JP2017148858A - Laser welded section steel made of stainless steel and manufacturing method thereof - Google Patents

Laser welded section steel made of stainless steel and manufacturing method thereof Download PDF

Info

Publication number
JP2017148858A
JP2017148858A JP2016036178A JP2016036178A JP2017148858A JP 2017148858 A JP2017148858 A JP 2017148858A JP 2016036178 A JP2016036178 A JP 2016036178A JP 2016036178 A JP2016036178 A JP 2016036178A JP 2017148858 A JP2017148858 A JP 2017148858A
Authority
JP
Japan
Prior art keywords
stainless steel
mass
less
laser
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016036178A
Other languages
Japanese (ja)
Inventor
朝田 博
Hiroshi Asada
博 朝田
徹 家成
Toru Ienari
徹 家成
康弘 桜田
Yasuhiro Sakurada
康弘 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2016036178A priority Critical patent/JP2017148858A/en
Publication of JP2017148858A publication Critical patent/JP2017148858A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser welded section steel made of stainless steel which comprises a corner joint part, suppresses occurrence of temper color on a flange material surface, and has a high corrosion resistance and an excellent appearance.SOLUTION: A corner welded section steel made of stainless steel comprises: a laser welded joint part between a web material and a flange material, among surfaces of flange material of which a rear surface with respect to the welded part has a color difference ΔEbased on JIS Z 8730 equal to or less than 50 measured immediately after welding, and a maximum strain amount in a height direction of the flange material equal to or less than 0.2 mm. The welded section steel is made using a laser welding method with a laser beam emission as a welding method to be applied thereto, in which a temperature of the surface of the flange material being the rear surface of the welded part is controlled to be lower than 200°C during a period from the start to the end of welding.SELECTED DRAWING: Figure 1

Description

本発明は、ステンレス鋼を素材としてレーザ光を熱源としたレーザ溶接によって角継手部やT字継手部を形成した溶接形鋼に関する。   The present invention relates to a welded shape steel in which a corner joint portion or a T-shaped joint portion is formed by laser welding using stainless steel as a material and laser light as a heat source.

近年、建築物の躯体を構成する梁等に用いられているC形鋼等の形鋼を製造する方法として、フランジ材とウェブ材二つの部材で形成した角継手部にレーザ光を照射するレーザ溶接法が検討されるようになっている。
例えば特許文献1に見られるように、フランジ材とウェブ材に一定角度の開先を設けて突き合わせ、その突き合わせ面と平行な角度でレーザ光を照射している。
この方法では、貫通したレーザ光が部材表面を損傷することはないが、加熱によって溶接部周辺のフランジ材やウェブ材の表面に酸化皮膜が発生し、これを除去することが必要なため効率的に製造できない。
In recent years, as a method of manufacturing a shape steel such as a C-shaped steel used for a beam or the like constituting a building frame, a laser for irradiating a laser beam to a corner joint formed by two members of a flange material and a web material Welding methods are being considered.
For example, as can be seen in Patent Document 1, a groove having a certain angle is provided between the flange material and the web material, and the laser beam is irradiated at an angle parallel to the abutting surface.
In this method, the penetrating laser beam does not damage the surface of the member, but it is efficient because heating forms an oxide film on the surface of the flange material and web material around the weld and it is necessary to remove it. Cannot be manufactured.

また、このような溶接形鋼の中には、特許文献2に見られるような海浜地域の橋梁や道路資材、建築物の部材として、メンテナンスフリーとなるように耐食性が非常に高いステンレス鋼を素材としたものが検討されている。
特許文献2では、ステンレス鋼を溶接する際に生じる変形を抑えて、矯正をほとんど必要としないことを目的にレーザ溶接を適用している。
しかし、ステンレス鋼を大気中でレーザ溶接した場合は、溶接部近傍や溶接部の裏面に相当する板材表面にテンパーカラーと呼ばれる酸化皮膜が発生してしまう。
In addition, among these welded steels, stainless steel with extremely high corrosion resistance is used as a bridge, road material, and building member in the beach area as seen in Patent Document 2 so that it is maintenance-free. Are considered.
In Patent Document 2, laser welding is applied for the purpose of suppressing deformation that occurs when welding stainless steel and requiring little correction.
However, when laser welding is performed on stainless steel in the atmosphere, an oxide film called a temper color is generated on the surface of the plate material corresponding to the vicinity of the weld or the back surface of the weld.

実開平5−18783号公報Japanese Utility Model Laid-Open No. 5-18783 特開平11−123575号公報Japanese Patent Laid-Open No. 11-123575

このテンパーカラーは、クロム酸化物であるためステンレス鋼中のクロム量が減少してしまうことから、耐食性が低下するとともに外観も劣化してしまい、溶接後にテンパーカラーを除去することが必要である。
溶接部近傍は外観に晒されることが少ないため、テンパーカラーをブラシなどで除去してもほとんど問題にならないが、外観に晒されるフランジ材表面はテンパーカラーを除去した研磨目をさらに小さくする研磨工程が必要であり、生産性が非常に低くなる。
Since this temper color is a chromium oxide, the amount of chromium in the stainless steel is reduced, so that the corrosion resistance is lowered and the appearance is also deteriorated, and it is necessary to remove the temper color after welding.
Since the vicinity of the weld is rarely exposed to the appearance, removing the temper color with a brush or the like is not a problem, but the flange material surface exposed to the appearance is a polishing process that further reduces the polishing eyes from which the temper color has been removed. Is required, and productivity becomes very low.

