JP2017154105A - Wastewater treatment ability improving agent and method for producing the same, and wastewater treatment method and wastewater treatment apparatus - Google Patents

Wastewater treatment ability improving agent and method for producing the same, and wastewater treatment method and wastewater treatment apparatus Download PDF

Info

Publication number
JP2017154105A
JP2017154105A JP2016041056A JP2016041056A JP2017154105A JP 2017154105 A JP2017154105 A JP 2017154105A JP 2016041056 A JP2016041056 A JP 2016041056A JP 2016041056 A JP2016041056 A JP 2016041056A JP 2017154105 A JP2017154105 A JP 2017154105A
Authority
JP
Japan
Prior art keywords
sludge
wastewater treatment
wastewater
improver
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016041056A
Other languages
Japanese (ja)
Other versions
JP6716289B2 (en
Inventor
中嶋 祐二
Yuji Nakajima
祐二 中嶋
小川 尚樹
Naoki Ogawa
尚樹 小川
雄太 中土
Yuta Nakatsuchi
雄太 中土
衣笠 敦志
Atsushi Kinugasa
敦志 衣笠
翔 加藤
Sho Kato
翔 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016041056A priority Critical patent/JP6716289B2/en
Publication of JP2017154105A publication Critical patent/JP2017154105A/en
Application granted granted Critical
Publication of JP6716289B2 publication Critical patent/JP6716289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wastewater treatment ability improving agent that allows stabler treatment in wastewater treatment using active sludge.SOLUTION: The present invention provides a wastewater treatment ability improving agent for improving wastewater treatment performance of sludge, the agent comprising lyophilized sludge comprising acclimatized sludge, and a cationic flocculant carried on the lyophilized sludge.SELECTED DRAWING: Figure 1

Description

本開示は、排水処理能向上剤及びその製造方法並びに排水処理方法及び排水処理装置に関する。   The present disclosure relates to a wastewater treatment performance improver, a method for producing the same, a wastewater treatment method, and a wastewater treatment apparatus.

排水処理において、活性汚泥を用いた生物処理を行うことにより排水の浄化を行う場合がある。
例えば、特許文献1には、プラント設備から排出される洗濯排水を生物処理槽に導入し、該生物処理槽にて洗濯排水を活性汚泥と曝気混合することによって洗濯排水を処理することが開示されている。
また、特許文献2には、洗濯排水を処理する活性汚泥の生物処理能力が低下した場合に、該生物処理能力を回復するために、馴致済み活性汚泥を凍結乾燥して得られる凍結乾燥化汚泥を活性汚泥に添加することが開示されている。
In wastewater treatment, wastewater may be purified by performing biological treatment using activated sludge.
For example, Patent Document 1 discloses that laundry wastewater discharged from a plant facility is introduced into a biological treatment tank, and the laundry wastewater is treated by aeration and mixing with activated sludge in the biological treatment tank. ing.
Patent Document 2 discloses a freeze-dried sludge obtained by freeze-drying a conditioned activated sludge in order to recover the biological treatment capacity when the biological treatment capacity of the activated sludge for treating laundry wastewater is reduced. Is added to activated sludge.

特開2002−210486号公報Japanese Patent Laid-Open No. 2002-210486 国際公開第2015/145866号International Publication No. 2015/145866

特許文献2に記載の凍結乾燥化汚泥を用いると、洗濯排水を処理する活性汚泥の生物処理能力が低下した場合に、該生物処理能力を回復させることができる。
しかし本発明者らの知見によれば、特許文献2に記載の凍結乾燥化汚泥を用いた場合、該凍結乾燥化汚泥が生物処理を行う生物処理槽から流出しやすく、安定した生物処理が難しくなる場合があることがわかった。
そこで、活性汚泥による排水の生物処理をより安定して行うことが望まれる。
When the freeze-dried sludge described in Patent Document 2 is used, the biological treatment capacity can be recovered when the biological treatment capacity of the activated sludge for treating laundry wastewater is reduced.
However, according to the knowledge of the present inventors, when the freeze-dried sludge described in Patent Document 2 is used, the freeze-dried sludge is likely to flow out of a biological treatment tank for biological treatment, and stable biological treatment is difficult. It turns out that there is a case.
Therefore, it is desired to more stably perform biological treatment of wastewater with activated sludge.

上述の事情に鑑みて、本発明の少なくとも一実施形態は、活性汚泥を用いた排水処理において、より安定した処理を可能とする排水処理能向上剤を提供することを目的とする。   In view of the above-described circumstances, at least one embodiment of the present invention aims to provide a wastewater treatment performance improver that enables more stable treatment in wastewater treatment using activated sludge.

(1)本発明の少なくとも一実施形態に係る排水処理能向上剤は、
汚泥の排水処理性能を向上させるための排水処理能向上剤であって、
馴致汚泥を含む凍結乾燥汚泥と、
前記凍結乾燥汚泥に担持されたカチオン系凝集剤と、
を備える。
(1) The wastewater treatment performance improver according to at least one embodiment of the present invention is:
A wastewater treatment performance improver for improving sludge wastewater treatment performance,
Freeze-dried sludge containing familiar sludge,
A cationic flocculant supported on the freeze-dried sludge;
Is provided.

本発明者らの鋭意検討の結果、カチオン系凝集剤を含まない凍結乾燥汚泥を生物処理槽で用いた場合、生物処理槽にて凍結乾燥汚泥が十分に沈降しないことがあり、例えば連続通水する場合等に、凍結乾燥汚泥が生物処理槽の外部に流出してしまう場合があることがわかった。これは、以下の理由によると考えられる。
すなわち、汚泥は一般的にマイナスに帯電している。ここで、マイナス帯電の汚泥フロックに対してマイナス帯電の凍結乾燥汚泥を添加すると、両者は電気的に反発し合うため、凍結乾燥汚泥は汚泥フロックと結合しにくい。このため、粒径が比較的小さい凍結乾燥汚泥は、処理対象の排水とともに流れやすい。
上述のように生物処理槽の外部に流出した凍結乾燥汚泥は、生物処理槽での生物処理に寄与し得ないため、凍結乾燥汚泥が生物処理槽の外部に流出すると、生物処理槽における活性汚泥による生物処理性能は低下する。
この点、上記(1)の排水処理能向上剤は、凍結乾燥汚泥に担持されたカチオン性凝集剤を含むので、凍結乾燥汚泥がプラスに帯電するため、マイナス帯電の汚泥(汚泥フロック)と電気的に結合しやすい。よって、上記(1)の排水処理能向上剤によれば、凍結乾燥汚泥が、粒径の比較的大きな汚泥(汚泥フロック)に電気的に結合することで生物処理槽内に留まりやすくなる。このため、生物処理槽にて処理対象の排水をより安定的に処理することができる。
As a result of intensive studies by the present inventors, when freeze-dried sludge that does not contain a cationic flocculant is used in a biological treatment tank, the freeze-dried sludge may not sufficiently settle in the biological treatment tank. In some cases, freeze-dried sludge may flow out of the biological treatment tank. This is considered to be due to the following reason.
That is, sludge is generally negatively charged. Here, when a negatively-charged freeze-dried sludge is added to a negatively-charged sludge floc, both of them repel each other electrically, so that the freeze-dried sludge is difficult to combine with the sludge floc. For this reason, freeze-dried sludge having a relatively small particle size tends to flow along with the wastewater to be treated.
As described above, lyophilized sludge that has flowed out of the biological treatment tank cannot contribute to biological treatment in the biological treatment tank. Therefore, when lyophilized sludge flows out of the biological treatment tank, activated sludge in the biological treatment tank is used. The biological treatment performance by decreases.
In this respect, the wastewater treatment capacity improving agent (1) above contains a cationic flocculant supported on freeze-dried sludge, so that the freeze-dried sludge is positively charged. Easy to combine. Therefore, according to the wastewater treatment performance improver of (1) above, freeze-dried sludge is likely to stay in the biological treatment tank by being electrically coupled to sludge having a relatively large particle size (sludge floc). For this reason, the wastewater to be treated can be more stably treated in the biological treatment tank.

(2)幾つかの実施形態では、上記(1)の構成において、前記カチオン系凝集剤は、カチオン性ポリマーを含む。
(3)また、幾つかの実施形態では、前記カチオン性ポリマーは、ポリジシアンジアミド系ポリマーを含む。
上記(2)又は(3)の構成によれば、カチオン性ポリマーを含む排水処理能向上剤により、生物処理槽における排水の処理を効果的に行うことができる。
(2) In some embodiments, in the configuration of the above (1), the cationic flocculant includes a cationic polymer.
(3) In some embodiments, the cationic polymer includes a polydicyandiamide-based polymer.
According to the configuration of (2) or (3) above, wastewater treatment in a biological treatment tank can be effectively performed by a wastewater treatment performance improver containing a cationic polymer.

(4)本発明の少なくとも一実施形態に係る排水処理能向上剤の製造方法は、
汚泥を馴致して馴致汚泥を得るステップと、
前記馴致汚泥とカチオン系凝集剤とを混合して混合物を得るステップと、
前記混合物を凍結乾燥して排水処理能向上剤を得るステップと、
を備える。
(4) A method for producing a wastewater treatment performance improver according to at least one embodiment of the present invention,
Acclimatize sludge and get the familiar sludge;
Mixing the acclimatized sludge and the cationic flocculant to obtain a mixture;
Lyophilizing the mixture to obtain a wastewater treatment performance improver;
Is provided.

上記(4)の方法により得られる排水処理能向上剤は、凍結乾燥汚泥に担持されたカチオン性凝集剤を含むので、凍結乾燥汚泥がプラスに帯電するため、マイナス帯電の汚泥(汚泥フロック)と電気的に結合しやすい。よって、該排水処理能向上剤によれば、凍結乾燥汚泥が、粒径の比較的大きな汚泥(汚泥フロック)に電気的に結合することで生物処理槽内に留まりやすくなる。すなわち、上記(4)の方法によれば、生物処理槽にて処理対象の排水をより安定的に処理することが可能な排水処理能向上剤を得ることができる。   Since the wastewater treatment performance improver obtained by the method (4) includes a cationic flocculant supported on freeze-dried sludge, the freeze-dried sludge is positively charged. Easy to couple electrically. Therefore, according to the wastewater treatment performance improver, freeze-dried sludge is likely to stay in the biological treatment tank by being electrically coupled to sludge having a relatively large particle size (sludge floc). That is, according to the method (4), it is possible to obtain a wastewater treatment performance improver that can more stably treat wastewater to be treated in a biological treatment tank.

