JP2017155105A - Infrared shielding material fine particle dispersion liquid, coating liquid for forming infrared shielding film, infrared shielding film, and infrared shielding optical member - Google Patents

Infrared shielding material fine particle dispersion liquid, coating liquid for forming infrared shielding film, infrared shielding film, and infrared shielding optical member Download PDF

Info

Publication number
JP2017155105A
JP2017155105A JP2016038395A JP2016038395A JP2017155105A JP 2017155105 A JP2017155105 A JP 2017155105A JP 2016038395 A JP2016038395 A JP 2016038395A JP 2016038395 A JP2016038395 A JP 2016038395A JP 2017155105 A JP2017155105 A JP 2017155105A
Authority
JP
Japan
Prior art keywords
infrared shielding
shielding material
particle dispersion
material fine
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016038395A
Other languages
Japanese (ja)
Inventor
三信 見良津
Mitsunobu Miratsu
三信 見良津
東福 淳司
Junji Tofuku
淳司 東福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016038395A priority Critical patent/JP2017155105A/en
Publication of JP2017155105A publication Critical patent/JP2017155105A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an infrared shielding material fine particle dispersion liquid and a coating liquid capable of preventing decrease in infrared shielding characteristics with time due to reduction in a particle size and capable of preventing degradation in haze when a UV curable resin is used, and an infrared shielding film and an infrared shielding optical member.SOLUTION: The infrared shielding material fine particle dispersion liquid comprises infrared shielding material fine particles selected from tungsten oxide fine particles and composite tungsten oxide fine particles, dispersed in an organic solvent; the infrared shielding material fine particle dispersion liquid with addition of an ultraviolet curable resin that is not included in the dispersion liquid constitutes a coating liquid for forming an infrared shielding film. The infrared shielding material fine particle dispersion liquid contains a first additive composed of a metal salt comprising an element such as Cs, Sr, Ba, Ti, Zr, and Cr and a second additive composed of ammonia or an amine compound, in which a weight ratio of the content of the second additive to the first additive is 5% or more and 300% or less.SELECTED DRAWING: Figure 1

Description

本発明は、可視光領域においては透明で、近赤外線領域においては吸収を持つタングステン酸化物微粒子、複合タングステン酸化物微粒子から選ばれる1種以上の赤外線遮蔽材料微粒子が溶媒中に分散された赤外線遮蔽材料微粒子分散液と赤外線遮蔽膜形成用塗布液に係り、特に、赤外線遮蔽材料微粒子の微細化に伴う赤外線遮蔽特性の経時的低下を防止できると共に紫外線硬化樹脂が適用された場合におけるヘイズの悪化も防止できる赤外線遮蔽材料微粒子分散液と赤外線遮蔽膜形成用塗布液の改良と、当該赤外線遮蔽材料微粒子分散液と赤外線遮蔽膜形成用塗布液を用いて得られる赤外線遮蔽膜と赤外線遮蔽光学部材の改良に関するものである。   The present invention provides an infrared shielding material in which one or more infrared shielding material fine particles selected from tungsten oxide fine particles and composite tungsten oxide fine particles which are transparent in the visible light region and have absorption in the near infrared region are dispersed in a solvent. The present invention relates to a material fine particle dispersion and a coating liquid for forming an infrared shielding film, and in particular, it is possible to prevent deterioration of infrared shielding characteristics with time due to the miniaturization of infrared shielding material fine particles, and deterioration of haze when an ultraviolet curable resin is applied. Improvement of infrared shielding material fine particle dispersion and infrared shielding film forming coating solution, and improvement of infrared shielding film and infrared shielding optical member obtained by using the infrared shielding material fine particle dispersion and infrared shielding film forming coating liquid It is about.

近年、赤外線遮蔽体の需要が急増しており、赤外線遮蔽体に関する特許が多く提案されている。機能的観点からは、例えば、各種建築物や車両の窓材等の分野において、可視光線を十分に取り入れながら近赤外領域の光を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制することを目的としたもの、プラズマディスプレイパネルから前方に放射される近赤外線が、コードレスフォンや家電機器のリモコンに誤動作を引き起こしたり、伝送系光通信に悪影響を及ぼしたりすることを防止することを目的としたもの等がある。   In recent years, the demand for infrared shielding bodies has increased rapidly, and many patents relating to infrared shielding bodies have been proposed. From a functional standpoint, for example, in the fields of various buildings and vehicle window materials, it is possible to block near-infrared light while sufficiently incorporating visible light, and to suppress the rise in indoor temperature while maintaining brightness. It is intended to prevent the near infrared rays radiated forward from the plasma display panel from causing malfunctions in the cordless phone and the remote control of home appliances, and adversely affecting the transmission optical communication. There is a purpose.

また、遮光部材の観点からは、例えば、窓材等に使用される遮光部材として、可視光領域から近赤外線領域に吸収特性があるカーボンブラック、チタンブラック等の無機顔料、可視光領域のみに強い吸収特性のあるアニリンブラック等の有機顔料等黒色系顔料を含有する遮光フィルムや、アルミ等の金属を蒸着したハーフミラータイプの遮光部材が提案されている。   Further, from the viewpoint of the light shielding member, for example, as a light shielding member used for a window material or the like, it is strong only to an inorganic pigment such as carbon black and titanium black having absorption characteristics from a visible light region to a near infrared region, and a visible light region. A light-shielding film containing a black pigment such as an organic pigment such as aniline black having absorption characteristics, and a half-mirror type light-shielding member in which a metal such as aluminum is vapor-deposited have been proposed.

特許文献1では、透明なガラス基板上に、基板側より第1層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、前記第1層上に第2層として透明誘電体膜を設け、当該第2層上に第3層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、かつ、前記第2層の透明誘電体膜の屈折率を第1層および第3層の複合酸化タングステン膜の屈折率よりも低くすることにより、高い可視光透過率および良好な赤外線遮断性能が要求される部位に好適に使用できる赤外線遮断ガラスが提案されている。   In Patent Document 1, on a transparent glass substrate, at least one metal ion selected from the group consisting of Group IIIa, Group IVa, Group Vb, Group VIb and Group VIIb of the periodic table as a first layer from the substrate side. A composite tungsten oxide film containing, a transparent dielectric film as a second layer on the first layer, a group IIIa, IVa group, Vb group of the periodic table as a third layer on the second layer, A composite tungsten oxide film containing at least one metal ion selected from the group consisting of group VIb and group VIIb is provided, and the refractive index of the transparent dielectric film of the second layer is set to the first layer and the third layer. There has been proposed an infrared shielding glass that can be suitably used for a portion requiring high visible light transmittance and good infrared shielding performance by lowering the refractive index of the composite tungsten oxide film.

特許文献2では、特許文献1と同様の方法で、透明なガラス基板上に、基板側より第1層として第1の誘電体膜を設け、当該第1層上に第2層として酸化タングステン膜を設け、当該第2層上に第3層として第2の誘電体膜を設けた赤外線遮断ガラスが提案されている。   In Patent Document 2, a first dielectric film is provided as a first layer from the substrate side on a transparent glass substrate in the same manner as Patent Document 1, and a tungsten oxide film is formed as a second layer on the first layer. Infrared shielding glass in which a second dielectric film is provided as a third layer on the second layer has been proposed.

特許文献3では、特許文献1と同様な方法で、透明な基板上に、基板側より第1層として同様の金属元素を含有する複合酸化タングステン膜を設け、前記第1層上に第2層として透明誘電体膜を設けた熱線遮断ガラスが提案されている。   In Patent Document 3, a composite tungsten oxide film containing the same metal element is provided as a first layer from the substrate side on a transparent substrate by the same method as Patent Document 1, and a second layer is formed on the first layer. A heat ray blocking glass provided with a transparent dielectric film has been proposed.

また、特許文献4では、水素、リチウム、ナトリウムまたはカリウム等の添加元素を含有する三酸化タングステン(WO3)、三酸化モリブデン(MoO3)、五酸化ニオブ(Nb25)、五酸化タンタル(Ta25)、五酸化バナジウム(V25)および二酸化バナジウム(VO2)の1種以上から選択された金属酸化物膜を、CVD法またはスプレー法でガラスシートに被覆しかつ250℃程度で熱分解して形成された太陽光遮蔽特性を有する太陽光制御ガラスシートが提案されている。 In Patent Document 4, tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), and tantalum pentoxide containing an additive element such as hydrogen, lithium, sodium, or potassium. A metal oxide film selected from one or more of (Ta 2 O 5 ), vanadium pentoxide (V 2 O 5 ) and vanadium dioxide (VO 2 ) is coated on a glass sheet by a CVD method or a spray method, and 250 A solar control glass sheet having solar light shielding properties formed by thermal decomposition at about ° C. has been proposed.

特許文献5には、タングステン酸を加水分解して得られた酸化タングステン(タングステン酸化物)を用い、当該酸化タングステンに、ポリビニルピロリドンという特定の構造の有機ポリマーを添加することにより、太陽光が照射されると光線中の紫外線が酸化タングステンに吸収されて励起電子とホールとが発生し、少量の紫外線量により5価タングステンの出現量が著しく増加して着色反応が速くなり、これに伴って着色濃度が高くなると共に、光を遮断することによって5価タングステンが極めて速やかに6価に酸化されて消色反応が速くなる特性を用い、太陽光に対する着色および消色反応が速く、着色時に近赤外域の波長1250nmに吸収ピークが現れ、太陽光の近赤外線を遮断することができる太陽光可変調光断熱材料が提案されている。   In Patent Document 5, sunlight is irradiated by using tungsten oxide (tungsten oxide) obtained by hydrolyzing tungstic acid and adding an organic polymer having a specific structure called polyvinylpyrrolidone to the tungsten oxide. Then, the ultraviolet rays in the light are absorbed by tungsten oxide, and excited electrons and holes are generated. The appearance amount of pentavalent tungsten is remarkably increased by a small amount of ultraviolet rays, and the coloring reaction is accelerated. As the concentration increases, the property that the pentavalent tungsten is oxidized to hexavalent very quickly by blocking the light and the decoloring reaction is accelerated, the coloring and decoloring reaction to sunlight is fast, and the near red at the time of coloring Proposal of a solar-modulable light insulating material capable of blocking near-infrared rays of sunlight with an absorption peak appearing at an outer wavelength of 1250 nm It has been.

また、特許文献6には、六塩化タングステンをアルコールに溶解し、そのまま溶媒を蒸発させるか、または加熱還流した後溶媒を蒸発させ、その後100℃〜500℃で加熱することにより、三酸化タングステン若しくはその水和物または両者の混合物から成る粉末を得ること、当該酸化タングステン微粒子を用いてエレクトロクロミック素子が得られること、多層の積層体を構成し膜中にプロトンを導入したときに当該膜の光学特性を変化させることができること等が提案されている。   Patent Document 6 discloses that tungsten trichloride or tungsten trioxide is dissolved in alcohol by evaporating the solvent as it is or by heating and refluxing, evaporating the solvent, and then heating at 100 ° C. to 500 ° C. Obtaining a powder composed of the hydrate or a mixture of the two, obtaining an electrochromic device using the tungsten oxide fine particles, and forming an optical layer of the film when protons are introduced into the film by forming a multilayer laminate. It has been proposed that the characteristics can be changed.

また、特許文献7には、メタ型タングステン酸アンモニウムと水溶性の各種金属塩を原料とし、その混合水溶液の乾固物を約300〜700℃の加熱温度で加熱し、この加熱中に不活性ガス(添加量;約50vol%以上)または水蒸気(添加量;約15vol%以下)が添加された水素ガスを供給することにより、MxWO3(M;アルカリ、アルカリ土類、希土類等の金属元素、0<x<1)で表される種々のタングステンブロンズを作製する方法が提案されている。また、同様の操作を支持体上で行わせ、種々のタングステンブロンズ被覆複合体を製造する方法が提案され、燃料電池等の電極触媒材料として用いることが提案されている。 Further, in Patent Document 7, a meta-type ammonium tungstate and various water-soluble metal salts are used as raw materials, and a dried solid solution of the mixed aqueous solution is heated at a heating temperature of about 300 to 700 ° C., and inactive during the heating. By supplying hydrogen gas to which gas (addition amount: about 50 vol% or more) or water vapor (addition amount: about 15 vol% or less) is added, M x WO 3 (M: metal such as alkali, alkaline earth, rare earth, etc.) Various methods for producing tungsten bronzes represented by the element 0 <x <1) have been proposed. In addition, a method for producing various tungsten bronze-coated composites by performing the same operation on the support has been proposed, and it has been proposed to be used as an electrode catalyst material for fuel cells and the like.

更に、特許文献8には、赤外線遮蔽材料微粒子が樹脂やガラス等の媒体中に分散してなる赤外線遮蔽材料微粒子分散体であって、赤外線遮蔽材料微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物微粒子、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物微粒子で構成され、かつ、当該赤外線遮蔽材料微粒子の粒子直径が1nm以上800nm以下であることを特徴とする赤外線遮蔽材料微粒子分散体、および、この赤外線遮蔽材料微粒子分散体の光学特性や導電性、製造方法等について開示されている。   Further, Patent Document 8 discloses an infrared shielding material fine particle dispersion in which infrared shielding material fine particles are dispersed in a medium such as a resin or glass, and the infrared shielding material fine particles have a general formula WyOz (W is tungsten). , O is oxygen, tungsten oxide fine particles represented by 2.2 ≦ z / y ≦ 2.999, or / and general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal) , Rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, One or more types selected from Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I Elements, W is tungsten, O is Element, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0), and the particle diameter of the infrared shielding material fine particles is 1 nm or more. Infrared shielding material fine particle dispersion characterized by being 800 nm or less, and optical properties, conductivity, manufacturing method and the like of this infrared shielding material fine particle dispersion are disclosed.

ところで、特許文献8に開示された一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物微粒子、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物微粒子を樹脂やガラス等の媒体中に分散して成る赤外線遮蔽材料微粒子分散体は、可視光透過率を高く保ったまま赤外線の透過率を低くできるという優れた機能を発揮することから、この赤外線遮蔽材料微粒子分散体を、各種建築物や車両の窓材等に用いることが検討されている。   Incidentally, the tungsten oxide fine particles represented by the general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999) disclosed in Patent Document 8, or / and the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, One or more elements selected from Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0 ) Composite tungsten oxide fine particles represented by The infrared shielding material fine particle dispersion dispersed in the medium exhibits an excellent function of reducing the infrared transmittance while keeping the visible light transmittance high. It has been studied for use in various buildings and vehicle window materials.

そして、これ等用途においては、赤外線遮蔽特性と高い透明性(低いヘイズ値)が要求されているため、ヘイズ値を低下させることを目的として、前記タングステン酸化物微粒子、複合タングステン酸化物微粒子の粒子径を更に微細化する試みがなされている。   In these applications, since the infrared shielding property and high transparency (low haze value) are required, the tungsten oxide fine particles and the composite tungsten oxide fine particles are used for the purpose of reducing the haze value. Attempts have been made to further reduce the diameter.

しかし、タングステン酸化物微粒子、複合タングステン酸化物微粒子の粒子径を更に微細化した場合、当該微細化されたタングステン酸化物微粒子、複合タングステン酸化物微粒子を溶媒中に分散させた赤外線遮蔽材料微粒子分散液、および、この分散液を用いて得られる赤外線遮蔽膜(赤外線遮蔽材料微粒子分散体)や赤外線遮蔽光学部材においては、タングステン酸化物微粒子、複合タングステン酸化物微粒子の微細化に伴い赤外線遮蔽特性が経時的に低下してしまうことが課題となり、特許文献9において、当該赤外線遮蔽材料微粒子分散液に、Cs、Sr、Ba、Ti、Zr、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、In、Snの内から選択される1種類以上の元素から成る金属塩を添加して前記課題を解決する方法を提案している。   However, when the particle diameters of the tungsten oxide fine particles and the composite tungsten oxide fine particles are further refined, the infrared shielding material fine particle dispersion in which the refined tungsten oxide fine particles and the composite tungsten oxide fine particles are dispersed in a solvent. In addition, in the infrared shielding film (infrared shielding material fine particle dispersion) and the infrared shielding optical member obtained by using this dispersion liquid, the infrared shielding characteristics are gradually deteriorated as the tungsten oxide fine particles and the composite tungsten oxide fine particles are miniaturized. However, in Patent Document 9, the infrared shielding material fine particle dispersion is mixed with Cs, Sr, Ba, Ti, Zr, Cr, Mo, W, Mn, Re, Fe, Ru, Os. , Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, In, Sn We propose a method to solve the problem by adding a metal salt consisting of or more elements.

