JP2017152522A - Light-emitting device - Google Patents
Light-emitting device Download PDFInfo
- Publication number
- JP2017152522A JP2017152522A JP2016033042A JP2016033042A JP2017152522A JP 2017152522 A JP2017152522 A JP 2017152522A JP 2016033042 A JP2016033042 A JP 2016033042A JP 2016033042 A JP2016033042 A JP 2016033042A JP 2017152522 A JP2017152522 A JP 2017152522A
- Authority
- JP
- Japan
- Prior art keywords
- light
- emitting element
- light emitting
- phosphor
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Landscapes
- Led Device Packages (AREA)
Abstract
Description
本発明は、蛍光体を用いて光を出力する発光装置に関する。 The present invention relates to a light emitting device that outputs light using a phosphor.
発光素子を光源に用いた発光装置が実用化されている。近年では発光効率の改善がめまぐるしく行われており、色の質についても要求が高まっている。 A light emitting device using a light emitting element as a light source has been put into practical use. In recent years, the luminous efficiency has been improved rapidly, and there is an increasing demand for color quality.
発光素子はウエハの製造プロセスにおける成膜の温度や厚さの微妙な違いに左右され、発光素子の発光特性、電気特性がばらついてしまうという問題がある。現状では、発光素子を全数測定することで、出力、波長、順方向電圧VFを細かく選別し、それぞれランク分けして使用している。これは発光素子の特性が製品への特性に大きく関わるからである。発光素子の出力は明るさに大きく影響し、電気特性はlm/Wなどの効率に関わる。 There is a problem in that the light emitting element is affected by subtle differences in film formation temperature and thickness in the wafer manufacturing process, and the light emitting characteristics and electrical characteristics of the light emitting element vary. At present, by measuring the total number of light emitting elements, the output, wavelength, and forward voltage VF are finely selected and used in respective ranks. This is because the characteristics of the light-emitting element greatly affect the characteristics of the product. The output of the light emitting element greatly affects the brightness, and the electrical characteristics relate to the efficiency such as lm / W.
例えば下記特許文献1では、製造された発光素子を複数の発光波長領域に分類し、長波長側に分類された第1の発光素子と、短波長側に分類された第2の発光素子を組合せて利用することで、発光輝度及び色調の揃った発光ダイオード(発光装置)を歩留まりよく簡単に形成しようとするものである。
For example, in
しかし、特許文献1にかかる発光ダイオード(発光装置)は、複数の発光素子を用いなければならないため、コストが高くなってしまう。そこで本発明は、単数の発光素子を用いた場合であっても、発光輝度及び色調の揃った発光装置を提供する。
However, since the light-emitting diode (light-emitting device) according to
本発明の一態様によれば、発光素子と、前記発光素子を封止する封止部材と、前記封止部材の少なくとも一部に含有され、前記発光素子からの光の一部を吸収し、前記発光素子の発光波長と異なる波長の光に変換する蛍光体とを備え、前記発光素子と前記蛍光体は同系色であり、前記蛍光体の発光ピーク波長は、前記発光素子のピーク波長から長波長側に20nm未満の範囲に位置することを特徴とする発光装置が提供される。 According to one embodiment of the present invention, a light-emitting element, a sealing member that seals the light-emitting element, and contained in at least a part of the sealing member, absorb a part of light from the light-emitting element, A phosphor that converts light having a wavelength different from the emission wavelength of the light emitting element, the light emitting element and the phosphor have similar colors, and the emission peak wavelength of the phosphor is longer than the peak wavelength of the light emitting element. A light emitting device is provided which is located in a range of less than 20 nm on the wavelength side.
本発明によれば、発光波長のばらつく発光素子を用いた場合であっても、発光輝度及び色調の揃った発光装置を提供できる。 According to the present invention, it is possible to provide a light emitting device with uniform light emission luminance and color tone even when using light emitting elements with varying emission wavelengths.