また、レーザ溶接は加熱領域が狭いために熱変形は比較的小さいが、フランジ材とウェブ材が位置ずれを起こさないように固定して溶接するため、フランジ材表面にひずみが発生しやすくなり、これによってフランジ材表面の外観が悪化してしまう。
これらのテンパーカラーや部材表面のひずみの問題は、角継手部を有する形鋼、T字継手部を有する形鋼、角継手部とT字継手部の両方を有する形鋼のいずれにも発生するものである。
In addition, laser welding has a relatively small heating area, so thermal deformation is relatively small, but the flange material and web material are fixed and welded so as not to cause positional displacement, so the surface of the flange material is likely to be distorted, This deteriorates the appearance of the flange material surface.
The problem of distortion of these temper collars and member surfaces occurs in any shape steel having a corner joint portion, shape steel having a T-shaped joint portion, and shape steel having both a corner joint portion and a T-shaped joint portion. Is.

本発明は、このような問題を解消すべく案出されたものであり、ステンレス鋼を素材として角継手部あるいはT字継手部、さらには角継手部とT字継手部の両方を備えたレーザ溶接形鋼であって、溶接時に発生するフランジ材表面のテンパーカラーやひずみを抑えて耐食性や外観に優れたレーザ溶接形鋼を提供することを目的とする。   The present invention has been devised to solve such problems, and a laser comprising a stainless steel as a raw material and having a corner joint portion or a T-shaped joint portion, and both a corner joint portion and a T-shaped joint portion. An object of the present invention is to provide a laser welded shape steel which is a welded shape steel and has excellent corrosion resistance and appearance by suppressing the temper color and distortion on the surface of the flange material generated during welding.

本発明のレーザ溶接形鋼は、その目的を達成するため、ステンレス鋼板を素材とするフランジ材とウェブ材で角継手部あるいはT字継手部、さらには角継手部とT字継手部の両方を備えたレーザ溶接形鋼であり、それぞれのフランジ材の表面のうち溶接部の裏面にあたる位置におけるJIS Z 8730に基づいた色差ΔEが溶接直後に50以下で、かつ最大ひずみ量が0.2mm以下であることを特徴としている。ここで、ΔEは以下の式(1)にしたがって算出される。
ΔE=〔(ΔL+(Δa+(Δb1/2 (1)
ΔEの色差成分のΔL、Δa、Δbは、白色標準板(L=96、a=−0.2、b=0.4)を基準としている。
In order to achieve the object, the laser welded shape steel of the present invention has a flange joint and a web material made of stainless steel plates as a corner joint portion or a T-joint portion, and both a corner joint portion and a T-joint portion. The color difference ΔE * based on JIS Z 8730 at the position corresponding to the back surface of the welded portion of the surface of each flange material is 50 or less immediately after welding, and the maximum strain is 0.2 mm or less. It is characterized by being. Here, ΔE * is calculated according to the following equation (1).
ΔE * = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2 (1)
The ΔE * color difference components ΔL * , Δa * , Δb * are based on a white standard plate (L * = 96, a * = − 0.2, b * = 0.4).

また、ステンレス鋼として、フェライト系ステンレス鋼とすることや、そのフェライト系ステンレス鋼の成分がC:0.025質量%以下、Si:0.60質量%以下、Mn:1.00質量%以下、P:0.040質量%以下、S:0.020質量%以下、Ni:0.60質量%以下、Cr:16.00〜35.00質量%、Mo:0.30〜6.00質量%、N:0.025質量%以下を含むことも特徴としている。
さらに、前記のステンレス鋼に、Nb:0.10〜1.00質量%、Ti:0.05〜0.30質量%、Al:0.01〜0.50質量%のうち1種または2種以上を含むフェライト系ステンレス鋼を用いることもできる。
Moreover, as stainless steel, it is set as ferritic stainless steel, The component of the ferritic stainless steel is C: 0.025 mass% or less, Si: 0.60 mass% or less, Mn: 1.00 mass% or less, P: 0.040 mass% or less, S: 0.020 mass% or less, Ni: 0.60 mass% or less, Cr: 16.00 to 35.00 mass%, Mo: 0.30 to 6.00 mass% N: 0.025% by mass or less is also included.
Furthermore, one or two of Nb: 0.10 to 1.00% by mass, Ti: 0.05 to 0.30% by mass, and Al: 0.01 to 0.50% by mass are added to the stainless steel. Ferritic stainless steel including the above can also be used.

前記のステンレス鋼製レーザ溶接形鋼を製造する方法としては、ステンレス鋼板を素材としたフランジ材とウェブ材で角継手部あるいはT字継手部、さらには角継手部とT字継手部の両方を備えた溶接形鋼を製造する際に、溶接法としてレーザ光を照射するレーザ溶接法を用い、それぞれのフランジ材の表面のうち、溶接部の裏面にあたる位置の温度を溶接開始から溶接終了までの間で200℃未満とすることを特徴としている。   As a method of manufacturing the above-mentioned stainless steel laser welded shape steel, a flange member and a web material made of stainless steel plate are used as a corner joint portion or a T-shaped joint portion, and further, both a corner joint portion and a T-shaped joint portion are used. When manufacturing the welded shape steel provided, laser welding method that irradiates laser light as a welding method is used, and the temperature at the position corresponding to the back surface of the welded portion of the surface of each flange material is measured from the start of welding to the end of welding. It is characterized by being less than 200 ° C.

