される第2の切替部をさらに備え、
    前記第1の運転モード(暖房除霜)において、前記冷媒の前記第1の減圧装置による減圧動作が無効化されるとともに、前記第2の減圧装置による減圧動作が有効化され、
    前記第2の運転モード(蓄熱/暖房蓄熱)において、前記冷媒の前記第1の減圧装置による減圧動作が有効化されるとともに、前記第2の減圧装置による減圧動作が無効化される、請求項3に記載のヒートポンプ装置。
  5. ヒートポンプ装置を備える空気調和機であって、
    前記ヒートポンプ装置は、
    冷媒と熱源との間で熱交換を行う熱源側熱交換器と、
    前記冷媒と利用流体との間で熱交換を行う利用側熱交換器と、
    前記熱源側熱交換器の第1のポートと前記利用側熱交換器の第1のポートとを結ぶ第1の流路および前記熱源側熱交換器の第2のポートと前記利用側熱交換器の第2のポートとを結ぶ第2の流路を含む、前記冷媒が流れる主回路と、
    前記第1の流路上に配置される圧縮機と、
    前記第1の流路上の前記熱源側熱交換器と前記圧縮機との間に配置される第1の減圧装置と、
    前記主回路を流れる前記冷媒が保有する温熱の一部を吸収する熱部材とを有し、
    第1の運転モードにおいて、
    前記第1の減圧装置による減圧動作が有効化され、
    前記熱源側熱交換器の前記第1のポートから吐出されて前記第1の減圧装置により減圧された冷媒を前記熱部材に接触させた後、前記熱部材に接触した後の冷媒が前記圧縮機により圧縮されて前記利用側熱交換器の前記第1のポートへ供給されるように前記第1の流路が形成され、
    前記利用側熱交換器の前記第2のポートから吐出された冷媒の圧力を実質的に維持しつつ、当該冷媒を前記熱源側熱交換器の前記第2のポートへ供給されるように前記第2の流路が形成される、空気調和機。
JP2016037302A 2016-02-29 2016-02-29 ヒートポンプ装置および空気調和機 Pending JP2017155961A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037302A JP2017155961A (ja) 2016-02-29 2016-02-29 ヒートポンプ装置および空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037302A JP2017155961A (ja) 2016-02-29 2016-02-29 ヒートポンプ装置および空気調和機

Publications (1)

Publication Number Publication Date
JP2017155961A true JP2017155961A (ja) 2017-09-07

Family

ID=59808492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037302A Pending JP2017155961A (ja) 2016-02-29 2016-02-29 ヒートポンプ装置および空気調和機

Country Status (1)

Country Link
JP (1) JP2017155961A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110925955A (zh) * 2019-11-25 2020-03-27 珠海格力电器股份有限公司 一种室外机化冰装置、室外机、空调及化冰方法
CN111578450A (zh) * 2020-04-13 2020-08-25 海信(山东)空调有限公司 一种空调系统及其除霜方法
CN111780224A (zh) * 2020-07-06 2020-10-16 宁波奥克斯电气股份有限公司 一种空调系统及其控制方法
JPWO2020161838A1 (ja) * 2019-02-06 2021-09-09 三菱電機株式会社 冷凍装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020161838A1 (ja) * 2019-02-06 2021-09-09 三菱電機株式会社 冷凍装置
JP7130067B2 (ja) 2019-02-06 2022-09-02 三菱電機株式会社 冷凍装置
CN110925955A (zh) * 2019-11-25 2020-03-27 珠海格力电器股份有限公司 一种室外机化冰装置、室外机、空调及化冰方法
CN111578450A (zh) * 2020-04-13 2020-08-25 海信(山东)空调有限公司 一种空调系统及其除霜方法
CN111780224A (zh) * 2020-07-06 2020-10-16 宁波奥克斯电气股份有限公司 一种空调系统及其控制方法
CN111780224B (zh) * 2020-07-06 2022-06-17 宁波奥克斯电气股份有限公司 一种空调系统及其控制方法

Similar Documents

Publication Publication Date Title
US8616017B2 (en) Air conditioning apparatus
CN108136876B (zh) 车辆用温度调整装置
US20110259025A1 (en) Heat pump type speed heating apparatus
JP2009228979A (ja) 空気調和装置
JP2014228190A (ja) 冷凍サイクル装置
US20080028773A1 (en) Air conditioner and controlling method thereof
JP2017155961A (ja) ヒートポンプ装置および空気調和機
JP2001056159A (ja) 空気調和装置
JP2014126350A (ja) 空気調和機
JP2009002610A (ja) 冷凍装置、並びに、環境試験器
WO2015060384A1 (ja) 冷凍装置
US9581359B2 (en) Regenerative air-conditioning apparatus
JP5334554B2 (ja) 空気調和装置
JP2014070830A (ja) 冷凍装置
JP6888280B2 (ja) 冷凍装置
KR20040081323A (ko) 냉동 사이클 장치
JP2012207843A (ja) ヒートポンプ装置
CN113547956A (zh) 车辆热管理系统
JP2018173197A (ja) 冷凍装置
JP6543446B2 (ja) 暖房システム
JP2014020735A (ja) 空気調和機
JP2020192965A (ja) 熱交換システム
JP2017036882A (ja) ヒートポンプシステム
AU2020360865B2 (en) A heat pump
JP2008175430A (ja) 空気調和機