次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、各領域の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and ratios of thicknesses of the respective regions are different from actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
本発明の実施形態に係る発光装置1は、図1に示すように、凹部を有する筐体40に配置され可視光を出射する発光素子10と、発光素子10の出射光により励起されて発光素子10と波長差の小さい光を放射する蛍光体21、この蛍光体21を含有する封止部材30が筐体40の凹部に発光素子10を覆って充填される。以下、本発明の発光装置を構成する各要素について詳細に説明する。
As shown in FIG. 1, a
(発光素子)
発光素子10には、LEDやレーザダイオードなどの半導体発光素子が採用可能である。以下実施例においては、発光波長440nm〜460nmの青色発光素子を用いて説明する。但し、発光素子10は青色に限られず、緑色であっても赤色であってもよい。
(Light emitting element)
As the
(筐体)
筐体40は、電気配線70が配置されており、この電気配線70上のダイパッド50に発光素子10が電気的に接続されている。発光素子10の正電極と負電極間に電圧を印加することにより発光素子10に駆動電流が流れる。これにより、発光素子10は光を出射する。
また、筐体40は凹部を有し、当該凹部の底部に発光素子10がマウントされる。凹部とは底部と側面部とを有し、光軸に垂直方向の断面の面積が当該底部から発光装置10の光の取り出し方向に向かって連続的又は段階的に増加する形状を有する空間からなる部分をいう。かかる条件を満たす範囲において、底部及び側面部の形状は特に限定されるものではない。
さらに、筐体40の凹部の側面部表面(内周面上)には金属又は合金からなる反射層が形成される。反射層は必ずしも凹部の側面部表面の全体に形成されなくてもよいが、反射層による発光効率の改善効果が最大限発揮されるように発光素子10から側方に放出された光が照射する領域についてはその全体に反射層を設けることが好ましい。
(Casing)
The
Moreover, the housing |
Further, a reflective layer made of a metal or an alloy is formed on the side surface (on the inner peripheral surface) of the concave portion of the
(蛍光体)
蛍光体21は、使用する発光素子10と同系色のものを使用する。具体的には、発光素子10に対し、長波長側に波長差20nm未満の蛍光体が使用される。例えば波長440nmの青色発光素子であれば、発光ピーク波長460nm未満の蛍光体を用いる。今回用いる蛍光体は、発光素子からの光の一部を吸収し、長波長の光に変換することができ、発光装置の発光色を変化させ又は補正することができる。発光素子からの光により励起可能なものであれば任意の蛍光体を用いることができ、その選択においては発光装置の発光色、耐久性等が考慮される。蛍光体21を封止部材30に一様に分散させても、また一部の領域に局在させてもよい。
(Phosphor)
The
(封止部材)
封止部材30は発光素子10を被覆するように形成される部材であり、主として外部環境から発光素子10を保護する目的で備えられる。封止部材30の材料としては発光素子10の光に対して透明であり、且つ耐久性、耐候性などに優れたものを採用することが好ましい。
例えばシリコーン(シリコーン樹脂、シリコーンゴム、及びシリコーンエラストマーを含む)、エポキシ樹脂、ガラス等の中から、発光素子10の発光波長との関係で適当なものを選択することができる。発光素子の光が短波長領域の光を含む場合には特に紫外線劣化が問題となるため、シリコーン等の紫外線劣化に対する耐性の高い材料を採用することが好ましい。
(Sealing member)
The sealing
For example, an appropriate material can be selected from silicone (including silicone resin, silicone rubber, and silicone elastomer), epoxy resin, glass, and the like in relation to the emission wavelength of the
(実施例1)
発光素子10は、波長440nmの光を出射するものを用いる。蛍光体21として、(Ba,Sr)MgAl10O17:Eu2+(BAM)蛍光体を使用できる。蛍光体21は上記以外にも、例えば、(Ba,Sr,Ca,Mg)10(PO4)6Cl2:Eu2+、CaMgSi2O6:Eu2+,Sr2P2O7:Sn2+、(Ba,Sr,Ca)3MgSi2O8:Eu2+、CaAl2O4:Eu2+、ZnS:Ag,Cl、Ca2B5O9(Br,Cl):Eu2+、ZnGa2O4などが採用可能である。
Example 1
As the
封止部材30に対する蛍光体21の配合比が0%(透明樹脂:比較例1)、10%(サンプルS1)、25%(サンプルS2)、50%(サンプルS3)のサンプルを作成した。なお、蛍光体21を封止部材30よりも多く配合すると発光強度が低下する。また、蛍光体21の粒径は小さい方が好ましく、具体的には平均粒径は10μm以下が好ましい。
Samples were prepared in which the blending ratio of the
蛍光体21が混合された封止部材30を発光素子10が搭載された筐体40の凹部に充填し、本発明の実施例1に係る発光装置1を得た。
The sealing
比較例1及びサンプルS1〜S3について、株式会社トプコンテクノハウス製分光放射計SR−3Aを用いて各発光装置へ電流注入時(IF=50mA)の発光特性を取得した。表1にその結果を示す。 For Comparative Example 1 and Samples S1 to S3, the emission characteristics at the time of current injection (IF = 50 mA) were obtained into each light-emitting device using a spectroradiometer SR-3A manufactured by Topcon Technohouse Co., Ltd. Table 1 shows the results.