本発明によるレーザ溶接形鋼は、フランジ材の表面のうち溶接部の裏面にあたる位置において溶接時のテンパーカラーの発生や矯正後の最大ひずみ量を抑えているため、耐食性や外観に優れている。また、ウェブ材とフランジ材に関して、相対的に線膨張係数が低くて熱伝導率が大きいフェライト系ステンレス鋼を用いた場合には、オーステナイト系ステンレス鋼を用いる場合よりもフランジ材表面の最大ひずみ量を小さくすることができる。さらに、テンパーカラーの発生を抑えるために、フランジ材の表面のうち溶接部の裏面にあたる位置の溶接中における表面温度を制御しているため、生産性を損なうことなくステンレス鋼製レーザ溶接形鋼を製造することが可能である。   The laser welded shape steel according to the present invention is excellent in corrosion resistance and appearance because it suppresses generation of a temper collar during welding and the maximum strain after correction at a position corresponding to the back surface of the welded portion of the surface of the flange material. In addition, when using ferritic stainless steel with a relatively low linear expansion coefficient and high thermal conductivity for the web and flange material, the maximum strain on the flange material surface is greater than when using austenitic stainless steel. Can be reduced. Furthermore, in order to suppress the occurrence of temper collar, the surface temperature during welding at the position corresponding to the back of the welded portion of the surface of the flange material is controlled, so the stainless steel laser welded steel can be used without sacrificing productivity. It is possible to manufacture.

角継手部を片側からの1パス照射でレーザ溶接する方法を説明する図The figure explaining the method of laser welding a corner joint part by one-pass irradiation from one side 角継手部とT字継手部を備えたレーザ溶接形鋼をレーザ溶接する方法を説明する図The figure explaining the method of carrying out the laser welding of the laser welded shape steel provided with the corner joint part and the T-shaped joint part フランジ材の高さ方向の最大ひずみ量の測定方法を説明する図Diagram explaining how to measure the maximum amount of strain in the height direction of the flange material

本発明のステンレス鋼製レーザ溶接形鋼1は、図1に示すように、フランジ材2にウェブ材3の端部を垂直に押し当てて形作られた角継手部に対し、片側からの1パスによるレーザ光4の照射を行い、ウェブ材3の端部をレーザ光4の照射側と反対側まで溶融させて溶接することにより製造する。この際に、フランジ材2に対するレーザ光4の照射角度θを30度以下としている。レーザ光4を傾斜させて照射するのは、フランジ材2の板厚がウェブ材3の板厚より厚い場合に、一定の接合強度を確保する目的でフランジ材2への溶け込みを大きくするためである。   As shown in FIG. 1, the laser-welded section 1 made of stainless steel according to the present invention has one pass from one side to a corner joint formed by pressing the end of the web material 3 vertically against the flange material 2. It is manufactured by irradiating the laser beam 4 according to, melting the end of the web material 3 to the side opposite to the side irradiated with the laser beam 4 and welding. At this time, the irradiation angle θ of the laser beam 4 to the flange material 2 is set to 30 degrees or less. The reason for irradiating the laser beam 4 with an inclination is to increase the penetration into the flange material 2 in order to ensure a certain bonding strength when the thickness of the flange material 2 is thicker than the thickness of the web material 3. is there.

このような方法でステンレス製レーザ形鋼を製造した際に、フランジ材2の表面のうち溶接部の裏面にあたる位置5には、フランジ材2の表面温度に応じてテンパーカラーが発生する。本発明者らは、このときテンパーカラーの発生によってフランジ材2の表面の色が変化することに着目してテンパーカラーの発生状況が色差を指標として捉えられることを見出した。
図1に示した方法で、板厚2.3mmのSUS304を素材とし、溶接速度を変化させてレーザ溶接を行い、フランジ材2の表面における溶接部の裏面にあたる位置5の色差ΔEを、JIS Z 8730に基づいて測定した。その結果、色差ΔEが50以下であれば、テンパーカラーの発生が目視確認されなかった。そこで、色差ΔEが50以下であることをテンパーカラー発生なしとする指標とした。
When a stainless steel shape steel is manufactured by such a method, a temper color is generated at a position 5 corresponding to the back surface of the welded portion of the surface of the flange member 2 according to the surface temperature of the flange member 2. The inventors of the present invention have found that the occurrence of temper color can be grasped by using the color difference as an index, paying attention to the fact that the color of the surface of the flange member 2 changes due to the occurrence of temper color.
With the method shown in FIG. 1, SUS304 having a plate thickness of 2.3 mm is used as a raw material, laser welding is performed while changing the welding speed, and the color difference ΔE * of the position 5 corresponding to the back surface of the welded portion on the surface of the flange material 2 is determined according to JIS. Measured based on Z 8730. As a result, when the color difference ΔE * was 50 or less, the occurrence of temper color was not visually confirmed. Therefore, the color difference ΔE * of 50 or less was used as an indicator that no temper color was generated.

