JP2017149709A - Method for producing dibasic acid - Google Patents

Method for producing dibasic acid Download PDF

Info

Publication number
JP2017149709A
JP2017149709A JP2017027506A JP2017027506A JP2017149709A JP 2017149709 A JP2017149709 A JP 2017149709A JP 2017027506 A JP2017027506 A JP 2017027506A JP 2017027506 A JP2017027506 A JP 2017027506A JP 2017149709 A JP2017149709 A JP 2017149709A
Authority
JP
Japan
Prior art keywords
water
acid anhydride
cyclic acid
dibasic acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017027506A
Other languages
Japanese (ja)
Other versions
JP7034590B2 (en
Inventor
史行 田邊
Fumiyuki Tanabe
史行 田邊
隆宏 芝
Takahiro Shiba
隆宏 芝
努 小嶋
Tsutomu Kojima
努 小嶋
慶彦 赤澤
Yoshihiko Akazawa
慶彦 赤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Publication of JP2017149709A publication Critical patent/JP2017149709A/en
Application granted granted Critical
Publication of JP7034590B2 publication Critical patent/JP7034590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a dibasic acid which can easily control the moisture value and suppress the amount of an unreacted cyclic acid anhydride.SOLUTION: There is provided a method for producing a dibasic acid by reacting a cyclic acid anhydride (A) having 8-30 carbon atoms and water, wherein the reaction comprises a step of mixing and reacting the cyclic acid anhydride (A) and liquid water, the content of an inorganic solvent in the reaction system is 15% or less based on the total weight of water and the cyclic acid anhydride (A) and the molar ratio of water to the cyclic acid anhydride (A) is 0.95-8.0.SELECTED DRAWING: None

Description

本発明は二塩基酸の製造方法に関する。さらに詳しくは、環状酸無水物の加水分解による二塩基酸の製造方法に関する。   The present invention relates to a method for producing a dibasic acid. More specifically, the present invention relates to a method for producing a dibasic acid by hydrolysis of a cyclic acid anhydride.

カルボン酸を脱水縮合して得られる酸無水物は反応性に富み、様々な官能基の化合物と反応することから有機合成用途に広く用いられている。その中でも環状酸無水物はアルコールやアミン等と反応させることでカルボキシル基を導入することが出来、水と反応させることで二塩基酸を得ることが出来る等、その応用範囲は広い。   Acid anhydrides obtained by dehydration condensation of carboxylic acids are highly reactive and are widely used in organic synthesis applications because they react with compounds of various functional groups. Among them, the cyclic acid anhydride can be introduced with a carboxyl group by reacting with an alcohol, an amine or the like, and a dibasic acid can be obtained by reacting with water.

ところで、分子中に2個のカルボキシル基を有する二塩基酸は電解コンデンサ駆動用電解液の電解質として有用であり、例えばアゼライン酸、セバシン酸及び1,6−デカンジカルボン酸等の二塩基酸のアンモニウム塩は広く電解コンデンサ用電解液に用いられている。また環状酸無水物を加水分解して得られる二塩基酸のアンモニウム塩は前記二塩基酸に比べ耐電圧、導電率が高いという特徴を有するため、当該環状酸無水物と水を効率よく反応させ、二塩基酸を製造する方法は産業上重要であるといえる(特許文献1、2)。   By the way, a dibasic acid having two carboxyl groups in the molecule is useful as an electrolyte for an electrolytic solution for driving an electrolytic capacitor. For example, ammonium dibasic acid such as azelaic acid, sebacic acid and 1,6-decanedicarboxylic acid. Salt is widely used in electrolyte solutions for electrolytic capacitors. The ammonium salt of a dibasic acid obtained by hydrolyzing a cyclic acid anhydride has the characteristics that the withstand voltage and electrical conductivity are higher than those of the dibasic acid. Therefore, the cyclic acid anhydride and water are reacted efficiently. It can be said that the method for producing dibasic acid is industrially important (Patent Documents 1 and 2).

