JP2017148692A - Pure water production device and method for producing pure water - Google Patents

Pure water production device and method for producing pure water Download PDF

Info

Publication number
JP2017148692A
JP2017148692A JP2016031127A JP2016031127A JP2017148692A JP 2017148692 A JP2017148692 A JP 2017148692A JP 2016031127 A JP2016031127 A JP 2016031127A JP 2016031127 A JP2016031127 A JP 2016031127A JP 2017148692 A JP2017148692 A JP 2017148692A
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
water
pure water
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016031127A
Other languages
Japanese (ja)
Inventor
佐藤 伸
Shin Sato
伸 佐藤
康晴 港
Yasuharu Minato
康晴 港
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016031127A priority Critical patent/JP2017148692A/en
Publication of JP2017148692A publication Critical patent/JP2017148692A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pure water production device capable of producing high purity pure water, from raw water containing vanadium at a high concentration, by efficiently removing the vanadium.SOLUTION: Provided is a pure water production device 2 comprising: a first cation exchange resin column 3 filled with a high crosslinking degree gel type cation exchange resin; a decarbonation column 4: an anion exchange resin column 5 filled with a gel type anion exchange resin; and a second cation exchange resin column 6 filled with a porous type cation exchange resin. The water W1 to be treated obtained by treating raw water W by a pretreatment system is subjected to downward circulation water treatment by the first cation exchange resin column 3, and next, this cation-treated water W2 is fed to the upper part of the decarbonation column 4. Successively, the decarbonated water W3 is subjected to upward circulation water treatment in the anion exchange resin column 5. Then, the anion-treated water W4 is subjected to downflow circulation water treatment by the second cation exchange resin column 6 to obtain pure water W5.SELECTED DRAWING: Figure 1

Description

本発明は、バナジウムを含有する原水から純水を製造する純水製造装置及び純水の製造方法に関し、特にバナジウムを高濃度で含有する原水からバナジウムを効率よく除去することの可能な純水製造装置及び純水の製造方法に関する。   The present invention relates to a pure water production apparatus and a pure water production method for producing pure water from raw water containing vanadium, and more particularly to pure water production capable of efficiently removing vanadium from raw water containing vanadium at a high concentration. The present invention relates to an apparatus and a method for producing pure water.

バナジウムは触媒として使用されており、石炭、石油等の灰分中に含まれるほか、特定の天然水中にも含まれている。バナジウム含有水はその起源に応じていろいろな形のバナジウムを含んでいる。バナジウムは−Iないし+Vの価数に応じて種々の化合物を形成し、それぞれの化合物はバナジウムがカチオンに解離するものとアニオンに解離するものとがある。可溶性塩のようにイオンまたはイオン化可能状態でバナジウムを含む場合には、イオン交換によりバナジウムを除去することが可能である。   Vanadium is used as a catalyst, and is contained in ash such as coal and petroleum, as well as in certain natural waters. Vanadium-containing water contains various forms of vanadium depending on its origin. Vanadium forms various compounds depending on the valence of -I to + V, and each compound has one in which vanadium dissociates into a cation and one in which it dissociates into an anion. When vanadium is contained in an ionized or ionizable state like a soluble salt, vanadium can be removed by ion exchange.

上述したようなバナジウムを1〜10ppbあるいはそれ以上に含有する工業用水や水道水を原水として純水を製造する場合、凝集・ろ過等の前処理と活性炭による脱塩素処理を施した後、カチオン交換樹脂塔及びアニオン交換樹脂塔を備えた3床4塔式などの純水製造装置で処理することによりバナジウムを除去して純水を製造することが行われている。しかしながら、バナジウム含有水をイオン交換装置で処理すると、バナジウムの触媒作用などの影響によりイオン交換樹脂から樹脂成分が溶出し、TOCの増加など水質に悪影響を及ぼす。そこで、この対策として特許文献1に記載されているように、第1塔となるカチオン交換樹脂塔に高架橋度のカチオン交換樹脂を用いてバナジウム含有水を処理することが公知である。そして、この高架橋度カチオン交換樹脂を用いた純水製造装置としては、高架橋度ゲル型カチオン交換樹脂塔とゲル型アニオン交換樹脂塔と高架橋度ゲル型カチオン交換樹脂塔とを備え、必要に応じて脱炭酸装置を設けたものが用いられている。   When pure water is produced using industrial water or tap water containing 1 to 10 ppb or more of vanadium as described above, cation exchange is performed after pretreatment such as coagulation and filtration and dechlorination with activated carbon. Pure water is produced by removing vanadium by treatment with a pure water production apparatus such as a three-bed, four-column type equipped with a resin tower and an anion exchange resin tower. However, when the vanadium-containing water is treated with an ion exchange device, the resin component is eluted from the ion exchange resin due to the influence of the catalytic action of vanadium, which adversely affects water quality such as an increase in TOC. Accordingly, as described in Patent Document 1, it is known to treat vanadium-containing water using a cation exchange resin having a high degree of crosslinking in the cation exchange resin tower serving as the first tower as a countermeasure. And as a pure water manufacturing apparatus using this highly crosslinked degree cation exchange resin, a highly crosslinked degree gel type cation exchange resin tower, a gel type anion exchange resin tower, and a highly crosslinked degree gel type cation exchange resin tower are provided, if necessary. What provided the decarbonation apparatus is used.