また、溶接中に、フランジ材2の表面のうち溶接部の裏面にあたる位置5の温度を測定したところ、200℃未満であればテンパーカラーの発生がなく、色差ΔEが50以下であることを見出した。そこで、本発明のステンレス鋼製レーザ溶接形鋼の製造方法としては、フランジ材2の表面のうち、溶接中における溶接部の裏面にあたる位置5の表面温度を200℃未満とするようにした。
具体的には、溶接速度などの溶接条件を調整することや、溶接中にフランジ材2の表面を冷却することによって200℃未満の状態が実現できる。冷却方法としては特に限定しないが、フランジ材2の表面にロールを接触させる方法や液体や気体を噴射するなどを用いることができる。
Further, when the temperature at the position 5 corresponding to the back surface of the welded portion of the surface of the flange member 2 was measured during welding, no temper color was generated and the color difference ΔE * was 50 or less if it was less than 200 ° C. I found it. Therefore, as a method for manufacturing the stainless steel laser welded shape steel of the present invention, the surface temperature of the position 5 corresponding to the back surface of the welded part during welding is made less than 200 ° C. among the surfaces of the flange member 2.
Specifically, a state of less than 200 ° C. can be realized by adjusting the welding conditions such as the welding speed or cooling the surface of the flange member 2 during welding. Although it does not specifically limit as a cooling method, The method of making a roll contact the surface of the flange material 2, or injecting a liquid or gas can be used.

ウェブ材とフランジ材を角継手で溶接した際には、フランジ材2の表面にひずみが発生するが、この最大ひずみ量を前記のテンパーカラー発生状況の実験と同じ条件で確認したところ、フランジ材2の高さ方向の最大ひずみ量が0.2mm以下であれば外観上問題ないことを見出した。   When the web material and the flange material are welded with a square joint, strain is generated on the surface of the flange material 2, and the maximum strain amount was confirmed under the same conditions as in the experiment of the temper collar generation condition. It was found that there is no problem in appearance if the maximum strain amount in the height direction of 2 is 0.2 mm or less.

テンパーカラーと色差ΔEの関係やフランジ材2の表面の最大ひずみ量の状況については、前記のように角継手について実施したが、いずれの現象もフランジ材2の表面の温度が原因であるため、T字継手においても同様な指標を用いることができる As for the relationship between the temper color and the color difference ΔE * and the situation of the maximum strain amount on the surface of the flange material 2, the corner joint was implemented as described above, but both phenomena are caused by the temperature of the surface of the flange material 2. A similar index can be used for a T-shaped joint.

本発明における素材としては、ステンレス鋼であれば特に限定せず、オーステナイト系ステンレス鋼やフェライト系ステンレス鋼、マルテンサイトステンレス鋼などが使用できる。
このうち、フェライト系ステンレス鋼を用いた場合は、フランジ材2の表面の最大ひずみ量をより小さくすることができる。これは、他のステンレス鋼と比較してフェライト系ステンレス鋼が低い線膨張係数であることと高い熱伝導率を有していることに起因する。つまり、線膨張係数が低いことと、熱伝導率が高いために製造時に冷却効果が高いことから熱変形量が比較的小さく、これによって溶接後のフランジ材2の矯正が行いやすくなる。このため、良好な外観のフランジ材2の表面を有するステンレス鋼製レーザ溶接形鋼を実現することができる。
As a raw material in this invention, if it is stainless steel, it will not specifically limit, Austenitic stainless steel, ferritic stainless steel, martensitic stainless steel, etc. can be used.
Among these, when ferritic stainless steel is used, the maximum strain amount on the surface of the flange member 2 can be further reduced. This is due to the fact that ferritic stainless steel has a lower coefficient of linear expansion and higher thermal conductivity than other stainless steels. That is, since the coefficient of thermal expansion is low because the coefficient of thermal expansion is high and the cooling effect is high at the time of manufacture, the amount of thermal deformation is relatively small, which makes it easy to correct the flange material 2 after welding. For this reason, the stainless steel laser welded shape steel which has the surface of the flange material 2 of a favorable external appearance is realizable.