(5)幾つかの実施形態では、上記(4)の方法において、
前記混合物を脱水して脱水ケーキを得るステップをさらに備え、
前記排水処理能向上剤を得るステップでは、前記脱水ケーキを凍結乾燥する。
上記(5)の方法では、馴致汚泥とカチオン系凝集剤との混合物において、マイナス帯電の馴致汚泥とカチオン系凝集剤との電気的な作用により混合物の凝集が促進されて、凝集物のサイズが大きくなる。このため、混合物を脱水する工程において、濾材(例えば濾布)が閉塞されにくくなり、脱水効率が良好となる。よって、上記(5)の方法によれば、排水処理能向上剤を効率よく製造できる。
(5) In some embodiments, in the method of (4) above,
Further comprising dehydrating the mixture to obtain a dehydrated cake;
In the step of obtaining the wastewater treatment capacity improver, the dehydrated cake is freeze-dried.
In the above method (5), in the mixture of the adapted sludge and the cationic flocculant, the electric action of the negatively charged adapted sludge and the cationic flocculant promotes the aggregation of the mixture, and the size of the aggregate is reduced. growing. For this reason, in the process of dehydrating the mixture, the filter medium (for example, filter cloth) is less likely to be clogged, and the dehydration efficiency is improved. Therefore, according to the method (5), the wastewater treatment performance improver can be produced efficiently.

(6)本発明の少なくとも一実施形態に係る排水処理方法は、
上記(1)〜(3)の何れかに記載の排水処理能向上剤を汚泥に添加するステップと、
前記排水処理能向上剤が添加された前記汚泥を用いて前記排水を生物処理するステップと、
を備える。
(6) The waste water treatment method according to at least one embodiment of the present invention includes:
Adding the wastewater treatment performance improver according to any one of (1) to (3) above to sludge;
Biologically treating the wastewater using the sludge to which the wastewater treatment performance improver has been added;
Is provided.

上記(1)〜(3)に記載の排水処理能向上剤は、凍結乾燥汚泥に担持されたカチオン性凝集剤を含むので、凍結乾燥汚泥がプラスに帯電するため、マイナス帯電の汚泥(汚泥フロック)と電気的に結合しやすい。よって、上記(6)の方法によれば、上述の排水処理能向上剤を用いるので、凍結乾燥汚泥が、粒径の比較的大きな汚泥(汚泥フロック)に電気的に結合することで生物処理槽内に留まりやすくなる。このため、生物処理槽にて処理対象の排水をより安定的に処理することができる。   Since the wastewater treatment performance improving agent described in the above (1) to (3) includes a cationic flocculant supported on freeze-dried sludge, the freeze-dried sludge is positively charged. ) And is easily electrically coupled. Therefore, according to the above method (6), since the wastewater treatment performance improver is used, the lyophilized sludge is electrically coupled to sludge having a relatively large particle size (sludge floc), thereby being a biological treatment tank. It ’s easier to stay inside. For this reason, the wastewater to be treated can be more stably treated in the biological treatment tank.

(7)幾つかの実施形態では、上記(6)の方法において、前記排水処理能向上剤が添加された前記汚泥を馴致するステップをさらに備える。
上記(7)の方法によれば、凍結乾燥汚泥を含む汚泥を馴致するので、凍結乾燥汚泥を含まない汚泥を馴致する場合に比べて、短期間で馴致を行うことができる。
(7) In some embodiments, the method of (6) further includes a step of acclimatizing the sludge to which the wastewater treatment performance improver is added.
According to the method (7), since the sludge containing freeze-dried sludge is adapted, it can be adapted in a short period of time compared to the case where the sludge not containing freeze-dried sludge is adapted.

(8)幾つかの実施形態では、上記(6)又は(7)の方法において、前記排水処理能向上剤を添加するステップでは、前記汚泥による前記排水の処理性能の低下時、前記汚泥に前記排水処理能向上剤を添加する。
上記(8)の方法によれば、汚泥による排水の処理性能の低下時に、汚泥に排水処理能向上剤を添加するので、汚泥による排水の処理性能を回復することができる。
(8) In some embodiments, in the method of (6) or (7), in the step of adding the wastewater treatment performance improver, when the wastewater treatment performance is reduced by the sludge, Add a wastewater treatment capacity improver.
According to the above method (8), since the wastewater treatment performance improver is added to the sludge when the wastewater treatment performance by the sludge is reduced, the wastewater treatment performance by the sludge can be recovered.

(9)幾つかの実施形態では、上記(6)〜(8)の何れかの方法において、前記汚泥の量に対する前記汚泥への前記排水処理能向上剤の添加量の比(前記排水処理能向上剤の添加量/前記汚泥の量)は、MLSS換算で1/19以上1/1以下である。
上記(9)の方法では、汚泥の量に対する汚泥への排水処理能向上剤の添加量の比をMLSS換算で1/19以上としたので、汚泥の排水処理性能を効果的に向上させることができる。また、上記(9)の方法では、汚泥の量に対する汚泥への排水処理能向上剤の添加量の比をMLSS換算で1/1以下としたので、凍結乾燥汚泥の流出をより効果的に抑制することができる。
(9) In some embodiments, in any one of the above methods (6) to (8), the ratio of the added amount of the wastewater treatment capacity improver to the sludge with respect to the amount of the sludge (the wastewater treatment capacity The addition amount of the improver / the amount of the sludge) is 1/19 or more and 1/1 or less in terms of MLSS.
In the above method (9), the ratio of the added amount of the wastewater treatment capacity improver to the sludge with respect to the amount of sludge is set to 1/19 or more in terms of MLSS, so that the wastewater treatment performance of sludge can be effectively improved. it can. In addition, in the method (9), the ratio of the amount of the waste water treatment capacity improver added to the sludge relative to the amount of sludge is set to 1/1 or less in terms of MLSS, so that the outflow of freeze-dried sludge is more effectively suppressed. can do.

(10)幾つかの実施形態では、上記(6)〜(9)の何れかの方法において、前記生物処理された前記排水を膜分離によりろ過するステップをさらに含む。
活性汚泥により生物処理された排水を膜分離によりろ過することで、排水中に含まれる汚泥の流出を抑制することがある。
この点、上記(10)の方法では、排水の生物処理において排水処理能向上剤が添加された汚泥を用いるため、マイナス帯電の汚泥とプラス帯電の凍結乾燥汚泥との電気的な作用により、汚泥の凝集が促進されて、凝集物のサイズが大きくなる。このため、生物処理された排水を膜分離によりろ過する工程において、膜分離に用いるフィルタが閉塞されにくくなり、フィルタを通過する処理排水の流量が低下しにくい。よって、上記(10)の方法によれば、処理対象の排水をより効率的に処理することができる。
(10) In some embodiments, the method according to any one of (6) to (9) further includes a step of filtering the biologically treated wastewater by membrane separation.
By filtering wastewater biologically treated with activated sludge by membrane separation, the outflow of sludge contained in the wastewater may be suppressed.
In this respect, the method (10) uses sludge to which a wastewater treatment performance improver is added in the biological treatment of wastewater. Therefore, sludge is produced by the electrical action of negatively charged sludge and positively charged freeze-dried sludge. Aggregation is promoted, and the size of the aggregate increases. For this reason, in the process of filtering biologically treated wastewater by membrane separation, the filter used for membrane separation is less likely to be blocked, and the flow rate of treated wastewater that passes through the filter is unlikely to decrease. Therefore, according to the above method (10), the waste water to be treated can be treated more efficiently.

(11)本発明の少なくとも一実施形態に係る排水処理装置は、
処理対象の排水を貯留するための排水タンクと、
前記排水タンクからの前記排水を、上記(1)〜(3)の何れかに記載の排水処理能向上剤が添加された活性汚泥と曝気混合し生物処理するための生物処理槽と、
前記生物処理槽で処理された処理排水を貯留するための処理水タンクと、
を備える。
(11) The waste water treatment apparatus according to at least one embodiment of the present invention is:
A drainage tank for storing wastewater to be treated;
A biological treatment tank for subjecting the wastewater from the wastewater tank to a biological treatment by aeration mixing with activated sludge to which the wastewater treatment performance improving agent according to any one of (1) to (3) is added;
A treated water tank for storing treated wastewater treated in the biological treatment tank;
Is provided.

上記(1)〜(3)に記載の排水処理能向上剤は、凍結乾燥汚泥に担持されたカチオン性凝集剤を含むので、凍結乾燥汚泥がプラスに帯電するため、マイナス帯電の汚泥(汚泥フロック)と電気的に結合しやすい。よって、上記(11)の構成によれば、処理対象の排水を前述の排水処理能向上剤が添加された活性汚泥と曝気混合し生物処理するので、凍結乾燥汚泥が、粒径の比較的大きな汚泥(汚泥フロック)に電気的に結合することで生物処理槽内に留まりやすくなる。このため、生物処理槽にて処理対象の排水をより安定的に処理することができる。   Since the wastewater treatment performance improving agent described in the above (1) to (3) includes a cationic flocculant supported on freeze-dried sludge, the freeze-dried sludge is positively charged. ) And is easily electrically coupled. Therefore, according to the configuration of the above (11), the wastewater to be treated is aerated and mixed with the activated sludge to which the above-described wastewater treatment performance improver is added, so that the lyophilized sludge has a relatively large particle size. It becomes easy to stay in the biological treatment tank by being electrically coupled to sludge (sludge floc). For this reason, the wastewater to be treated can be more stably treated in the biological treatment tank.

(12)幾つかの実施形態では、上記(4)の構成において、
前記処理排水をろ過するための分離膜をさらに備え、
前記処理水タンクは、前記分離膜によりろ過された前記処理排水を貯留するように構成される。
上記(12)の構成では、排水の生物処理において排水処理能向上剤が添加された汚泥を用いるため、マイナス帯電の汚泥とプラス帯電の凍結乾燥汚泥との電気的な作用により、汚泥の凝集が促進されて、凝集物のサイズが大きくなる。このため、生物処理された排水をろ過するための分離膜(フィルタ)が閉塞されにくくなり、分離膜(フィルタ)を通過する処理排水の流量が低下しにくい。よって、上記(12)の構成によれば、処理対象の排水をより効率的に処理することができる。
(12) In some embodiments, in the configuration of (4) above,
Further comprising a separation membrane for filtering the treated waste water,
The treated water tank is configured to store the treated wastewater filtered by the separation membrane.
In the configuration of (12), since sludge to which a wastewater treatment performance improver is added is used in biological treatment of wastewater, sludge aggregation is caused by the electrical action of negatively charged sludge and positively charged freeze-dried sludge. Promoted to increase the size of the aggregate. For this reason, the separation membrane (filter) for filtering the biologically treated wastewater is not easily blocked, and the flow rate of the treated wastewater passing through the separation membrane (filter) is unlikely to decrease. Therefore, according to the configuration of (12) above, the wastewater to be treated can be treated more efficiently.