特開平8−59300号公報JP-A-8-59300 特開平8−12378号公報JP-A-8-12378 特開平8−283044号公報JP-A-8-283044 特開2000−119045号公報JP 2000-1119045 A 特開平9−127559号公報JP-A-9-127559 特開2003−121884号公報JP 2003-121884 A 特開平8−73223号公報JP-A-8-73223 国際公開WO2005/37932号公報International Publication WO2005 / 37932 特開2009−197146号公報JP 2009-197146 A

赤外線遮蔽材料微粒子分散液に金属塩を添加する特許文献9の方法によれば、赤外線遮蔽材料微粒子の赤外線遮蔽特性を経時的に低下させてしまう成分(空気中から侵入してきた水分や紫外線の照射等により発生したラジカル等)を金属塩が捕捉する作用を有するため、これ等成分に起因した赤外線遮蔽特性の経時的な低下を防止できるとしている。   According to the method of Patent Document 9 in which a metal salt is added to an infrared shielding material fine particle dispersion, a component that degrades the infrared shielding properties of the infrared shielding material fine particles over time (irradiation of moisture or ultraviolet rays entering from the air) It is said that since the metal salt has the action of capturing radicals generated by the above and the like, the infrared shielding property due to these components can be prevented from decreasing over time.

ところで、特許文献9の赤外線遮蔽膜形成用塗布液を用いて赤外線遮蔽膜を製造する際、バインダー樹脂として紫外線硬化樹脂を適用した場合、得られた赤外線遮蔽膜の混濁が多くなってしまう(すなわち、ヘイズが悪化してしまう)問題が確認された。   By the way, when manufacturing an infrared shielding film using the coating liquid for forming an infrared shielding film of Patent Document 9, when an ultraviolet curable resin is applied as a binder resin, the resulting infrared shielding film becomes more turbid (that is, , The haze gets worse).

すなわち、紫外線硬化樹脂が適用された赤外線遮蔽膜形成用塗布液を用いて基材表面に塗布膜を形成し、該塗布膜から溶媒を蒸発させかつ紫外線を照射して赤外線遮蔽膜を製造しようとした場合、塗布膜の乾燥時において赤外線遮蔽材料微粒子が凝集して赤外線遮蔽膜のヘイズを悪化させてしまう問題が確認された。   That is, an infrared shielding film is formed by forming a coating film on the surface of a substrate using a coating liquid for forming an infrared shielding film to which an ultraviolet curable resin is applied, evaporating the solvent from the coating film and irradiating ultraviolet rays. In this case, it was confirmed that the fine particles of the infrared shielding material aggregated during drying of the coating film to deteriorate the haze of the infrared shielding film.

本発明はこのような問題に着目してなされたもので、その課題とするところは、赤外線遮蔽材料微粒子の微細化に伴う赤外線遮蔽特性の経時的低下を防止できると共に紫外線硬化樹脂が適用された場合におけるヘイズの悪化も防止できる赤外線遮蔽材料微粒子分散液と赤外線遮蔽膜形成用塗布液を提供し、併せて、当該赤外線遮蔽材料微粒子分散液と赤外線遮蔽膜形成用塗布液を用いて得られる赤外線遮蔽膜と赤外線遮蔽光学部材を提供することにある。   The present invention has been made paying attention to such a problem, and the problem is that an ultraviolet curable resin was applied as well as preventing the deterioration of infrared shielding characteristics with the lapse of time with the miniaturization of the fine particles of the infrared shielding material. Infrared shielding material fine particle dispersion and infrared shielding film forming coating liquid capable of preventing deterioration of haze in some cases, and infrared rays obtained using the infrared shielding material fine particle dispersion and infrared shielding film forming coating liquid The object is to provide a shielding film and an infrared shielding optical member.

そこで、金属塩が添加された特許文献9の赤外線遮蔽膜形成用塗布液を用いて赤外線遮蔽膜を製造する際、バインダー樹脂として紫外線硬化樹脂が適用された場合に赤外線遮蔽膜のヘイズが悪化してしまう原因について本発明者等が鋭意探究したところ、タングステン酸化物微粒子、複合タングステン酸化物微粒子から成る赤外線遮蔽材料微粒子と紫外線硬化樹脂との相溶性に難があり、塗布膜の乾燥時に赤外線遮蔽材料微粒子の凝集が起こって紫外線硬化樹脂中に赤外線遮蔽材料微粒子が均一に分散されないためであることが確認された。そして、金属塩が添加された特許文献9の赤外線遮蔽膜形成用塗布液にアンモニアおよびアミン化合物から選ばれる1種以上を添加したところ赤外線遮蔽材料微粒子と紫外線硬化樹脂との相溶性が向上し、ヘイズの悪化が改善されることを発見するに至った。本発明はこのような技術的発見により完成されている。   Then, when manufacturing an infrared shielding film using the coating liquid for infrared shielding film formation of Patent Document 9 to which a metal salt is added, the haze of the infrared shielding film is deteriorated when an ultraviolet curable resin is applied as a binder resin. As a result of diligent investigations by the present inventors, there is a difficulty in compatibility between the infrared shielding material fine particles composed of the tungsten oxide fine particles and the composite tungsten oxide fine particles and the ultraviolet curable resin, and the infrared ray shielding is difficult when the coating film is dried. It was confirmed that the aggregation of the material fine particles occurred and the infrared shielding material fine particles were not uniformly dispersed in the ultraviolet curable resin. And, when at least one selected from ammonia and amine compounds is added to the infrared shielding film forming coating solution of Patent Document 9 to which the metal salt is added, the compatibility between the infrared shielding material fine particles and the ultraviolet curable resin is improved, It came to discover that the deterioration of haze is improved. The present invention has been completed by such technical discovery.

すなわち、本発明に係る第1の発明は、
一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物微粒子、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3)で表記される複合タングステン酸化物微粒子から選択される1種以上の微粒子で構成される赤外線遮蔽材料微粒子が有機系溶媒中に分散された赤外線遮蔽材料微粒子分散液であって、該分散液に含まれない紫外線硬化樹脂が前記分散液に添加されて赤外線遮蔽膜形成用塗布液を構成する赤外線遮蔽材料微粒子分散液において、
Cs、Sr、Ba、Ti、Zr、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、In、Snの内から選択される1種類以上の元素から成る金属塩で構成される第一添加剤と、アンモニアおよびアミン化合物から選ばれる1種以上で構成される第二添加剤を含有し、かつ、前記第一添加剤に対する第二添加剤の含有量が重量比で5%以上300%以下であることを特徴とする。
That is, the first invention according to the present invention is:
Tungsten oxide fine particles represented by the general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), general formula MxWyOz (where M is H, He, alkali metal) , Alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl , Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I 1 or more elements selected, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3) Infrared shielding material fine particles composed of more than one kind of fine particles Infrared shielding material fine particle dispersion dispersed in a medium, wherein an ultraviolet curable resin not contained in the dispersion is added to the dispersion to form an infrared shielding film forming coating liquid In
Cs, Sr, Ba, Ti, Zr, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, In, Containing a first additive composed of a metal salt composed of one or more elements selected from Sn, and a second additive composed of one or more selected from ammonia and an amine compound, and The content of the second additive with respect to the first additive is 5% to 300% by weight.

また、本発明に係る第2の発明は、
第1の発明に記載の赤外線遮蔽材料微粒子分散液において、
前記アミン化合物が、ジエタノールアミン、モノエタノールアミン、トリエタノールアミンの内から選択される1種類以上であることを特徴とし、
第3の発明は、
第1の発明または第2の発明に記載の赤外線遮蔽材料微粒子分散液において、
前記第一添加剤の含有量が、前記赤外線遮蔽材料微粒子100重量部に対し0.01重量部以上20重量部以下であることを特徴とし、
第4の発明は、
第1の発明〜第3の発明のいずれかに記載の赤外線遮蔽材料微粒子分散液において、
前記タングステン酸化物微粒子、複合タングステン酸化物微粒子から選ばれる1種以上が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.45≦z/y≦2.999)で表記される組成比のマグネリ相を含むことを特徴とし、
第5の発明は、
第1の発明〜第4の発明のいずれかに記載の赤外線遮蔽材料微粒子分散液において、
一般式MxWyOzで表記される前記複合タングステン酸化物微粒子が、六方晶、正方晶若しくは立方晶の結晶構造の1つ以上を含むことを特徴とし、
第6の発明は、
第5の発明に記載の赤外線遮蔽材料微粒子分散液において、
前記M元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snの内の1種類以上を含み、かつ、六方晶の結晶構造を有することを特徴とする。
Further, the second invention according to the present invention is:
In the infrared shielding material fine particle dispersion described in the first invention,
The amine compound is one or more selected from diethanolamine, monoethanolamine, and triethanolamine,
The third invention is
In the infrared shielding material fine particle dispersion according to the first invention or the second invention,
The content of the first additive is 0.01 to 20 parts by weight with respect to 100 parts by weight of the infrared shielding material fine particles,
The fourth invention is:
In the infrared shielding material fine particle dispersion according to any one of the first to third inventions,
One or more kinds selected from the tungsten oxide fine particles and the composite tungsten oxide fine particles are a composition represented by the general formula WyOz (W is tungsten, O is oxygen, 2.45 ≦ z / y ≦ 2.999). Characterized by containing a Magneli phase of the ratio,
The fifth invention is:
In the infrared shielding material fine particle dispersion according to any one of the first to fourth inventions,
The composite tungsten oxide fine particles represented by the general formula MxWyOz include one or more of hexagonal, tetragonal or cubic crystal structures,
The sixth invention is:
In the infrared shielding material fine particle dispersion according to the fifth invention,
The M element includes one or more of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn and has a hexagonal crystal structure.

次に、本発明に係る第7の発明は、
赤外線遮蔽膜形成用塗布液において、
第1の発明〜第6の発明のいずれかに記載の赤外線遮蔽材料微粒子分散液に紫外線硬化樹脂が添加されて成ることを特徴とし、
第8の発明は、
赤外線遮蔽膜において、
第7の発明に記載の赤外線遮蔽膜形成用塗布液を基材表面に塗布して塗布膜を形成し、該塗布膜から溶媒を蒸発させかつ紫外線を照射して得られることを特徴とし、
また、第9の発明は、
赤外線遮蔽光学部材において、
基材と、この基材表面に形成された第8の発明に記載の赤外線遮蔽膜とで構成されることを特徴とするものである。
Next, a seventh invention according to the present invention is as follows.
In the coating liquid for forming the infrared shielding film,
An ultraviolet curable resin is added to the infrared shielding material fine particle dispersion according to any one of the first to sixth inventions,
The eighth invention
In infrared shielding film,
It is obtained by applying the infrared shielding film forming coating liquid described in the seventh invention to the substrate surface to form a coating film, evaporating the solvent from the coating film and irradiating with ultraviolet rays,
In addition, the ninth invention,
In the infrared shielding optical member,
It is comprised by the base material and the infrared shielding film as described in 8th invention formed in this base-material surface, It is characterized by the above-mentioned.

本発明に係る赤外線遮蔽材料微粒子分散液は、一般式WyOzで表記されるタングステン酸化物微粒子、一般式MxWyOzで表記される複合タングステン酸化物微粒子から選ばれる1種以上の微粒子で構成される赤外線遮蔽材料微粒子と、Cs、Sr、Ba、Ti、Zr、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、In、Snの内から選択される1種類以上の元素から成る金属塩で構成される第一添加剤と、アンモニアおよびアミン化合物から選ばれる1種以上で構成される第二添加剤を含有することを特徴としている。   The infrared shielding material fine particle dispersion according to the present invention is an infrared shielding material composed of one or more kinds of fine particles selected from tungsten oxide fine particles represented by the general formula WyOz and composite tungsten oxide fine particles represented by the general formula MxWyOz. Material fine particles, Cs, Sr, Ba, Ti, Zr, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Contains a first additive composed of a metal salt composed of one or more elements selected from Cd, In, and Sn, and a second additive composed of one or more selected from ammonia and an amine compound It is characterized by doing.

そして、第一添加剤の作用により赤外線遮蔽材料微粒子の微細化に伴う赤外線遮蔽特性の経時的低下を防止することが可能となり、第二添加剤の作用により紫外線硬化樹脂が適用された場合におけるヘイズの悪化も防止することが可能となる。   And, it becomes possible to prevent the time-dependent deterioration of the infrared shielding property due to the refinement of the fine particles of the infrared shielding material by the action of the first additive, and the haze when the ultraviolet curable resin is applied by the action of the second additive. It is also possible to prevent the deterioration.

従って、紫外線硬化樹脂が添加された本発明に係る赤外線遮蔽膜形成用塗布液を用いて製造される赤外線遮蔽膜と赤外線遮蔽光学部材は、赤外線遮蔽特性の経時的安定性に優れ、かつ、従来にない低ヘイズ化が可能となるため、各種建築物や車両の窓材等に使用される遮光フィルム、遮光部材等に適用できる効果を有する。   Therefore, the infrared shielding film and the infrared shielding optical member manufactured using the coating liquid for forming the infrared shielding film according to the present invention to which the ultraviolet curable resin is added are excellent in the temporal stability of the infrared shielding properties and are conventionally known. Therefore, it has an effect that can be applied to a light-shielding film, a light-shielding member, and the like used for various buildings and vehicle window materials.

本発明において適用される六方晶を有する複合タングステン酸化物微粒子の結晶構造の模式図。The schematic diagram of the crystal structure of the composite tungsten oxide fine particle which has a hexagonal crystal applied in this invention. 本発明に係る赤外線遮蔽膜等のブランク透過光強度の測定原理を示す説明図。Explanatory drawing which shows the measurement principle of blank transmitted light intensity | strength of the infrared shielding film etc. which concern on this invention. 本発明に係る赤外線遮蔽膜等の拡散透過光強度の測定原理を示す説明図。Explanatory drawing which shows the measurement principle of diffuse transmitted light intensity | strength of the infrared shielding film etc. which concern on this invention.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、本発明に係る赤外線遮蔽材料微粒子分散液は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物微粒子、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3)で表記される複合タングステン酸化物微粒子から選択される1種以上の微粒子で構成される赤外線遮蔽材料微粒子が有機系溶媒中に分散された赤外線遮蔽材料微粒子分散液であって、該分散液に含まれない紫外線硬化樹脂が前記分散液に添加されて赤外線遮蔽膜形成用塗布液を構成する赤外線遮蔽材料微粒子分散液において、Cs、Sr、Ba、Ti、Zr、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、In、Snの内から選択される1種類以上の元素から成る金属塩で構成される第一添加剤と、アンモニアおよびアミン化合物から選ばれる1種以上で構成される第二添加剤を含有し、かつ、前記第一添加剤に対する第二添加剤の含有量が重量比で5%以上300%以下であることを特徴とするものである。   First, the infrared shielding material fine particle dispersion according to the present invention is a tungsten oxide fine particle represented by a general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), Formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re , Be, Hf, Os, Bi, I, one or more elements selected from W, tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3) One or more selected from composite tungsten oxide fine particles represented by An infrared shielding material fine particle dispersion in which infrared shielding material fine particles composed of fine particles are dispersed in an organic solvent, and an ultraviolet curable resin not contained in the dispersion is added to the dispersion to form an infrared shielding film In the infrared shielding material fine particle dispersion constituting the coating liquid for coating, Cs, Sr, Ba, Ti, Zr, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, A first additive composed of a metal salt composed of one or more elements selected from Pt, Cu, Ag, Au, Zn, Cd, In, and Sn, and one or more selected from ammonia and an amine compound And the content of the second additive with respect to the first additive is 5% to 300% by weight.

1.タングステン酸化物微粒子と複合タングステン酸化物微粒子
一般に、自由電子を含む材料は、プラズマ振動によって波長200nmから2600nmを有する太陽光線等の電磁波に反射吸収応答を示すことが知られている。このような材料の粉末を、光の波長より小さい微粒子とすると、可視光領域(波長380nmから780nm)の幾何学散乱が低減されて可視光領域の透明性が得られることが知られている。尚、本明細書において、「透明性」とは、可視光領域の光に対して散乱が少なく透過性が高いという意味で用いている。
1. Tungsten oxide fine particles and composite tungsten oxide fine particles In general, it is known that a material containing free electrons exhibits a reflection absorption response to electromagnetic waves such as solar rays having a wavelength of 200 nm to 2600 nm by plasma vibration. It is known that when the powder of such a material is a fine particle smaller than the wavelength of light, the geometric scattering in the visible light region (wavelength 380 nm to 780 nm) is reduced, and transparency in the visible light region can be obtained. In the present specification, “transparency” is used in the sense that the light is less scattered and has high transparency.