従来、酸無水物と水を反応させようとした場合、特許文献2に記載のように水蒸気を吹き込みながら反応させる方法や、非特許文献1に記載のように有機溶媒中で加水分解を行う方法が一般的にとられている。   Conventionally, when an acid anhydride and water are to be reacted, a method of reacting while blowing water vapor as described in Patent Document 2 or a method of hydrolysis in an organic solvent as described in Non-Patent Document 1 Is generally taken.

特開2000−315628号公報JP 2000-315628 A 特開2001−57320号公報JP 2001-57320 A

JOURNAL OF ORGANIC CHEMISTRY 1980年、1733〜1737ページJOURNAL OF ORGANIC CHEMISTRY 1980, pp. 1733 to 1737

しかし、特許文献2に記載の方法では、水蒸気を用いる関係上、仕込み水分量の調節が困難であるため、得られる二塩基酸に大量の水が残存するという問題点があった。二塩基酸の水分残存量が多い場合、電解コンデンサの用途によっては耐熱性が悪化するなど、好ましい性能を発揮できなくなることもある。
また、非特許文献1に記載の方法は水分量の管理が容易であるものの、電解コンデンサ用に二塩基酸を用いようとした場合には残った有機溶媒を留去する必要があり、その際せっかく得られた二塩基酸が脱水縮合により元の環状酸無水物に戻ってしまうという問題点があった。未反応の環状酸無水物の量が多いと得られるコンデンサの性能が時間経過とともに変化してしまうという問題を引き起こしうる。
However, the method described in Patent Document 2 has a problem that a large amount of water remains in the resulting dibasic acid because it is difficult to adjust the amount of water charged due to the use of water vapor. When the amount of water remaining in the dibasic acid is large, depending on the use of the electrolytic capacitor, it may not be possible to exhibit desirable performance, such as deterioration in heat resistance.
In addition, although the method described in Non-Patent Document 1 is easy to control the amount of water, when dibasic acid is used for an electrolytic capacitor, it is necessary to distill off the remaining organic solvent. There was a problem that the dibasic acid thus obtained returned to the original cyclic acid anhydride by dehydration condensation. A large amount of unreacted cyclic acid anhydride may cause a problem that the performance of the obtained capacitor changes with time.

本発明は、水分値の制御が容易であり、未反応の環状酸無水物の量を低く抑えることのできる二塩基酸の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the dibasic acid which can control the water | moisture value easily and can suppress the quantity of unreacted cyclic acid anhydride low.

本発明者らは、上記の目的を達成すべく鋭意検討を行った結果、本発明に到達した。即ち本発明は、炭素数8〜30の環状酸無水物(A)と水を反応させることにより二塩基酸を製造する方法であって、前記の反応が環状酸無水物(A)と液状の水を混合して反応させる工程を含み、反応系中の有機溶剤の含有量が水と環状酸無水物(A)の合計重量に対して10%以下であり、環状酸無水物(A)に対する水のモル比が0.95〜8.0であることを特徴とする二塩基酸の製造方法である。   As a result of intensive studies to achieve the above object, the present inventors have reached the present invention. That is, the present invention is a method for producing a dibasic acid by reacting a cyclic acid anhydride (A) having 8 to 30 carbon atoms with water, wherein the reaction is in a liquid state with the cyclic acid anhydride (A). Including a step of mixing and reacting, wherein the content of the organic solvent in the reaction system is 10% or less with respect to the total weight of water and the cyclic acid anhydride (A), and is based on the cyclic acid anhydride (A) A method for producing a dibasic acid, wherein the molar ratio of water is 0.95 to 8.0.

本発明により、環状酸無水物から二塩基酸を製造する際の水分値制御が容易となり、得られる二塩基酸中の残存有機溶媒が少なく、かつ未反応の環状酸無水物の量を低く抑えることができる。   According to the present invention, it becomes easy to control the moisture value when producing a dibasic acid from a cyclic acid anhydride, the residual organic solvent in the resulting dibasic acid is small, and the amount of unreacted cyclic acid anhydride is kept low. be able to.