(13)幾つかの実施形態では、上記(11)又は(12)の構成において、
前記生物処理槽における排水の処理性能を検出するための検出部と、
前記検出部による検出結果に基づいて、前記生物処理槽にさらに前記排水処理能向上剤を添加するように構成された供給部と、
をさらに備える。
上記(13)の構成によれば、生物処理槽における排水の処理性能の検出結果に基づいて排水処理能向上剤を添加するので、汚泥による排水の処理性能を効果的に回復することができる。例えば、汚泥による排水の処理性能の低下時に汚泥に排水処理能向上剤を添加することにより、汚泥による排水の処理性能を適切に回復することができる。
(13) In some embodiments, in the above configuration (11) or (12),
A detection unit for detecting wastewater treatment performance in the biological treatment tank;
Based on the detection result by the detection unit, a supply unit configured to further add the wastewater treatment capacity improver to the biological treatment tank,
Is further provided.
According to the configuration of (13), since the wastewater treatment performance improver is added based on the detection result of the wastewater treatment performance in the biological treatment tank, the wastewater treatment performance due to sludge can be effectively recovered. For example, the wastewater treatment performance by sludge can be appropriately recovered by adding a wastewater treatment performance improver to the sludge when the wastewater treatment performance by sludge is reduced.

(14)幾つかの実施形態では、上記(13)の構成において、前記検出部は、前記生物処理槽における前記排水のCOD(化学的酸素要求量)を計測するためのCOD計測部を含む。
上記(14)の構成によれば、生物処理槽における排水のCODの計測結果に基づいて、必要に応じて適切に排水処理能向上剤を添加することができる。よって、排水処理能向上剤の添加量を抑制しながら、汚泥による排水の処理性能を回復することができる。
(14) In some embodiments, in the configuration of (13), the detection unit includes a COD measurement unit for measuring COD (chemical oxygen demand) of the wastewater in the biological treatment tank.
According to the configuration of (14) above, the wastewater treatment performance improver can be appropriately added as necessary based on the measurement result of the COD of the wastewater in the biological treatment tank. Therefore, the wastewater treatment performance with sludge can be recovered while suppressing the amount of the wastewater treatment performance additive added.

本発明の少なくとも一実施形態によれば、活性汚泥を用いた排水処理において、より安定した処理を可能とする排水処理能向上剤が提供される。   According to at least one embodiment of the present invention, there is provided a wastewater treatment capacity improver that enables more stable treatment in wastewater treatment using activated sludge.

一実施形態に係る排水処理装置の概略構成図である。It is a schematic block diagram of the waste water treatment equipment concerning one embodiment. 一実施形態に係る排水処理能向上剤が添加された汚泥の模式図である。It is a schematic diagram of the sludge to which the waste water treatment ability improving agent which concerns on one Embodiment was added. 従来の排水処理能向上剤が添加された汚泥の模式図である。It is a schematic diagram of the sludge to which the conventional waste water treatment capacity improvement agent was added. 一実施形態に係る排水処理能向上剤の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the waste water treatment performance improving agent which concerns on one Embodiment. 一実施形態に係る排水処理方法のフローチャートである。It is a flowchart of the waste water treatment method which concerns on one Embodiment. 一実施形態に係る排水処理方法のフローチャートである。It is a flowchart of the waste water treatment method which concerns on one Embodiment. 試験例で用いた排水処理試験の試験装置の構成を示す図である。It is a figure which shows the structure of the testing apparatus of the waste water treatment test used by the test example. 試験例において排水処理試験を行った結果を示すグラフである。It is a graph which shows the result of having performed the wastewater treatment test in the test example. 試験例において排水処理試験を行った結果を示すグラフである。It is a graph which shows the result of having performed the wastewater treatment test in the test example. 試験例における経過時間とCOD濃度の関係を示すグラフである。It is a graph which shows the elapsed time and COD density | concentration in a test example. 試験例における経過時間とCOD濃度の関係を示すグラフである。It is a graph which shows the elapsed time and COD density | concentration in a test example.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples. Absent.

まず、幾つかの実施形態に係る排水処理能向上剤が適用される排水処理装置の概要について説明する。
図1は、一実施形態に係る排水処理装置の概略構成図である。図1に示すように、一実施形態に係る排水処理装置1は、洗濯排水8を処理するための装置であって、排水タンク10と、生物処理槽12と、処理水タンク16と、を備える。
排水タンク10には、処理対象の排水が貯留される。排水タンク10に貯留された排水は、生物処理槽12に送られて、生物処理槽12にて活性汚泥と曝気混合されて、生物処理される。生物処理槽12で処理された処理排水は、処理水タンク16に送られる。
なお、排水処理装置1の構成について、より詳細には後で説明する。
First, the outline | summary of the waste water treatment apparatus to which the waste water treatment ability improving agent which concerns on some embodiment is applied is demonstrated.
FIG. 1 is a schematic configuration diagram of a wastewater treatment apparatus according to an embodiment. As shown in FIG. 1, the wastewater treatment apparatus 1 according to an embodiment is an apparatus for treating laundry wastewater 8, and includes a drainage tank 10, a biological treatment tank 12, and a treated water tank 16. .
The drainage tank 10 stores wastewater to be treated. The wastewater stored in the drainage tank 10 is sent to the biological treatment tank 12 where it is aerated and mixed with activated sludge in the biological treatment tank 12 for biological treatment. The treated wastewater treated in the biological treatment tank 12 is sent to the treated water tank 16.
The configuration of the waste water treatment apparatus 1 will be described in detail later.

ここで、排水処理装置1による処理対象の排水は、例えば、衣服等を洗濯した際に排出される洗濯排水であってもよい。この洗濯排水は、例えば、プラント設備の作業員の作業服を洗濯した際に排出される洗濯排水であってもよい。この場合、洗濯排水には、例えば、洗剤、布繊維、脂肪分又は炭水化物等の有機物質や、あるいは、極微量の放射性物質等が含まれる。排水処理装置1では、これらの物質の濃度を低下させるために、生物処理槽12において処理対象の排水の生物処理を行う。
生物処理槽12における生物処理では、処理対象の排水は、一実施形態に係る排水処理能向上剤が添加された活性汚泥と曝気混合される。
Here, the wastewater to be treated by the wastewater treatment apparatus 1 may be, for example, laundry wastewater that is discharged when clothes are washed. This washing wastewater may be, for example, a washing wastewater that is discharged when the work clothes of workers of the plant facility are washed. In this case, the laundry wastewater contains, for example, organic substances such as detergents, cloth fibers, fats or carbohydrates, or trace amounts of radioactive substances. In the wastewater treatment apparatus 1, biological treatment of wastewater to be treated is performed in the biological treatment tank 12 in order to reduce the concentration of these substances.
In the biological treatment in the biological treatment tank 12, the wastewater to be treated is aerated and mixed with activated sludge to which the wastewater treatment performance improver according to one embodiment is added.

次に、幾つかの実施形態に係る排水処理能向上剤及びその製造方法について説明する。
一実施形態に係る排水処理能向上剤は、馴致汚泥を含む凍結乾燥汚泥と、凍結乾燥汚泥に担持されたカチオン系凝集剤と、を備える。
Next, the wastewater treatment performance improver and its manufacturing method according to some embodiments will be described.
The wastewater treatment capacity improving agent according to one embodiment includes a freeze-dried sludge containing an acclimatized sludge and a cationic flocculant supported on the freeze-dried sludge.

該排水処理能向上剤は、汚泥により排水を生物処理する際に、汚泥の排水処理性能を向上させるために用いることができる。
例えば、一実施形態に係る排水処理能向上剤が添加された汚泥を馴致して得られる活性汚泥を、上述した排水処理装置1での生物処理において用いることができる。この場合、汚泥の馴致に要する時間を短縮することができる。
あるいは、上述した排水処理装置1による排水処理性能が低下した際に、一実施形態に係る排水処理能向上剤を生物処理槽12の汚泥に添加することができる。この場合、排水処理装置1による排水処理性能を回復させることができる。
The wastewater treatment performance improver can be used to improve the wastewater treatment performance of sludge when biologically treating the wastewater with sludge.
For example, the activated sludge obtained by acclimatizing the sludge to which the wastewater treatment capacity improving agent according to one embodiment is added can be used in the biological treatment in the wastewater treatment apparatus 1 described above. In this case, the time required for acclimatization of sludge can be shortened.
Or when the waste water treatment performance by the waste water treatment apparatus 1 mentioned above falls, the waste water treatment performance improving agent which concerns on one Embodiment can be added to the sludge of the biological treatment tank 12. FIG. In this case, the wastewater treatment performance by the wastewater treatment apparatus 1 can be recovered.

ここで、図2A及び図2Bを参照して、実施形態に係る排水処理能向上剤の作用及び効果について説明する。図2Aは、一実施形態に係る排水処理能向上剤が添加された汚泥の模式図であり、図2Bは、従来の排水処理能向上剤が添加された汚泥の模式図である。
なお、従来の排水処理能向上剤は、例えば、馴致済み活性汚泥を凍結乾燥して得られる凍結乾燥汚泥であり、カチオン系凝集剤を含まない凍結乾燥汚泥である。
Here, with reference to FIG. 2A and FIG. 2B, the effect | action and effect of the waste water treatment capacity improvement agent which concern on embodiment are demonstrated. FIG. 2A is a schematic diagram of sludge to which a wastewater treatment capacity improver according to an embodiment is added, and FIG. 2B is a schematic diagram of sludge to which a conventional wastewater performance performance improver is added.
The conventional wastewater treatment performance improver is, for example, a lyophilized sludge obtained by lyophilizing a conditioned activated sludge, and is a lyophilized sludge that does not contain a cationic flocculant.

本発明者らの鋭意検討の結果、例えば上述した排水処理装置1において、カチオン系凝集剤を含まない従来の排水処理能向上剤(凍結乾燥汚泥4)(図2B参照)を生物処理槽12で用いた場合、生物処理槽12にて凍結乾燥汚泥4が十分に沈降しないことがあり、例えば連続通水する場合等に、凍結乾燥汚泥4が生物処理槽12の外部に流出してしまう場合があることがわかった。これは、以下の理由によると考えられる。   As a result of intensive studies by the present inventors, for example, in the wastewater treatment apparatus 1 described above, a conventional wastewater treatment performance improver (freeze-dried sludge 4) (see FIG. 2B) that does not contain a cationic flocculant is used in the biological treatment tank 12. When used, the freeze-dried sludge 4 may not sufficiently settle in the biological treatment tank 12. For example, the freeze-dried sludge 4 may flow out of the biological treatment tank 12 when continuously passing water. I found out. This is considered to be due to the following reason.