表1の結果より、発光ピーク波長、ドミナント波長の両方が長波長側に数nmシフトしていることがわかる。一般的な発光素子の波長ランクは2.5nm刻みである。図2に示すように、蛍光体濃度25%では波長ランク1つ分、蛍光体濃度50%では波長ランク2つ分も長波長側に移動させることができる。 From the results of Table 1, it can be seen that both the emission peak wavelength and the dominant wavelength are shifted by several nm toward the long wavelength side. The wavelength rank of a general light emitting element is in increments of 2.5 nm. As shown in FIG. 2, one wavelength rank can be moved to the longer wavelength side at a phosphor concentration of 25%, and two wavelength ranks can be moved to the longer wavelength side at a phosphor concentration of 50%.
図3にBAM蛍光体の発光スペクトルと励起スペクトル、さらに波長440nmの青色発光素子のスペクトルを示す。
BAMの励起スペクトルとは、BAMがどの波長で発光するかを相対的に示したグラフであり、この励起スペクトルからは紫外線領域で効率よく発光することが示唆されている。
青色発光素子の発光スペクトルとBAMの励起スペクトルの重なっている波長領域では、青色発光素子の光の一部を吸収してBAMの発光を呈していることが分かる。
このことから、青色発光素子の光の一部を吸収して、BAMによる光変換が可能となる。
FIG. 3 shows the emission spectrum and excitation spectrum of the BAM phosphor, and the spectrum of a blue light emitting device having a wavelength of 440 nm.
The excitation spectrum of BAM is a graph relatively showing at which wavelength BAM emits light, and this excitation spectrum suggests that light is efficiently emitted in the ultraviolet region.
It can be seen that in the wavelength region where the emission spectrum of the blue light emitting element and the excitation spectrum of the BAM overlap, a part of the light of the blue light emitting element is absorbed to emit BAM.
For this reason, a part of the light of the blue light emitting element is absorbed, and light conversion by BAM becomes possible.
(実施例2)
発光素子10は、波長447nmの光を出射するものを用いる。蛍光体21として、例えばSr3MgSi2O8:Eu2+(SMS)蛍光体を使用できる。蛍光体21はこの他にも、例えば、(Ba,Sr)MgAl10O17:Eu2+、(Ba,Sr,Ca,Mg)10(PO4)6Cl2:Eu2+、CaMgSi2O6:Eu2+,Sr2P2O7:Sn2+、(Ba,Sr,Ca)3MgSi2O8:Eu2+、CaAl2O4:Eu2+、ZnS:Ag,Cl、Ca2B5O9(Br,Cl):Eu2+、ZnGa2O4、CaGa2S4:Ce3+、BaAl2S4:Eu2+、などが採用可能である。
(Example 2)
As the
封止部材30に対する蛍光体21の配合比が0%(透明樹脂:比較例2)、10%(サンプルS4)、25%(サンプルS5)、50%(サンプルS6)のサンプルを作成した。
Samples were prepared in which the blending ratio of the
蛍光体21が混合された封止部材30を発光素子10が搭載された筐体40の凹部に充填し、本発明の実施例2に係る発光装置1を得た。
The sealing
比較例2及びサンプルS4〜S6について、株式会社トプコンテクノハウス製分光放射計SR−3Aを用いて各発光装置へ電流注入時(IF=50mA)の発光特性を取得した。表2にその結果を示す。 For Comparative Example 2 and Samples S4 to S6, emission characteristics at the time of current injection (IF = 50 mA) were obtained into each light-emitting device using a spectroradiometer SR-3A manufactured by Topcon Technohouse Co., Ltd. Table 2 shows the results.
表2の結果より、発光ピーク波長、ドミナント波長の両方が長波長側にシフトしていることがわかる。図2に示すように、蛍光体濃度10%では波長ランク1つ分、蛍光体濃度25%では波長ランク2つ分、蛍光体濃度50%では波長ランク5つ分移動させることができる。 From the results in Table 2, it can be seen that both the emission peak wavelength and the dominant wavelength are shifted to the longer wavelength side. As shown in FIG. 2, it can be moved by one wavelength rank at a phosphor concentration of 10%, two wavelength ranks at a phosphor concentration of 25%, and five wavelength ranks at a phosphor concentration of 50%.