特開2002−346559号公報JP 2002-346559 A

ところで、近年主に電子部品分野では高い水質が要求されており、例えば、処理水の比抵抗値が18MΩ・cm以上、TOC50ppb以下の高純度の水質が求められるようになってきている。しかしながら、バナジウム含有水を原水とした場合には、特許文献1に記載されているように高架橋度のカチオン交換樹脂を用いて3床4塔式の純水製造装置を構成したとしても、比抵抗値16〜17MΩ・cm程度で、18MΩ・cm以上の水質が得にくく、またTOCも十分に低減されない、という問題点があった。   By the way, high water quality is recently demanded mainly in the field of electronic components. For example, high-purity water quality having a specific resistance value of treated water of 18 MΩ · cm or more and TOC of 50 ppb or less has been demanded. However, when vanadium-containing water is used as raw water, even if a three-bed, four-column pure water production apparatus is configured using a highly crosslinked cation exchange resin as described in Patent Document 1, the specific resistance When the value is about 16 to 17 MΩ · cm, it is difficult to obtain a water quality of 18 MΩ · cm or more, and the TOC is not sufficiently reduced.

本発明は上記課題に鑑みてなされたものであり、バナジウムを高濃度で含有する原水からバナジウムを効率よく除去して高純度の純水を製造することの可能な純水製造装置及び純水の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and a pure water production apparatus and pure water capable of producing high purity pure water by efficiently removing vanadium from raw water containing a high concentration of vanadium. An object is to provide a manufacturing method.

上記目的に鑑み、本発明は第一に、バナジウムを含有する被処理水を接触させる第一のカチオン交換樹脂塔と、脱炭酸装置と、アニオン交換樹脂塔と、第二のカチオン交換樹脂塔とをこの順に備える純水製造装置であって、前記第一のカチオン交換樹脂塔に高架橋度ゲル型カチオン交換樹脂を充填し、アニオン交換樹脂塔にゲル型アニオン交換樹脂を充填し、第二のカチオン交換樹脂塔にポーラス型カチオン交換樹脂を充填したことを特徴とする純水製造装置を提供する(発明1)。   In view of the above-mentioned object, first, the present invention provides a first cation exchange resin tower, a decarboxylation apparatus, an anion exchange resin tower, and a second cation exchange resin tower that are brought into contact with water to be treated containing vanadium. In this order, the first cation exchange resin tower is filled with a highly crosslinked gel cation exchange resin, the anion exchange resin tower is filled with a gel anion exchange resin, and a second cation is obtained. Provided is a pure water production apparatus characterized in that an exchange resin tower is filled with a porous cation exchange resin (Invention 1).

従来の高架橋度ゲル型のカチオン交換樹脂塔とゲル型のアニオン交換樹脂塔と高架橋度ゲル型のカチオン交換樹脂塔とを備えた3床4塔式の純水製造装置でも18MΩ・cm以上の水質が得られない原因について検討した結果、バナジウムの影響によるイオン交換樹脂からのわずかな溶出物に起因するものであり、特にゲル型アニオン交換樹脂塔のアニオン交換樹脂から溶出する微量の有機物がゲル型カチオン交換樹脂塔で除去しきれないことが要因であることがわかった。そこで、アニオン交換樹脂からのカチオン性の溶出物を迅速に除去する方法について検討した結果、ゲル型アニオン交換樹脂塔の後段のカチオン交換樹脂塔に充填するカチオン交換樹脂として、ポーラス型カチオン交換樹脂を用いれば、処理水の比抵抗を大幅に向上できることがわかった。本発明者らはこれら知見に基づき本発明に想到したものであり、かかる発明(発明1)によれば、バナジウムを高濃度で含有する原水からバナジウムを効率よく除去して高純度の純水を製造することができる。   The water quality of 18 MΩ · cm or more is also achieved in a conventional three-bed, four-column pure water production apparatus equipped with a high-crosslinking degree gel-type cation exchange resin tower, a gel-type anion exchange resin tower, and a high-crosslinking degree gel-type cation exchange resin tower. As a result of studying the cause of not being able to obtain, it is caused by a slight eluate from the ion exchange resin due to the effect of vanadium, and in particular, a trace amount of organic matter eluted from the anion exchange resin of the gel type anion exchange resin tower is gel type. It was found that the reason was that it could not be removed by the cation exchange resin tower. Therefore, as a result of examining a method for quickly removing the cationic eluate from the anion exchange resin, a porous cation exchange resin was used as a cation exchange resin to be packed in the cation exchange resin tower at the latter stage of the gel type anion exchange resin tower. It was found that the specific resistance of treated water can be greatly improved if used. Based on these findings, the present inventors have conceived the present invention. According to this invention (Invention 1), vanadium is efficiently removed from raw water containing vanadium at a high concentration to obtain high-purity pure water. Can be manufactured.