また、特に製品コストや耐食性確保が必要とされる場合は、以下の成分範囲を含むフェライト系ステンレス鋼を用いることができる。
C:0.025質量%以下
Cは、鋼の強度を得るために有用な元素であるが、多量に含むと耐食性を低下させる傾向にある。Cの含有量は、0.025質量%以下が好まし。
Si:0.60質量%以下
Siは、製鋼工程における脱酸剤及び熱源として有用な元素であるが、多量に含むと鋼を硬化させる傾向にある。Siの含有量は、0.60質量%以下が好ましい。
Mn:1.00質量%以下
Mnは、製鋼工程における脱酸剤として有用な元素であるが、多量に含むとオーステナイト相を形成する傾向にある。Mnの含有量は、1.00質量%以下が好ましい。
P:0.040質量%以下
Pは、耐食性を低下させる傾向にある。Pの含有量は、0.040質量%以下が好ましい。
S:0.020質量%以下
Sは、耐食性を低下させる傾向にある。Sの含有量は、0.020質量%以下が好ましい。
Ni:0.60質量%以下
Niは、腐食の進行を抑制する効果やフェライト系ステンレス鋼の靱性改善に有効である点で好ましいが、多すぎるとオーステナイト相の生成やコスト高の原因となる。Niの含有量は、0.60質量%以下が好ましい。
Cr:16.00〜35.00質量%
Crは、耐食性を確保するために有用な元素であるが、多量に含むと高コストだけでなく加工性が低下する傾向にある。Crの含有量は、16.00〜35.00質量%が好ましい。
Mo:0.30〜6.00質量%
Moは、Crの存在下でステンレス鋼の耐食性を向上させるために有用な元素であるが、多量に含むと高コストだけでなく加工性が低下する傾向にある。Moの含有量は、0.30〜6.00質量%が好ましい。
N:0.025質量%以下
Nは、Cと同様に多量に含むと耐食性を低下させる傾向にある。Nの含有量は、0.025質量%以下が好ましい。
In particular, when it is necessary to secure product cost and corrosion resistance, ferritic stainless steel including the following component ranges can be used.
C: 0.025% by mass or less C is an element useful for obtaining the strength of steel, but when it is contained in a large amount, it tends to lower the corrosion resistance. The C content is preferably 0.025% by mass or less.
Si: 0.60% by mass or less Si is an element useful as a deoxidizer and a heat source in the steel making process, but when it is contained in a large amount, it tends to harden the steel. The content of Si is preferably 0.60% by mass or less.
Mn: 1.00% by mass or less Mn is an element useful as a deoxidizing agent in the steel making process, but when included in a large amount, Mn tends to form an austenite phase. The Mn content is preferably 1.00% by mass or less.
P: 0.040% by mass or less P tends to lower the corrosion resistance. The P content is preferably 0.040% by mass or less.
S: 0.020% by mass or less S tends to lower the corrosion resistance. The content of S is preferably 0.020% by mass or less.
Ni: 0.60% by mass or less Ni is preferable in terms of the effect of suppressing the progress of corrosion and the effect of improving the toughness of ferritic stainless steel. The Ni content is preferably 0.60% by mass or less.
Cr: 16.00-35.00 mass%
Cr is an element useful for ensuring corrosion resistance. However, when it is contained in a large amount, Cr tends to decrease not only in high cost but also in workability. The content of Cr is preferably 16.00 to 35.00% by mass.
Mo: 0.30 to 6.00 mass%
Mo is an element useful for improving the corrosion resistance of stainless steel in the presence of Cr, but if it is contained in a large amount, it tends to reduce not only the cost but also the workability. The content of Mo is preferably 0.30 to 6.00 mass%.
N: 0.025% by mass or less N, when contained in a large amount like C, tends to lower the corrosion resistance. The N content is preferably 0.025% by mass or less.

本発明のステンレス鋼製レーザ溶接形鋼は、さらに、Nb:0.10〜1.00質量%、Ti:0.05〜0.30質量%、Al:0.01〜0.50質量%のうち1種または2種以上を含むフェライト系ステンレス鋼をさらに耐食性が向上するため用いることもできる。
Nb:0.10〜1.00質量%
Nbは、C、Nとの親和力が強くフェライト系ステンレス鋼の粒界腐食を抑制する点で好ましいが、多量のNb含有は靱性を阻害する傾向にある。Nbの含有量は、0.10〜1.00質量%が好ましい。
Ti:0.05〜0.30質量%
Tiは、C、Nとの親和力が強くフェライト系ステンレス鋼の粒界腐食を抑制する点で好ましいが、多量のTi含有は鋼の表面品質を低下させる傾向にある。Tiの含有量は、0.05〜0.30質量%がより好ましい。
Al:0.01〜0.50質量%
Alは、脱酸剤として精錬や鋳造に有効な元素であるが、過剰に添加すると表面品質を劣化させるとともに、鋼の溶接性や低温靭性を低下させる。Alの含有量は、0.01〜0.50質量%がより好ましい。
The stainless steel laser welded shape steel of the present invention further includes Nb: 0.10 to 1.00% by mass, Ti: 0.05 to 0.30% by mass, Al: 0.01 to 0.50% by mass. Among them, ferritic stainless steel containing one or more types can be used for further improving the corrosion resistance.
Nb: 0.10 to 1.00% by mass
Nb has a strong affinity with C and N and is preferable in terms of suppressing the intergranular corrosion of ferritic stainless steel, but a large amount of Nb tends to inhibit toughness. The content of Nb is preferably 0.10 to 1.00% by mass.
Ti: 0.05-0.30 mass%
Ti is preferable because it has a strong affinity with C and N and suppresses intergranular corrosion of ferritic stainless steel, but a large amount of Ti tends to deteriorate the surface quality of the steel. As for content of Ti, 0.05-0.30 mass% is more preferable.
Al: 0.01 to 0.50 mass%
Al is an effective element for refining and casting as a deoxidizer, but if it is added excessively, it degrades the surface quality and lowers the weldability and low temperature toughness of steel. As for Al content, 0.01-0.50 mass% is more preferable.

板厚が2.3mm、3.2mm、4.5mmのSUS304をフランジ材2およびウェブ材3として、表1に示すレーザ溶接条件でレーザ溶接形鋼1を図1に示した方法で製造した。レーザ4光の照射角度θは、20°とした。
溶接後には、フランジ材2の溶接部の裏面にあたる位置5における色差ΔEをJIS Z 8730に基づいて測定した。また、フランジ材2の最大ひずみ量を測定した。
測定された色差ΔEと最高温度を表2に示す。
Using SUS304 having a plate thickness of 2.3 mm, 3.2 mm, and 4.5 mm as the flange material 2 and the web material 3, the laser welded shape steel 1 was manufactured by the method shown in FIG. 1 under the laser welding conditions shown in Table 1. The irradiation angle θ of the laser 4 light was 20 °.
After welding, the color difference ΔE * at position 5 corresponding to the back surface of the welded portion of the flange member 2 was measured based on JIS Z 8730. Further, the maximum strain amount of the flange material 2 was measured.
Table 2 shows the measured color difference ΔE * and the maximum temperature.