そして、WO3中には有効な自由電子が存在しないため、WO3は近赤外線領域の吸収反射特性が少なく、赤外線遮蔽材料としては有効ではない。一方、酸素欠損を持つ3酸化タングステンや、3酸化タングステンにNa等の陽性元素を添加した所謂タングステンブロンズは、導電性材料で自由電子を持つ材料であることが知られており、これ等材料の単結晶等の分析により赤外線領域の光に対する自由電子の応答が示唆されている。そして、タングステンと酸素との化合物における組成範囲の特定部分において、赤外線遮蔽材料として特に有効な範囲があり、可視光領域においては透明で、近赤外線領域においては吸収を持つタングステン酸化物微粒子、複合タングステン酸化物微粒子が見出され、当該タングステン酸化物微粒子、複合タングステン酸化物微粒子から選ばれる1種以上を樹脂やガラス等の媒体に分散させた赤外線遮蔽材料微粒子分散体、当該赤外線遮蔽材料微粒子分散体より製造した赤外線遮蔽体等が得られている(特許文献8参照)。 Then, since there is no effective free electrons in WO 3, WO 3 is less absorption reflection characteristics in the near infrared region, it is not effective as an infrared-shielding material. On the other hand, tungsten trioxide having oxygen vacancies and so-called tungsten bronzes obtained by adding a positive element such as Na to tungsten trioxide are known to be conductive materials having free electrons. Analysis of single crystals suggests the response of free electrons to light in the infrared region. And in a specific part of the composition range in the compound of tungsten and oxygen, there is a particularly effective range as an infrared shielding material, a tungsten oxide fine particle, a composite tungsten which is transparent in the visible light region and has absorption in the near infrared region. Infrared shielding material fine particle dispersion in which oxide fine particles are found and at least one selected from the tungsten oxide fine particles and composite tungsten oxide fine particles are dispersed in a medium such as resin or glass, and the infrared shielding material fine particle dispersion The manufactured infrared shielding body etc. are obtained (refer patent document 8).

まず、本発明に係る赤外線遮蔽材料微粒子分散液において、溶媒中に含まれる赤外線遮蔽材料微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物微粒子、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3)で表記される複合タングステン酸化物微粒子から選ばれる1種以上により構成される。   First, in the infrared shielding material fine particle dispersion according to the present invention, the infrared shielding material fine particles contained in the solvent have a general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999). ), Tungsten oxide fine particles represented by the general formula MxWyOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, One or more elements selected from Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1 2.2 ≦ z / y ≦ 3) It is comprised by 1 or more types chosen from ngsten oxide fine particles.

そして、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物微粒子において、タングステンと酸素との好ましい組成範囲は、タングステンに対する酸素の組成比が3よりも少なく、更に、当該赤外線遮蔽材料微粒子をWyOzと記載したとき2.2≦z/y≦2.999である。このz/yの値が2.2以上であれば、赤外線遮蔽材料中に目的以外であるWO2の結晶相が現れるのを回避することができると共に、材料としての化学的安定性を得ることができるため有効な赤外線遮蔽材料として適用できる。一方、このz/yの値が2.999以下であれば、必要とされる量の自由電子が生成され、効率のよい赤外線遮蔽材料となる。 In the tungsten oxide fine particles represented by the general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), a preferable composition range of tungsten and oxygen is The composition ratio of oxygen is less than 3, and when the infrared shielding material fine particles are described as WyOz, 2.2 ≦ z / y ≦ 2.999. If this z / y value is 2.2 or more, it is possible to avoid the appearance of a WO 2 crystal phase other than the intended purpose in the infrared shielding material and to obtain chemical stability as the material. Therefore, it can be applied as an effective infrared shielding material. On the other hand, if the value of z / y is 2.999 or less, a required amount of free electrons is generated, and an efficient infrared shielding material is obtained.

また、WyOzに、元素M(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素)を添加することで、z/y=3.0の場合も含めて当該WyOz中に自由電子が生成され、近赤外線領域に自由電子由来の吸収特性が発現し、1000nm付近の近赤外線吸収材料として有効となるため好ましい。ここで、WyOzに対し、上述した酸素量の制御と自由電子を生成する元素の添加とを併用することでより効率の良い赤外線遮蔽材料を得ることができる。酸素量の制御と自由電子を生成する元素の添加とを併用した赤外線遮蔽材料の一般式をMxWyOz(但し、Mは、前記M元素、Wはタングステン、Oは酸素)と表記したとき、0.001≦x/y≦1、2.2≦z/y≦3.0の関係を満たす赤外線遮蔽材料が望ましい。   In addition, WyOz includes element M (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Add one or more elements selected from Mo, Ta, Re, Be, Hf, Os, Bi, and I), and freely in the WyOz including the case of z / y = 3.0 Electrons are generated, absorption characteristics derived from free electrons appear in the near-infrared region, and it is effective as a near-infrared absorbing material near 1000 nm. Here, a more efficient infrared shielding material can be obtained by combining the above-described control of the amount of oxygen and addition of an element that generates free electrons with respect to WyOz. When the general formula of the infrared shielding material that combines the control of the amount of oxygen and the addition of an element that generates free electrons is expressed as MxWyOz (where M is the M element, W is tungsten, and O is oxygen), An infrared shielding material that satisfies the relationship of 001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0 is desirable.

まず、元素Mの添加量を示すx/yの値について説明する。x/yの値が0.001より大きければ、十分な量の自由電子が生成され目的とする赤外線遮蔽効果を得ることができる。そして、元素Mの添加量が多いほど、自由電子の供給量が増加し、赤外線遮蔽効率も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1より小さければ、当該赤外線遮蔽材料中に不純物相が生成されるのを回避できるので好ましい。   First, the value of x / y indicating the amount of element M added will be described. If the value of x / y is larger than 0.001, a sufficient amount of free electrons is generated and the intended infrared shielding effect can be obtained. As the amount of the element M added increases, the supply amount of free electrons increases and the infrared shielding efficiency also increases. However, when the value of x / y is about 1, the effect is saturated. Moreover, if the value of x / y is smaller than 1, it is preferable because an impurity phase can be prevented from being generated in the infrared shielding material.

また、元素Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上であることが好ましい。   The element M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be , Hf, Os, Bi, I are preferably at least one selected from the group consisting of Hf, Os, Bi, and I.

ここで、元素Mが添加された当該MxWyOzにおける安定性の観点からは、元素Mは、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素であることがより好ましい。そして、赤外線遮蔽材料としての光学特性、耐候性を向上させる観点からは、前記元素Mにおいて、アルカリ土類金属元素、遷移金属元素、4B族元素、5B族元素に属するものが更に好ましい。   Here, from the viewpoint of stability in the MxWyOz to which the element M is added, the element M is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, More preferably, the element is one or more elements selected from Ti, Nb, V, Mo, Ta, and Re. From the viewpoint of improving optical characteristics and weather resistance as an infrared shielding material, it is more preferable that the element M belongs to an alkaline earth metal element, a transition metal element, a group 4B element, or a group 5B element.

次に、酸素量の制御を示すz/yの値について説明する。z/yの値については、MxWyOzで表記される赤外線遮蔽材料においても、上述したWyOzで表記される赤外線遮蔽材料と同様の機構が働くことに加え、z/y=3.0においても、上述した元素Mの添加量による自由電子の供給があるため、2.2≦z/y≦3.0が好ましく、更に好ましくは2.45≦z/y≦3.0である。   Next, the value of z / y indicating the control of the oxygen amount will be described. Regarding the value of z / y, the same mechanism as that of the above-described infrared shielding material represented by WyOz works also in the infrared shielding material represented by MxWyOz, and also at z / y = 3.0. Therefore, 2.2 ≦ z / y ≦ 3.0 is preferable, and 2.45 ≦ z / y ≦ 3.0 is more preferable.

更に、複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過性が向上し、近赤外領域の吸収が向上する。この六方晶の結晶構造を模式的に示す図1の平面図を参照しながら説明する。図1において、符号1で示すWO6単位にて形成される8面体が6個集合して六角形の空隙が構成され、当該空隙中に符号2で示す元素Mが配置して1個の単位を構成し、この1個の単位が多数集合して六方晶の結晶構造を構成する。 Furthermore, when the composite tungsten oxide fine particles have a hexagonal crystal structure, the transparency of the fine particles in the visible light region is improved, and the absorption in the near infrared region is improved. The hexagonal crystal structure will be described with reference to the plan view of FIG. In FIG. 1, six octahedrons formed of WO 6 units indicated by reference numeral 1 are assembled to form a hexagonal void, and an element M indicated by reference numeral 2 is arranged in the void to form one unit. The hexagonal crystal structure is composed of a large number of these one units.

本発明において可視光領域の透過性を向上させ、近赤外領域の吸収を向上させる効果を得るためには、複合タングステン酸化物微粒子中に、図1で説明した単位構造(WO6単位で形成される8面体が6個集合して六角形の空隙が構成され、当該空隙中に元素Mが配置した構造)が含まれていればよく、当該複合タングステン酸化物微粒子が結晶質であっても非晶質であっても構わない。この六角形の空隙に元素Mの陽イオンが添加されて存在するとき、可視光領域の透過性が向上し、近赤外領域の吸収が向上する。ここで、一般的には、イオン半径の大きな元素Mを添加したとき当該六方晶が形成され、具体的には、Cs、K、Rb、Tl、In、Ba、Sn、Li、Ca、Sr、Feを添加したとき六方晶が形成されやすい。勿論これ等以外の元素でも、WO6単位で形成される六角形の空隙に添加元素Mが存在すればよく、前記元素に限定される訳ではない。 In the present invention improves the permeability of the visible light region, formed in order to obtain the effect of improving the absorption of near-infrared region, the composite tungsten oxide fine particles, a unit structure (WO 6 units described in FIG. 1 The hexagonal voids are formed by assembling six octahedrons and a structure in which the element M is arranged in the voids is included, and the composite tungsten oxide fine particles are crystalline. It may be amorphous. When the cation of the element M is added to the hexagonal void, the transmittance in the visible light region is improved and the absorption in the near infrared region is improved. Here, generally, when the element M having a large ionic radius is added, the hexagonal crystal is formed. Specifically, Cs, K, Rb, Tl, In, Ba, Sn, Li, Ca, Sr, When Fe is added, hexagonal crystals are easily formed. Of course, other elements may be used as long as the additive element M is present in the hexagonal void formed by the WO 6 unit, and is not limited to the above elements.

六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、添加元素Mの添加量は、x/yの値で0.2以上0.5以下が好ましく、更に好ましくは0.33である。x/yの値が0.33となることで、添加元素Mが六角形の空隙の全てに配置されると考えられる。   When the composite tungsten oxide fine particles having a hexagonal crystal structure have a uniform crystal structure, the addition amount of the additive element M is preferably 0.2 or more and 0.5 or less in terms of x / y, more preferably 0. .33. When the value of x / y is 0.33, it is considered that the additive element M is arranged in all the hexagonal voids.

また、六方晶以外では、正方晶、立方晶のタングステンブロンズも赤外線遮蔽材料として有効である。そして、これ等の結晶構造によって、近赤外線領域の吸収位置が変化する傾向があり、立方晶<正方晶<六方晶の順に吸収位置が長波長側に移動する傾向がある。また、それに付随して可視光線領域の吸収が少ないのは、六方晶<正方晶<立方晶の順である。よって、より可視光領域の光を透過して、より赤外線領域の光を遮蔽する用途には、六方晶のタングステンブロンズを用いることが好ましい。但し、ここで述べた光学特性の傾向は、あくまで大まかな傾向であり、添加元素の種類や、添加量、酸素量によって変化するものであり、本発明がこれに限定されるわけではない。   In addition to hexagonal crystals, tetragonal and cubic tungsten bronzes are also effective as infrared shielding materials. These crystal structures tend to change the absorption position in the near-infrared region, and the absorption position tends to move to the longer wavelength side in the order of cubic <tetragonal <hexagonal. Further, the accompanying absorption in the visible light region is small in the order of hexagonal crystal <tetragonal crystal <cubic crystal. Therefore, hexagonal tungsten bronze is preferably used for the purpose of transmitting light in the visible light region and shielding light in the infrared region. However, the tendency of the optical characteristics described here is merely a rough tendency, and changes depending on the kind of additive element, the amount of addition, and the amount of oxygen, and the present invention is not limited to this.

本発明に係るタングステン酸化物微粒子、複合タングステン酸化物微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収するためその透過色調は青色系から緑色系となる物が多い。   The tungsten oxide fine particles and the composite tungsten oxide fine particles according to the present invention absorb a large amount of light in the near-infrared region, particularly in the vicinity of a wavelength of 1000 nm, so that the transmitted color tone is often from blue to green.

また、前記赤外線遮蔽材料微粒子の粒子径は、その使用目的によって各々選定することができる。まず、透明性を保持した応用に使用する場合は800nm以下の分散粒子径を有していることが好ましい。これは、800nmよりも小さい粒子は散乱により光を完全に遮蔽することが無く、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。特に、可視光領域の透明性を重視する場合は、更に粒子による散乱を考慮することが好ましい。この粒子による散乱の低減を重視するとき、分散粒子径は200nm以下、好ましくは100nm以下がよい。この理由は、当該粒子の分散粒子径が小さければ、幾何学散乱若しくはミー散乱に起因する波長400nm〜780nmの可視光線領域の光の散乱が低減される結果、赤外線遮蔽膜が曇りガラスのようになり鮮明な透明性が得られなくなる、のを回避できるからである。すなわち、分散粒子径が200nm以下になると、前記幾何学散乱若しくはミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は分散粒子径の6乗に反比例して低減するため、分散粒子径の減少に伴い散乱が低減し透明性が向上するからである。更に、分散粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましく、粒子径が1nm以上あれば工業的な製造は容易である。   The particle diameter of the infrared shielding material fine particles can be selected according to the purpose of use. First, when it is used for an application that maintains transparency, it is preferable that the dispersed particle diameter is 800 nm or less. This is because particles smaller than 800 nm do not completely block light due to scattering, and can maintain visibility in the visible light region and at the same time efficiently maintain transparency. In particular, when importance is attached to transparency in the visible light region, it is preferable to further consider scattering by particles. When importance is attached to the reduction of scattering by the particles, the dispersed particle diameter is 200 nm or less, preferably 100 nm or less. The reason for this is that if the dispersed particle size of the particles is small, the scattering of light in the visible light region having a wavelength of 400 nm to 780 nm due to geometric scattering or Mie scattering is reduced. This is because it is possible to avoid that clear transparency cannot be obtained. That is, when the dispersed particle diameter is 200 nm or less, the geometric scattering or Mie scattering is reduced, and a Rayleigh scattering region is obtained. This is because, in the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the dispersed particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is decreased. Furthermore, when the dispersed particle size is 100 nm or less, the scattered light is preferably extremely small. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle diameter is small. If the particle diameter is 1 nm or more, industrial production is easy.

尚、本発明において、微粒子の分散粒子径とは、媒体中に分散している微粒子が凝集して生成した凝集粒子の径を意味するものであり、市販されている種々の粒度分布計で測定することができる。例えば、微粒子分散液から微粒子の単体や凝集体が存在する状態のサンプルを採取し、当該サンプルを、動的光散乱法を原理とした粒度分布計を用いて測定し求めることができる。   In the present invention, the dispersed particle diameter of the fine particles means the diameter of the aggregated particles produced by agglomeration of the fine particles dispersed in the medium, and measured with various commercially available particle size distribution meters. can do. For example, a sample in a state where single particles or aggregates of fine particles are present from a fine particle dispersion, and the sample can be measured and determined using a particle size distribution meter based on the dynamic light scattering method.

前記分散粒子径を800nm以下と選択することにより、赤外線遮蔽材料微粒子を樹脂等の媒体中に分散させた赤外線遮蔽材料微粒子分散体(赤外線遮蔽膜)のヘイズ値は、可視光透過率85%以下においてヘイズ30%以下とすることができる。ここで、ヘイズが30%よりも大きい値であると曇りガラスのようになり、鮮明な透明性が得られない。   By selecting the dispersed particle diameter to be 800 nm or less, the haze value of the infrared shielding material fine particle dispersion (infrared shielding film) in which the infrared shielding material fine particles are dispersed in a medium such as a resin has a visible light transmittance of 85% or less. The haze can be 30% or less. Here, when the haze is a value larger than 30%, it becomes like frosted glass, and clear transparency cannot be obtained.