図4にはSMSの蛍光体の発光スペクトルと励起スペクトル、さらに波長447nmの青色発光素子のスペクトルを示す。
実施例1と同様に、青色発光素子の光の一部を吸収して、SMSによる光変換が可能となる。
FIG. 4 shows an emission spectrum and an excitation spectrum of an SMS phosphor, and a spectrum of a blue light emitting device having a wavelength of 447 nm.
As in the first embodiment, a part of the light emitted from the blue light emitting element is absorbed, and light conversion by SMS is possible.
(実施例3)
発光素子10は、波長460nmの光を出射するものを用いる。蛍光体21として、例えばCa3MgSi2O8:Eu2+(CMS)蛍光体を使用できる。蛍光体21はこの他にも、例えば、Sr2P2O7:Sn2+、(Ba,Sr,Ca)3MgSi2O8:Eu2+、ZnS:Ag,Cl、ZnGa2O4、CaGa2S4:Ce3+、BaAl2S4:Eu2+、Sr6P5BO20:Eu2+、BaGa2S4:Eu2+、Sr5Si4O10Cl6:Eu2+、Ca8Mg(SiO4)4Cl2:Eu2+などが採用可能である。
(Example 3)
As the
封止部材30に対する蛍光体21の配合比が0%(透明樹脂:比較例3)、10%(サンプルS7)、25%(サンプルS8)、50%(サンプルS9)のサンプルを作成した。
Samples with a blending ratio of the
蛍光体21が混合された封止部材30を発光素子10が搭載された筐体40の凹部に充填し、本発明の実施例3に係る発光装置1を得た。
The sealing
比較例3及びサンプルS7〜S9について、株式会社トプコンテクノハウス製分光放射計SR−3Aを用いて各発光装置へ電流注入時(IF=50mA)の発光特性を取得した。表3にその結果を示す。 For Comparative Example 3 and Samples S7 to S9, emission characteristics at the time of current injection (IF = 50 mA) were obtained into each light emitting device using a spectroradiometer SR-3A manufactured by Topcon Technohouse Co., Ltd. Table 3 shows the results.
表3の結果より、発光ピーク波長、ドミナント波長の両方を長波長側にシフトしていることがわかる。図2に示すように、蛍光体濃度10%、25%では波長ランクは動かなかったが、蛍光体濃度50%では波長ランク2つ分移動させることができる。 From the results in Table 3, it can be seen that both the emission peak wavelength and the dominant wavelength are shifted to the longer wavelength side. As shown in FIG. 2, the wavelength rank did not move at the phosphor concentrations of 10% and 25%, but can be moved by two wavelength ranks at the phosphor concentration of 50%.
図5にはCMSの蛍光体の発光スペクトルと励起スペクトル、さらに波長460nmの青色発光素子のスペクトルを示す。
実施例1と同様に、青色発光素子の光の一部を吸収して、CMSによる光変換が可能となる
。
FIG. 5 shows an emission spectrum and an excitation spectrum of a phosphor of CMS, and a spectrum of a blue light emitting element having a wavelength of 460 nm.
As in Example 1, a part of the light emitted from the blue light emitting element is absorbed, and light conversion by CMS becomes possible.
上記実施例1〜3は、青色発光素子の波長を長波長側にシフトさせた同系色の発光装置を示したが、その他の実施例として図6に示すように、青色発光素子の上にさらに青色励起が可能な第2の蛍光体22を配置すれば、白色光を得ることも出来る。
Although the said Examples 1-3 showed the light emitting device of the same color which shifted the wavelength of the blue light emitting element to the long wavelength side, as shown in FIG. If the
なお、上記第2の蛍光体22としては、Ca8Mg(SiO4)4Cl2:Eu2+、(Ba,Sr,Ca)3MgSi2O8:Eu2+、Mn2+、(Ba,Sr,Ca)2SiO4:Eu2+、(Ca,Mg)3Sc2Si3O12:Ce3+、CaSc2O4:Ce3+、SrGa2S4:Eu2+、Si6−zAlzOzN8−z:Eu2+、Sr3Si13Al3O2N21:Eu2+、Ba3Si6O12N2:Eu2+、(Ba,Sr,Ca)Si2O2N2:Eu2+、AlON:Mg,Mn2+、(Y,Ga)3(Al,Gd)5O12:Ce3+、La3Si6N11:Ce3+、(Sr,Ca,Ba)3SiO5:Eu2+、Ca−α−SiAlON:Eu2+、(Sr,Ca)AlSiN3:Eu2+、(Ba,Sr,Ca)2Si5N8:Eu2+、Sr2Si7Al3O2N13:Eu2+、K2SiF6:Mn4+、Sr(LiAl3N34):Eu2+、Al2O3:Cr3+などが採用可能である。 Incidentally, as the second phosphor 22, Ca 8 Mg (SiO 4 ) 4 Cl 2: Eu 2+, (Ba, Sr, Ca) 3 MgSi 2 O 8: Eu 2+, Mn 2+, (Ba, Sr, Ca) 2 SiO 4: Eu 2+ , (Ca, Mg) 3 Sc 2 Si 3 O 12: Ce 3+, CaSc 2 O 4: Ce 3+, SrGa 2 S 4: Eu 2+, Si 6-z Al z O z N 8-z: Eu 2+, Sr 3 Si 13 Al 3 O 2 N 21: Eu 2+, Ba 3 Si 6 O 12 N 2: Eu 2+, (Ba, Sr, Ca) Si 2 O 2 N 2: Eu 2+, AlON: Mg, Mn 2+ , (Y, Ga) 3 (Al, Gd) 5 O 12 : Ce 3+ , La 3 Si 6 N 11 : Ce 3+ , (Sr, Ca, Ba) 3 SiO 5 : Eu 2+ , Ca -Α SiAlON: Eu 2+, (Sr, Ca) AlSiN 3: Eu 2+, (Ba, Sr, Ca) 2 Si 5 N 8: Eu 2+, Sr 2 Si 7 Al 3 O 2 N 13: Eu 2+, K 2 SiF 6 : Mn 4+ , Sr (LiAl 3 N 34 ): Eu 2+ , Al 2 O 3 : Cr 3+ can be used.
このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
1・・・発光装置
10・・・発光素子
21・・・第1の蛍光体
22・・・第2の蛍光体
30・・・封止部材
40・・・筐体
50・・・ダイパッド
60・・・ワイヤ
70・・・電気配線
DESCRIPTION OF
Claims (1)
前記発光素子を封止する封止部材と、
前記封止部材の少なくとも一部に含有され、前記発光素子からの光の一部を吸収し、前記発光素子の発光波長と異なる波長の光に変換する蛍光体と、
を備え、
前記発光素子と前記蛍光体は同系色であり、
前記蛍光体の発光ピーク波長は、前記発光素子のピーク波長から長波長側に20nm未満の範囲に位置することを特徴とする発光装置。
A light emitting element;
A sealing member for sealing the light emitting element;
A phosphor that is contained in at least a part of the sealing member, absorbs part of the light from the light emitting element, and converts the light into a light having a wavelength different from the emission wavelength of the light emitting element;
With
The light emitting element and the phosphor are similar colors,
The emission peak wavelength of the phosphor is located in a range of less than 20 nm on the long wavelength side from the peak wavelength of the light emitting element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016033042A JP2017152522A (en) | 2016-02-24 | 2016-02-24 | Light-emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016033042A JP2017152522A (en) | 2016-02-24 | 2016-02-24 | Light-emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017152522A true JP2017152522A (en) | 2017-08-31 |
Family
ID=59741052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016033042A Pending JP2017152522A (en) | 2016-02-24 | 2016-02-24 | Light-emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017152522A (en) |
-
2016
- 2016-02-24 JP JP2016033042A patent/JP2017152522A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4989936B2 (en) | Lighting device | |
EP2095438B1 (en) | Lighting device and lighting method | |
CN105814699B (en) | White light emitting device with high color rendering | |
US7859182B2 (en) | Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor | |
US7737457B2 (en) | Phosphor down converting element for an LED package and fabrication method | |
JP6365159B2 (en) | Light emitting device | |
JP5181505B2 (en) | Light emitting device | |
KR101265094B1 (en) | White light emitting diode and method for producing the same | |
US7108386B2 (en) | High-brightness LED-phosphor coupling | |
US20110012141A1 (en) | Single-color wavelength-converted light emitting devices | |
JP2009524247A5 (en) | ||
US20170047488A1 (en) | Light emitting device | |
WO2016129495A1 (en) | Light source device and light-emitting device | |
WO2016159141A1 (en) | Light-emitting device | |
WO2011129429A1 (en) | Led light-emitting device | |
CN101438428B (en) | Light emitting device | |
JP2014060328A (en) | Light-emitting device | |
KR20130079804A (en) | White light emitting device, display apparatus and illumination apparatus | |
JP2009111273A (en) | Light-emitting device | |
JP2008218998A (en) | Light emitting device | |
JP2015133221A (en) | Illumination device | |
JP2008244468A (en) | Light-emitting device | |
JP2017183522A (en) | Light-emitting device | |
JP6354607B2 (en) | Light emitting device | |
US10619802B2 (en) | Solid state white-light lamp |