本発明の製造方法は、環状酸無水物(A)と液状の水を反応させる工程を有する。
原料の環状酸無水物(A)は炭素数が8〜30である。(A)の具体例としては、炭素数8〜30のジカルボン酸(例えばスベリン酸、アゼライン酸、セバシン酸、1,6−デカンジカルボン酸及び1,10−デカンジカルボン酸等)を分子内脱水反応で環状酸無水物としたもの、炭素数4〜26のオレフィンと不飽和環状酸無水物(例えば無水マレイン酸及び無水シトラコン酸等)を反応させて得られるものが挙げられる。
上記炭素数4〜26のオレフィンの具体例としては、末端オレフィン(例えば1−ブテン、1−ヘキセン、1−オクテン、1−デセン及び1−オクタデセン等)、内部オレフィン(2−ブテン、2−ヘキサン、2−オクテン及び2−オクタデセン等)及びオレフィンのオリゴマー(例えばプロピレンダイマー、プロピレントリマー、プロピレンテトラマー及びプロピレンペンタマー等)が挙げられ、これらの内、液状の水との反応性の観点からオレフィンのオリゴマーが好ましく、プロピレンテトラマーが特に好ましい。
これらの環状酸無水物(A)のうち、液状の水との反応性の観点から、炭素数4〜26のオレフィンと無水マレイン酸が反応されて得られる化合物が好ましい。
The production method of the present invention includes a step of reacting the cyclic acid anhydride (A) with liquid water.
The raw cyclic acid anhydride (A) has 8 to 30 carbon atoms. Specific examples of (A) include intramolecular dehydration reaction of dicarboxylic acids having 8 to 30 carbon atoms (for example, suberic acid, azelaic acid, sebacic acid, 1,6-decanedicarboxylic acid and 1,10-decanedicarboxylic acid). And those obtained by reacting an olefin having 4 to 26 carbon atoms with an unsaturated cyclic acid anhydride (such as maleic anhydride and citraconic anhydride).
Specific examples of the olefin having 4 to 26 carbon atoms include terminal olefins (such as 1-butene, 1-hexene, 1-octene, 1-decene and 1-octadecene), internal olefins (2-butene, 2-hexane, etc.). , 2-octene and 2-octadecene, etc.) and oligomers of olefins (for example, propylene dimer, propylene trimer, propylene tetramer, propylene pentamer, etc.), and among these, from the viewpoint of reactivity with liquid water, Oligomers are preferred, and propylene tetramer is particularly preferred.
Of these cyclic acid anhydrides (A), a compound obtained by reacting an olefin having 4 to 26 carbon atoms with maleic anhydride is preferable from the viewpoint of reactivity with liquid water.

上記反応工程において、原料の環状酸無水物(A)と液状の水は、反応容器に投入され、そこで混合されることにより反応する。液状の水は反応時に液状であればよく、投入時の状態は気体、液状又は固体のいずれであってもよいが、仕込み量の調整が容易なことから、液状であることが好ましい。反応は密閉系で行ってもよいし開放系で行ってもよいが、投入した水分の管理の観点から、密閉系又は水が還流されるような機構(例えば冷却還流装置)を有する開放系で行うことが好ましい。   In the above reaction step, the raw material cyclic acid anhydride (A) and liquid water are charged into a reaction vessel and mixed there to react. The liquid water may be liquid at the time of reaction, and the state at the time of charging may be any of gas, liquid or solid, but it is preferably liquid because the amount charged can be easily adjusted. The reaction may be carried out in a closed system or an open system, but from the viewpoint of management of the input water, the reaction is carried out in a closed system or an open system having a mechanism (for example, a cooling reflux device) that allows water to flow back. Preferably it is done.