すなわち、汚泥(乾燥凍結汚泥も含む)は一般的にマイナスに帯電している。ここで、図2Bに示すように、マイナス帯電の汚泥フロック2に対してマイナス帯電の凍結乾燥汚泥4(従来の排水処理能向上剤)を添加すると、両者は電気的に反発し合うため、凍結乾燥汚泥4は汚泥フロック2と結合しにくい。このため、粒径が比較的小さい凍結乾燥汚泥4は、処理対象の排水とともに流れやすい。
上述のように生物処理槽12の外部に流出した凍結乾燥汚泥4は、生物処理槽12での生物処理に寄与し得ないため、凍結乾燥汚泥4が生物処理槽12の外部に流出すると、生物処理槽12における活性汚泥による生物処理性能は低下する。
That is, sludge (including dry frozen sludge) is generally negatively charged. Here, as shown in FIG. 2B, when the negatively-charged freeze-dried sludge 4 (conventional wastewater treatment performance improver) is added to the negatively-charged sludge floc 2, the two are electrically repelled and thus frozen. The dried sludge 4 is difficult to combine with the sludge floc 2. For this reason, the freeze-dried sludge 4 having a relatively small particle size easily flows along with the wastewater to be treated.
As described above, the freeze-dried sludge 4 that has flowed out of the biological treatment tank 12 cannot contribute to biological treatment in the biological treatment tank 12, and therefore when the freeze-dried sludge 4 flows out of the biological treatment tank 12, The biological treatment performance by the activated sludge in the treatment tank 12 is lowered.

この点、図2Aに示すように、一実施形態に係る排水処理能向上剤5は、凍結乾燥汚泥に担持されたカチオン性凝集剤を含むので、凍結乾燥汚泥がプラスに帯電するため、マイナス帯電の汚泥(汚泥フロック2)と電気的に結合しやすい。よって、排水処理能向上剤5によれば、凍結乾燥汚泥が、粒径の比較的大きな汚泥(汚泥フロック2)に電気的に結合することで生物処理槽12内に留まりやすくなる。このため、生物処理槽12にて処理対象の排水をより安定的に処理することができる。   In this regard, as shown in FIG. 2A, since the wastewater treatment capacity improving agent 5 according to one embodiment includes a cationic flocculant supported on lyophilized sludge, the lyophilized sludge is positively charged. It is easy to be electrically coupled with sludge (sludge floc 2). Therefore, according to the wastewater treatment performance improver 5, freeze-dried sludge is likely to stay in the biological treatment tank 12 by being electrically coupled to sludge having a relatively large particle size (sludge floc 2). For this reason, the wastewater to be treated can be more stably treated in the biological treatment tank 12.

一実施形態では、排水処理能向上剤5を構成するカチオン性凝集剤は、カチオン性ポリマーを含む凝集剤であってもよい。このようなカチオン性ポリマーは、例えば、ポリジシアンジアミド系ポリマーであってもよい。
あるいは、一実施形態では、排水処理能向上剤5を構成するカチオン性凝集剤は、ポリマー以外のカチオン性物質であってもよく、例えば、ポリ塩化アルミニウム、硫酸アルミニウム、又は鉄等であってもよい。
In one embodiment, the cationic flocculant constituting the wastewater treatment performance improver 5 may be a flocculant containing a cationic polymer. Such a cationic polymer may be, for example, a polydicyandiamide-based polymer.
Alternatively, in one embodiment, the cationic flocculant constituting the wastewater treatment performance improver 5 may be a cationic substance other than a polymer, for example, polyaluminum chloride, aluminum sulfate, iron, or the like. Good.

図3は、一実施形態に係る排水処理能向上剤5の製造方法のフローチャートである。図3に示すように、一実施形態に係る排水処理能向上剤5の製造方法では、まず、汚泥を馴致して馴致汚泥を得る(S12)。次に、ステップS12で得られた馴致汚泥とカチオン系凝集剤とを混合して、馴致汚泥とカチオン系凝集剤との混合物を得る(S14)。次に、ステップS14で得られた混合物を脱水して脱水ケーキを得る(S16)。そして、ステップS16で得られた混合物の脱水ケーキを凍結乾燥し、排水処理能向上剤5を得る。このようにして得られた排水処理能向上剤5は、馴致汚泥を含む凍結乾燥汚泥と、凍結乾燥汚泥に担持されたカチオン系凝集剤とを備える。   FIG. 3 is a flowchart of a method for manufacturing the wastewater treatment performance improver 5 according to an embodiment. As shown in FIG. 3, in the manufacturing method of the wastewater treatment performance improving agent 5 according to one embodiment, first, the sludge is acclimated to obtain the acclimated sludge (S12). Next, the adapted sludge obtained in step S12 and the cationic flocculant are mixed to obtain a mixture of the adapted sludge and the cationic flocculant (S14). Next, the mixture obtained in step S14 is dehydrated to obtain a dehydrated cake (S16). And the dewatering cake of the mixture obtained by step S16 is freeze-dried, and the waste-water-treatment capacity improvement agent 5 is obtained. The thus obtained wastewater treatment performance improver 5 includes freeze-dried sludge containing acclimatized sludge and a cationic flocculant supported on the freeze-dried sludge.

上述の製造方法により得られる排水処理能向上剤5は、凍結乾燥汚泥に担持されたカチオン性凝集剤を含むので、凍結乾燥汚泥がプラスに帯電するため、マイナス帯電の汚泥(汚泥フロック)と電気的に結合しやすい。よって、該排水処理能向上剤5によれば、凍結乾燥汚泥が、粒径の比較的大きな汚泥(汚泥フロック)に電気的に結合することで生物処理槽12(図1参照)内に留まりやすくなる。すなわち、上述の製造方法によれば、生物処理槽12にて処理対象の排水をより安定的に処理することが可能な排水処理能向上剤5を得ることができる。   Since the wastewater treatment capacity improving agent 5 obtained by the above-described production method contains a cationic flocculant supported on freeze-dried sludge, the freeze-dried sludge is positively charged. Therefore, the negatively-charged sludge (sludge floc) and electric Easy to combine. Therefore, according to the wastewater treatment performance improver 5, the freeze-dried sludge is likely to stay in the biological treatment tank 12 (see FIG. 1) by being electrically coupled to sludge having a relatively large particle size (sludge floc). Become. That is, according to the manufacturing method described above, it is possible to obtain the wastewater treatment performance improver 5 that can more stably treat the wastewater to be treated in the biological treatment tank 12.

また、上述の製造方法では、馴致汚泥とカチオン系凝集剤との混合物において、マイナス帯電の馴致汚泥とカチオン系凝集剤との電気的な作用により混合物の凝集が促進されて、凝集物のサイズが大きくなる。このため、混合物を脱水するステップS16において、濾材(例えば濾布)が閉塞されにくくなり、脱水効率が良好となる。よって、上述の製造方法によれば、排水処理能向上剤5を効率よく製造できる。   In the above-described production method, in the mixture of the adapted sludge and the cationic flocculant, the aggregation of the mixture is promoted by the electrical action of the negatively charged adapted sludge and the cationic flocculant, and the size of the aggregate is reduced. growing. For this reason, in step S16 which spin-dry | dehydrates a mixture, a filter medium (for example, filter cloth) becomes difficult to block | close, and dehydration efficiency becomes favorable. Therefore, according to the manufacturing method described above, the wastewater treatment performance improver 5 can be efficiently manufactured.

次に、幾つかの実施形態に係る排水処理装置及び排水処理方法について説明する。
上述したように、一実施形態に係る排水処理装置1(図1参照)は、洗濯排水8を処理するための排水処理装置であって、排水タンク10と、生物処理槽12と、処理水タンク16と、を備える。生物処理槽12では、排水タンク10からの洗濯排水8を、上述した排水処理能向上剤5が添加された活性汚泥と曝気混合し生物処理するようになっている。
Next, a wastewater treatment apparatus and a wastewater treatment method according to some embodiments will be described.
As described above, the wastewater treatment apparatus 1 (see FIG. 1) according to an embodiment is a wastewater treatment apparatus for treating the laundry wastewater 8, and includes a drainage tank 10, a biological treatment tank 12, and a treated water tank. 16. In the biological treatment tank 12, the laundry wastewater 8 from the drainage tank 10 is aerated and mixed with the activated sludge to which the above-described wastewater treatment performance improver 5 is added for biological treatment.

また、図1に示すように、排水処理装置1は、生物処理槽12にて生物処理された処理排水をろ過するための分離膜14をさらに備えている。そして、分離膜14によってろ過された処理排水が処理水タンク16に貯留されるようになっている。
分離膜14は、生物処理槽12の内部に設けられていてもよい。あるいは、分離膜14は、生物処理槽12と処理水タンク16との間に設けられていてもよい。
As shown in FIG. 1, the wastewater treatment apparatus 1 further includes a separation membrane 14 for filtering the treated wastewater biologically treated in the biological treatment tank 12. The treated wastewater filtered by the separation membrane 14 is stored in the treated water tank 16.
The separation membrane 14 may be provided inside the biological treatment tank 12. Alternatively, the separation membrane 14 may be provided between the biological treatment tank 12 and the treated water tank 16.

また、図1に示すように、排水処理装置1は、生物処理槽12における活性汚泥による洗濯排水8の処理性能を検出するための検出部として、生物処理槽12における排水のCOD(化学的酸素要求量)を計測するためのCOD計測部13をさらに備える。また、排水処理装置1は、COD計測部13の計測結果に基づいて排水処理能向上剤5を生物処理槽12に添加するように構成された供給部18をさらに備える。   Further, as shown in FIG. 1, the waste water treatment apparatus 1 has a COD (chemical oxygenation) of waste water in the biological treatment tank 12 as a detection unit for detecting the treatment performance of the laundry waste water 8 by activated sludge in the biological treatment tank 12. The COD measuring unit 13 for measuring the required amount is further provided. The wastewater treatment apparatus 1 further includes a supply unit 18 configured to add the wastewater treatment performance improver 5 to the biological treatment tank 12 based on the measurement result of the COD measurement unit 13.

幾つかの実施形態に係る排水処理方法は、上述した排水処理装置1により実施することができ、上述した排水処理能向上剤5を汚泥に添加するステップ(S2)と、生物処理槽12にて、排水処理能向上剤5が添加された汚泥を用いて排水を生物処理するステップ(S4)と、を含む。
ここで、図4及び図5は、それぞれ、一実施形態に係る排水処理方法のフローチャートである。
The waste water treatment method according to some embodiments can be carried out by the waste water treatment apparatus 1 described above, in the step (S2) of adding the waste water treatment performance improver 5 described above to the sludge, and the biological treatment tank 12 And biologically treating the wastewater using the sludge to which the wastewater treatment performance improver 5 is added (S4).
Here, FIG.4 and FIG.5 is a flowchart of the waste water treatment method which concerns on one Embodiment, respectively.