フランジ材2の高さ方向の最大ひずみ量は、図3に示した方法により測定した。すなわち、フランジ材2に定規6を押し当て、フランジ材2と定規6の間に生じた隙間を、隙間ゲージを用いて測定する。そして、測定された最大の隙間量Amaxと最小の隙間量Aminを用いて次の式により求められる値を、最大ひずみ量とした。
最大ひずみ量=Amax−Amin
The maximum strain amount in the height direction of the flange member 2 was measured by the method shown in FIG. That is, the ruler 6 is pressed against the flange material 2 and the gap generated between the flange material 2 and the ruler 6 is measured using a gap gauge. And the value calculated | required by the following formula | equation using the measured largest gap | interval amount Amax and minimum gap | interval amount Amin was made into the largest distortion amount.
Maximum strain = A max −A min

Figure 2017148858
Figure 2017148858

Figure 2017148858
Figure 2017148858

表2に示したように、フランジ材2の溶接部の裏面にあたる位置5における最高温度が200℃以上の条件においては、いずれの板厚においても色差ΔEが50を超え、目視観察でテンパーカラーが確認された。
また、フランジ材2の表裏面にロールを押し付けて矯正を行った結果、最高温度が200℃未満の条件では0.2mm以下の最大ひずみ量となった。
(実施例2)
As shown in Table 2, under the condition that the maximum temperature at the position 5 corresponding to the back surface of the welded portion of the flange material 2 is 200 ° C. or higher, the color difference ΔE * exceeds 50 for any plate thickness, and the temper color is visually observed. Was confirmed.
Moreover, as a result of correcting by pressing a roll against the front and back surfaces of the flange material 2, the maximum strain amount was 0.2 mm or less under the condition where the maximum temperature was less than 200 ° C.
(Example 2)

フランジ材2およびウェブ材3として、Cr:30%、Mo:2%、Ti:0.15%、Nb:0.15%、Al:0.09%、残部Feであるフェライト系ステンレス鋼板を用い、その他の条件は実施例1と同じにしてレーザ溶接形鋼を製造した。
製造したレーザ溶接形鋼の、フランジ材2の表面のうち溶接部の裏面にあたる位置5の色差ΔEをと最高温度を測定した結果を表3に示す。
As the flange material 2 and the web material 3, a ferritic stainless steel plate having Cr: 30%, Mo: 2%, Ti: 0.15%, Nb: 0.15%, Al: 0.09%, and the balance Fe is used. The other conditions were the same as in Example 1 to produce a laser welded section steel.
Table 3 shows the results of measuring the maximum temperature and the color difference ΔE * at the position 5 corresponding to the back surface of the welded portion of the surface of the flange material 2 of the manufactured laser welded steel.

Figure 2017148858
Figure 2017148858

表3に示したように、実施例2においても、フランジ材2の表面のうち、溶接部の裏面にあたる位置5における最高温度が200℃以上の条件においては、いずれの板厚においても色差ΔEが50を超え、目視観察でテンパーカラーが確認された。
また、フランジ材2の表裏面にロールを押し付けて矯正を行った結果、最高温度が200℃未満の条件では0.1mm以下の最大ひずみ量となった。
(実施例3)
As shown in Table 3, also in Example 2, the color difference ΔE * in any plate thickness under the condition that the maximum temperature at the position 5 corresponding to the back surface of the welded portion of the surface of the flange member 2 is 200 ° C. or higher . Was over 50, and temper color was confirmed by visual observation.
Moreover, as a result of pressing the roll against the front and back surfaces of the flange material 2 and performing correction, the maximum strain amount was 0.1 mm or less under the condition where the maximum temperature was less than 200 ° C.
(Example 3)

フランジ材2およびウェブ材3として実施例2と同じ素材を用い、図2に示す角継手部とT字継手部を備えたステンレス鋼製レーザ溶接形鋼1を製造した。製造条件は実施例1と同じとした。   The same material as Example 2 was used as the flange material 2 and the web material 3, and the stainless steel laser welded shape steel 1 having the corner joint portion and the T-shaped joint portion shown in FIG. 2 was manufactured. The manufacturing conditions were the same as in Example 1.

製造したレーザ溶接形鋼について、フランジ材2の表面のうち溶接部の裏面にあたる位置の色差ΔEと最高温度を測定した。T字継手部側のフランジ材2Aの表面のうち、溶接部の裏面にあたる位置5Aの色差と最高温度の関係を表4に、角継手部側のフランジ材2Bの表面のうち、溶接部の裏面にあたる位置5Bの色差と最高温度の関係を表5に示す。 About the manufactured laser welded shape steel, the color difference ΔE * and the maximum temperature at the position corresponding to the back surface of the welded portion of the surface of the flange member 2 were measured. Of the surface of the flange material 2A on the T-joint portion side, the relationship between the color difference at the position 5A corresponding to the back surface of the welded portion and the maximum temperature is shown in Table 4, and among the surfaces of the flange material 2B on the corner joint portion side, the back surface of the welded portion Table 5 shows the relationship between the color difference at the corresponding position 5B and the maximum temperature.