環状酸無水物(A)と液状の水の反応温度は、40〜180℃の範囲であることが好ましく、60〜160℃であることがより好ましく、80〜140℃であることが特に好ましい。反応温度が40℃以上であると、(A)と水の反応が十分な速度で進行するために好ましく、180℃以下であると、反応容器中の水分量が調節しやすいため好ましい。
反応時間は0.5〜10時間であることが好ましく、1〜8時間であることがより好ましく、2〜6時間であることが特に好ましい。反応時間が0.5時間以上であると、(A)と水の反応率が高くなり好ましく、10時間以下であると、生産効率の観点で好ましい。
反応容器中での(A)と液状の水の混合は、公知の混合方法を用いることができる。例えばメカニカルスターラー、マグネティックスターラー等を用いる方法が挙げられる。
The reaction temperature of the cyclic acid anhydride (A) and liquid water is preferably in the range of 40 to 180 ° C, more preferably 60 to 160 ° C, and particularly preferably 80 to 140 ° C. A reaction temperature of 40 ° C. or higher is preferable because the reaction between (A) and water proceeds at a sufficient rate, and a temperature of 180 ° C. or lower is preferable because the amount of water in the reaction vessel can be easily adjusted.
The reaction time is preferably 0.5 to 10 hours, more preferably 1 to 8 hours, and particularly preferably 2 to 6 hours. When the reaction time is 0.5 hours or longer, the reaction rate of (A) with water increases, and when it is 10 hours or shorter, it is preferable from the viewpoint of production efficiency.
A known mixing method can be used for mixing (A) and liquid water in the reaction vessel. For example, the method using a mechanical stirrer, a magnetic stirrer, etc. is mentioned.

本発明において環状酸無水物(A)と液状の水を反応させる際の有機溶媒の含有量は、(A)と水の合計重量に対して15%以下であり、10%以下であることがより好ましく、含有されていないことが特に好ましい。15%を超えて含有すると、反応後に有機溶剤を留去する際に、得られた二塩基酸が脱水縮合することで元の環状酸無水物(A)に戻る量が増加するため好ましくない。
有機溶剤は、(A)を溶解するものであれば特に限定されることなく使用することが出来る。その具体例としては、ケトン系溶剤(例えばアセトン、メチルエチルケトン及びメチルイソブチルケトン等)、芳香族系溶剤(ベンゼン、トルエン及びキシレン等)及びエステル系溶剤(酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート及びガンマブチロラクトン)が挙げられる。これらのうち芳香族系溶剤が好ましく、トルエンがより好ましい。
In the present invention, the content of the organic solvent when the cyclic acid anhydride (A) is reacted with liquid water is 15% or less and 10% or less based on the total weight of (A) and water. It is more preferable that it is not contained. When the content exceeds 15%, the dibasic acid obtained is dehydrated and condensed when the organic solvent is distilled off after the reaction, so that the amount returning to the original cyclic acid anhydride (A) is undesirably increased.
The organic solvent can be used without particular limitation as long as it dissolves (A). Specific examples thereof include ketone solvents (for example, acetone, methyl ethyl ketone and methyl isobutyl ketone), aromatic solvents (benzene, toluene, xylene, etc.) and ester solvents (ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate and the like) Gamma-butyrolactone). Of these, aromatic solvents are preferred, and toluene is more preferred.

上記反応工程における液状の水の仕込みモル比は、環状酸無水物(A)1モルに対して0.95〜8.0であり、1.0〜6.0であることが好ましく、1.05〜3.0であることがより好ましく、1.1〜1.5であることが特に好ましい。仕込みモル比が0.95未満であると、未反応の(A)が残るため好ましくなく、8.0を超えると、反応後に残存する水分量が多くなり、得られる二塩基酸がコンデンサ用途に使用困難となるため好ましくない。   The molar ratio of liquid water charged in the reaction step is 0.95 to 8.0, preferably 1.0 to 6.0, with respect to 1 mol of the cyclic acid anhydride (A). More preferably, it is 05-3.0, and it is especially preferable that it is 1.1-1.5. If the charged molar ratio is less than 0.95, it is not preferable because unreacted (A) remains, and if it exceeds 8.0, the amount of water remaining after the reaction increases, and the resulting dibasic acid can be used for capacitors. Since it becomes difficult to use, it is not preferable.

以下、実施例により本発明を更に説明するが、本発明はこれらに限定されるものではない。以下、特に定めない限り、%は重量%、部は重量部を示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these. Hereinafter, unless otherwise specified, “%” represents “% by weight” and “parts” represents “parts by weight”.