図4のフローチャートに示す排水処理方法では、まず、汚泥に排水処理能向上剤5を添加し(S22(上述のS2に相当))、ステップS22にて排水処理能向上剤5が添加された汚泥を馴致する(S24)。そして、ステップS24にて馴致された汚泥(排水処理能向上剤5が添加された汚泥)を用いて排水の生物処理を行う(S26(上述のS4に相当))。   In the wastewater treatment method shown in the flowchart of FIG. 4, first, the wastewater treatment performance improver 5 is added to the sludge (S22 (corresponding to S2 described above)), and the sludge to which the wastewater treatment performance improver 5 is added in step S22. (S24). Then, biological treatment of the wastewater is performed using the sludge adapted in step S24 (sludge to which the wastewater treatment performance improver 5 is added) (S26 (corresponding to S4 described above)).

馴致する汚泥に添加される排水処理能向上剤5は、凍結乾燥汚泥に担持されたカチオン性凝集剤を含むので、凍結乾燥汚泥がプラスに帯電するため、マイナス帯電の汚泥(汚泥フロック)と電気的に結合しやすい。
上述の排水処理方法では、このような排水処理能向上剤5が添加された汚泥を馴致するので、凍結乾燥汚泥が、粒径の比較的大きな汚泥(汚泥フロック)に電気的に結合することで、凍結乾燥汚泥が馴致培養槽から流出しにくくなる。このため、汚泥の馴致を比較的短期間で行うことができる。
また、上述の排水処理方法では、排水処理能向上剤5が添加された汚泥を馴致して得られた活性汚泥を用いて生物処理を行うので、凍結乾燥汚泥が、粒径の比較的大きな汚泥(汚泥フロック)に電気的に結合することで生物処理槽内に留まりやすくなる。このため、生物処理槽にて処理対象の排水をより安定的に処理することができる。
The wastewater treatment capacity improver 5 added to the acclimatized sludge contains a cationic flocculant supported on the freeze-dried sludge, so that the freeze-dried sludge is positively charged. Therefore, the negatively charged sludge (sludge floc) and electricity Easy to combine.
In the above-described wastewater treatment method, the sludge to which such a wastewater treatment performance improver 5 is added is adapted, so that the freeze-dried sludge is electrically coupled to sludge having a relatively large particle size (sludge floc). The freeze-dried sludge is less likely to flow out of the acclimatized culture tank. For this reason, acclimatization of sludge can be performed in a comparatively short period of time.
Further, in the above-described wastewater treatment method, biological treatment is performed using activated sludge obtained by acclimatizing the sludge to which the wastewater treatment performance improver 5 is added, so that the freeze-dried sludge has a relatively large particle size. It becomes easy to stay in the biological treatment tank by being electrically coupled to (sludge floc). For this reason, the wastewater to be treated can be more stably treated in the biological treatment tank.

上述の排水処理方法において、ステップS22において、汚泥の量に対する汚泥への排水処理能向上剤5の添加量の比(排水処理能向上剤5の添加量/汚泥の量)は、MLSS換算で1/19以上1/1以下であってもよい。
汚泥の量に対する汚泥への排水処理能向上剤の添加量の比をMLSS換算で1/19以上とすることで、汚泥の排水処理性能を効果的に向上させることができる。また、汚泥の量に対する汚泥への排水処理能向上剤の添加量の比をMLSS換算で1/1以下とすることで、凍結乾燥汚泥の流出をより効果的に抑制することができる。
In the wastewater treatment method described above, in step S22, the ratio of the amount of the wastewater treatment performance improver 5 added to the sludge to the amount of sludge (the amount of the wastewater treatment performance improver 5 added / the amount of sludge) is 1 in terms of MLSS. / 19 or more and 1/1 or less may be sufficient.
By making the ratio of the added amount of the wastewater treatment performance improver to the sludge to 1/19 or more in terms of MLSS, the sludge wastewater treatment performance can be effectively improved. Moreover, the outflow of freeze-dried sludge can be more effectively suppressed by setting the ratio of the added amount of the wastewater treatment performance improver to the sludge to 1/1 or less in terms of MLSS.

図5のフローチャートに示す排水処理方法では、排水処理能向上剤5が添加された汚泥を用いて、生物処理槽12にて排水を生物処理する(S32(上述のS4に相当))。そして、生物処理槽12における汚泥による排水の処理性能を計測し(S34)、この計測結果により、汚泥による排水の処理性能の低下が検出されたときには(S36のYes)、生物処理槽12の汚泥に排水処理能向上剤5を添加する(S38(上述のS2に相当))。   In the wastewater treatment method shown in the flowchart of FIG. 5, the wastewater is biologically treated in the biological treatment tank 12 using the sludge to which the wastewater treatment performance improver 5 is added (S32 (corresponding to S4 described above)). And the wastewater treatment performance by the sludge in the biological treatment tank 12 is measured (S34), and when the measurement result shows that the wastewater treatment performance is lowered by the sludge (Yes in S36), the sludge in the biological treatment tank 12 The wastewater treatment performance improver 5 is added (S38 (corresponding to S2 described above)).

生物処理槽12にて生物処理に用いられる汚泥に添加された排水処理能向上剤5は、凍結乾燥汚泥に担持されたカチオン性凝集剤を含むので、凍結乾燥汚泥がプラスに帯電するため、マイナス帯電の汚泥(汚泥フロック)と電気的に結合しやすい。
上述の排水処理方法では、このような排水処理能向上剤5が添加された汚泥を排水処理に用いるので、凍結乾燥汚泥が、粒径の比較的大きな汚泥(汚泥フロック)に電気的に結合することで生物処理槽12内に留まりやすくなる。このため、生物処理槽12にて処理対象の排水をより安定的に処理することができる。
また、上述の排水処理方法では、汚泥による排水の処理性能の低下時に、汚泥に排水処理能向上剤5を添加するので、汚泥による排水の処理性能を回復することができる。
Since the wastewater treatment capacity improving agent 5 added to the sludge used for biological treatment in the biological treatment tank 12 contains the cationic flocculant supported on the freeze-dried sludge, the freeze-dried sludge is positively charged, and thus minus. Easy to electrically couple with charged sludge (sludge floc).
In the above-described wastewater treatment method, sludge to which such a wastewater treatment performance improver 5 is added is used for wastewater treatment, so that freeze-dried sludge is electrically coupled to sludge having a relatively large particle size (sludge floc). This makes it easier to stay in the biological treatment tank 12. For this reason, the wastewater to be treated can be more stably treated in the biological treatment tank 12.
Moreover, in the above-mentioned waste water treatment method, since the waste water treatment performance improver 5 is added to the sludge when the waste water treatment performance is reduced, the sludge waste water treatment performance can be recovered.

なお、上述の排水処理方法において、ステップS34にて生物処理槽12における汚泥による排水の処理性能を計測した結果、ステップS36にて汚泥による排水の処理性能の低下が検出されないときには(S36のNo)、生物処理槽12における汚泥による排水の生物処理(S32)及び生物処理槽12における汚泥の処理性能の計測(S34)を継続する。   In the above-described wastewater treatment method, when the wastewater treatment performance due to sludge in the biological treatment tank 12 is measured in step S34, no decrease in wastewater treatment performance due to sludge is detected in step S36 (No in S36). Then, the biological treatment of the wastewater by the sludge in the biological treatment tank 12 (S32) and the measurement of the treatment performance of the sludge in the biological treatment tank 12 (S34) are continued.

一実施形態では、ステップS34ではCOD計測部13により、生物処理槽12における排水のCOD(化学的酸素要求量)が計測される。そして、ステップS36では、COD計測部13により計測されたCODの低下速度が閾値以下である場合に、汚泥による排水の処理性能が低下していると判断(S36のYes)されるようになっていてもよい。
このように、生物処理槽12における排水のCODの計測結果に基づいて、必要に応じて適切に排水処理能向上剤5を添加することで、排水処理能向上剤5の添加量を抑制しながら、汚泥による排水の処理性能を回復することができる。
In one embodiment, the COD measurement unit 13 measures the COD (chemical oxygen demand) of the wastewater in the biological treatment tank 12 in step S34. In step S36, when the COD reduction rate measured by the COD measurement unit 13 is equal to or lower than the threshold value, it is determined that the wastewater treatment performance due to sludge is reduced (Yes in S36). May be.
Thus, based on the measurement result of the COD of the wastewater in the biological treatment tank 12, by appropriately adding the wastewater treatment performance improver 5 as necessary, while suppressing the addition amount of the wastewater treatment performance improver 5. The wastewater treatment performance by sludge can be recovered.

上述の排水処理方法において、ステップS38において、汚泥の量に対する汚泥への排水処理能向上剤5の添加量の比(排水処理能向上剤5の添加量/汚泥の量)は、MLSS換算で1/19以上1/1以下であってもよい。
汚泥の量に対する汚泥への排水処理能向上剤の添加量の比をMLSS換算で1/19以上とすることで、汚泥の排水処理性能を効果的に向上させることができる。また、汚泥の量に対する汚泥への排水処理能向上剤の添加量の比をMLSS換算で1/1以下とすることで、凍結乾燥汚泥の流出をより効果的に抑制することができる。
In the wastewater treatment method described above, in step S38, the ratio of the amount of the wastewater treatment performance improver 5 added to the sludge relative to the amount of sludge (the amount of the wastewater treatment performance improver 5 added / the amount of sludge) is 1 in terms of MLSS. / 19 or more and 1/1 or less may be sufficient.
By making the ratio of the added amount of the wastewater treatment performance improver to the sludge to 1/19 or more in terms of MLSS, the sludge wastewater treatment performance can be effectively improved. Moreover, the outflow of freeze-dried sludge can be more effectively suppressed by setting the ratio of the added amount of the wastewater treatment performance improver to the sludge to 1/1 or less in terms of MLSS.

一実施形態では、排水処理方法は、ステップS4にて排水処理能向上剤5が添加された汚泥を用いて生物処理された処理排水を、膜分離によりろ過するステップをさらに行ってもよい。
例えば、図4又は図5のフローチャートに示す排水処理方法において、排水処理能向上剤5が添加された汚泥を用いて生物処理槽12にて排水を生物処理するステップS4(図4におけるステップS26又は図5におけるステップS32)で生物処理された処理排水を、分離膜(フィルタ)14(図1参照)を用いて膜分離によりろ過するようになっていてもよい。
In one embodiment, the wastewater treatment method may further perform a step of filtering the treated wastewater biologically treated using the sludge to which the wastewater treatment performance improver 5 is added in step S4 by membrane separation.
For example, in the wastewater treatment method shown in the flowchart of FIG. 4 or FIG. 5, step S4 (step S26 in FIG. 4 or step S4 in which wastewater is biologically treated in the biological treatment tank 12 using sludge to which the wastewater treatment performance improver 5 is added. The treated wastewater biologically treated in step S32 in FIG. 5 may be filtered by membrane separation using a separation membrane (filter) 14 (see FIG. 1).