上記発明(発明1)においては、前記高架橋度ゲル型カチオン交換樹脂、ゲル型アニオン交換樹脂及びポーラス型カチオン交換樹脂の少なくとも1種が、TOC溶出量が30ppb以下となるようにあらかじめ洗浄されたものであるのが好ましい(発明2)。   In the above invention (Invention 1), at least one of the highly crosslinked gel type cation exchange resin, gel type anion exchange resin, and porous type cation exchange resin is washed in advance so that the TOC elution amount is 30 ppb or less. (Invention 2)

かかる発明(発明2)によれば、これらイオン交換樹脂を洗浄することにより、イオン交換樹脂に含まれる未重合成分を取り除くことで、バナジウムの影響による溶出を軽減できるので、処理水のTOC成分を低減することができる。   According to this invention (Invention 2), by washing these ion exchange resins, elution due to the effect of vanadium can be reduced by removing unpolymerized components contained in the ion exchange resin. Can be reduced.

本発明は第二に、バナジウムを含有する被処理水を高架橋度ゲル型カチオン交換樹脂で処理した後脱炭酸し、その処理水をゲル型アニオン交換樹脂と、ポーラス型カチオン交換樹脂塔とに順次接触させて純水を得ることを特徴とする純水の製造方法を提供する(発明3)。   Secondly, the present invention treats water to be treated containing vanadium with a highly crosslinked gel type cation exchange resin and then decarboxylates the treated water into a gel type anion exchange resin and a porous type cation exchange resin tower in order. Provided is a pure water production method characterized in that pure water is obtained by contact (Invention 3).

かかる発明(発明3)によれば、被処理水を高架橋度ゲル型カチオン交換樹脂で処理してカチオン成分を除去するとpHは7未満となるので、脱炭酸することで被処理水原水中の無機炭酸成分をある程度除去してPHを上昇させアニオン成分を除去しやすくし、続いてゲル型アニオン交換樹脂でアニオン成分を除去する。このとき、被処理水中のバナジウムの影響によりゲル型アニオン交換樹脂から微量の有機物が溶出するが、この有機物はポーラス型カチオン交換樹脂により迅速に除去することができるので、処理水の比抵抗を大幅に向上することができる。   According to this invention (Invention 3), when the water to be treated is treated with a highly crosslinked gel-type cation exchange resin to remove the cation component, the pH becomes less than 7. Therefore, by decarboxylation, inorganic carbonate in the raw water to be treated is removed. The component is removed to some extent to increase the pH to facilitate removal of the anion component, and then the anion component is removed with a gel type anion exchange resin. At this time, a small amount of organic substance is eluted from the gel-type anion exchange resin due to the effect of vanadium in the water to be treated. This organic substance can be quickly removed by the porous cation exchange resin, greatly increasing the specific resistance of the treated water. Can be improved.

上記発明(発明3)においては、前記高架橋度ゲル型カチオン交換樹脂、ゲル型アニオン交換樹脂及びポーラス型カチオン交換樹脂の少なくとも1種が、TOC溶出量が30ppb以下となるようにあらかじめ洗浄されたものであるのが好ましい(発明4)。   In the said invention (invention 3), at least 1 sort (s) of the said highly crosslinked degree gel type cation exchange resin, a gel type anion exchange resin, and a porous type cation exchange resin was wash | cleaned beforehand so that TOC elution amount might be 30 ppb or less (Invention 4)

かかる発明(発明4)によれば、これらイオン交換樹脂を洗浄することにより、イオン交換樹脂に含まれる未重合成分を取り除くことで、バナジウムの影響による溶出を軽減できるので、処理水のTOC成分を低減することができる。   According to this invention (invention 4), by washing these ion exchange resins, elution due to the effect of vanadium can be reduced by removing unpolymerized components contained in the ion exchange resin. Can be reduced.

上記発明(発明3、4)においては、前記被処理水がバナジウムを1〜10ppb含有するのが好ましい(発明5)。   In the said invention (invention 3 and 4), it is preferable that the said to-be-processed water contains 1-10ppb of vanadium (invention 5).

かかる発明(発明5)によれば、上述したような処理を施すことにより、バナジウムを高濃度に含有する被処理水であっても、高純度の純水を製造することができる。   According to this invention (invention 5), high-purity pure water can be produced even if the water to be treated contains vanadium at a high concentration by performing the treatment as described above.

本発明によれば、バナジウムを含有する被処理水を高架橋度ゲル型カチオン交換樹脂で処理した後脱炭酸し、その処理水をゲル型アニオン交換樹脂と、ポーラス型カチオン交換樹脂塔とに順次接触させて純水を得るので、カチオン性及びアニオン性のバナジウムを除去することができるとともに、ゲル型アニオン交換樹脂の溶出物をポーラス型カチオン交換樹脂により迅速に除去することができるので、バナジウム含有水を原水として、例えば、比抵抗18MΩ・cm以上でTOC50ppb以下の高純度の純水を製造することが可能となる。   According to the present invention, treated water containing vanadium is treated with a highly crosslinked gel cation exchange resin and then decarboxylated, and the treated water is sequentially contacted with the gel anion exchange resin and the porous cation exchange resin tower. Since pure water is obtained, cationic and anionic vanadium can be removed, and the eluate of the gel-type anion exchange resin can be quickly removed by the porous cation exchange resin. As a raw water, for example, it is possible to produce high-purity pure water having a specific resistance of 18 MΩ · cm or more and a TOC of 50 ppb or less.

本発明の一実施形態による純水製造装置を示すフロー図である。It is a flowchart which shows the pure water manufacturing apparatus by one Embodiment of this invention.