実施例における水分値はカールフィッシャー水分測定機(平沼産業株式会社製、AQV−300)を用いて測定した。
液状の水との反応率は、JIS K0070−1992 により求めた、反応前の環状酸無水物(A)の酸価と得られた二塩基酸の酸価から、以下の式に従い計算した。

反応率=100×X/{2×56100/(56100/Y+18)}
X:二塩基酸の酸価
Y:反応前の環状酸無水物(A)の酸価

反応前の環状酸無水物は1当量の塩基で中和されるが、反応後の二塩基酸は2当量の塩基が必要となるため、環状酸無水物の酸価から計算した二塩基酸の理論酸価で二塩基酸の実測した酸価を割れば、反応率を求めることができる。なお、酸価とは1gの酸成分を中和するのに必要な水酸化カリウムの重量(mg)のことである。
The moisture values in the examples were measured using a Karl Fischer moisture meter (AQV-300, manufactured by Hiranuma Sangyo Co., Ltd.).
The reaction rate with liquid water was calculated according to the following formula from the acid value of the cyclic acid anhydride (A) before the reaction and the acid value of the obtained dibasic acid obtained according to JIS K0070-1992.

Reaction rate = 100 × X / {2 × 56100 / (56100 / Y + 18)}
X: Acid value of dibasic acid Y: Acid value of cyclic acid anhydride (A) before reaction

The cyclic acid anhydride before the reaction is neutralized with 1 equivalent of the base, but the dibasic acid after the reaction requires 2 equivalents of the base, so the dibasic acid calculated from the acid value of the cyclic acid anhydride The reaction rate can be obtained by dividing the actually measured acid value of the dibasic acid by the theoretical acid value. The acid value is the weight (mg) of potassium hydroxide necessary to neutralize 1 g of the acid component.

<環状酸無水物の合成>
<製造例1>
撹拌装置及び温度制御装置付きのステンレス製オートクレーブに、1−ドデセン252部と無水マレイン酸98部を仕込み、攪拌下に室温で系内の気相部を窒素で置換し、1時間かけて220℃まで昇温した後、反応温度を220℃に制御しながら7時間反応させ、反応粗生成物350部を得た。得られた反応粗生成物を、減圧下(ゲージ圧:−0.95MPa)で4時間かけて165℃まで昇温させ、未反応の1−ドデセン84部を留去した後、さらに180℃まで昇温し、減圧下(ゲージ圧:−0.95MPa)で180℃から220℃で蒸留される成分を200部得、これを環状酸無水物(A−1)とした。
<Synthesis of cyclic acid anhydride>
<Production Example 1>
A stainless steel autoclave equipped with a stirrer and a temperature controller was charged with 252 parts of 1-dodecene and 98 parts of maleic anhydride, and the gas phase part in the system was replaced with nitrogen at room temperature under stirring. Then, the reaction temperature was controlled at 220 ° C. for 7 hours to obtain 350 parts of a crude reaction product. The obtained reaction crude product was heated to 165 ° C. under reduced pressure (gauge pressure: −0.95 MPa) over 4 hours, and after 84 parts of unreacted 1-dodecene was distilled off, further to 180 ° C. The temperature was raised and 200 parts of a component distilled at 180 ° C. to 220 ° C. under reduced pressure (gauge pressure: −0.95 MPa) was obtained, and this was designated as cyclic acid anhydride (A-1).

<製造例2>
製造例1において、1−ドデセンの代わりに、プロピレンテトラマー(商品名:PROPYLENE TETRAMER、和益化学社製)とした以外は、実施例1と同様な操作を行い、180℃まで昇温し、減圧下(ゲージ圧:−0.95MPa)で180℃から220℃で蒸留される成分を190部得、これを環状酸無水物(A−2)とした。なお、これを液体クロマトグラフ質量分析計で分析したところ、炭素数が14,15,16、17及び18の環状酸無水物の混合物であった。
<Production Example 2>
In Production Example 1, instead of 1-dodecene, the same operation as in Example 1 was carried out except that propylene tetramer (trade name: PROPYLENE TETRAMER, manufactured by Wako Chemical Co., Ltd.) was used. 190 parts of a component distilled at 180 ° C. to 220 ° C. under a lower pressure (gauge pressure: −0.95 MPa) was obtained, and this was designated as cyclic acid anhydride (A-2). When this was analyzed with a liquid chromatograph mass spectrometer, it was a mixture of cyclic acid anhydrides having 14, 15, 16, 17, and 18 carbon atoms.