また、本発明に係る赤外線遮蔽材料微粒子の表面が、Si、Ti、Zr、Alの一種類以上を含有する酸化物で被覆されていることは、当該赤外線遮蔽材料の耐候性向上の観点から好ましい。   Moreover, it is preferable from the viewpoint of improving the weather resistance of the infrared shielding material that the surface of the infrared shielding material fine particles according to the present invention is coated with an oxide containing one or more of Si, Ti, Zr, and Al. .

また、タングステン酸化物微粒子、複合タングステン酸化物微粒子から選ばれる1種以上において、一般式WyOzと表記したとき、2.45≦z/y≦2.999で表される組成比を有する、所謂「マグネリ相」は化学的に安定であり、近赤外線領域の吸収特性も良いので赤外線遮蔽材料として好ましい。   In addition, at least one kind selected from tungsten oxide fine particles and composite tungsten oxide fine particles has a composition ratio represented by 2.45 ≦ z / y ≦ 2.999 when expressed as a general formula WyOz. “Magnel phase” is preferable as an infrared shielding material because it is chemically stable and has good absorption characteristics in the near infrared region.

2.タングステン酸化物微粒子と複合タングステン酸化物微粒子の製造方法
一般式WyOzで表記されるタングステン酸化物微粒子、および、MxWyOzで表記される複合タングステン酸化物微粒子は、タングステン化合物出発原料を不活性ガス雰囲気若しくは還元性ガス雰囲気中で熱処理して得ることができる。
2. Method for Producing Tungsten Oxide Fine Particles and Composite Tungsten Oxide Fine Particles Tungsten oxide fine particles represented by the general formula WyOz and composite tungsten oxide fine particles represented by MxWyOz are obtained by converting a tungsten compound starting material into an inert gas atmosphere or reduction. It can be obtained by heat treatment in a reactive gas atmosphere.

そして、前記タングステン化合物出発原料として、3酸化タングステン粉末、酸化タングステンの水和物粉末、6塩化タングステン粉末、タングステン酸アンモニウム粉末、6塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、6塩化タングステンをアルコール中に溶解させたのち水を添加して沈殿させこれを乾燥して得られるタングステン酸化物の水和物粉末、タングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末、金属タングステン粉末から選ばれたいずれか一種類以上であることが好ましい。   Then, tungsten oxide obtained by dissolving tungsten trioxide powder, tungsten oxide hydrate powder, tungsten hexachloride powder, ammonium tungstate powder, tungsten hexachloride in alcohol and then drying as the tungsten compound starting material. Hydrate powder of tungsten oxide, obtained by dissolving tungsten hexachloride in alcohol, adding water and precipitating and drying it, obtained by drying aqueous ammonium tungstate solution It is preferable that it is any one or more selected from tungsten compound powder and metallic tungsten powder.

ここで、タングステン酸化物微粒子を製造する場合、製造工程の容易さの観点より、タングステン酸化物の水和物粉末、若しくは、タングステン酸アンモニウム水溶液を乾燥して得られるタングステン化合物粉末を用いることが更に好ましく、複合タングステン酸化物微粒子を製造する場合には、出発原料が溶液であると各元素を容易に均一混合可能となる観点より、タングステン酸アンモニウム水溶液や6塩化タングステン溶液を用いることが更に好ましい。これ等原料を用い、これ等を不活性ガス雰囲気若しくは還元性ガス雰囲気中で熱処理して、上述した粒径のタングステン酸化物微粒子、複合タングステン酸化物微粒子を得ることができる。   Here, when producing tungsten oxide fine particles, it is further preferable to use tungsten oxide hydrate powder or tungsten compound powder obtained by drying an ammonium tungstate aqueous solution from the viewpoint of ease of the production process. Preferably, in the case of producing composite tungsten oxide fine particles, an ammonium tungstate aqueous solution or a tungsten hexachloride solution is more preferably used from the viewpoint that each element can be easily and uniformly mixed when the starting material is a solution. These raw materials are used, and these are heat-treated in an inert gas atmosphere or a reducing gas atmosphere to obtain tungsten oxide fine particles and composite tungsten oxide fine particles having the above-mentioned particle diameter.

また、前記元素Mを含む一般式MxWyOzで表記される複合タングステン酸化物微粒子は、上述した一般式WyOzで表されるタングステン酸化物微粒子のタングステン化合物出発原料と同様であり、更に元素Mを、元素単体または化合物のかたちで含有するタングステン化合物を出発原料とする。ここで、各成分が分子レベルで均一混合した出発原料を製造するためには各原料を溶液で混合することが好ましく、元素Mを含むタングステン化合物出発原料が、水や有機溶媒等の溶媒に溶解可能なものであることが好ましい。例えば、元素Mを含有するタングステン酸塩、塩化物塩、硝酸塩、硫酸塩、シュウ酸塩、酸化物、等が挙げられるが、これ等に限定されず、溶液状になるものであれば好ましい。   The composite tungsten oxide fine particles represented by the general formula MxWyOz containing the element M are the same as the tungsten compound starting material of the tungsten oxide fine particles represented by the general formula WyOz described above. A tungsten compound contained in the form of a simple substance or a compound is used as a starting material. Here, in order to produce a starting material in which each component is uniformly mixed at the molecular level, it is preferable to mix each material with a solution, and the tungsten compound starting material containing the element M is dissolved in a solvent such as water or an organic solvent. Preferably it is possible. Examples thereof include tungstate, chloride, nitrate, sulfate, oxalate, oxide, and the like containing element M, but are not limited to these and are preferably in the form of a solution.

ここで、不活性雰囲気中における熱処理条件としては、650℃以上が好ましい。出発原料を650℃以上で熱処理して得られるタングステン酸化物微粒子、複合タングステン酸化物微粒子は十分な赤外線遮蔽特性を有し赤外線遮蔽材料微粒子として比較的少量で実用性能を得ることが可能であり効率が良い。不活性ガスとしてはAr、N等の不活性ガスを用いることが良い。また、還元性雰囲気中の熱処理条件としては、まず出発原料を還元性ガス雰囲気中にて100℃以上650℃以下で熱処理し、次いで不活性ガス雰囲気中で650℃以上1200℃以下の温度で熱処理することが良い。この時の還元性ガスは、特に限定されないがHが好ましい。また還元性ガスとしてHを用いる場合は、還元雰囲気の組成として、Hが体積比で0.1%以上が好ましく、更に好ましくは2%以上が良い。0.1%以上であれば効率よく還元を進めることができる。 Here, the heat treatment condition in the inert atmosphere is preferably 650 ° C. or higher. Tungsten oxide fine particles and composite tungsten oxide fine particles obtained by heat-treating the starting material at 650 ° C. or higher have sufficient infrared shielding properties and can be practically used in a relatively small amount as infrared shielding material fine particles. Is good. An inert gas such as Ar or N 2 is preferably used as the inert gas. As the heat treatment conditions in the reducing atmosphere, first, the starting material is heat-treated at 100 ° C. to 650 ° C. in the reducing gas atmosphere, and then heat-treated at a temperature of 650 ° C. to 1200 ° C. in an inert gas atmosphere. Good to do. The reducing gas at this time is not particularly limited, but H 2 is preferable. When H 2 is used as the reducing gas, the volume ratio of H 2 is preferably 0.1% or more, more preferably 2% or more, as the composition of the reducing atmosphere. If it is 0.1% or more, the reduction can proceed efficiently.

原料粉末を水素で還元して得られるタングステン酸化物微粒子、複合タングステン酸化物微粒子は、マグネリ相を含み、良好な赤外線遮蔽特性を示し、この状態で赤外線遮蔽材料微粒子として使用可能である。しかし、酸化タングステン中に含まれる水素が不安定であるため、耐候性の面で応用が限定される可能性がある。そこで、この水素を含む酸化タングステン化合物を、不活性雰囲気中、650℃以上で熱処理することで、更に安定な赤外線遮蔽材料微粒子を得ることができる。この650℃以上の熱処理時の雰囲気は特に限定されないが、工業的観点から、N、Arが好ましい。当該650℃以上の熱処理により、赤外線遮蔽材料微粒子中にマグネリ相が得られ耐候性が向上する。 Tungsten oxide fine particles and composite tungsten oxide fine particles obtained by reducing raw material powder with hydrogen show a good infrared shielding property including a magnetic phase, and can be used as infrared shielding material fine particles in this state. However, since hydrogen contained in tungsten oxide is unstable, application may be limited in terms of weather resistance. Therefore, by further heat-treating the tungsten oxide compound containing hydrogen at 650 ° C. or higher in an inert atmosphere, more stable infrared shielding material fine particles can be obtained. The atmosphere during the heat treatment at 650 ° C. or higher is not particularly limited, but N 2 and Ar are preferable from an industrial viewpoint. By the heat treatment at 650 ° C. or higher, a magnetic phase is obtained in the infrared shielding material fine particles, and the weather resistance is improved.

上述したように、得られた赤外線遮蔽材料微粒子の表面が、Si、Ti、Zr、Alの一種類以上の金属を含有する酸化物で被覆されていることは、耐候性の向上の観点から好ましい。被覆方法は特に限定されないが、当該赤外線遮蔽材料微粒子を分散した溶液中に、前記金属のアルコキシドを添加することで、赤外線遮蔽材料微粒子の表面を被覆することが可能である。   As described above, it is preferable from the viewpoint of improving the weather resistance that the surface of the obtained infrared shielding material fine particles is coated with an oxide containing one or more kinds of metals of Si, Ti, Zr, and Al. . Although the coating method is not particularly limited, it is possible to coat the surface of the infrared shielding material fine particles by adding the metal alkoxide to the solution in which the infrared shielding material fine particles are dispersed.

3.金属塩(第一添加剤)
前記赤外線遮蔽材料微粒子分散液に含まれる第一添加剤としての金属塩が赤外線遮蔽材料微粒子分散液に作用してその赤外線遮蔽特性の経時的な低下を低減させる理由として、本発明者等は、以下のように推察している。すなわち、赤外線遮蔽材料微粒子分散液中において金属塩は赤外線遮蔽材料微粒子の近傍または/および表面に存在し、この金属塩の作用により、空気中等から浸入してきた水分を十分に捕捉し、また、紫外線等によって発生したラジカルも十分に捕捉して、有害ラジカルが連鎖的に発生するのを抑制する結果、前記赤外線遮蔽特性の経時的な低下を低減させていると推察している。但し、金属塩の作用については未解明な点も多く、前記以外の作用が働いている可能性もあるため、前記作用に限定されるわけではない。
3. Metal salt (first additive)
As a reason why the metal salt as the first additive contained in the infrared shielding material fine particle dispersion acts on the infrared shielding material fine particle dispersion to reduce the deterioration of the infrared shielding properties over time, the present inventors, I guess as follows. That is, in the infrared shielding material fine particle dispersion, the metal salt is present in the vicinity or / and on the surface of the infrared shielding material fine particles, and the action of this metal salt sufficiently captures moisture that has entered from the air, etc. As a result of sufficiently capturing radicals generated due to the above and suppressing the generation of harmful radicals in a chain, it is assumed that the deterioration of the infrared shielding property with time is reduced. However, there are many unclear points about the action of the metal salt, and there is a possibility that actions other than those described above are working, so that the action is not limited to the above actions.

そして、本発明に適用される金属塩としては、Cs、Sr、Ba、Ti、Zr、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、In、Snの内から選択される金属と、無機酸若しくは有機酸から成る塩で構成され、これ等1種または2種以上を用いることが好ましい。尚、前記金属以外のアルカリ金属、アルカリ土類金属、Sc、Y、V、Al、Pb、Biとの塩についても、若干その効果は落ちるが、赤外線遮蔽材料微粒子分散液の赤外線遮蔽特性の経時的な低下を低減でき有効である。また、これ等以外の金属塩は効果がないため不適である。   And as a metal salt applied to this invention, Cs, Sr, Ba, Ti, Zr, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt , Cu, Ag, Au, Zn, Cd, In, and Sn, and a salt composed of an inorganic acid or an organic acid, and it is preferable to use one or more of these. In addition, although the effect of the salts with alkali metals other than the above metals, alkaline earth metals, Sc, Y, V, Al, Pb, Bi is slightly reduced, the infrared shielding characteristics of the infrared shielding material fine particle dispersion are changed over time. It is effective to reduce the general decline. In addition, metal salts other than these are not suitable because they are ineffective.

また、本発明に適用される金属塩は、前記金属の塩であって、カルボン酸塩、カルボニル錯塩、炭酸塩、リン酸塩、過塩素酸塩、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、塩酸塩の内から選択されることが好ましい。   Further, the metal salt applied to the present invention is a salt of the metal, carboxylate, carbonyl complex, carbonate, phosphate, perchlorate, hypochlorite, chlorite, It is preferably selected from chlorate and hydrochloride.

そして、前記カルボン酸塩を構成するカルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、オクチル酸、ナフテン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、ドコサヘキサエン酸、エイコサペンタ酸、シュウ酸、マロン酸、コハク酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸、メリト酸、ケイ皮酸、ピルビン酸、乳酸、リンゴ酸、クエン酸、マレイン酸、アコニット酸、グルタル酸、アジピン酸、アミノ酸等が挙げられる。また、前記カルボニル錯塩を構成するβ-ジケトンとしては、アセチルアセトン、ベンゾイルアセトン、ベンゾイルトリフルオロアセトン、ヘキサフルオロアセチルアセトン、2-テノイルトリフルオロアセトン等が例示される。   Examples of the carboxylic acid constituting the carboxylate include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, octylic acid, naphthenic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid. Acid, myristic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, oxalic acid, malonic acid, succinic acid, benzoic acid, phthalic acid, Examples include isophthalic acid, terephthalic acid, salicylic acid, gallic acid, mellitic acid, cinnamic acid, pyruvic acid, lactic acid, malic acid, citric acid, maleic acid, aconitic acid, glutaric acid, adipic acid, and amino acids. Examples of the β-diketone constituting the carbonyl complex salt include acetylacetone, benzoylacetone, benzoyltrifluoroacetone, hexafluoroacetylacetone, and 2-thenoyltrifluoroacetone.

また、赤外線遮蔽材料微粒子分散液における前記金属塩の含有量は、一般式WyOzで表記されるタングステン酸化物微粒子、一般式MxWyOzで表記される複合タングステン酸化物微粒子から選ばれる1種以上の微粒子で構成される赤外線遮蔽材料微粒子100重量部に対して0.01重量部以上20重量部以下であることが好ましい。   The content of the metal salt in the infrared shielding material fine particle dispersion is one or more fine particles selected from tungsten oxide fine particles represented by the general formula WyOz and composite tungsten oxide fine particles represented by the general formula MxWyOz. The amount is preferably 0.01 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the constituted infrared shielding material fine particles.

前記含有量が0.01重量部未満であると、空気中等から浸入してきた水分を十分に捕捉することが困難で、また、紫外線等によって発生したラジカルも十分に捕捉することが難しくなり、有害ラジカルが連鎖的に発生するのを抑制できなくなって赤外線遮蔽特性の経時的な低下を低減させる効果が不十分になる場合がある。他方、前記含有量が20重量部を越えると、赤外線遮蔽材料微粒子分散液と赤外線遮蔽膜形成用塗布液およびこれ等を用いて得られる赤外線遮蔽膜や赤外線遮蔽光学部材中における赤外線遮蔽材料微粒子の分散性が悪くなり、ヘイズを悪化させてしまう場合がある。   When the content is less than 0.01 parts by weight, it is difficult to sufficiently capture moisture that has entered from the air and the like, and it is difficult to sufficiently capture radicals generated by ultraviolet rays and the like. In some cases, it becomes impossible to suppress the occurrence of radicals in a chain, and the effect of reducing the temporal deterioration of the infrared shielding properties may be insufficient. On the other hand, when the content exceeds 20 parts by weight, the infrared shielding material fine particle dispersion, the infrared shielding film-forming coating liquid, and the infrared shielding material fine particles in the infrared shielding film and the infrared shielding optical member obtained by using these are used. Dispersibility may deteriorate and haze may deteriorate.

従って、赤外線遮蔽材料微粒子分散液における金属塩の含有量は、前記タングステン酸化物微粒子、前記複合タングステン酸化物微粒子から選ばれる1種以上の微粒子で構成される赤外線遮蔽材料微粒子100重量部に対して0.01重量部以上20重量部以下であることが好ましい。   Therefore, the content of the metal salt in the infrared shielding material fine particle dispersion is based on 100 parts by weight of the infrared shielding material fine particles composed of one or more kinds of fine particles selected from the tungsten oxide fine particles and the composite tungsten oxide fine particles. It is preferably 0.01 parts by weight or more and 20 parts by weight or less.