この場合、排水の生物処理において排水処理能向上剤5が添加された汚泥を用いるため、マイナス帯電の汚泥とプラス帯電の凍結乾燥汚泥との電気的な作用により、汚泥の凝集が促進されて、凝集物のサイズが大きくなる。このため、生物処理された排水を膜分離によりろ過する工程において、膜分離に用いるフィルタが閉塞されにくくなり、フィルタを通過する処理排水の流量が低下しにくい。よって、処理対象の排水をより効率的に処理することができる。   In this case, since the sludge to which the wastewater treatment performance improver 5 is added in the biological treatment of the wastewater is used, the sludge aggregation is promoted by the electrical action of the negatively charged sludge and the positively charged freeze-dried sludge. Agglomerate size increases. For this reason, in the process of filtering biologically treated wastewater by membrane separation, the filter used for membrane separation is less likely to be blocked, and the flow rate of treated wastewater that passes through the filter is unlikely to decrease. Therefore, the wastewater to be treated can be treated more efficiently.

次に、一実施形態に係る排水処理能向上剤の製造例及び製造した排水処理能向上剤を用いて効果を確認した試験例について説明する。   Next, the manufacture example of the wastewater treatment ability improving agent which concerns on one Embodiment and the test example which confirmed the effect using the manufactured wastewater treatment ability improvement agent are demonstrated.

(排水処理能向上剤の製造例)
原料汚泥を洗濯排水で馴致して得られたMLSSが約10000ppmの馴致汚泥約3.5mと、カチオン系凝集剤として、ポリジシアンジアミド(原料汚泥に対して1%(v/v))とを混合して、馴致汚泥とポリジシアンジアミドの混合物を得た。
次に、上述の混合物を濾布を用いて脱水し、約223kgの脱水ケーキを得た。この脱水ケーキの水分含有量は約80%であった。
得られた脱水ケーキを冷凍庫で凍結させた後、減圧乾燥機にて減圧乾燥し、凍結乾燥汚泥と、凍結乾燥汚泥に担持されたカチオン系凝集剤とを備える排水処理能向上剤を得た。排水処理能向上剤の収量は約37kgであった。
(Manufacturing example of wastewater treatment capacity improver)
About 3.5 m 3 of acclimatized sludge having an MLSS of about 10,000 ppm obtained by acclimatizing the raw material sludge with laundry wastewater, and polydicyandiamide (1% (v / v) based on the raw material sludge) as a cationic flocculant Mixing to obtain a mixture of acclimatized sludge and polydicyandiamide.
Next, the above mixture was dehydrated using a filter cloth to obtain about 223 kg of dehydrated cake. The water content of this dehydrated cake was about 80%.
The obtained dehydrated cake was frozen in a freezer and then dried under reduced pressure in a vacuum dryer to obtain a wastewater treatment performance improver comprising freeze-dried sludge and a cationic flocculant supported on the freeze-dried sludge. The yield of the wastewater treatment capacity improver was about 37 kg.

(試験例1)
上述の製造例にて得られた排水処理能向上剤を用いて、排水処理試験を実施した。
図6は、本試験例で用いた排水処理試験の試験装置の構成を示す図である。
図6に示すように、排水処理試験装置50は、底部に曝気部52を備える曝気槽54と、曝気槽54と上部において連通管55を介して連通する沈降槽56と、模擬排水(模擬洗濯排水)20を曝気槽54に供給するための排水供給部51と、を含む。
排水供給部51からは、模擬洗濯排水20が所定量供給されるようになっている。曝気槽54には活性汚泥22が入れられており、底部の曝気部52から酸素(O)が供給されて、排水供給部51から供給される模擬洗濯排水と活性汚泥22とが曝気混合されるようになっている。曝気槽54にて曝気混合された活性汚泥22は、連通管55を介して沈降槽56に移動し、沈降する。一方、曝気槽54にて曝気混合された模擬洗濯排水20は、生物処理された処理排水24となって、沈降槽56の上部から排出される。
(Test Example 1)
A wastewater treatment test was carried out using the wastewater treatment performance improver obtained in the above production example.
FIG. 6 is a diagram showing a configuration of a test apparatus for a wastewater treatment test used in this test example.
As shown in FIG. 6, the wastewater treatment test apparatus 50 includes an aeration tank 54 having an aeration unit 52 at the bottom, a settling tank 56 that communicates with the aeration tank 54 via a communication pipe 55 at the top, and simulated drainage (simulated laundry). A drainage supply unit 51 for supplying the drainage) 20 to the aeration tank 54.
A predetermined amount of simulated laundry drainage 20 is supplied from the drainage supply unit 51. Activated sludge 22 is placed in the aeration tank 54, oxygen (O 2 ) is supplied from the bottom aeration unit 52, and the simulated laundry wastewater supplied from the drainage supply unit 51 and the activated sludge 22 are aerated and mixed. It has become so. The activated sludge 22 aerated and mixed in the aeration tank 54 moves to the sedimentation tank 56 through the communication pipe 55 and settles. On the other hand, the simulated laundry wastewater 20 aerated and mixed in the aeration tank 54 becomes the biologically treated treated wastewater 24 and is discharged from the upper part of the settling tank 56.

模擬洗濯排水20としては、N成分としてのNHCl、P成分としてのKHPO、及び、洗濯洗剤を配合したものを用いた。 As the simulated laundry drainage 20, a mixture of NH 4 Cl as an N component, KH 2 PO 4 as a P component, and a laundry detergent was used.

図7及び図8は、上述の排水処理試験装置50を用いて排水処理試験を行った結果を示すグラフである。図7は、活性汚泥22として、下水汚泥に上述の製造例で得られた排水処理向上剤を、MLSS換算で1:9の比で混合したものを用いた場合における試験結果である。一方、図8は、活性汚泥22として、上述の製造例で得られた排水処理向上剤のみを用いた場合における試験結果である。
図7及び図8のグラフにおいて、横軸は経過時間を示し、左側縦軸は模擬洗濯排水20のCOD容積負荷及び処理排水24のCOD濃度を示し、右側縦軸はCOD除去率(処理率)を示す。
7 and 8 are graphs showing the results of a wastewater treatment test using the wastewater treatment test apparatus 50 described above. FIG. 7 shows the test results when the activated sludge 22 is a mixture of the sewage sludge mixed with the wastewater treatment improver obtained in the above production example in a ratio of 1: 9 in terms of MLSS. On the other hand, FIG. 8 shows the test results when only the wastewater treatment improver obtained in the above production example is used as the activated sludge 22.
7 and 8, the horizontal axis indicates the elapsed time, the left vertical axis indicates the COD volume load of the simulated laundry wastewater 20 and the COD concentration of the treated wastewater 24, and the right vertical axis indicates the COD removal rate (treatment rate). Indicates.

図7及び図8に示すように、排水処理試験装置50において、排水供給部51から曝気槽54に、模擬排水(100ppm)をバッチで添加した(図7のA1及び図8のa1)。
模擬排水のバッチ添加後、処理排水のCOD濃度の低下がみられ(図7のB1及び図8のb1)、各試験において上述の製造例にて製造された排水処理能向上剤が排水処理能力を有することが確認できたので、模擬排水の連続添加(2.2L/日)を開始した(図7のB2及び図8のb2)。各試験において、処理排水(処理水)COD濃度の変化及びCOD除去率の変化は、以下のようになった。
As shown in FIGS. 7 and 8, in the wastewater treatment test apparatus 50, simulated wastewater (100 ppm) was added in batches from the wastewater supply unit 51 to the aeration tank 54 (A1 in FIG. 7 and a1 in FIG. 8).
After the batch addition of simulated wastewater, the COD concentration of the treated wastewater decreased (B1 in FIG. 7 and b1 in FIG. 8), and the wastewater treatment performance improver produced in the above-described production example in each test was the wastewater treatment capacity. Therefore, continuous addition of simulated waste water (2.2 L / day) was started (B2 in FIG. 7 and b2 in FIG. 8). In each test, the changes in the treated wastewater (treated water) COD concentration and the COD removal rate were as follows.

活性汚泥として、下水汚泥と上述の製造例に係る排水処理能向上剤を混合して用いた場合、図7に示すように、模擬排水の連続添加開始(B2)後、処理排水CODが低下し続け(B1〜C1)、模擬排水の連続添加開始(B2)から約4日後にCOD除去率が90%以上となった(C3)。ここで、排水処理能向上剤のさらなる処理能力を確認するために、模擬排水の処理負荷を増大させた。すなわち、模擬排水のN成分、P成分及び洗濯洗剤成分を増加させて曝気槽54に添加した(D2)。模擬排水の処理負荷を増大させたにもかかわらず、処理排水COD濃度はほとんど増加せず(D1)、COD除去率も90%以上で維持された。そこで、模擬排水の処理負荷をさらに増大させたところ(E2)、やはり処理排水COD濃度はほとんど増加せず、COD除去率も90%以上で維持された。なお、E2の時点から添加される模擬排水の処理負荷は、実際の洗濯排水の負荷に相当する程度のものである。   When the sewage sludge and the wastewater treatment performance improver according to the above production example are mixed and used as the activated sludge, the treated wastewater COD decreases after the continuous addition of simulated wastewater (B2) as shown in FIG. Continuing (B1 to C1), the COD removal rate reached 90% or more after about 4 days from the start of continuous addition of simulated waste water (B2) (C3). Here, in order to confirm the further treatment capacity of the wastewater treatment capacity improver, the treatment load of the simulated wastewater was increased. That is, the N component, the P component, and the laundry detergent component of the simulated waste water were increased and added to the aeration tank 54 (D2). Despite increasing the treatment load of the simulated waste water, the treated wastewater COD concentration hardly increased (D1), and the COD removal rate was maintained at 90% or more. Therefore, when the treatment load of the simulated waste water was further increased (E2), the treated wastewater COD concentration was hardly increased and the COD removal rate was maintained at 90% or more. In addition, the treatment load of the simulated waste water added from the time of E2 is a thing equivalent to the load of the actual laundry waste water.