<実施例1>
製造例1で製造した環状酸無水物(A−1)を、撹拌装置及び温度制御装置付きのステンレス製オートクレーブに150部(0.528モル部)と液状の水9.50部(0.528モル部)を仕込み、容器を密閉して120℃に昇温し、5時間攪拌することで(A−1)と液状の水を反応させ、二塩基酸(1)を得た。
<Example 1>
The cyclic acid anhydride (A-1) produced in Production Example 1 is placed in a stainless steel autoclave equipped with a stirrer and a temperature control device in 150 parts (0.528 mol part) and liquid water 9.50 parts (0.528). (Mole part) was charged, the container was sealed, the temperature was raised to 120 ° C., and the mixture was stirred for 5 hours to cause (A-1) to react with liquid water to obtain dibasic acid (1).

<実施例2〜10、比較例1〜2>
表1に示す部数の環状酸無水物(A−2)と水を仕込んだ以外は実施例1と同様にして行い、二塩基酸(2)〜(10)及び比較の二塩基酸(1’)〜(2’)を得た。
<Examples 2 to 10, Comparative Examples 1 and 2>
The same procedure as in Example 1 was carried out except that the parts of the cyclic acid anhydride (A-2) and water shown in Table 1 were charged, and the dibasic acid (2) to (10) and the comparative dibasic acid (1 ′ ) To (2 ′) were obtained.

<実施例11>
表1に示す部数の環状酸無水物(A−2)と水を仕込み、ここに有機溶剤としてトルエン8.02部(A−2と水の合計重量に対して5.0%)をさらに仕込み、以下実施例1と同様にして反応を行った。続いて90℃、減圧条件下(0.5kPa)で2時間加熱することでトルエンを留去し、二塩基酸(11)を得た。
<Example 11>
The number of cyclic acid anhydrides (A-2) and water shown in Table 1 are charged, and 8.02 parts of toluene (5.0% based on the total weight of A-2 and water) is further charged as an organic solvent. Thereafter, the reaction was carried out in the same manner as in Example 1. Subsequently, toluene was distilled off by heating at 90 ° C. under reduced pressure (0.5 kPa) for 2 hours to obtain dibasic acid (11).

<実施例12>
トルエンの仕込み量を16.04部に変更した以外は実施例11と同様にして行い、二塩基酸(12)を得た。
<Example 12>
The dibasic acid (12) was obtained in the same manner as in Example 11 except that the amount of toluene charged was changed to 16.04 parts.

<比較例3>
トルエンの仕込み量を32.08部に変更した以外は実施例11と同様にして行い、比較の二塩基酸(3’)を得た。
<Comparative Example 3>
A comparative dibasic acid (3 ′) was obtained in the same manner as in Example 11 except that the amount of toluene charged was changed to 32.08 parts.

<比較例4>
製造例2で製造した環状酸無水物(A−2)を、撹拌装置及び温度制御装置付きのステンレス製オートクレーブに150部(0.528モル部)を仕込み、4kPaの水蒸気を吹き込みながら、30分間攪拌することで(A−2)が開環した、比較の二塩基酸(4’)を得た。
<Comparative Example 4>
The cyclic acid anhydride (A-2) produced in Production Example 2 was charged in 150 parts (0.528 mole part) in a stainless steel autoclave equipped with a stirrer and a temperature control device, while blowing 4 kPa of steam for 30 minutes. A comparative dibasic acid (4 ′) in which (A-2) was opened by stirring was obtained.

上記実施例及び比較例で製造した二塩基酸の反応率と水分量を表1にまとめた。   Table 1 summarizes the reaction rates and water contents of the dibasic acids produced in the above Examples and Comparative Examples.