以下、本発明の一実施形態による純水製造装置及び純水製造方法について添付図面を参照して詳細に説明する。   Hereinafter, a pure water production apparatus and a pure water production method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の一実施形態による純水製造装置を示すフロー図であり、図1において、1は前処理システム、2は純水製造装置であり、前処理システム1は一般的なシステム構成、例えば凝集・加圧浮上装置、ろ過装置及び活性炭塔などから構成されている。純水製造装置2は、高架橋度ゲル型カチオン交換樹脂が充填された第一のカチオン交換樹脂塔3と、脱炭酸装置としての脱炭酸塔4と、ゲル型アニオン交換樹脂が充填されたアニオン交換樹脂塔5と、ポーラス型カチオン交換樹脂が充填された第二のカチオン交換樹脂塔6とからなる。   FIG. 1 is a flowchart showing a pure water production apparatus according to an embodiment of the present invention. In FIG. 1, 1 is a pretreatment system, 2 is a pure water production apparatus, and the pretreatment system 1 is a general system configuration. For example, it is composed of an agglomeration / pressure levitation device, a filtration device, and an activated carbon tower. The pure water production apparatus 2 includes a first cation exchange resin tower 3 filled with a highly crosslinked gel type cation exchange resin, a decarboxylation tower 4 as a decarboxylation apparatus, and an anion exchange filled with a gel type anion exchange resin. It consists of a resin tower 5 and a second cation exchange resin tower 6 filled with a porous cation exchange resin.

第一のカチオン交換樹脂塔3は前処理システム1と第一の流路11を介して該第一のカチオン交換樹脂塔3の上部で接続しており、下部に設けられた第二の流路12から処理水を取り出す下向流通水方式となっている、脱炭酸塔4は第一のカチオン交換樹脂塔3と第二の流路12を介して該脱炭酸塔4の上部に接続しており、上部から下部に向けて散水を行う方式となっている。また、アニオン交換樹脂塔5は脱炭酸塔4と第三の流路13を介して該アニオン交換樹脂塔5の下部で接続しており、上部に設けられた第四の流路14から処理水を取り出す上向流通水方式となっている。さらに第二のカチオン交換樹脂塔6はアニオン交換樹脂塔5と第四の流路14を介して該第二のカチオン交換樹脂塔6の上部で接続しており、下部から取り出す下向流通水方式となっている。   The first cation exchange resin tower 3 is connected to the pretreatment system 1 via the first flow path 11 at the upper part of the first cation exchange resin tower 3, and the second flow path provided at the lower part. The decarbonation tower 4 is a downward circulating water system for taking out treated water from 12, and is connected to the upper part of the decarbonation tower 4 via the first cation exchange resin tower 3 and the second flow path 12. The water is sprayed from the top to the bottom. The anion exchange resin tower 5 is connected to the decarboxylation tower 4 via the third flow path 13 at the lower part of the anion exchange resin tower 5, and treated water is supplied from the fourth flow path 14 provided at the upper part. It becomes the upward circulation water system to take out. Further, the second cation exchange resin tower 6 is connected to the anion exchange resin tower 5 via the fourth flow path 14 at the upper part of the second cation exchange resin tower 6, and the downward flowing water system is taken out from the lower part. It has become.

上述したような構成のシステムにおいて、第一のカチオン交換樹脂塔3に充填するカチオン交換樹脂としては、カチオン交換基としてスルホン基を付けた強酸性カチオン交換樹脂、カルボン酸基を付けた弱酸性カチオン交換樹脂いずれも使用可能であり、PSAの溶出が少ない点でゲル型樹脂を用いる。また、上記のカチオン交換樹脂はジビニルベンゼンが架橋剤となって、鎖状構造が架橋されて網目構造の樹脂が形成されている。ジビニルベンゼンが多いほど鎖の分岐が多く、密な構造になり、ジビニルベンゼンが少ないと分枝の少ない網目の大きい樹脂が得られる。通常の水処理に使用する樹脂は架橋度が8%程度で標準架橋樹脂と呼ばれている。これに対して、本実施形態では架橋度9%以上、好ましくは10〜50%、特に好ましくは12〜16%の高架橋度樹脂を用いる。このような高架橋度ゲル型カチオン交換樹脂を使用してバナジウム含有水と接触させることにより、バナジウムが樹脂中に濃縮されても樹脂の劣化が防止され、カチオン交換能力が低下しない。   In the system having the above-described configuration, the cation exchange resin packed in the first cation exchange resin tower 3 includes a strong acid cation exchange resin having a sulfonic group as a cation exchange group and a weak acid cation having a carboxylic acid group. Any exchange resin can be used, and a gel-type resin is used in that the PSA is less eluted. In the cation exchange resin, divinylbenzene serves as a cross-linking agent, and a chain structure is cross-linked to form a network resin. The more divinylbenzene, the more chain branches and the denser the structure, and the smaller the divinylbenzene, the larger the network with less branching. Resins used for normal water treatment have a degree of crosslinking of about 8% and are called standard crosslinked resins. In contrast, in the present embodiment, a highly crosslinked resin having a crosslinking degree of 9% or more, preferably 10 to 50%, particularly preferably 12 to 16% is used. By using such a highly crosslinked gel type cation exchange resin and contacting with vanadium-containing water, even if vanadium is concentrated in the resin, deterioration of the resin is prevented, and the cation exchange ability is not lowered.