一方、活性汚泥として、上述の製造例に係る排水処理能向上剤のみを用いた場合、図8に示すように、模擬排水の連続添加開始(b2)後、処理排水COD濃度は徐々に上昇し、模擬排水の連続添加開始(b2)から約4日後から低下し始めた。しかしながら、模擬排水の連続添加開始(b2)から約16日経過しても、COD除去率の上昇は約60%までにとどまった(d3)。
すなわち、活性汚泥として上述の製造例に係る排水処理能向上剤のみを用いた試験では、試験期間中、排水の処理負荷を増大させるに至らず、実際の洗濯排水の負荷よりも低い負荷の処理排水でさえ十分な処理を行うことができなかった。
On the other hand, when only the wastewater treatment performance improver according to the above production example is used as the activated sludge, the treated wastewater COD concentration gradually increases after the start of continuous addition of simulated wastewater (b2) as shown in FIG. , About 4 days after the start of continuous addition of simulated waste water (b2), it began to decrease. However, even after about 16 days from the start of continuous addition of simulated waste water (b2), the increase in COD removal rate was limited to about 60% (d3).
That is, in the test using only the wastewater treatment performance improver according to the above-mentioned production example as the activated sludge, it does not increase the treatment load of the wastewater during the test period, and the load is lower than the load of the actual laundry wastewater. Even waste water could not be treated sufficiently.

上述の結果から、活性汚泥として上述の製造例に係る排水処理能向上剤のみを用いた場合、図8に示すように、16日程度の期間では、十分なCOD除去率を得ることができなかった。これは、上述の製造例に係る排水処理能向上剤はプラスに帯電しているため、排水処理能向上剤同士が電気的に反発し合あうために凝集し難いため、曝気槽54に滞留しにくく、処理排水とともに曝気槽54から沈降槽56及び排水処理試験装置50の外部へ流出しやすいためであると考えられる。   From the above results, when only the wastewater treatment performance improving agent according to the above production example is used as activated sludge, as shown in FIG. 8, a sufficient COD removal rate cannot be obtained in a period of about 16 days. It was. This is because the wastewater treatment performance improver according to the above-mentioned production example is positively charged, and the wastewater treatment performance improvers are electrically repelled to each other so that they are difficult to agglomerate, so that they stay in the aeration tank 54. This is considered to be because it tends to flow out from the aeration tank 54 to the outside of the settling tank 56 and the waste water treatment test apparatus 50 together with the treated waste water.

一方、下水汚泥と上述の製造例に係る排水処理能向上剤を混合して用いた場合、図7に示すように、比較的短時間で排水処理率(COD除去率)が得られるとともに、処理負荷の大きな模擬排水(N成分、P成分及び洗剤成分の濃度の高い模擬排水)に対しても、優れた処理能力を発揮できている。これは、マイナス帯電の下水汚泥とプラス帯電の排水処理能向上剤とが電気的に結合して、曝気槽54内に滞留しやすくなり、このため、連続通水においても、模擬排水を安定的に処理できたためと考えられる。
よって、下水汚泥に製造例に係る排水処理能向上剤を添加して活性汚泥とすることで、比較的短期間で汚泥の馴致をすることができること、及び、優れた排水処理性能が得られることが示された。
On the other hand, when the sewage sludge and the wastewater treatment performance improver according to the above production example are mixed and used, the wastewater treatment rate (COD removal rate) can be obtained in a relatively short time as shown in FIG. Excellent treatment capacity can be demonstrated even for a large amount of simulated wastewater (simulated wastewater with high concentrations of N component, P component and detergent component). This is because the negatively charged sewage sludge and the positively charged wastewater treatment performance improver are electrically coupled and are likely to stay in the aeration tank 54. Therefore, the simulated wastewater can be stabilized even in continuous water flow. It is thought that it was possible to process.
Therefore, by adding the wastewater treatment performance improver according to the production example to the sewage sludge and making it an activated sludge, the sludge can be acclimatized in a relatively short period of time, and excellent wastewater treatment performance can be obtained. It has been shown.

(試験例2)
活性汚泥として、下水汚泥に上述の製造例で得られた排水処理向上剤を、MLSS換算で、それぞれ、1:1、1:3及び1:9の比で混合して得られた活性汚泥A、活性汚泥B及び活性汚泥Cを用いて、汚泥に対する排水処理能向上剤の添加量の比の違いによる、排水処理性能の違いについて確認した。
馴致装置(不図示)を用い、それぞれの活性汚泥(活性汚泥A〜C)に対して、COD濃度が50ppm増加するように模擬洗濯排水を投入し、COD濃度を計測した。模擬洗濯排水投入からの経過時間とCOD濃度との関係を図9のグラフに示す。
(Test Example 2)
As the activated sludge, the activated sludge A obtained by mixing the wastewater treatment improver obtained in the above-mentioned production example with sewage sludge in a ratio of 1: 1, 1: 3 and 1: 9, respectively, in terms of MLSS. Using activated sludge B and activated sludge C, the difference in the wastewater treatment performance due to the difference in the ratio of the added amount of the wastewater treatment capacity improver to the sludge was confirmed.
Using an acclimatization device (not shown), simulated laundry wastewater was added to each activated sludge (activated sludge A to C) so that the COD concentration increased by 50 ppm, and the COD concentration was measured. The graph of FIG. 9 shows the relationship between the elapsed time from the simulated laundry drainage input and the COD concentration.

図9に示すように、模擬洗濯排水を投入後、COD濃度が一時的に上昇した後に低下しているため、活性汚泥A〜Cのそれぞれにおいて、排水処理能力が発揮されていることが確認できた。
また、模擬洗濯排水を投入後、COD濃度が一時的に上昇してから低下開始した付近における時間範囲T1でのCOD濃度減少速度は、活性汚泥C(混合比1:9)のほうが、活性汚泥A(混合比1:1)に対して58%程度大きく、活性汚泥B(混合比1:3)に対して36%程度大きい。よって、活性汚泥A及び活性汚泥Bに比べて、活性汚泥Cのほうが、良好な排水処理性能を発揮する可能性があることが確認された。
As shown in FIG. 9, after the simulated laundry wastewater is added, the COD concentration is lowered after the temporary rise, so that it can be confirmed that the wastewater treatment capacity is exhibited in each of the activated sludges A to C. It was.
Moreover, the activated sludge is more activated sludge C (mixing ratio 1: 9) in the time range T1 in the vicinity where the COD concentration temporarily rises after the simulated laundry drainage is charged and then starts to decrease. About 58% larger than A (mixing ratio 1: 1) and about 36% larger than activated sludge B (mixing ratio 1: 3). Therefore, it was confirmed that the activated sludge C may exhibit better wastewater treatment performance than the activated sludge A and the activated sludge B.

(試験例3)
活性汚泥として、下水汚泥に上述の製造例で得られた排水処理向上剤を、MLSS換算で、1:9の比で混合して得られた活性汚泥Dと、1:19の比で混合して得られた活性汚泥Eと、を用いて、汚泥に対する排水処理能向上剤の添加量の比の違いによる、排水処理性能の違いについて確認した。
馴致装置(不図示)を用い、それぞれの活性汚泥(活性汚泥D及び活性汚泥E)に対して、初期COD濃度が100ppmとなるように模擬洗濯排水を投入し、COD濃度を計測した。模擬洗濯排水投入からの経過時間とCOD濃度との関係を図10のグラフに示す。
(Test Example 3)
As the activated sludge, the wastewater treatment improver obtained in the above-mentioned production example is mixed with the activated sludge D obtained by mixing the sewage sludge at a ratio of 1: 9 in the ratio of 1: 9 in terms of MLSS. Using the activated sludge E obtained in this way, the difference in the wastewater treatment performance due to the difference in the ratio of the added amount of the wastewater treatment performance improver to the sludge was confirmed.
Using an acclimatization device (not shown), simulated laundry drainage was introduced to each activated sludge (activated sludge D and activated sludge E) so that the initial COD concentration was 100 ppm, and the COD concentration was measured. The relationship between the elapsed time from the simulated laundry drainage input and the COD concentration is shown in the graph of FIG.

図10に示すように、模擬洗濯排水を投入後、COD濃度が低下しているため、活性汚泥D及び活性汚泥Eの両方において、排水処理能力が発揮されていることが確認できた。
また、模擬洗濯排水を投入後、COD濃度が低下開始した付近における時間範囲T2でのCOD濃度減少速度は、活性汚泥D(混合比1:9)のほうが、活性汚泥E(混合比1:19)に対して170%程度大きい。よって、活性汚泥Eに比べて、活性汚泥Dのほうが、良好な排水処理性能を発揮する可能性があることが確認された。
As shown in FIG. 10, since the COD concentration was lowered after the simulated laundry wastewater was added, it was confirmed that the wastewater treatment capacity was exhibited in both the activated sludge D and the activated sludge E.
In addition, the activated sludge E (mixing ratio 1:19) is more effective for the activated sludge D (mixing ratio 1: 9) in the time range T2 in the vicinity of the start of the decrease in the COD concentration after the simulated laundry drainage is charged. ) About 170% larger. Therefore, it was confirmed that the activated sludge D may exhibit better wastewater treatment performance than the activated sludge E.

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。   As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above, The form which added the deformation | transformation to embodiment mentioned above and the form which combined these forms suitably are included.

本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
In this specification, an expression representing a relative or absolute arrangement such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial”. Represents not only such an arrangement strictly but also a state of relative displacement with tolerance or an angle or a distance to obtain the same function.
For example, an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
In this specification, expressions representing shapes such as quadrangular shapes and cylindrical shapes not only represent shapes such as quadrangular shapes and cylindrical shapes in a strict geometric sense, but also within a range where the same effects can be obtained. In addition, a shape including an uneven portion or a chamfered portion is also expressed.
In this specification, the expression “comprising”, “including”, or “having” one constituent element is not an exclusive expression for excluding the existence of another constituent element.