Figure 2017149709
Figure 2017149709

表1から明らかなように、本発明の製造方法により製造した二塩基酸は、いずれも90%以上の高い反応率を有し、仕込んだ水の量により水分量の制御が容易である。仕込み水量が少ない比較例1では、水分量が低く制御できるが反応率が90%未満と低くなっている。仕込み水量が多すぎる比較例2では、水分量が高くなりすぎるため好ましくない。有機溶剤を大量に含む比較例3の方法で得られた二塩基酸は、脱溶剤の工程で二塩基酸が元の環状酸無水物(A)に戻るため、反応率が低くなる。水蒸気を吹き込むことで反応させる比較例4の方法は、水分量の制御が困難であり、電解コンデンサ用途で用いる二塩基酸としては水分量が高すぎることが分かる。   As is apparent from Table 1, each of the dibasic acids produced by the production method of the present invention has a high reaction rate of 90% or more, and the water content can be easily controlled by the amount of water charged. In Comparative Example 1 with a small amount of charged water, the amount of water can be controlled to be low, but the reaction rate is as low as 90%. In Comparative Example 2 in which the amount of charged water is too large, the amount of water becomes too high, which is not preferable. The dibasic acid obtained by the method of Comparative Example 3 containing a large amount of organic solvent has a low reaction rate because the dibasic acid returns to the original cyclic acid anhydride (A) in the solvent removal step. In the method of Comparative Example 4 in which the reaction is performed by blowing water vapor, it is difficult to control the amount of water, and it can be seen that the amount of water is too high as a dibasic acid used in electrolytic capacitor applications.

本発明の製造方法により、水分値が制御され、未反応の環状酸無水物の量が低い二塩基酸を得ることができ、得られた二塩基酸は、各種材料、特に電解コンデンサ駆動用電解液の電解質として有用である。   By the production method of the present invention, a dibasic acid having a controlled moisture value and a low amount of unreacted cyclic acid anhydride can be obtained, and the obtained dibasic acid can be used for various materials, particularly for electrolytic capacitor driving. It is useful as a liquid electrolyte.

Claims (2)

炭素数8〜30の環状酸無水物(A)と水を反応させることにより二塩基酸を製造する方法であって、前記の反応が環状酸無水物(A)と液状の水を混合して反応させる工程を含み、反応系中の有機溶剤の含有量が水と環状酸無水物(A)の合計重量に対して15%以下であり、環状酸無水物(A)に対する水のモル比が0.95〜8.0であることを特徴とする二塩基酸の製造方法。   A method for producing a dibasic acid by reacting a cyclic acid anhydride (A) having 8 to 30 carbon atoms with water, wherein the reaction comprises mixing the cyclic acid anhydride (A) and liquid water. The organic solvent content in the reaction system is 15% or less with respect to the total weight of water and the cyclic acid anhydride (A), and the molar ratio of water to the cyclic acid anhydride (A) is It is 0.95-8.0, The manufacturing method of the dibasic acid characterized by the above-mentioned. 環状酸無水物(A)が、無水マレイン酸と炭素数4〜26のオレフィンが反応されて得られる化合物である請求項1に記載の二塩基酸の製造方法。   The method for producing a dibasic acid according to claim 1, wherein the cyclic acid anhydride (A) is a compound obtained by reacting maleic anhydride and an olefin having 4 to 26 carbon atoms.
JP2017027506A 2016-02-24 2017-02-17 Method for producing dibasic acid Active JP7034590B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016032824 2016-02-24
JP2016032824 2016-02-24

Publications (2)

Publication Number Publication Date
JP2017149709A true JP2017149709A (en) 2017-08-31
JP7034590B2 JP7034590B2 (en) 2022-03-14

Family

ID=59741355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017027506A Active JP7034590B2 (en) 2016-02-24 2017-02-17 Method for producing dibasic acid

Country Status (1)