4.アンモニア、アミン化合物(第二添加剤)
前記赤外線遮蔽材料微粒子分散液に含まれる第二添加剤としてのアンモニアおよびアミン化合物から選ばれる1種以上が紫外線硬化樹脂を添加した赤外線遮蔽材料微粒子分散液(すなわち、赤外線遮蔽膜形成用塗布液)に作用して赤外線遮蔽材料微粒子と紫外線硬化樹脂との相溶性を改善させる理由として、本発明者等は、以下のように推察している。すなわち、赤外線遮蔽膜形成用塗布液中において、第二添加剤としてのアンモニアおよびアミン化合物は第一添加剤としての金属塩の金属イオンに配向し、立体障害や表面改質等の効果により赤外線遮蔽材料微粒子と紫外線硬化樹脂との相溶性を改善し、特に、乾燥時における赤外線遮蔽材料微粒子の凝集を抑止する結果、製造される赤外線遮蔽膜の低ヘイズ化を可能にしていると推察している。但し、アンモニアおよびアミン化合物の作用については未解明な点も多く、前記以外の作用が関係している可能性もあるため、前記作用に限定されるわけではない。
4). Ammonia, amine compound (second additive)
Infrared shielding material fine particle dispersion in which at least one selected from ammonia and an amine compound as a second additive contained in the infrared shielding material fine particle dispersion is added with an ultraviolet curable resin (that is, a coating liquid for forming an infrared shielding film) As a reason for improving the compatibility between the infrared shielding material fine particles and the ultraviolet curable resin by acting on the above, the present inventors infer as follows. That is, in the coating solution for forming an infrared shielding film, ammonia and amine compound as the second additive are oriented to the metal ion of the metal salt as the first additive, and the infrared shielding is performed due to effects such as steric hindrance and surface modification. It is speculated that the compatibility between the material fine particles and the ultraviolet curable resin is improved, and in particular, the result of inhibiting the aggregation of the infrared shielding material fine particles during drying is to enable the haze reduction of the manufactured infrared shielding film. . However, there are many unclear points regarding the actions of ammonia and amine compounds, and there is a possibility that actions other than those described above are involved, and therefore, the action is not limited to the above actions.

そして、本発明に適用されるアンモニアの溶液としては、メタノール溶液、エタノール溶液、2−プロパノール溶液の内から選択される溶液を用いることが好ましい。アンモニア水を用いた場合、赤外線遮蔽材料微粒子分散液の分散性が悪化するため不適である。   And as a solution of ammonia applied to this invention, it is preferable to use the solution selected from methanol solution, ethanol solution, and 2-propanol solution. Ammonia water is not suitable because the dispersibility of the infrared shielding material fine particle dispersion deteriorates.

また、本発明に適用されるアミン化合物は、ジエタノールアミン、モノエタノールアミン、トリエタノールアミン、メチルアミン、エチルアミン、ラウリルアミン、ミリスチルアミン、セチルアミン、ステアリルアミン、オレイルアミン、ベヘニルアミン、ジメチルアミン、ジエチルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、トリメチルアミン、トリエチルアミン、ビペリジン、ピリジン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンエキサミン、オレイルプロピレンジアミン、N−ヒドロキシエチルラウリルアミン、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミンの内から選択されることが好ましい。   In addition, the amine compound applied to the present invention is diethanolamine, monoethanolamine, triethanolamine, methylamine, ethylamine, laurylamine, myristylamine, cetylamine, stearylamine, oleylamine, behenylamine, dimethylamine, diethylamine, dimethyllauryl. Amine, dimethylmyristylamine, dimethylpalmitylamine, dimethylstearylamine, trimethylamine, triethylamine, biperidine, pyridine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethyleneexamine, oleylpropylenediamine, N-hydroxyethyllauryl Amine, polyoxyethylene lauryl amine, polyoxyethylene stearyl amine Emissions, it is preferably selected from among polyoxyethylene oleylamine.

また、金属塩で構成される第一添加剤に対するアンモニアおよびアミン化合物から選ばれる1種以上で構成される第二添加剤の含有量は、重量比で5%以上300%以下であることを要する。第一添加剤に対する第二添加剤の含有量が5%未満である場合、第二添加剤が金属イオンに配向して赤外線遮蔽材料微粒子と紫外線硬化樹脂との相溶性を改善させる作用が不十分となり、乾燥時に赤外線遮蔽材料微粒子が凝集してヘイズを悪化させてしまう。他方、第一添加剤に対する第二添加剤の含有量が300%を越えた場合、塩基性成分の増加により赤外線遮蔽材料微粒子分散液が塩基性に振られて当該分散液の液安定性が悪くなり、粘度変化が大きくなってしまう。このため、金属塩で構成される第一添加剤に対するアンモニアおよびアミン化合物から選ばれる1種以上で構成される第二添加剤の含有量は、重量比で5%以上300%以下であることを要する。   Further, the content of the second additive composed of one or more selected from ammonia and an amine compound with respect to the first additive composed of the metal salt is required to be 5% or more and 300% or less by weight ratio. . When the content of the second additive is less than 5% with respect to the first additive, the second additive is insufficiently effective to orient the metal ions and improve the compatibility between the infrared shielding material fine particles and the ultraviolet curable resin. As a result, the infrared shielding material fine particles aggregate during drying to deteriorate the haze. On the other hand, when the content of the second additive with respect to the first additive exceeds 300%, the dispersion of the infrared shielding material fine particle dispersion is made basic due to an increase in the basic component, resulting in poor liquid stability of the dispersion. Thus, the viscosity change becomes large. For this reason, the content of the second additive composed of one or more selected from ammonia and an amine compound with respect to the first additive composed of the metal salt is 5% to 300% by weight. Cost.

5.溶媒
アンモニアおよびアミン化合物から選ばれる1種以上で構成される第二添加剤を含有する本発明に係る赤外線遮蔽材料微粒子分散液に用いられる有機系溶媒は、特に限定されることなく公知の有機溶剤を使用することができる。具体的には、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール等のアルコール系溶剤、アセトン、メチルエチルケトン(MEK)、メチルプロピルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶剤、3−メチル−メトキシ−プロピオネート(MMP)等のエステル系溶剤、エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGMEA)、プロピレングリコールエチルエーテルアセテート(PE−AC)等のグリコール誘導体、フォルムアミド(FA)、N−メチルフォルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、N−メチル−2−ピロリドン(NMP)等のアミド類、トルエン、キシレン等の芳香族炭化水素類、エチレンクロライド、クロルベンゼン等のハロゲン化炭化水素類等を挙げることができる。中でも極性の低い有機溶剤が好ましく、特にMIBK、MEK等のケトン類や、トルエン、キシレン等の芳香族炭化水素類、PGMEA、PE−AC等のグリコールエーテルアセテート類等、疎水性の高いものがより好ましい。これ等の有機系溶媒は1種または2種以上を組み合わせて用いることができる。
5. Solvent The organic solvent used in the infrared shielding material fine particle dispersion according to the present invention containing a second additive composed of one or more selected from ammonia and an amine compound is not particularly limited and is a known organic solvent. Can be used. Specifically, alcohol solvents such as methanol (MA), ethanol (EA), 1-propanol (NPA), isopropanol (IPA), butanol, pentanol, benzyl alcohol, diacetone alcohol, acetone, methyl ethyl ketone (MEK) , Ketone solvents such as methyl propyl ketone, methyl isobutyl ketone (MIBK), cyclohexanone, isophorone, ester solvents such as 3-methyl-methoxy-propionate (MMP), ethylene glycol monomethyl ether (MCS), ethylene glycol monoethyl ether (ECS), ethylene glycol isopropyl ether (IPC), propylene glycol methyl ether (PGM), propylene glycol ethyl ether (PE), propylene glycol methyl Glycol derivatives such as ether acetate (PGMEA), propylene glycol ethyl ether acetate (PE-AC), formamide (FA), N-methylformamide, dimethylformamide (DMF), dimethylacetamide, N-methyl-2-pyrrolidone ( Amides such as NMP), aromatic hydrocarbons such as toluene and xylene, and halogenated hydrocarbons such as ethylene chloride and chlorobenzene. Among them, organic solvents with low polarity are preferable, and particularly highly hydrophobic ones such as ketones such as MIBK and MEK, aromatic hydrocarbons such as toluene and xylene, glycol ether acetates such as PGMEA and PE-AC, and the like. preferable. These organic solvents can be used alone or in combination of two or more.

6.赤外線遮蔽膜と赤外線遮蔽光学部材およびその製造方法
本発明に係る赤外線遮蔽材料微粒子分散液の好ましい使用方法は、この分散液に紫外線硬化樹脂を添加して赤外線遮蔽膜形成用塗布液を構成し、かつ、この赤外線遮蔽膜形成用塗布液を適宜基材表面に塗布して塗布膜を形成した後、この塗布膜から溶媒を蒸発させ、所定量の紫外線を照射して赤外線遮蔽膜を製造する方法が挙げられる。
6). Infrared shielding film, infrared shielding optical member and method for producing the same A preferred method of using the infrared shielding material fine particle dispersion according to the present invention is to form an infrared shielding film-forming coating liquid by adding an ultraviolet curable resin to the dispersion. A method for producing an infrared shielding film by applying the infrared shielding film-forming coating solution to the surface of the substrate as appropriate to form a coating film, evaporating the solvent from the coating film, and irradiating a predetermined amount of ultraviolet rays. Is mentioned.

そして、この使用方法では、予め高温で焼成して得られた赤外線遮蔽材料微粒子を含有する赤外線遮蔽材料微粒子分散液を用いて、前記赤外線遮蔽材料微粒子が含まれる赤外線遮蔽膜を基材表面に結着させることができる。このため、耐熱温度の低い基材への適用が可能となり、赤外線遮蔽膜形成の際に大型の装置を必要とせず安価であるという利点がある。   In this method of use, the infrared shielding film containing the infrared shielding material fine particles is bonded to the substrate surface using an infrared shielding material fine particle dispersion containing the infrared shielding material fine particles obtained by firing at a high temperature in advance. Can be worn. For this reason, application to a base material having a low heat-resistant temperature is possible, and there is an advantage that a large-sized device is not required when forming an infrared shielding film and it is inexpensive.

また、赤外線遮蔽材料微粒子と金属塩(第一添加剤)および紫外線硬化樹脂が含まれる赤外線遮蔽材料微粒子分散液(赤外線遮蔽膜形成用塗布液)中にアンモニアおよびアミン化合物から選ばれる1種以上で構成される第二添加剤を必要量添加し、塗布膜を形成するだけで赤外線遮蔽材料微粒子、金属塩(第一添加剤)およびアンモニアおよびアミン化合物から選ばれる1種以上で構成される第二添加剤を含有する赤外線遮蔽膜が得られることから、赤外線遮蔽特性の経時的低下が防止されかつ低ヘイズな赤外線遮蔽光学部材を簡便に製造することが可能となる。この赤外線遮蔽光学部材を用いることにより、太陽光を受ける屋外用途等への用途拡大が図れ、極めて有用である。   In addition, in the infrared shielding material fine particle dispersion (infrared shielding film forming coating liquid) containing the infrared shielding material fine particles, metal salt (first additive) and ultraviolet curable resin, at least one selected from ammonia and amine compounds A second component composed of at least one selected from infrared rays shielding material fine particles, metal salt (first additive), ammonia and an amine compound simply by adding a necessary amount of the second additive component and forming a coating film. Since an infrared shielding film containing an additive can be obtained, it is possible to easily manufacture an infrared shielding optical member having a low haze that prevents the infrared shielding properties from being lowered over time. By using this infrared shielding optical member, the application can be expanded to outdoor applications that receive sunlight, which is extremely useful.

(6-1)紫外線硬化樹脂
赤外線遮蔽材料微粒子分散液に添加されて赤外線遮蔽膜形成用塗布液を構成する紫外線硬化樹脂としては、その目的に応じて選定可能である。例えば、アクリル樹脂、アクリルウレタン樹脂、アクリルエポキシ樹脂、アクリルポリエステル樹脂、シリコーン樹脂、エポキシ樹脂、イミド樹脂、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、エチレン酢酸ビニル共重合体、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ふっ素樹脂、ポリカーボネート樹脂、ビニルブチラール樹脂が挙げられる。
(6-1) Ultraviolet curable resin The ultraviolet curable resin which is added to the infrared shielding material fine particle dispersion and constitutes the coating liquid for forming the infrared shielding film can be selected according to the purpose. For example, acrylic resin, acrylic urethane resin, acrylic epoxy resin, acrylic polyester resin, silicone resin, epoxy resin, imide resin, polyethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl alcohol resin, polystyrene resin, polypropylene resin, ethylene Examples thereof include vinyl acetate copolymer, polyester resin, polyethylene terephthalate resin, fluorine resin, polycarbonate resin, and vinyl butyral resin.

(6-2)塗布膜を形成する基材と塗布方法
また、赤外線遮蔽膜形成用塗布液が塗布される基材としては所望によりフィルムでもボードでもよく、形状は限定されない。透明基材の材料としては、PET、アクリル、ウレタン、ポリカーボネート、ポリエチレン、エチレン酢酸ビニル共重合体、ポリ塩化ビニル、ふっ素樹脂等が各種目的に応じて使用可能である。また、樹脂以外ではガラスの適用が可能である。
(6-2) Substrate for Forming Coating Film and Coating Method The substrate on which the coating solution for forming an infrared shielding film is coated may be a film or a board as desired, and the shape is not limited. As a material for the transparent substrate, PET, acrylic, urethane, polycarbonate, polyethylene, ethylene vinyl acetate copolymer, polyvinyl chloride, fluorine resin, and the like can be used according to various purposes. In addition to glass, glass can be applied.

次に、赤外線遮蔽膜形成用塗布液の塗布方法としては基材表面に塗布膜を均一に形成できればよく、特に限定されないが、バーコート法、グラビヤコート法、スプレーコート法、ディップコート法等が例示される。   Next, the coating method of the coating liquid for forming the infrared shielding film is not particularly limited as long as the coating film can be uniformly formed on the surface of the base material. However, the bar coating method, the gravure coating method, the spray coating method, the dip coating method, etc. Illustrated.

7.赤外線遮蔽材料微粒子分散液、赤外線遮蔽膜形成用塗布液と赤外線遮蔽膜の透過散乱プロファイル測定
赤外線遮蔽材料微粒子分散液、赤外線遮蔽膜形成用塗布液、あるいは赤外線遮蔽膜におけるヘイズの測定方法として、試料である赤外線遮蔽材料微粒子分散体(赤外線遮蔽材料微粒子が樹脂やガラス等の適宜媒体中に分散して成る分散体:特許文献8参照)に光を当てたときの透過光の成分として直線入射光と散乱光とに着目し、波長毎の透過散乱率を求めることによりヘイズを直接評価する方法を本発明者は既に提案している(特開2009−150979号公報参照)。
7). Infrared shielding material fine particle dispersion, transmission scattering profile measurement of infrared shielding film forming coating liquid and infrared shielding film Infrared shielding material fine particle dispersion, infrared shielding film forming coating liquid, or haze measurement method in infrared shielding film Infrared shielding material fine particle dispersion (dispersion in which infrared shielding material fine particles are dispersed in an appropriate medium such as resin or glass: see Patent Document 8) as a component of transmitted light when incident on light The present inventor has already proposed a method for directly evaluating haze by paying attention to the scattered light and determining the transmission scattering rate for each wavelength (see JP 2009-150979 A).