また、アニオン交換樹脂塔5に充填するアニオン交換樹脂としては、PSAの溶出が少ない点でゲル型樹脂を用いる。スチレン−ジビニルベンゼン共重合体などを母体としたスチレン骨格にトリメチルアンモニウム基やジメチルエタノールアンモニウム基などの四級アンモニウム基を持つ強塩基性アニオン交換樹脂、スチレン−ジビニルベンゼン共重合体などを母体としたスチレン骨格にまたはポリアクリル酸エステル骨格に、一〜三級アミノ基を官能基として持つ弱塩基性アニオン交換樹脂陰イオン交換樹脂、のいずれも用いることができるが、強塩基性アニオン交換樹脂を好適に用いることができる。アニオン交換樹脂の交換基は、OH形であるのが好ましい。   Moreover, as an anion exchange resin with which the anion exchange resin tower 5 is filled, a gel type resin is used in that the elution of PSA is small. Strongly basic anion exchange resin having quaternary ammonium group such as trimethylammonium group or dimethylethanolammonium group on styrene skeleton based on styrene-divinylbenzene copolymer, styrene-divinylbenzene copolymer, etc. Any of weakly basic anion exchange resin anion exchange resin having a primary to tertiary amino group as a functional group can be used for styrene skeleton or polyacrylate ester skeleton, but strong basic anion exchange resin is preferred. Can be used. The exchange group of the anion exchange resin is preferably in the OH form.

さらに、第二のカチオン交換樹脂塔6に充填するカチオン交換樹脂は、ポーラス型カチオン交換樹脂である。ポーラス型カチオン交換樹脂は、ゲル型と比べて樹脂の表面や内部に形成されている細孔径が大きいので有機物の吸着速度が速い一方、樹脂自身からの溶出はゲル型よりも多い傾向を有する。なお、ポーラス型カチオン交換樹脂に高架橋度のものはなく、架橋度8%程度である。   Furthermore, the cation exchange resin filled in the second cation exchange resin tower 6 is a porous cation exchange resin. Porous cation exchange resins have a larger pore diameter formed on the surface or inside of the resin than gel type, and therefore the organic matter adsorption rate is fast, while elution from the resin itself tends to be more elution than the gel type. There is no porous type cation exchange resin having a high degree of crosslinking, and the degree of crosslinking is about 8%.

上述したような高架橋度ゲル型カチオン交換樹脂、ゲル型アニオン交換樹脂及びポーラス型カチオン交換樹脂は、コンディショニング(洗浄)が施されたものを用いるのが好ましい。ここでコンディショニングとは、新品のイオン交換樹脂には、必ず未重合成分が含まれているので、酸などの薬品、御純水、純水などにより洗浄を行うことである。このようなコンディショニングは、TOCの溶出量が一定値(例えば30ppb)以下になるように行う。特に第二のカチオン交換樹脂塔6に充填するポーラス型カチオン交換樹脂は、前述したとおり樹脂自身から溶出しやすいので、コンディショニングを行い未重合成分などの溶出を低減したものを用いるのが好ましい。   As the above-mentioned high cross-linking degree gel type cation exchange resin, gel type anion exchange resin, and porous type cation exchange resin, it is preferable to use those subjected to conditioning (washing). Here, the term “conditioning” refers to washing with a chemical such as an acid, pure water, pure water, etc., because a new ion exchange resin always contains an unpolymerized component. Such conditioning is performed so that the TOC elution amount becomes a certain value (for example, 30 ppb) or less. In particular, since the porous cation exchange resin packed in the second cation exchange resin tower 6 is easily eluted from the resin itself as described above, it is preferable to use a cation exchange resin that is conditioned to reduce elution of unpolymerized components and the like.

次に上述したような構成を有する純水製造装置を用いた純水の製造方法ついて説明する。まず、原水Wを前処理システム1で処理して被処理水(前処理水)W1とし、この被処理水W1を第一の流路11を経由して第一のカチオン交換樹脂塔3の上部から供給し、第一のカチオン交換樹脂塔3に充填された高架橋度ゲル型カチオン交換樹脂床を下向流で通過させることによりカチオンを交換吸着させる。このとき塔内はpH2.5〜5.5程度の酸性となるので、カチオン性のバナジウムの交換吸着効率は高くなる。ここで、本実施形態において第一のカチオン交換樹脂塔3内に充填している高架橋度ゲル型カチオン交換樹脂は、バナジウムにより劣化を受けにくいため、カチオン交換樹脂の変性に起因する溶出が少なく、カチオン交換能は高く維持される。   Next, a method for producing pure water using the pure water producing apparatus having the above-described configuration will be described. First, the raw water W is treated with the pretreatment system 1 to be treated water (pretreated water) W1, and this treated water W1 is passed through the first flow path 11 to the upper part of the first cation exchange resin tower 3. The cation is exchanged and adsorbed by passing through a highly crosslinked gel type cation exchange resin bed packed in the first cation exchange resin tower 3 in a downward flow. At this time, the inside of the column becomes acidic with a pH of about 2.5 to 5.5, so that the exchange adsorption efficiency of cationic vanadium is increased. Here, in the present embodiment, the highly crosslinked gel type cation exchange resin packed in the first cation exchange resin tower 3 is less susceptible to deterioration by vanadium, and therefore there is little elution due to modification of the cation exchange resin, The cation exchange capacity is kept high.