Country Link
JP (1) JP7034590B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2741597A (en) * 1952-03-08 1956-04-10 Texas Co Manufacture of alkenyl succinic acid
JPS6054337A (en) * 1983-09-05 1985-03-28 Kao Corp Preparation of alkenylsuccinate
JPS61134342A (en) * 1984-12-04 1986-06-21 Nippon Jiyouriyuu Kogyo Kk Production of organic acid from solid organic acid anhydride
JPH01186839A (en) * 1988-01-14 1989-07-26 Daicel Chem Ind Ltd Recovery of aromatic acid anhydride
JP2002544141A (en) * 1995-05-26 2002-12-24 ヘンケル コーポレーション Azelaic acid concentration process
JP2008539205A (en) * 2005-04-29 2008-11-13 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing tetracarboxylic acid
JP2014193826A (en) * 2013-03-29 2014-10-09 Kawaken Fine Chemicals Co Ltd Novel alkylsuccinate and detergent composition containing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2741597A (en) * 1952-03-08 1956-04-10 Texas Co Manufacture of alkenyl succinic acid
JPS6054337A (en) * 1983-09-05 1985-03-28 Kao Corp Preparation of alkenylsuccinate
JPS61134342A (en) * 1984-12-04 1986-06-21 Nippon Jiyouriyuu Kogyo Kk Production of organic acid from solid organic acid anhydride
JPH01186839A (en) * 1988-01-14 1989-07-26 Daicel Chem Ind Ltd Recovery of aromatic acid anhydride
JP2002544141A (en) * 1995-05-26 2002-12-24 ヘンケル コーポレーション Azelaic acid concentration process
JP2008539205A (en) * 2005-04-29 2008-11-13 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing tetracarboxylic acid
JP2014193826A (en) * 2013-03-29 2014-10-09 Kawaken Fine Chemicals Co Ltd Novel alkylsuccinate and detergent composition containing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUSSIAN JOURNAL OF GENERAL CHEMISTRY, vol. 85, no. 10, JPN6020028767, 2015, pages 2378 - 2385, ISSN: 0004570130 *

Also Published As

Publication number Publication date
JP7034590B2 (en) 2022-03-14

Similar Documents

Publication Publication Date Title
Kovash Jr et al. Thermoset coatings from epoxidized sucrose soyate and blocked, bio‐based dicarboxylic acids
JP5466256B2 (en) Aluminum electrolytic capacitor electrolyte and method for producing core solute thereof
WO2019206199A1 (en) Degradable hyperbranched epoxy resin and preparation method therefor
JPS60222473A (en) Reaction of olefin with maleic anhydride
WO2016017318A1 (en) Method for improving preservation stability of 2,2-difluoroacetoaldehyde
JP2019503420A (en) Method for producing polymeric imidazolium compound using no monoaldehyde or almost no monoaldehyde
JP7034590B2 (en) Method for producing dibasic acid
KR20140119003A (en) Curable water soluble epoxy acrylate resin compositions
JP6447988B2 (en) Composition containing cyclic siloxane compound, method for producing cyclic siloxane compound, and method for producing siloxane polymer
JP6355530B2 (en) 2-OXAZOLONES AND METHOD FOR PRODUCING 2-OXAZOLONES
Seuyep Ntoukam et al. Postpolymerization modification of reactive polymers derived from vinylcyclopropane. III. Polymer sequential functionalization using a combination of amines with alkoxyamines, hydrazides, isocyanates, or acyl halides
KR20140041380A (en) Method for synthesizing beta-dicarbonyl compounds
JP2018520134A5 (en)
RU2296134C2 (en) Method for production of alkenylsuccinic acid imides
RU2725885C1 (en) Method of producing alkenylphthalamido- and amidophthalideno succinimides based on ethylenediamine and triethylene tetramine
TWI542583B (en) Oxidation process
JP6583050B2 (en) Method for producing organopolysiloxane
JP2020019745A (en) Cyclocarbonate group-containing (meth) acrylate monomer
JPH1192543A (en) Aromatic hydrocarbon/formaldehyde resin
TWI789520B (en) Composition and manufacturing method thereof
Tyler et al. Sterically hindered malonamide monomers for the step growth synthesis of polyesters and polyamides
US10336680B2 (en) Process for preparing bis(2-hydroxyethyl) terephthalate
TWI810207B (en) Production method of phenolic polymer
WO2016004632A1 (en) Claisen rearrangement of allyl aryl ethers catalysed by alkaline-earth-metal salt
JP6766459B2 (en) Method for producing carboxylic acid ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R150 Certificate of patent or registration of utility model

Ref document number: 7034590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150