すなわち、特開2009−150979号公報の段落0029に記載されているように、従来のヘイズメータ(特開2000−211063号公報の段落0015参照)を用いた測定では波長毎の透過散乱率(散乱透過率)を求めることはできず、散乱透過の全光線透過光に対する割合が求められているに過ぎないため、赤外線遮蔽材料微粒子分散体の「ブルーヘイズ」を評価(散乱透過率の波長360nm〜500nm間における極大値からブルーヘイズの大きさを評価)することは困難であった。因みに、「ブルーヘイズ」が大きい場合、赤外線遮蔽材料微粒子分散体が車のフロントガラス等に適用されていると視界不良を引き起こし、建築用窓ガラス等に適用されていると美観を損ねる弊害がある(特開2009−150979号公報の段落0007参照)。   That is, as described in paragraph 0029 of Japanese Patent Application Laid-Open No. 2009-150979, in the measurement using a conventional haze meter (see paragraph 0015 of Japanese Patent Application Laid-Open No. 2000-213063), the transmission scattering rate for each wavelength (scattered transmission). Rate) cannot be obtained, and only the ratio of the scattered transmission to the total light transmitted is required, so the “blue haze” of the infrared shielding material fine particle dispersion is evaluated (scattering transmittance wavelength: 360 nm to 500 nm) It was difficult to evaluate the size of the blue haze from the local maximum between the two. By the way, when the “blue haze” is large, the dispersion of the fine particles of the infrared shielding material causes poor visibility when applied to the windshield of a car, etc., and the harmful effect of deteriorating the beauty when applied to a building window glass or the like. (See paragraph 0007 of JP2009-150979A).

このため、赤外線遮蔽材料微粒子分散体における「ヘイズ」を厳密に評価する場合、従来のヘイズメータを用いて測定した「ヘイズ値(濁度)」と、本発明者が開発した透過散乱プロファイル測定装置を用いて測定した「透過散乱率」の両方で行うことが望ましい。   For this reason, when strictly evaluating the “haze” in the fine particle dispersion of the infrared shielding material, the “haze value (turbidity)” measured using a conventional haze meter and the transmission scattering profile measuring device developed by the present inventor are used. It is desirable to carry out both of the “transmission scattering rate” measured by using.

以下、波長毎の透過散乱率(すなわち、透過散乱プロファイル)を測定する原理を図2および図3を用いて説明する。   Hereinafter, the principle of measuring the transmission / scattering rate (that is, the transmission / scattering profile) for each wavelength will be described with reference to FIGS.

(7-1)透過散乱プロファイルの測定装置
まず、透過散乱プロファイルを測定する測定装置は、図2および図3に示すように球状本体内面が拡散反射性を有しかつ測定試料(赤外線遮蔽材料微粒子分散液、この赤外線遮蔽材料微粒子分散液を用いて得られた赤外線遮蔽膜若しくは赤外線遮蔽光学部材)4が取り付けられる第一開口部(図示せず)、標準反射板7またはライトトラップ部品8が取り付けられる第二開口部(図示せず)、受光器5が取り付けられる第三開口部(図示せず)を球状本体外面に有する積分球6と、前記第一開口部を介し球状空間内に入射される直線光を出射する光源3と、前記受光器5に取り付けられかつ受光された反射光または散乱光を分光する分光器(図示せず)と、前記分光器に接続されかつ分光された反射光または散乱光の分光データを保存するデータ保存手段(図示せず)と、保存された前記ブランク透過光強度と拡散透過光強度の各分光データから拡散透過光強度とブランク透過光強度の波長毎の比をそれぞれ演算して波長毎の透過散乱率を得る演算手段(図示せず)を具備している。
(7-1) Transmission Scattering Profile Measuring Device First, a measuring device for measuring a transmission / scattering profile is shown in FIGS. 2 and 3, in which the inner surface of the spherical body has diffuse reflectivity and a measurement sample (infrared shielding material fine particles). A first opening (not shown) to which a dispersion, an infrared shielding film or an infrared shielding optical member obtained by using this infrared shielding material fine particle dispersion is attached, a standard reflector 7 or a light trap component 8 is attached. And a second opening (not shown), an integrating sphere 6 having a third opening (not shown) to which the light receiver 5 is attached on the outer surface of the spherical body, and the spherical opening through the first opening. A light source 3 that emits linear light, a spectroscope (not shown) that is attached to the light receiver 5 and that splits the received reflected light or scattered light, and a reflected light that is connected to the spectroscope and dispersed. Or, a data storage means (not shown) for storing the spectral data of the scattered light, and each of the stored spectral data of the blank transmitted light intensity and the diffuse transmitted light intensity for each wavelength of the diffuse transmitted light intensity and the blank transmitted light intensity. Calculation means (not shown) is provided for calculating the transmission scattering rate for each wavelength by calculating the ratio.

ここで、球状本体外面に第一、第二および第三開口部(図示せず)を有する積分球6は、球状本体内面に硫酸バリウム若しくはスペクトラロン(SPECTRALON:登録商標)等が塗布されて拡散反射性を有するもので、前記標準反射板7への入射角は、標準側、対照側とも10°であればよい。また、前記受光器5としては、例えば、光電子倍増管(紫外・可視域)、冷却硫化鉛(近赤外域)を使用したものを用いることができる。また、受光器5に取り付けられる分光器(図示せず)については、紫外・可視域の波長測定範囲、測光正確さ(±0.002Abs)が必要である。   Here, the integrating sphere 6 having the first, second and third openings (not shown) on the outer surface of the spherical body is diffused by applying barium sulfate or Spectralon (registered trademark) or the like on the inner surface of the spherical body. It has reflectivity, and the incident angle to the standard reflecting plate 7 may be 10 ° on both the standard side and the reference side. As the light receiver 5, for example, a photomultiplier tube (ultraviolet / visible region) or a cooled lead sulfide (near infrared region) can be used. Further, a spectroscope (not shown) attached to the light receiver 5 needs to have a wavelength measurement range in the ultraviolet / visible region and photometric accuracy (± 0.002 Abs).

次に、球状空間内に入射される直線光を出射する光源3としては、例えば、紫外域は重水素ランプ、可視・近赤外域は50Wハロゲンランプが適用される。   Next, as the light source 3 that emits linear light that enters the spherical space, for example, a deuterium lamp is applied in the ultraviolet region, and a 50 W halogen lamp is applied in the visible / near infrared region.

また、標準反射板7には、例えば材質がスペクトラロン(SPECTRALON:登録商標)の白板を用いることができ、前記ライトトラップ部品8には、入射された直線光を反射させずにトラップする機能が必要で、例えば、入射された直線光をほぼ完全に吸収するダークボックスが用いられる。   The standard reflector 7 can be a white plate made of, for example, SPECTRALON (registered trademark), and the light trap component 8 has a function of trapping incident linear light without reflecting it. For example, a dark box that absorbs incident linear light almost completely is used.

(7-2)透過散乱プロファイルの極大値を評価する方法
次に、透過散乱プロファイルの測定装置を用いて、測定試料である赤外線遮蔽材料微粒子分散液あるいは赤外線遮蔽膜の透過散乱プロファイルの極大値を評価するには、「ブランク透過光強度測定工程」と、「拡散透過光強度測定工程」と、「拡散透過率演算工程」との各工程を要する。
(7-2) Method of evaluating the maximum value of the transmission / scattering profile Next, using the transmission / scattering profile measurement device, the maximum value of the transmission / scattering profile of the infrared shielding material fine particle dispersion or infrared shielding film as the measurement sample is measured. For the evaluation, the steps of “blank transmitted light intensity measuring step”, “diffuse transmitted light intensity measuring step”, and “diffuse transmittance calculating step” are required.

(7-2-1)まず、「ブランク透過光強度測定工程」においては、図2に示すように積分球6の第二開口部に標準反射板7を取り付け、第一開口部に測定試料(赤外線遮蔽材料微粒子分散液、赤外線遮蔽膜形成用塗布液、この赤外線遮蔽材料微粒子分散液を用いて得られた赤外線遮蔽膜若しくは赤外線遮蔽光学部材)を取り付けない状態で外部光源3からの直線光を第一開口部を介し球状空間内に入射させると共に、標準反射板7で反射された反射光を受光器5で受光し、かつ、受光器5に取り付けられた分光器(図示せず)により分光して前記反射光の分光データを得る。 (7-2-1) First, in the “blank transmitted light intensity measurement step”, as shown in FIG. 2, the standard reflector 7 is attached to the second opening of the integrating sphere 6 and the measurement sample ( Infrared shielding material fine particle dispersion, coating liquid for forming infrared shielding film, infrared shielding film or infrared shielding optical member obtained using this infrared shielding material fine particle dispersion) is not attached, and linear light from external light source 3 is applied. While making it enter into spherical space through a 1st opening part, the reflected light reflected by the standard reflecting plate 7 is light-received with the light receiver 5, and it spectroscopically analyzes with the spectroscope (not shown) attached to the light receiver 5. FIG. Thus, spectral data of the reflected light is obtained.

(7-2-2)次に、「透過散乱光強度測定工程」においては、図3に示すように積分球6の第二開口部にライトトラップ部品8を取り付け、第一開口部に測定試料(赤外線遮蔽材料微粒子分散液、この赤外線遮蔽材料微粒子分散液を用いて得られた赤外線遮蔽膜若しくは赤外線遮蔽光学部材)4を取り付けた状態で外部光源3からの直線光を測定試料4と第一開口部を介し球状空間内に入射させると共に、ライトトラップ部品8でトラップされた光以外の散乱光を前記受光器5で受光し、かつ、受光器5に取り付けられた分光器(図示せず)により分光して散乱光の分光データを得る。 (7-2-2) Next, in the “transmitted scattered light intensity measurement step”, a light trap part 8 is attached to the second opening of the integrating sphere 6 as shown in FIG. (Infrared shielding material fine particle dispersion, infrared shielding film or infrared shielding optical member obtained using this infrared shielding material fine particle dispersion) 4 with linear light from the external light source 3 being measured with the sample 4 and the first A spectroscope (not shown) that enters the spherical space through the opening, receives scattered light other than the light trapped by the light trap component 8 by the light receiver 5, and is attached to the light receiver 5. To obtain spectral data of scattered light.

(7-2-3)「透過散乱率演算工程」において、データ保存手段(図示せず)により保存されたブランク透過光強度と透過散乱光強度の各分光データに基づき、演算手段(図示せず)により透過散乱光強度とブランク透過光強度の波長毎の比をそれぞれ演算して波長毎の透過散乱率を求めると共に、得られた波長毎の透過散乱率から、測定試料である赤外線遮蔽材料微粒子分散液、この赤外線遮蔽材料微粒子分散液を用いて得られた赤外線遮蔽膜若しくは赤外線遮蔽光学部材の透過散乱プロファイルにおける波長360nm〜500nm領域の極大値を求めることができる。 (7-2-3) In the “transmission / scattering rate calculation step”, calculation means (not shown) based on the spectral data of the blank transmitted light intensity and transmitted scattered light intensity stored by the data storage means (not shown). ) To calculate the ratio of the transmitted scattered light intensity and the transmitted light intensity of the blank for each wavelength to determine the transmitted scattering ratio for each wavelength, and from the obtained transmitted scattering ratio for each wavelength, the infrared shielding material fine particles as the measurement sample The maximum value in the wavelength region of 360 nm to 500 nm in the transmission scattering profile of the dispersion, the infrared shielding film or the infrared shielding optical member obtained using the infrared shielding material fine particle dispersion can be obtained.

(7-2-4)そして、可視光透過率を40%から60%に設定した赤外線遮蔽材料微粒子分散液の波長360nm〜500nm領域における透過散乱プロファイルの極大値が、1.5%以下となっていることが好ましい。この条件を満たしている場合、この赤外線遮蔽材料微粒子分散液を用いて製造された赤外線遮蔽材料微粒子分散体(赤外線遮蔽膜と赤外線遮蔽光学部材)は、ヘイズ(上述した「ブルーヘイズ」)がほとんど観測されないことが確認されている。 (7-2-4) The maximum value of the transmission scattering profile in the wavelength region of 360 nm to 500 nm of the infrared shielding material fine particle dispersion with the visible light transmittance set to 40% to 60% is 1.5% or less. It is preferable. When this condition is satisfied, the infrared shielding material fine particle dispersion (infrared shielding film and infrared shielding optical member) produced using this infrared shielding material fine particle dispersion has almost no haze (the “blue haze” described above). It has been confirmed that it is not observed.

(7-3)尚、透過散乱プロファイルを測定する前記測定装置においては、前記光源3と測定試料(赤外線遮蔽材料微粒子分散液、この赤外線遮蔽材料微粒子分散液を用いて得られた赤外線遮蔽膜若しくは赤外線遮蔽光学部材)4との間に光線調整用の光学系を設けてもよい。そして、この光学系では、例えば複数枚のレンズを組み合わせて平行光を調整し、絞りにより光量の調整を行う。場合によっては、フィルターによって特定波長のカットを行ってもよい。 (7-3) In the measuring apparatus for measuring the transmission / scattering profile, the light source 3 and the measurement sample (infrared shielding material fine particle dispersion, infrared shielding film obtained using this infrared shielding material fine particle dispersion or An optical system for adjusting the light beam may be provided between the infrared shielding optical member 4). In this optical system, for example, parallel light is adjusted by combining a plurality of lenses, and the amount of light is adjusted by a diaphragm. In some cases, a specific wavelength may be cut by a filter.

8.赤外線遮蔽光学部材
本発明に係る赤外線遮蔽材料微粒子分散液は、タングステン酸化物微粒子、複合タングステン酸化物微粒子から選ばれる1種以上の微粒子で構成される赤外線遮蔽材料微粒子と、Cs、Sr、Ba、Ti、Zr、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、In、Snの内から選択される1種類以上の元素から成る金属塩で構成される第一添加剤と、アンモニアおよびアミン化合物から選ばれる1種以上で構成される第二添加剤を含有する。
8). Infrared shielding optical member The infrared shielding material fine particle dispersion according to the present invention includes an infrared shielding material fine particle composed of one or more fine particles selected from tungsten oxide fine particles and composite tungsten oxide fine particles, Cs, Sr, Ba, Selected from Ti, Zr, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, In, Sn A first additive composed of a metal salt composed of one or more elements and a second additive composed of one or more selected from ammonia and an amine compound.

そして、第一添加剤の作用により赤外線遮蔽材料微粒子の微細化に伴う赤外線遮蔽特性の経時的低下を防止することが可能となり、第二添加剤の作用により紫外線硬化樹脂が適用された場合におけるヘイズの悪化も防止することが可能となる。   And, it becomes possible to prevent the time-dependent deterioration of the infrared shielding property due to the refinement of the fine particles of the infrared shielding material by the action of the first additive, and the haze when the ultraviolet curable resin is applied by the action of the second additive. It is also possible to prevent the deterioration.

従って、本発明に係る赤外線遮蔽膜形成用塗布液、紫外線硬化樹脂を添加した赤外線遮蔽材料微粒子分散液(すなわち、赤外線遮蔽膜形成用塗布液)を用いて製造される赤外線遮蔽膜および基材と赤外線遮蔽膜とで構成される赤外線遮蔽光学部材においては、赤外線遮蔽特性の経時的安定性に優れかつ低ヘイズ化が可能なため、各種建築物や車両の窓材等に使用される遮光フィルム、遮光部材等に適用することができる。   Therefore, an infrared shielding film and a substrate manufactured using the infrared shielding film-forming coating liquid according to the present invention, an infrared shielding material fine particle dispersion added with an ultraviolet curable resin (that is, an infrared shielding film-forming coating liquid), In the infrared shielding optical member composed of an infrared shielding film, since it is excellent in the stability over time of infrared shielding properties and can reduce haze, a light shielding film used for window materials of various buildings and vehicles, It can be applied to a light shielding member or the like.

以下、本発明について実施例を挙げて具体的に説明するが、本発明はこれ等実施例に当然のことながら限定されるわけではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not necessarily limited to these Examples.

また、実施例中の可視光透過率とは、試料に垂直入射する昼光の光束について透過光束の入射光束に対する比である。ここで、昼光とは、国際照明委員会が定めたCIE昼光を意味する。このCIE昼光では、観測データに基づき黒体放射の色温度と同じ色温度の昼光の分光照度分布を波長560nmの値に対する相対値で示している。また、光束とは、放射の波長ごとの放射束と視感度(人の目の光に対する感度)の値の積の数値を波長について積分したものである。つまり、「可視光透過率(%)」とは波長380nm〜780nmの領域の光透過量を人の目の視感度で規格化した透過光量の積算値で人の目の感じる明るさを意味する値である。   The visible light transmittance in the examples is the ratio of the daylight beam perpendicularly incident on the sample to the incident beam. Here, daylight means CIE daylight established by the International Lighting Commission. In this CIE daylight, the spectral illuminance distribution of daylight having the same color temperature as the color temperature of blackbody radiation is shown as a relative value with respect to the value of wavelength 560 nm based on the observation data. The luminous flux is obtained by integrating the numerical value of the product of the value of the radiant flux for each wavelength of radiation and the visibility (sensitivity to the light of the human eye) with respect to the wavelength. That is, “visible light transmittance (%)” means the brightness perceived by the human eye by the integrated value of the transmitted light amount obtained by normalizing the light transmission amount in the wavelength region of 380 nm to 780 nm with the human eye visibility. Value.