ここで得られるカチオン処理水W2を第二の流路12から脱炭酸塔4の上部に供給し、塔上部から散水を行うことにより、カチオン処理水W2中の炭酸を除去してpHを弱酸性領域にまで上昇させる。   The cation-treated water W2 obtained here is supplied from the second channel 12 to the upper part of the decarboxylation tower 4, and water is sprayed from the upper part of the tower to remove the carbonic acid in the cation-treated water W2 and make the pH weakly acidic. Raise to the area.

続いて、脱炭酸水W3を第三の流路13からアニオン交換樹脂塔5の下部に供給してアニオン交換樹脂塔5に充填されたゲル型アニオン交換樹脂床を上向流で通過させることにより、アニオンが交換吸着される。このとき脱炭酸水W3には、第一のカチオン交換樹脂塔3で除去できなかったアニオン性のバナジウムが含まれているので、このバナジウムによりゲル型アニオン交換樹脂が劣化して、この劣化に起因したTOCがわずかに溶出する。   Subsequently, decarbonated water W3 is supplied from the third channel 13 to the lower part of the anion exchange resin tower 5 and passed through the gel type anion exchange resin bed filled in the anion exchange resin tower 5 in an upward flow. , The anion is exchange adsorbed. At this time, since the decarbonated water W3 contains anionic vanadium that could not be removed by the first cation exchange resin tower 3, the gel type anion exchange resin is deteriorated by the vanadium, and this deterioration is caused. TOC is slightly eluted.

そこで、アニオン処理水W4を第四の流路14から第二のカチオン交換樹脂塔6の上部に供給して第二のカチオン交換樹脂塔6に充填されたポーラス型カチオン交換樹脂床を下向流で通過させることにより、ゲル型アニオン交換樹脂の溶出物を除去する。ポーラス型カチオン交換樹脂は、樹脂の表面や内部に形成されている細孔径が大きいので、カチオン性の有機物を迅速に吸着することができる。なお、ポーラス型カチオン交換樹脂は、ゲル型カチオン交換樹脂よりも樹脂自身から有機物を溶出しやすいが、アニオン処理水W4はバナジウムがほとんど除去されているだけでなく水質も良好であるので、ポーラス型カチオン交換樹脂からの溶出は抑制される。特に本実施形態においては、ポーラス型カチオン交換樹脂として、前述したようにTOCの溶出量が30ppb以下になるようにコンディショニングを施したものを用いることにより、未重合成分などの溶出を低減させるのが好ましい。   Therefore, the anion-treated water W4 is supplied from the fourth channel 14 to the upper portion of the second cation exchange resin tower 6 and flows downward in the porous cation exchange resin bed filled in the second cation exchange resin tower 6. The gel-type anion exchange resin eluate is removed. Since the porous cation exchange resin has a large pore diameter formed on the surface or inside of the resin, it can quickly adsorb cationic organic substances. The porous cation exchange resin is more easily eluted from the resin itself than the gel cation exchange resin, but the anion-treated water W4 is not only substantially free of vanadium but also has a good water quality. Elution from the cation exchange resin is suppressed. In particular, in the present embodiment, by using a porous cation exchange resin that has been conditioned so that the TOC elution amount is 30 ppb or less as described above, the elution of unpolymerized components and the like can be reduced. preferable.

上述したような純水の製造工程における通水の条件は、通常のイオン交換による処理と同様とすることができる。通水速度は被処理水W1のバナジウム濃度、要求水質等により異なるが、一般的には5〜100 L/L−Resin/hr、特に5〜50 L/L−Resin/hrとすればよい。   The conditions for water flow in the pure water production process as described above can be the same as those in the treatment by normal ion exchange. The water flow rate varies depending on the vanadium concentration of the water to be treated W1, the required water quality, and the like, but is generally 5 to 100 L / L-Resin / hr, particularly 5 to 50 L / L-Resin / hr.

このような処理を施すことにより、純度の高い純水W5を得ることができ、具体的には、比抵抗18MΩ・cm以上でTOC50ppb以下の高純度の純水を製造することが可能となる。   By performing such treatment, it is possible to obtain pure water W5 having high purity. Specifically, it is possible to produce high-purity pure water having a specific resistance of 18 MΩ · cm or more and a TOC of 50 ppb or less.

このような本実施形態の純水の製造方法は、バナジウムを高濃度で含有する原水の処理に好適であり、特にバナジウムを1〜10ppb、もしくは10ppb以上含有する原水の処理に好適である。   Such a method for producing pure water according to this embodiment is suitable for treating raw water containing vanadium at a high concentration, and particularly suitable for treating raw water containing vanadium in an amount of 1 to 10 ppb or 10 ppb or more.