Figure 2017148858
Figure 2017148858

Figure 2017148858
Figure 2017148858

表4と表5に示したように、フランジ材2Aまたは2Bの表面において、溶接部の裏面にあたる位置5Aまたは5Bにおける最高温度が200℃以上の条件においては、いずれの板厚および継手形態においても色差ΔEが50を超え、目視観察でテンパーカラーが確認された。
また、フランジ材2の表裏面にロールを押し付けて矯正を行った結果、最高温度が200℃未満の条件では0.1mm以下の最大ひずみ量となった。
As shown in Tables 4 and 5, on the surface of the flange material 2A or 2B, the maximum temperature at the position 5A or 5B corresponding to the back surface of the welded portion is 200 ° C. or higher. The color difference ΔE * exceeded 50, and the temper color was confirmed by visual observation.
Moreover, as a result of pressing the roll against the front and back surfaces of the flange material 2 and performing correction, the maximum strain amount was 0.1 mm or less under the condition where the maximum temperature was less than 200 ° C.

1 ステンレス鋼製レーザ溶接形鋼
2 フランジ材
3 ウェブ材
4 レーザ光
5 溶接部裏面にあたる位置
6 定規
θ レーザ光4の照射角度
DESCRIPTION OF SYMBOLS 1 Stainless steel laser welding shape steel 2 Flange material 3 Web material 4 Laser beam 5 Position which hits a welding part back surface 6 Ruler (theta) Irradiation angle of laser beam 4

Claims (6)

ステンレス鋼板を用いて、ウェブ材とフランジ材から構成された角状のレーザ溶接継手部を有する形鋼であって、
溶接部の裏面位置となるフランジ材表面のJIS Z 8730に基づく色差ΔEが溶接直後に50以下で、
フランジ材の高さ方向の最大ひずみ量が0.2mm以下であることを特徴とするステンレス鋼製レーザ溶接形鋼。
ここで、色差ΔEは以下の式(1)にしたがって算出される。
ΔE=〔(ΔL+(Δa+(Δb1/2 (1)
ΔEの色差成分のΔL、Δa、Δbは、白色標準板(L=96、a=−0.2、b=0.4)を基準とする。
Using a stainless steel plate, it is a shape steel having a square laser welded joint composed of a web material and a flange material,
The color difference ΔE * based on JIS Z 8730 on the flange material surface which is the back surface position of the welded portion is 50 or less immediately after welding,
A stainless steel laser welded shape steel, wherein the maximum strain in the height direction of the flange material is 0.2 mm or less.
Here, the color difference ΔE * is calculated according to the following equation (1).
ΔE * = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2 (1)
Delta] E [Delta] L * of the color difference components of *, Δa *, Δb * is a white standard plate (L * = 96, a * = -0.2, b * = 0.4) to a reference.
ステンレス鋼板を用いて、ウェブ材とフランジ材から構成されたレーザ溶接継手部として、角継手とT字継手を有する形鋼であることを特徴とする、
請求項1に記載のステンレス鋼製レーザ溶接形鋼。
Using a stainless steel plate, as a laser weld joint composed of a web material and a flange material, it is a shape steel having a square joint and a T-shaped joint,
The stainless steel laser welded shape steel according to claim 1.
前記ステンレス鋼板として、フェライト系ステンレス鋼板を用いることを特徴とする、
請求項1および2に記載のステンレス鋼製レーザ溶接形鋼。
As the stainless steel plate, using a ferritic stainless steel plate,
The stainless steel laser welded shape steel according to claim 1 and 2.
前記フェライト系ステンレス鋼板が、C:0.025質量%以下、Si:0.60質量%以下、Mn:1.00質量%以下、P:0.040質量%以下、S:0.020質量%以下、Ni:0.60質量%以下、Cr:16.00〜35.00質量%、Mo:0.30〜6.00質量%、N:0.025質量%以下を含むことを特徴とする、
請求項3に記載のステンレス鋼製レーザ溶接形鋼。
The ferritic stainless steel sheet is C: 0.025 mass% or less, Si: 0.60 mass% or less, Mn: 1.00 mass% or less, P: 0.040 mass% or less, S: 0.020 mass% Hereinafter, Ni: 0.60 mass% or less, Cr: 16.00-35.00 mass%, Mo: 0.30-6.00 mass%, N: 0.025 mass% or less are included. ,
The stainless steel laser welded shape steel according to claim 3.
前記フェライト系ステンレス鋼板が、さらに、Nb:0.10〜1.00質量%、Ti:0.05〜0.30質量%、Al:0.01〜0.50質量%のうち1種または2種以上を含むことを特徴とする、
請求項4に記載のステンレス鋼製レーザ溶接形鋼。
The ferritic stainless steel sheet may further include one or two of Nb: 0.10 to 1.00% by mass, Ti: 0.05 to 0.30% by mass, and Al: 0.01 to 0.50% by mass. Including more than species,
The laser-welded section made of stainless steel according to claim 4.
ステンレス鋼板を用いてウェブ材とフランジ材から構成された角状の溶接継手部を形成した溶接形鋼を製造する方法であって、
溶接法としてレーザ光を照射するレーザ溶接法を用い、
溶接部の裏面位置となるフランジ材表面の温度を溶接開始から溶接終了までの間で200℃未満とすることを特徴とする、
ステンレス鋼製レーザ溶接形鋼の製造方法。
It is a method of manufacturing a welded shape steel formed with a square welded joint composed of a web material and a flange material using a stainless steel plate,
Using a laser welding method of irradiating laser light as a welding method,
The temperature of the flange material surface which is the back surface position of the welded portion is less than 200 ° C. from the start of welding to the end of welding,
Stainless steel laser welded shape manufacturing method.
JP2016036178A 2016-02-26 2016-02-26 Laser welded section steel made of stainless steel and manufacturing method thereof Withdrawn JP2017148858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016036178A JP2017148858A (en) 2016-02-26 2016-02-26 Laser welded section steel made of stainless steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016036178A JP2017148858A (en) 2016-02-26 2016-02-26 Laser welded section steel made of stainless steel and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2017148858A true JP2017148858A (en) 2017-08-31