1 排水処理装置
2 汚泥フロック
4 凍結乾燥汚泥
5 排水処理能向上剤
8 洗濯排水
10 排水タンク
12 生物処理槽
13 COD計測部
14 分離膜
16 処理水タンク
18 供給部
20 模擬洗濯排水
22 活性汚泥
24 処理排水
50 排水処理試験装置
51 排水供給部
52 曝気部
54 曝気槽
55 連通管
56 沈降槽
DESCRIPTION OF SYMBOLS 1 Waste water treatment equipment 2 Sludge floc 4 Freeze-dried sludge 5 Waste water treatment performance improver 8 Laundry waste water 10 Waste water tank 12 Biological treatment tank 13 COD measurement part 14 Separation membrane 16 Treated water tank 18 Supply part 20 Simulated laundry waste water 22 Activated sludge 24 treatment Wastewater 50 Wastewater treatment test equipment 51 Wastewater supply part 52 Aeration part 54 Aeration tank 55 Communication pipe 56 Settling tank

Claims (14)

汚泥の排水処理性能を向上させるための排水処理能向上剤であって、
馴致汚泥を含む凍結乾燥汚泥と、
前記凍結乾燥汚泥に担持されたカチオン系凝集剤と、
を備えることを特徴とする排水処理能向上剤。
A wastewater treatment performance improver for improving sludge wastewater treatment performance,
Freeze-dried sludge containing familiar sludge,
A cationic flocculant supported on the freeze-dried sludge;
A wastewater treatment performance improver characterized by comprising:
前記カチオン系凝集剤は、カチオン性ポリマーを含むことを特徴とする請求項1に記載の排水処理能向上剤。   The wastewater treatment capacity improver according to claim 1, wherein the cationic flocculant contains a cationic polymer. 前記カチオン性ポリマーは、ポリジシアンジアミド系ポリマーを含むことを特徴とする請求項2に記載の排水処理能向上剤。   The wastewater treatment performance improver according to claim 2, wherein the cationic polymer includes a polydicyandiamide-based polymer. 汚泥を馴致して馴致汚泥を得るステップと、
前記馴致汚泥とカチオン系凝集剤とを混合して混合物を得るステップと、
前記混合物を凍結乾燥して排水処理能向上剤を得るステップと、
を備えることを特徴とする排水処理能向上剤の製造方法。
Acclimatize sludge and get the familiar sludge;
Mixing the acclimatized sludge and the cationic flocculant to obtain a mixture;
Lyophilizing the mixture to obtain a wastewater treatment performance improver;
A method for producing a wastewater treatment capacity improver characterized by comprising:
前記混合物を脱水して脱水ケーキを得るステップをさらに備え、
前記排水処理能向上剤を得るステップでは、前記脱水ケーキを凍結乾燥する
ことを特徴とする請求項4に記載の排水処理能向上剤の製造方法。
Further comprising dehydrating the mixture to obtain a dehydrated cake;
The method for producing a wastewater treatment performance improver according to claim 4, wherein in the step of obtaining the wastewater treatment performance improver, the dewatered cake is freeze-dried.
請求項1乃至3の何れか一項に記載の排水処理能向上剤を汚泥に添加するステップと、
前記排水処理能向上剤が添加された前記汚泥を用いて前記排水を生物処理するステップと、
を備えることを特徴とする排水処理方法。
Adding the wastewater treatment performance improver according to any one of claims 1 to 3 to sludge;
Biologically treating the wastewater using the sludge to which the wastewater treatment performance improver has been added;
A wastewater treatment method comprising:
前記排水処理能向上剤が添加された前記汚泥を馴致するステップをさらに備えることを特徴とする請求項6に記載の排水処理方法。   The wastewater treatment method according to claim 6, further comprising a step of adapting the sludge to which the wastewater treatment performance improver is added. 前記排水処理能向上剤を添加するステップでは、前記汚泥による前記排水の処理性能の低下時、前記汚泥に前記排水処理能向上剤を添加することを特徴とする請求項6又は7に記載の排水処理方法。   The wastewater treatment apparatus according to claim 6 or 7, wherein in the step of adding the wastewater treatment performance improver, the wastewater treatment performance improver is added to the sludge when the treatment performance of the wastewater is reduced by the sludge. Processing method. 前記汚泥の量に対する前記汚泥への前記排水処理能向上剤の添加量の比(前記排水処理能向上剤の添加量/前記汚泥の量)は、MLSS換算で1/19以上1/1以下であることを特徴とする請求項6乃至8の何れか一項に記載の排水処理方法。   The ratio of the addition amount of the wastewater treatment performance improver to the sludge with respect to the sludge amount (addition amount of the wastewater treatment performance improver / amount of the sludge) is 1/19 or more and 1/1 or less in terms of MLSS. The wastewater treatment method according to any one of claims 6 to 8, wherein the wastewater treatment method is provided. 前記生物処理された前記排水を膜分離によりろ過するステップをさらに含むことを特徴とする請求項6乃至9の何れか一項に記載の排水処理方法。   The wastewater treatment method according to any one of claims 6 to 9, further comprising a step of filtering the biologically treated wastewater by membrane separation. 処理対象の排水を貯留するための排水タンクと、
前記排水タンクからの前記排水を、請求項1乃至3の何れか一項に記載の排水処理能向上剤が添加された活性汚泥と曝気混合し生物処理するための生物処理槽と、
前記生物処理槽で処理された処理排水を貯留するための処理水タンクと、
を備えることを特徴とする排水処理装置。
A drainage tank for storing wastewater to be treated;
A biological treatment tank for subjecting the wastewater from the wastewater tank to a biological treatment by aeration mixing with the activated sludge to which the wastewater treatment performance improving agent according to any one of claims 1 to 3 is added;
A treated water tank for storing treated wastewater treated in the biological treatment tank;
A wastewater treatment apparatus comprising:
前記処理排水をろ過するための分離膜をさらに備え、
前記処理水タンクは、前記分離膜によりろ過された前記処理排水を貯留するように構成された
ことを特徴とする請求項11に記載の排水処理装置。
Further comprising a separation membrane for filtering the treated waste water,
The wastewater treatment apparatus according to claim 11, wherein the treated water tank is configured to store the treated wastewater filtered by the separation membrane.
前記生物処理槽における排水の処理性能を検出するための検出部と、
前記検出部による検出結果に基づいて、前記生物処理槽にさらに前記排水処理能向上剤を添加するように構成された供給部と、
をさらに備えることを特徴とする請求項11又は12に記載の排水処理装置。
A detection unit for detecting wastewater treatment performance in the biological treatment tank;
Based on the detection result by the detection unit, a supply unit configured to further add the wastewater treatment capacity improver to the biological treatment tank,
The wastewater treatment apparatus according to claim 11 or 12, further comprising:
前記検出部は、前記生物処理槽における前記排水のCODを計測するためのCOD計測部を含むことを特徴とする請求項13に記載の排水処理装置。   The waste water treatment apparatus according to claim 13, wherein the detection unit includes a COD measurement unit for measuring the COD of the waste water in the biological treatment tank.
JP2016041056A 2016-03-03 2016-03-03 Wastewater treatment capacity improver, manufacturing method thereof, wastewater treatment method and wastewater treatment equipment Active JP6716289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016041056A JP6716289B2 (en) 2016-03-03 2016-03-03 Wastewater treatment capacity improver, manufacturing method thereof, wastewater treatment method and wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016041056A JP6716289B2 (en) 2016-03-03 2016-03-03 Wastewater treatment capacity improver, manufacturing method thereof, wastewater treatment method and wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2017154105A true JP2017154105A (en) 2017-09-07
JP6716289B2 JP6716289B2 (en) 2020-07-01

Family

ID=59809014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016041056A Active JP6716289B2 (en) 2016-03-03 2016-03-03 Wastewater treatment capacity improver, manufacturing method thereof, wastewater treatment method and wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP6716289B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323400A (en) * 1995-05-30 1996-12-10 Kubota Corp Method for dehydrating sludge
JP2004075481A (en) * 2002-08-21 2004-03-11 Takuma Co Ltd System and method for recovering phosphorus in object to be treated
JP2004089899A (en) * 2002-09-02 2004-03-25 Takuma Co Ltd Method for treatment of activated sludge and system for the same
JP3556818B2 (en) * 1998-01-20 2004-08-25 三菱重工業株式会社 How to store activated sludge
JP2006102626A (en) * 2004-10-05 2006-04-20 Ngk Insulators Ltd Method for dewatering hardly dewatering sewage sludge
JP2007275757A (en) * 2006-04-06 2007-10-25 Nippon Rensui Co Ltd Flocculation precipitation treatment method of ion-containing drainage
JP2014100627A (en) * 2012-11-16 2014-06-05 Sekisui Chem Co Ltd Membrane treatment apparatus and solid-liquid separation method
JP2015188815A (en) * 2014-03-27 2015-11-02 三菱重工業株式会社 Biological treatment formulation for cleaning effluent, apparatus and method for treating cleaning effluent using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323400A (en) * 1995-05-30 1996-12-10 Kubota Corp Method for dehydrating sludge
JP3556818B2 (en) * 1998-01-20 2004-08-25 三菱重工業株式会社 How to store activated sludge
JP2004075481A (en) * 2002-08-21 2004-03-11 Takuma Co Ltd System and method for recovering phosphorus in object to be treated
JP2004089899A (en) * 2002-09-02 2004-03-25 Takuma Co Ltd Method for treatment of activated sludge and system for the same
JP2006102626A (en) * 2004-10-05 2006-04-20 Ngk Insulators Ltd Method for dewatering hardly dewatering sewage sludge
JP2007275757A (en) * 2006-04-06 2007-10-25 Nippon Rensui Co Ltd Flocculation precipitation treatment method of ion-containing drainage
JP2014100627A (en) * 2012-11-16 2014-06-05 Sekisui Chem Co Ltd Membrane treatment apparatus and solid-liquid separation method
JP2015188815A (en) * 2014-03-27 2015-11-02 三菱重工業株式会社 Biological treatment formulation for cleaning effluent, apparatus and method for treating cleaning effluent using the same

Also Published As

Publication number Publication date
JP6716289B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
KR101251904B1 (en) Improvement in/or relating to a method of treating sludges
JP2013059765A (en) Sludge concentration and dehydration method
TW201726561A (en) Method of forming granules and wastewater treatment method
KR20150062411A (en) Membrane filtering system with high efficiency using pressure flotation and its processing method
CN204058115U (en) Desulfurization wastewater treatment system
CN103449655A (en) System and method for degrading industrial aquaculture sewage by nanometer magnetic powder
Wang et al. Enhancing aerobic digestion of full-scale waste activated sludge using free nitrous acid pre-treatment
JPWO2017014004A1 (en) Organic matter processing method and processing apparatus
JP6670192B2 (en) Organic sludge processing method and processing apparatus
JP2017154105A (en) Wastewater treatment ability improving agent and method for producing the same, and wastewater treatment method and wastewater treatment apparatus
CN205152011U (en) Effluent disposal system slaughters
JP2013193046A (en) Dehydrating method and device of pressure floating sludge
CN104556575A (en) Process for treating waste water from knitted sweater manufacturing in knitting dyeing industry
JP6882288B2 (en) Electrodynamic enrichment and dehydration methods and systems
KR101852005B1 (en) An apparatus for water treatment using precipitation and dehydration of sludge and a method for water treatment using thereof
JP6437794B2 (en) Waste water treatment apparatus and waste water treatment method
JP2018099658A (en) Sludge dehydration system and method
CN104445801B (en) Paper-making effluent treating process
CN203451332U (en) Fatty acid waste water treatment system
JP6566563B2 (en) Anaerobic treatment device
JP2014046253A (en) Treatment method of drainage water and drainage water treatment apparatus
JP6309883B2 (en) Sludge dewatering treatment method and sludge dewatering treatment system
RU2099292C1 (en) Method of removing sulfides from waste waters
KR102637663B1 (en) Method for dehydrating concentrated sludge
KR20140036162A (en) Sludge-concentrating method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200610

R150 Certificate of patent or registration of utility model

Ref document number: 6716289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150