以上、本発明について前記一実施形態に基づいて説明してきたが、本発明は、前記実施形態に限定されず、種々の変形実施が可能である。例えば、第一のカチオン交換樹脂塔3は、強酸性カチオン交換樹脂と弱酸性カチオン交換樹脂の混床としてもよいし、場合によっては強酸性カチオン交換樹脂の後段に強塩基性アニオン交換樹脂を配置した混床としてもよい。また、アニオン交換樹脂塔5は、強塩基性アニオン交換樹脂と弱塩基性アニオン交換樹脂の混床としてもよい。さらに、脱炭酸装置は、本実施形態のように脱炭酸塔4である必要はなく、脱気膜などを用いることもできる。   As mentioned above, although this invention has been demonstrated based on the said embodiment, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible. For example, the first cation exchange resin tower 3 may be a mixed bed of a strong acid cation exchange resin and a weak acid cation exchange resin, or in some cases, a strong base anion exchange resin is disposed after the strong acid cation exchange resin. It may be a mixed floor. The anion exchange resin tower 5 may be a mixed bed of a strong basic anion exchange resin and a weak basic anion exchange resin. Furthermore, the decarboxylation apparatus does not need to be the decarboxylation tower 4 as in this embodiment, and a degassing membrane or the like can be used.

以下、比較例及び実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although a comparative example and an Example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example.

〔実施例1〕
図1に示す3床4塔型の純水製造装置において、第一のカチオン交換樹脂塔3に高架橋度ゲル型カチオン交換樹脂(栗田工業(株)製 UPK−12)を充填し、アニオン交換樹脂塔5にゲル型アニオン交換樹脂(栗田工業(株)製 UPA11)を充填し、さらに第二のカチオン交換樹脂塔6にポーラス型カチオン交換樹脂(栗田工業(株)製 UPK−14)を充填した。なお、ポーラス型カチオン交換樹脂としては、TOCの溶出量が30ppb以下となるようにあらかじめコンディショニングを施したものを用いた。
[Example 1]
In the three-bed, four-column type pure water production apparatus shown in FIG. 1, the first cation exchange resin column 3 is filled with a highly crosslinked gel type cation exchange resin (UPK-12 manufactured by Kurita Kogyo Co., Ltd.), and an anion exchange resin is obtained. The column 5 was filled with a gel-type anion exchange resin (UPA11 manufactured by Kurita Kogyo Co., Ltd.), and the second cation exchange resin tower 6 was filled with a porous cation exchange resin (UPK-14 manufactured by Kurita Kogyo Co., Ltd.). . The porous cation exchange resin was conditioned in advance so that the TOC elution amount was 30 ppb or less.

バナジウムを1〜10ppb含有する熊本県水(原水)Wを凝集・加圧浮上装置、ろ過装置及び活性炭塔からなる前処理システム1で処理して被処理水W1とした。この被処理水W1を上述した3床4塔型の純水装置で通水速度20L/L−Resin/hrで通水処理したところ、比抵抗値18MΩ・cm以上、TOC50ppb以下の純水W5を安定的に製造することができた。   Kumamoto Prefecture water (raw water) W containing 1 to 10 ppb of vanadium was treated with a pretreatment system 1 composed of an agglomeration / pressure flotation device, a filtration device and an activated carbon tower to obtain treated water W1. When this treated water W1 was subjected to water treatment at a water flow rate of 20 L / L-Resin / hr with the above-described three-bed, four-column pure water device, pure water W5 having a specific resistance of 18 MΩ · cm or more and TOC of 50 ppb or less was obtained. It was possible to manufacture stably.

〔比較例1〕
実施例1において、第二のカチオン交換樹脂塔6に高架橋度ゲル型カチオン交換樹脂(栗田工業(株)製 UPK−14)を充填した以外は同様にして純水製造装置を構成し、被処理水W1の通水処理を行った。この純水装置で製造した純水W5の水質は、比抵抗値16〜17MΩ・cm程度でTOC70〜100ppb程度であり、比抵抗値18MΩ・cm以上の水質を安定して得ることができなかった。
[Comparative Example 1]
In Example 1, a pure water production apparatus was configured in the same manner except that the second cation exchange resin tower 6 was filled with a highly crosslinked gel type cation exchange resin (UPK-14 manufactured by Kurita Kogyo Co., Ltd.). The water W1 was passed through. The water quality of the pure water W5 produced by this pure water device is about TOC 70-100 ppb with a specific resistance value of about 16-17 MΩ · cm, and water quality with a specific resistance value of 18 MΩ · cm or more could not be stably obtained. .

1…前処理システム
2…純水製造装置
3…第一のカチオン交換樹脂塔
4…脱炭酸塔
5…アニオン交換樹脂塔
6…第二のカチオン交換樹脂塔
W…原水
W1…被処理水(前処理水)
W2…カチオン処理水
W3…脱炭酸水
W4…アニオン処理水
W5…純水
DESCRIPTION OF SYMBOLS 1 ... Pretreatment system 2 ... Pure water manufacturing apparatus 3 ... 1st cation exchange resin tower 4 ... Decarbonation tower 5 ... Anion exchange resin tower 6 ... 2nd cation exchange resin tower W ... Raw water W1 ... Water to be treated (previous Treated water)
W2 ... Cation treated water W3 ... Decarbonated water W4 ... Anion treated water W5 ... Pure water

Claims (5)