「透過率(%)」の測定は、分光光度計(日立製作所製U−4100)を使用して波長300nm〜2600nmの範囲において5nmの間隔で測定している。   The "transmittance (%)" is measured at intervals of 5 nm in the wavelength range of 300 nm to 2600 nm using a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.).

「透過散乱率(%)」の測定は、分光光度計(日立製作所製U−4100)を用い、上述した方法により波長300nm〜800nmの範囲で1nmの間隔で測定している。   The “transmission scattering rate (%)” is measured using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.) at an interval of 1 nm in the wavelength range of 300 nm to 800 nm by the method described above.

膜の「ヘイズ値(%)」は、JIS K 7105に基づき測定を行なった。   The “haze value (%)” of the film was measured based on JIS K 7105.

[実施例1]
Cs0.33WO3粉末を100重量部、メチルイソブチルケトン(以下、MIBKと略称する場合がある)320重量部、分散剤80重量部を混合し、分散処理を行い、平均分散粒子径5nmの分散液(A液)とした。
[Example 1]
Cs 0.33 WO 3 powder, 100 parts by weight, 320 parts by weight of methyl isobutyl ketone (hereinafter sometimes abbreviated as MIBK), and 80 parts by weight of a dispersing agent are mixed and subjected to dispersion treatment to obtain a dispersion having an average dispersed particle diameter of 5 nm. (A liquid).

ハードコート用紫外線硬化樹脂 UV−7600B(日本合成化学株式会社)350重量部、光重合開始剤「IRGACURE184」(チバ・スペシャルティ・ケミカルズ株式会社)20重量部、溶媒MIBK 130重量部を混合し紫外線硬化樹脂(B液)とした。   UV curing resin UV-7600B (Nippon Gosei Chemical Co., Ltd.) 350 parts by weight, photopolymerization initiator “IRGACURE 184” (Ciba Specialty Chemicals Co., Ltd.) 20 parts, and MIBK 130 parts by weight Resin (Liquid B) was used.

前記A液500重量部とB液500重量部、酢酸ニッケル5重量部とアンモニア0.25重量部(金属塩に対し5%)とを混合して赤外線遮蔽材料微粒子分散液とした。   500 parts by weight of the liquid A and 500 parts by weight of the liquid B, 5 parts by weight of nickel acetate, and 0.25 parts by weight of ammonia (5% with respect to the metal salt) were mixed to prepare an infrared shielding material fine particle dispersion.

この赤外線遮蔽材料微粒子分散液(塗布液)を厚さ50μmのPETフィルム上にバーコーターを用い塗布して塗布膜を形成し、この塗布膜を70℃で60秒乾燥して溶剤を蒸発させた後、高圧水銀ランプで硬化させ赤外線遮蔽膜を得た。   This infrared shielding material fine particle dispersion (coating solution) was applied onto a 50 μm thick PET film using a bar coater to form a coating film, and this coating film was dried at 70 ° C. for 60 seconds to evaporate the solvent. Thereafter, it was cured with a high-pressure mercury lamp to obtain an infrared shielding film.

この赤外線遮蔽膜の光学特性を測定したところ、可視光透過率は65%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高く内部の状況が外部からもはっきり確認できた。   When the optical characteristics of the infrared shielding film were measured, it was found that the visible light transmittance was 65% and the light in the visible light region was sufficiently transmitted. Further, the haze was 0.8%, and the transparency was extremely high, and the internal situation could be clearly confirmed from the outside.

上述した拡散透過プロファイルの測定原理に従って波長360nm〜500nm領域における透過散乱プロファイルの極大値(透過散乱率)を測定したところ1.4%と低散乱率であった。また、波長820nmにおける透過率Tは6.5%であり、良好な近赤外線フィルターであることが確認された。   When the maximum value (transmission scattering rate) of the transmission / scattering profile in the wavelength region of 360 nm to 500 nm was measured according to the measurement principle of the diffuse transmission profile described above, the low scattering rate was 1.4%. Further, the transmittance T at a wavelength of 820 nm was 6.5%, and it was confirmed that the filter was a good near infrared filter.

この赤外線遮蔽膜を80℃の95RH%の高温恒湿に48時間暴露し、同様に透過プロファイルを測定したところ、820nmにおける透過率は9.3%であった。80℃の95RH%の高温恒湿暴露による820nmの透過率の上昇量(ΔT)は2.8%と小さいことが分かった。   When this infrared shielding film was exposed to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours and the transmission profile was measured in the same manner, the transmittance at 820 nm was 9.3%. It was found that the increase in transmittance (ΔT) at 820 nm due to exposure to high temperature and humidity at 95 RH% at 80 ° C. was as small as 2.8%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例2]
アンモニアの添加量を5重量部(金属塩に対し100%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 2]
An infrared shielding film was produced in the same manner as in Example 1 except that the amount of ammonia added was 5 parts by weight (100% based on the metal salt).

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は67%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.1%であった。また、波長820nmにおける透過率Tは7.3%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 67% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.1%. Further, the transmittance T at a wavelength of 820 nm was 7.3%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.7%と小さいことが分かった。   Then, it was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.7%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例3]
アンモニアの添加量を15重量部(金属塩に対し300%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 3]
An infrared shielding film was produced in the same manner as in Example 1 except that the amount of ammonia added was 15 parts by weight (300% based on the metal salt).

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は68%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.3%であった。また、波長820nmにおける透過率Tは7.9%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 68% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.3%. Further, the transmittance T at a wavelength of 820 nm was 7.9%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.9%と小さいことが分かった。   Then, it was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.9%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例4]
アンモニアの添加量を5重量部(金属塩に対し100%)、金属塩を酢酸亜鉛に変えた以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 4]
An infrared shielding film was produced in the same manner as in Example 1 except that the amount of ammonia added was 5 parts by weight (100% with respect to the metal salt) and the metal salt was changed to zinc acetate.

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は67%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.1%であった。また、波長820nmにおける透過率Tは7.6%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 67% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.1%. Moreover, the transmittance T at a wavelength of 820 nm was 7.6%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.6%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.6%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例5]
アンモニアをジエタノールアミンに変えた以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 5]
An infrared shielding film was produced in the same manner as in Example 1 except that ammonia was changed to diethanolamine.

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は64%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.4%であった。また、波長820nmにおける透過率Tは6.3%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 64% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.4%. Further, the transmittance T at a wavelength of 820 nm was 6.3%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.1%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.1%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例6]
アンモニアをジエタノールアミンに変えて添加量を5重量部(金属塩に対し100%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 6]
An infrared shielding film was prepared in the same manner as in Example 1 except that ammonia was changed to diethanolamine and the addition amount was 5 parts by weight (100% with respect to the metal salt).

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は66%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.1%であった。また、波長820nmにおける透過率Tは7.1%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 66% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.1%. Further, the transmittance T at a wavelength of 820 nm was 7.1%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.3%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.3%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例7]
アンモニアをジエタノールアミンに変えて添加量を15重量部(金属塩に対し300%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 7]
An infrared shielding film was produced in the same manner as in Example 1 except that the amount of addition was changed to 15 parts by weight (300% based on the metal salt) by changing ammonia to diethanolamine.

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は68%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.3%であった。また、波長820nmにおける透過率Tは8.0%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 68% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.3%. Further, the transmittance T at a wavelength of 820 nm was 8.0%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.6%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.6%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例8]
アンモニアをモノエタノールアミンに変えた以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 8]
An infrared shielding film was produced in the same manner as in Example 1 except that ammonia was changed to monoethanolamine.

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は66%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.0%であった。また、波長820nmにおける透過率Tは6.9%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 66% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.0%. Further, the transmittance T at a wavelength of 820 nm was 6.9%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.3%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.3%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例9]
アンモニアをモノエタノールアミンに変えて添加量を5重量部(金属塩に対し100%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 9]
An infrared shielding film was prepared in the same manner as in Example 1 except that ammonia was changed to monoethanolamine and the addition amount was 5 parts by weight (100% based on the metal salt).

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は67%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.3%であった。また、波長820nmにおける透過率Tは7.7%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 67% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.3%. Further, the transmittance T at a wavelength of 820 nm was 7.7%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.6%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.6%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例10]
アンモニアをモノエタノールアミンに変えて添加量を15重量部(金属塩に対し300%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 10]
An infrared shielding film was produced in the same manner as in Example 1 except that ammonia was changed to monoethanolamine and the addition amount was 15 parts by weight (300% based on the metal salt).

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は68%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.0%であった。また、波長820nmにおける透過率Tは8.2%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 68% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.0%. Moreover, the transmittance T at a wavelength of 820 nm was 8.2%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.3%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.3%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例11]
アンモニアをトリエタノールアミンに変えた以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 11]
An infrared shielding film was produced in the same manner as in Example 1 except that ammonia was changed to triethanolamine.

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は65%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.4%であった。また、波長820nmにおける透過率Tは6.8%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 65% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.4%. Further, the transmittance T at a wavelength of 820 nm was 6.8%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.1%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.1%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例12]
アンモニアをトリエタノールアミンに変えて添加量を5重量部(金属塩に対し100%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 12]
An infrared shielding film was prepared in the same manner as in Example 1 except that ammonia was changed to triethanolamine and the addition amount was 5 parts by weight (100% based on the metal salt).

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は67%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.1%であった。また、波長820nmにおける透過率Tは7.4%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 67% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.1%. Moreover, the transmittance T at a wavelength of 820 nm was 7.4%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.2%と小さいことが分かった。   It was also found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.2%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例13]
アンモニアをトリエタノールアミンに変えて添加量を15重量部(金属塩に対し300%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 13]
An infrared shielding film was prepared in the same manner as in Example 1 except that ammonia was changed to triethanolamine and the addition amount was 15 parts by weight (300% based on the metal salt).

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は69%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.3%であった。また、波長820nmにおける透過率Tは8.3%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 69% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.3%. Moreover, the transmittance T at a wavelength of 820 nm was 8.3%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.4%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.4%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例14]
アンモニアをエチレンジアミンに変えて添加量を5重量部(金属塩に対し100%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 14]
An infrared shielding film was produced in the same manner as in Example 1 except that ammonia was changed to ethylenediamine and the addition amount was 5 parts by weight (100% based on the metal salt).

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は67%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.1%であった。また、波長820nmにおける透過率Tは7.4%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 67% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.1%. Moreover, the transmittance T at a wavelength of 820 nm was 7.4%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.3%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.3%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[実施例15]
アンモニアをオレイルアミンに変えて添加量を10重量部(金属塩に対し200%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製した。
[Example 15]
An infrared shielding film was produced in the same manner as in Example 1 except that ammonia was changed to oleylamine and the addition amount was 10 parts by weight (200% based on the metal salt).

得られた赤外線遮蔽膜について、実施例1と同様の評価を行った。   The obtained infrared shielding film was evaluated in the same manner as in Example 1.

まず、可視光透過率は68%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.5%であった。また、波長820nmにおける透過率Tは7.8%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 68% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.5%. Further, the transmittance T at a wavelength of 820 nm was 7.8%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.5%と小さいことが分かった。   Then, it was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.5%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

Figure 2017155105
Figure 2017155105

[比較例1]
酢酸ニッケルおよびアンモニアを添加しない以外は、実施例1と同様にして赤外線遮蔽膜を作製し、かつ、実施例1と同様の評価を行った。
[Comparative Example 1]
An infrared shielding film was produced in the same manner as in Example 1 except that nickel acetate and ammonia were not added, and the same evaluation as in Example 1 was performed.

まず、可視光透過率は65%で可視光領域の光を十分透過していることが分かった。更に、ヘイズは0.8%であり、透明性が極めて高いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は1.1%であった。また、波長820nmにおける透過率Tは6.6%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 65% and the light in the visible light region was sufficiently transmitted. Furthermore, it was confirmed that the haze was 0.8% and the transparency was extremely high. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 1.1%. Further, the transmittance T at a wavelength of 820 nm was 6.6%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は4.2%と大きいことが分かった。   The increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was found to be as large as 4.2%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[比較例2]
アンモニアを添加しない以外は、実施例1と同様にして赤外線遮蔽膜を作製し、かつ、実施例1と同様の評価を行った。
[Comparative Example 2]
An infrared shielding film was prepared in the same manner as in Example 1 except that ammonia was not added, and the same evaluation as in Example 1 was performed.

まず、可視光透過率は66%で可視光領域の光を十分透過していることが分かった。しかし、ヘイズは1.4%であり、透明性が極めて低いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は4.5%と散乱率も大きかった。また、波長820nmにおける透過率Tは7.0%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 66% and the light in the visible light region was sufficiently transmitted. However, it was confirmed that the haze was 1.4% and the transparency was extremely low. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 4.5%, and the scattering rate was also large. Further, the transmittance T at a wavelength of 820 nm was 7.0%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.3%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.3%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[比較例3]
アンモニアを添加しないことと、金属塩を酢酸亜鉛に換えた以外は、実施例1と同様にして赤外線遮蔽膜を作製し、かつ、実施例1と同様の評価を行った。
[Comparative Example 3]
An infrared shielding film was produced in the same manner as in Example 1 except that ammonia was not added and the metal salt was changed to zinc acetate, and the same evaluation as in Example 1 was performed.

まず、可視光透過率は66%で可視光領域の光を十分透過していることが分かった。しかし、ヘイズは1.4%であり、透明性が極めて低いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は4.8%と散乱率も大きかった。また、波長820nmにおける透過率Tは7.3%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 66% and the light in the visible light region was sufficiently transmitted. However, it was confirmed that the haze was 1.4% and the transparency was extremely low. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 4.8%, and the scattering rate was also large. Further, the transmittance T at a wavelength of 820 nm was 7.3%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.5%と小さいことが分かった。   Then, it was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.5%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[比較例4]
アンモニアの添加量を0.1重量部(金属塩に対し2%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製し、かつ、実施例1と同様の評価を行った。
[Comparative Example 4]
An infrared shielding film was prepared in the same manner as in Example 1 except that the amount of ammonia added was 0.1 parts by weight (2% based on the metal salt), and the same evaluation as in Example 1 was performed.

まず、可視光透過率は67%で可視光領域の光を十分透過していることが分かった。しかし、ヘイズは1.3%であり、透明性が極めて低いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は3.8%と散乱率も大きかった。また、波長820nmにおける透過率Tは7.6%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 67% and the light in the visible light region was sufficiently transmitted. However, it was confirmed that the haze was 1.3% and the transparency was extremely low. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 3.8%, and the scattering rate was also large. Moreover, the transmittance T at a wavelength of 820 nm was 7.6%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は2.1%と小さいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as small as 2.1%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後も粘度上昇は見られなかった。   Also, no increase in viscosity was observed after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month.

[比較例5]
アンモニアの添加量を17.5重量部(金属塩に対し350%)とした以外は、実施例1と同様にして赤外線遮蔽膜を作製し、かつ、実施例1と同様の評価を行った。
[Comparative Example 5]
An infrared shielding film was prepared in the same manner as in Example 1 except that the amount of ammonia added was 17.5 parts by weight (350% with respect to the metal salt), and the same evaluation as in Example 1 was performed.

まず、可視光透過率は69%で可視光領域の光を十分透過していることが分かった。しかし、ヘイズは1.2%であり、透明性が極めて低いことも確認できた。波長360nm〜500nm領域における透過散乱の極大値(透過散乱率)は2.5%と散乱率も大きかった。また、波長820nmにおける透過率Tは8.1%であり、良好な近赤外線フィルターであることが確認された。   First, it was found that the visible light transmittance was 69% and the light in the visible light region was sufficiently transmitted. However, it was confirmed that the haze was 1.2% and the transparency was extremely low. The maximum value of transmission scattering (transmission scattering rate) in the wavelength region of 360 nm to 500 nm was 2.5%, and the scattering rate was also large. Further, the transmittance T at a wavelength of 820 nm was 8.1%, and it was confirmed that the filter was a good near infrared filter.

そして、80℃の95RH%の高温恒湿に48時間暴露後の820nmにおける透過率の上昇量(ΔT)は3.2%と大きいことが分かった。   It was found that the increase in transmittance (ΔT) at 820 nm after exposure to high temperature and humidity of 95 RH% at 80 ° C. for 48 hours was as large as 3.2%.

また、赤外線遮蔽材料微粒子分散液を40℃で1ヶ月保管後において分散液はゲル化していた。   Further, after the infrared shielding material fine particle dispersion was stored at 40 ° C. for 1 month, the dispersion was gelled.