Family

ID=59741212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016036178A Withdrawn JP2017148858A (en) 2016-02-26 2016-02-26 Laser welded section steel made of stainless steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2017148858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175701A (en) * 2018-10-30 2019-01-11 奔腾激光(温州)有限公司 A kind of angle joint method for laser welding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310005A (en) * 1986-06-27 1988-01-16 Kawasaki Steel Corp Continuous warm rolling equipment for stainless steel strip
JPH11123575A (en) * 1997-08-22 1999-05-11 Topy Ind Ltd Stainless shape steel and its manufacture
EP0936280A2 (en) * 1998-02-17 1999-08-18 Acciai Speciali Terni S.p.A. Improved ferritic stainless steel and articles produced therewith
JP2001323564A (en) * 2000-05-18 2001-11-22 Sekisui Chem Co Ltd Manufacturing method for structural body and backing jig used therefor
JP2002167944A (en) * 2000-12-01 2002-06-11 Takashi Taguchi Fitting structure and its execution method for exterior finishing stone plate
JP2003213378A (en) * 2002-01-21 2003-07-30 Nisshin Steel Co Ltd Stainless steel annealing-finished material having excellent temper color resistance and production method therefor
JP2004209536A (en) * 2003-01-07 2004-07-29 Advanced Materials Processing Inst Kinki Japan Laser beam welding method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310005A (en) * 1986-06-27 1988-01-16 Kawasaki Steel Corp Continuous warm rolling equipment for stainless steel strip
JPH11123575A (en) * 1997-08-22 1999-05-11 Topy Ind Ltd Stainless shape steel and its manufacture
EP0936280A2 (en) * 1998-02-17 1999-08-18 Acciai Speciali Terni S.p.A. Improved ferritic stainless steel and articles produced therewith
JP2001323564A (en) * 2000-05-18 2001-11-22 Sekisui Chem Co Ltd Manufacturing method for structural body and backing jig used therefor
JP2002167944A (en) * 2000-12-01 2002-06-11 Takashi Taguchi Fitting structure and its execution method for exterior finishing stone plate
JP2003213378A (en) * 2002-01-21 2003-07-30 Nisshin Steel Co Ltd Stainless steel annealing-finished material having excellent temper color resistance and production method therefor
JP2004209536A (en) * 2003-01-07 2004-07-29 Advanced Materials Processing Inst Kinki Japan Laser beam welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175701A (en) * 2018-10-30 2019-01-11 奔腾激光(温州)有限公司 A kind of angle joint method for laser welding

Similar Documents

Publication Publication Date Title
JP4396676B2 (en) Ferritic stainless steel sheet with excellent corrosion resistance and method for producing the same
Vasantharaja et al. Studies on A-TIG welding of low activation ferritic/martensitic (LAFM) steel
WO2012133681A1 (en) Ferrite stainless steel exhibiting excellent corrosion resistance and strength in weld zones, and tig-welded structure
JP5299257B2 (en) Spot welding method for high strength steel sheet
KR101869423B1 (en) Flux cored arc welding material for high manganese steel
JP2011173124A (en) Welding method of ferritic stainless steel
KR102178605B1 (en) Ferritic stainless steel sheet
WO2018159719A1 (en) Fillet welded joint and manufacturing method thereof
WO2013122234A1 (en) Austenitic stainless steel for apparatus for high-temperature use having welded pipe structure
KR101885436B1 (en) Steel castings for a welding structure and method of manufacturing the same
JP7277834B2 (en) SOLID WIRE FOR WELDING ALUMINUM PLATED STEEL STEEL AND METHOD FOR MANUFACTURING WELD JOINT
JP2006212671A (en) METHOD FOR PREVENTING SURFACE FLAW AT THE TIME OF ROLLING IN Ni-CONTAINING STEEL
JP5293370B2 (en) Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same
JP2017148858A (en) Laser welded section steel made of stainless steel and manufacturing method thereof
JP5720592B2 (en) Welded joint
JP2015124419A (en) Ferritic stainless steel
KR101639915B1 (en) Hot rolling side guide
KR101674748B1 (en) Laser wellding material for stainless steel and welded metal produced thereby
JP2017148857A (en) Laser welded section steel made of stainless steel and manufacturing method thereof
JP7423395B2 (en) Manufacturing method of austenitic stainless steel welded joints
JP6300778B2 (en) Stainless steel laser welded section manufacturing method with excellent corrosion resistance and antiglare properties
JP6977409B2 (en) Stable austenitic stainless steel welded material
KR101657831B1 (en) Weld metal joint of austenitic stainless steel having excellent corrosion resistance
JP6300779B2 (en) Stainless steel laser welded section manufacturing method with excellent corrosion resistance and antiglare properties
JP6879133B2 (en) Austenitic stainless steel welded member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200326