バナジウムを含有する被処理水を接触させる第一のカチオン交換樹脂塔と、脱炭酸装置と、アニオン交換樹脂塔と、第二のカチオン交換樹脂塔とをこの順に備える純水製造装置であって、
前記第一のカチオン交換樹脂塔に高架橋度ゲル型カチオン交換樹脂を充填し、アニオン交換樹脂塔にゲル型アニオン交換樹脂を充填し、第二のカチオン交換樹脂塔にポーラス型カチオン交換樹脂を充填したことを特徴とする純水製造装置。
A pure water production apparatus comprising a first cation exchange resin tower in contact with water to be treated containing vanadium, a decarboxylation apparatus, an anion exchange resin tower, and a second cation exchange resin tower in this order,
The first cation exchange resin tower is filled with a highly crosslinked gel cation exchange resin, the anion exchange resin tower is filled with a gel anion exchange resin, and the second cation exchange resin tower is filled with a porous cation exchange resin. An apparatus for producing pure water.
前記高架橋度ゲル型カチオン交換樹脂、ゲル型アニオン交換樹脂及びポーラス型カチオン交換樹脂の少なくとも1種が、TOC溶出量が30ppb以下となるようにあらかじめ洗浄されたものであることを特徴とする請求項1に記載の純水製造装置。   The at least one of the highly crosslinked gel type cation exchange resin, gel type anion exchange resin, and porous type cation exchange resin is washed in advance so that the TOC elution amount is 30 ppb or less. The pure water manufacturing apparatus according to 1. バナジウムを含有する被処理水を高架橋度ゲル型カチオン交換樹脂で処理した後脱炭酸し、その処理水をゲル型アニオン交換樹脂と、ポーラス型カチオン交換樹脂塔とに順次接触させて純水を得ることを特徴とする純水の製造方法。   The treated water containing vanadium is treated with a highly crosslinked gel cation exchange resin and then decarboxylated, and the treated water is sequentially brought into contact with the gel anion exchange resin and the porous cation exchange resin tower to obtain pure water. A method for producing pure water. 前記高架橋度ゲル型カチオン交換樹脂、ゲル型アニオン交換樹脂及びポーラス型カチオン交換樹脂の少なくとも1種が、TOC溶出量が30ppb以下となるようにあらかじめ洗浄されたものであることを特徴とする請求項3に記載の純水の製造方法。   The at least one of the highly crosslinked gel type cation exchange resin, gel type anion exchange resin, and porous type cation exchange resin is washed in advance so that the TOC elution amount is 30 ppb or less. 3. The method for producing pure water according to 3. 前記被処理水がバナジウムを1〜10ppb含有することを特徴とする請求項4又は5に記載の純水の製造方法。   The method for producing pure water according to claim 4 or 5, wherein the water to be treated contains 1 to 10 ppb of vanadium.
JP2016031127A 2016-02-22 2016-02-22 Pure water production device and method for producing pure water Pending JP2017148692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031127A JP2017148692A (en) 2016-02-22 2016-02-22 Pure water production device and method for producing pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031127A JP2017148692A (en) 2016-02-22 2016-02-22 Pure water production device and method for producing pure water

Publications (1)

Publication Number Publication Date
JP2017148692A true JP2017148692A (en) 2017-08-31

Family

ID=59741360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031127A Pending JP2017148692A (en) 2016-02-22 2016-02-22 Pure water production device and method for producing pure water

Country Status (1)

Country Link
JP (1) JP2017148692A (en)

Similar Documents

Publication Publication Date Title
KR101692212B1 (en) Process and equipment for the treatment of water containing organic matter
JP2008272713A (en) Method for producing ultrapure water, and production device therefor
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP2007064646A (en) Method and device for desalting condensate
JP6402754B2 (en) Regenerative ion exchange apparatus and operation method thereof
CN109200627B (en) Purification method of alcohol amine solution
JP5838645B2 (en) Production method of ultra pure water
JP2017148692A (en) Pure water production device and method for producing pure water
JP2019118891A (en) Pure water producing apparatus and pure water producing method
JP2012035196A (en) Treatment method for acetic-acid containing wastewater and apparatus
TWI781227B (en) Method for removing boron, and method for producing pure water or ultrapure water
WO2014153623A1 (en) Silica removal from coal seam gas water
JP2003315496A (en) Method for regenerating ion-exchange resin and method for refining regenerant used for it
JP5915683B2 (en) Method and apparatus for treating vanadium-containing water
JP5093292B2 (en) Method for treating vanadium-containing water
JP2006254794A (en) Method for regenerating phenolic absorbing resin in sugar solution refining system and sugar solution refining apparatus
Ansari et al. Application of a cost effective biosorbent for basic dye removal from textile industries
JP2013237944A (en) Cross-linked catalase immobilized fiber and ultrapure water producing apparatus
JPH04271848A (en) Recovery method for anion exchange resin
JP2007075720A (en) Method for treating strong basic anion exchange resin and strong basic anion exchange resin obtained thereby
JPH0929233A (en) Method for removing hydrogen peroxide in treatment water and water treatment apparatus
JPH0839059A (en) Recovery of semiconductor washing waste water containing organic alkali
Yamada et al. Removal of phenol from saline water by polyamine chelating resin
CN111115755B (en) Treatment method of waste water in production of dye intermediate bromamine acid
WO2015159948A1 (en) Recovery method for weak acid cation exchange resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200519