Figure 2017155105
Figure 2017155105

[評 価]
(1)実施例1〜実施例3では酢酸ニッケル(金属塩)とアンモニアを添加しているため、金属塩が添加されていない比較例1と較べて高温恒湿による加速試験での近赤外線遮蔽特性の劣化が抑制されていることが表1と表2の上昇量(ΔT)から確認される。
[Evaluation]
(1) In Examples 1 to 3, since nickel acetate (metal salt) and ammonia are added, near-infrared shielding in an accelerated test by high temperature and humidity compared to Comparative Example 1 in which no metal salt is added. It is confirmed from the amount of increase (ΔT) in Tables 1 and 2 that the deterioration of characteristics is suppressed.

また、金属塩は添加されているがアンモニアが添加されていない比較例2と較べてヘイズおよび透過散乱の極大値が低く透明性が高いことが表1と表2のヘイズおよび透過散乱の極大値(透過散乱率)から確認される。   In addition, the maximum values of haze and transmission scattering in Tables 1 and 2 are higher than those of Comparative Example 2 in which metal salt is added but ammonia is not added. It is confirmed from (transmission scattering rate).

これ等の結果、本発明に係る赤外線遮蔽膜(赤外線遮蔽光学部材)が従来にない赤外線遮蔽特性の経時安定性および高い透明性を有することが分かる。   As a result, it can be seen that the infrared shielding film (infrared shielding optical member) according to the present invention has unprecedented infrared shielding properties over time and high transparency.

(2)実施例5〜実施例7はアンモニアに変えてジエタノールアミンを添加し、実施例8〜実施例10はアンモニアに変えてモノエタノールアミンとし、実施例11〜実施例13はアンモニアに変えてトリエタノールアミンとし、実施例14はアンモニアに変えてエチレンジアミンとし、実施例15はアンモニアに変えてオレイルアミンにした実施例に関し、表1の上昇量(ΔT)およびヘイズ、透過散乱率から確認されるように耐湿熱性の改良効果と良好なヘイズ値が得られることが分かる。 (2) In Examples 5 to 7, diethanolamine was added instead of ammonia, Examples 8 to 10 were changed to ammonia to monoethanolamine, and Examples 11 to 13 were changed to ammonia and triethanolamine was added. Ethanolamine, Example 14 was changed to ammonia to ethylenediamine, and Example 15 was changed to ammonia to be oleylamine, as confirmed from the amount of increase (ΔT), haze, and transmission scattering rate in Table 1. It can be seen that the effect of improving the heat and humidity resistance and a good haze value can be obtained.

(3)実施例4は実施例2に対し添加する金属塩の種類を変更した実施例に係り、実施例2の酢酸ニッケルに変えて、実施例4では酢酸亜鉛を添加したものである。 (3) Example 4 relates to an example in which the kind of metal salt added to Example 2 was changed, and instead of nickel acetate of Example 2, Example 4 was obtained by adding zinc acetate.

そして、表1の上昇量(ΔT)およびヘイズ、透過散乱率から確認されるように耐湿熱性の改良効果と良好なヘイズ値が得られることが分かる。   And it turns out that the improvement effect of moist heat resistance and a favorable haze value are acquired so that the amount of increase ((DELTA) T) of Table 1, haze, and a transmission scattering rate may be confirmed.

(4)比較例3は比較例2の金属塩を酢酸亜鉛に変更した比較例に関する。
そして、表1のヘイズおよび透過散乱率から確認されるようにヘイズ値が高くかつ透明性が低いことが分かる。
(4) Comparative Example 3 relates to a comparative example in which the metal salt of Comparative Example 2 is changed to zinc acetate.
As can be seen from the haze and transmission scattering rate in Table 1, it can be seen that the haze value is high and the transparency is low.

(5)比較例4は、実施例1〜実施例3に較べるとアンモニアの添加量が0.1重量部(金属塩に対し2%)と少ないため、表1のヘイズおよび透過散乱率から確認されるようにヘイズ値が高くかつ透明性が低いことが分かる。 (5) Compared with Examples 1 to 3, Comparative Example 4 has a small amount of ammonia added of 0.1 part by weight (2% with respect to the metal salt). It can be seen that the haze value is high and the transparency is low.

また、比較例5は、実施例1〜実施例3に較べるとアンモニアの添加量が17.5重量部(金属塩に対し350%)と多いため赤外線遮蔽材料微粒子分散液の安定性が悪化し、表1のヘイズおよび透過散乱率から確認されるようにヘイズ値が高くかつ透明性が低いことが分かる。   Further, in Comparative Example 5, compared to Examples 1 to 3, the amount of ammonia added is as large as 17.5 parts by weight (350% with respect to the metal salt), so the stability of the infrared shielding material fine particle dispersion is deteriorated. As can be seen from the haze and transmission scattering rate of Table 1, it can be seen that the haze value is high and the transparency is low.

本発明に係る赤外線遮蔽材料微粒子分散液は金属塩で構成される第一添加剤とアンモニア、アミン化合物で構成される第二添加剤を含有しており、第一添加剤の作用により赤外線遮蔽材料微粒子の微細化に伴う赤外線遮蔽特性の経時的低下を防止でき、第二添加剤の作用により紫外線硬化樹脂が適用された場合におけるヘイズの悪化も防止することができる。従って、紫外線硬化樹脂が添加された本発明に係る赤外線遮蔽膜形成用塗布液を用いて製造される赤外線遮蔽膜と赤外線遮蔽光学部材は赤外線遮蔽特性の経時的安定性に優れ、従来にない低ヘイズ化が可能となるため各種建築物や車両の窓材等に使用される遮光フィルム、遮光部材等に適用できる産業上の利用可能性を有している。   The infrared shielding material fine particle dispersion according to the present invention contains a first additive composed of a metal salt and a second additive composed of ammonia and an amine compound. It is possible to prevent a time-dependent decrease in infrared shielding properties due to finer fine particles, and it is also possible to prevent haze deterioration when an ultraviolet curable resin is applied by the action of the second additive. Therefore, the infrared shielding film and the infrared shielding optical member manufactured using the coating liquid for forming the infrared shielding film according to the present invention to which the ultraviolet curable resin is added are excellent in the temporal stability of the infrared shielding properties, and are low in the past. Since it can be hazed, it has industrial applicability that can be applied to light-shielding films, light-shielding members, etc. used in various buildings and vehicle window materials.

1 WO単位
2 元素M
3 光源
4 測定試料
5 受光器
6 積分球
7 標準反射板
8 ライトトラップ部品
1 WO 6 units 2 Element M
3 Light source 4 Measurement sample 5 Light receiver 6 Integrating sphere 7 Standard reflector 8 Light trap parts

Claims (9)

一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物微粒子、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3)で表記される複合タングステン酸化物微粒子から選択される1種以上の微粒子で構成される赤外線遮蔽材料微粒子が有機系溶媒中に分散された赤外線遮蔽材料微粒子分散液であって、該分散液に含まれない紫外線硬化樹脂が前記分散液に添加されて赤外線遮蔽膜形成用塗布液を構成する赤外線遮蔽材料微粒子分散液において、
Cs、Sr、Ba、Ti、Zr、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、In、Snの内から選択される1種類以上の元素から成る金属塩で構成される第一添加剤と、アンモニアおよびアミン化合物から選ばれる1種以上で構成される第二添加剤を含有し、かつ、前記第一添加剤に対する第二添加剤の含有量が重量比で5%以上300%以下であることを特徴とする赤外線遮蔽材料微粒子分散液。
Tungsten oxide fine particles represented by the general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), general formula MxWyOz (where M is H, He, alkali metal) , Alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl , Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, I 1 or more elements selected, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3) Infrared shielding material fine particles composed of more than one kind of fine particles Infrared shielding material fine particle dispersion dispersed in a medium, wherein an ultraviolet curable resin not contained in the dispersion is added to the dispersion to form an infrared shielding film forming coating liquid In
Cs, Sr, Ba, Ti, Zr, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, In, Containing a first additive composed of a metal salt composed of one or more elements selected from Sn, and a second additive composed of one or more selected from ammonia and an amine compound, and The infrared shielding material fine particle dispersion, wherein the content of the second additive with respect to the first additive is 5% to 300% by weight.
前記アミン化合物が、ジエタノールアミン、モノエタノールアミン、トリエタノールアミンの内から選択される1種類以上であることを特徴とする請求項1に記載の赤外線遮蔽材料微粒子分散液。   2. The infrared shielding material fine particle dispersion according to claim 1, wherein the amine compound is at least one selected from diethanolamine, monoethanolamine, and triethanolamine. 前記第一添加剤の含有量が、前記赤外線遮蔽材料微粒子100重量部に対し0.01重量部以上20重量部以下であることを特徴とする請求項1または2に記載の赤外線遮蔽材料微粒子分散液。   3. The infrared shielding material fine particle dispersion according to claim 1, wherein the content of the first additive is 0.01 part by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the infrared shielding material fine particles. liquid. 前記タングステン酸化物微粒子、複合タングステン酸化物微粒子から選ばれる1種以上が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.45≦z/y≦2.999)で表記される組成比のマグネリ相を含むことを特徴とする請求項1〜3のいずれかに記載の赤外線遮蔽材料微粒子分散液。   One or more kinds selected from the tungsten oxide fine particles and the composite tungsten oxide fine particles are a composition represented by the general formula WyOz (W is tungsten, O is oxygen, 2.45 ≦ z / y ≦ 2.999). The infrared shielding material fine particle dispersion according to any one of claims 1 to 3, comprising a ratio of a magnetic phase. 一般式MxWyOzで表記される前記複合タングステン酸化物微粒子が、六方晶、正方晶若しくは立方晶の結晶構造の1つ以上を含むことを特徴とする請求項1〜4のいずれかに記載の赤外線遮蔽材料微粒子分散液。   The infrared shielding according to any one of claims 1 to 4, wherein the composite tungsten oxide fine particles represented by the general formula MxWyOz include one or more of hexagonal, tetragonal, or cubic crystal structures. Material fine particle dispersion. 前記M元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snの内の1種類以上を含み、かつ、六方晶の結晶構造を有することを特徴とする請求項5に記載の赤外線遮蔽材料微粒子分散液。   The element M includes one or more of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn, and has a hexagonal crystal structure. Item 6. The infrared shielding material fine particle dispersion according to Item 5. 請求項1〜6のいずれかに記載の赤外線遮蔽材料微粒子分散液に紫外線硬化樹脂が添加されて成ることを特徴とする赤外線遮蔽膜形成用塗布液。   A coating solution for forming an infrared shielding film, wherein an ultraviolet curable resin is added to the infrared shielding material fine particle dispersion according to any one of claims 1 to 6. 請求項7に記載の赤外線遮蔽膜形成用塗布液を基材表面に塗布して塗布膜を形成し、該塗布膜から溶媒を蒸発させかつ紫外線を照射して得られることを特徴とする赤外線遮蔽膜。   An infrared shielding film obtained by coating the coating liquid for forming an infrared shielding film according to claim 7 on a substrate surface to form a coating film, evaporating a solvent from the coating film and irradiating with ultraviolet rays. film. 基材と、この基材表面に形成された請求項8に記載の赤外線遮蔽膜とで構成されることを特徴とする赤外線遮蔽光学部材。   An infrared shielding optical member comprising: a base material; and the infrared shielding film according to claim 8 formed on the surface of the base material.
JP2016038395A 2016-02-29 2016-02-29 Infrared shielding material fine particle dispersion liquid, coating liquid for forming infrared shielding film, infrared shielding film, and infrared shielding optical member Pending JP2017155105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038395A JP2017155105A (en) 2016-02-29 2016-02-29 Infrared shielding material fine particle dispersion liquid, coating liquid for forming infrared shielding film, infrared shielding film, and infrared shielding optical member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038395A JP2017155105A (en) 2016-02-29 2016-02-29 Infrared shielding material fine particle dispersion liquid, coating liquid for forming infrared shielding film, infrared shielding film, and infrared shielding optical member

Publications (1)

Publication Number Publication Date
JP2017155105A true JP2017155105A (en) 2017-09-07

Family

ID=59808149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038395A Pending JP2017155105A (en) 2016-02-29 2016-02-29 Infrared shielding material fine particle dispersion liquid, coating liquid for forming infrared shielding film, infrared shielding film, and infrared shielding optical member

Country Status (1)

Country Link
JP (1) JP2017155105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517522A (en) * 2019-04-22 2021-07-26 ファン,テ−ギョン Environmentally friendly heat-shielding film using non-radioactive stable isotopes and its manufacturing method
CN116601240A (en) * 2020-12-24 2023-08-15 共同印刷株式会社 Tungsten-based infrared-absorbing pigment dispersion, dyeing liquid, fiber product, and method for treating fiber product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021517522A (en) * 2019-04-22 2021-07-26 ファン,テ−ギョン Environmentally friendly heat-shielding film using non-radioactive stable isotopes and its manufacturing method
JP2022008462A (en) * 2019-04-22 2022-01-13 ファン,テ-ギョン Environment-friendly heat-shielding film using nonradioactive stable isotope and method for producing the same
JP7117803B2 (en) 2019-04-22 2022-08-15 ファン,テ-ギョン Excellent environment heat shielding film using non-radioactive stable isotope and its manufacturing method
CN116601240A (en) * 2020-12-24 2023-08-15 共同印刷株式会社 Tungsten-based infrared-absorbing pigment dispersion, dyeing liquid, fiber product, and method for treating fiber product

Similar Documents

Publication Publication Date Title
JP5181716B2 (en) Infrared shielding material fine particle dispersion, infrared shielding film and infrared shielding optical member, and near infrared absorption filter for plasma display panel
JP5298581B2 (en) Infrared shielding material fine particle dispersion, infrared shielding film and infrared shielding optical member, and near infrared absorption filter for plasma display panel
JP4096205B2 (en) Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles
JP4678225B2 (en) Infrared shielding material fine particle dispersion and infrared shielding material
JP5849766B2 (en) Composite tungsten oxide fine particles for forming solar radiation shield, composite tungsten oxide fine particle dispersion for forming solar radiation shield, and method for producing solar radiation shield
JP5034272B2 (en) Tungsten-containing oxide fine particles, method for producing the same, and infrared shielding body using the same
JP2005187323A (en) Method for producing tungsten oxide fine particle for forming solar radiation shielding material, tungsten oxide fine particle for forming solar radiation shielding material, dispersion for forming solar radiation shielding material, and solar radiation shielding material
BR122017019084B1 (en) Transparent electroconductor article, methods for manufacturing transparent electroconductor article, and composite oxide nanoparticles, infrared protection nanoparticle dispersion, and infrared protection nanoparticles
JP6187540B2 (en) Composite tungsten oxide fine particles for solar radiation shield formation, dispersion thereof, and solar radiation shield
JP2022041986A (en) Manufacturing method of infrared absorbing particle
JP5585812B2 (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding material, method for producing near-infrared shielding material fine particles, and near-infrared shielding material fine particles
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP2011063739A (en) Microparticle of near infrared ray shielding material, production method therefor, particle dispersion of near infrared ray shielding material, and near infrared ray shielding body
WO2014084353A1 (en) Near-infrared absorption filter and image pickup element
JP5387925B2 (en) Infrared shielding material fine particle dispersion, infrared shielding body, method for producing infrared shielding material fine particles, and infrared shielding material fine particles
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP2017155105A (en) Infrared shielding material fine particle dispersion liquid, coating liquid for forming infrared shielding film, infrared shielding film, and infrared shielding optical member
JP2010075775A (en) Wavelength selective barrier film and wavelength selective barrier
JP2011063493A (en) Near-infrared ray shielding material microparticle dispersion, near-infrared ray shielding body and method for producing near-infrared ray shielding material dispersion
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
JP2006299086A (en) Particulate dispersion of ir-shielding material, ir-shielding product, method of manufacturing particulate of ir-shielding material and particulate of ir-shielding material
JP2004083397A (en) Antimony-tin oxide fine particle for solar radiation shielding, dispersion liquid for forming solar radiation shielding body using the same, solar radiation shielding body and transparent base material for solar radiation shielding
JP6171733B2 (en) Heat ray shielding dispersion forming coating solution and heat ray shielding body
JP2011063484A (en) Near-infrared ray shielding material microparticle, method for producing the same, near-infrared ray shielding material microparticle dispersion and near-infrared ray shielding body
JP6866620B2 (en) Heat ray shielding film and heat ray shielding glass