JP2017146296A - Method and apparatus for evaluating surface property of hot-dip galvanized steel sheet, and method for manufacturing hot-dip galvanized steel sheet - Google Patents

Method and apparatus for evaluating surface property of hot-dip galvanized steel sheet, and method for manufacturing hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP2017146296A
JP2017146296A JP2017009929A JP2017009929A JP2017146296A JP 2017146296 A JP2017146296 A JP 2017146296A JP 2017009929 A JP2017009929 A JP 2017009929A JP 2017009929 A JP2017009929 A JP 2017009929A JP 2017146296 A JP2017146296 A JP 2017146296A
Authority
JP
Japan
Prior art keywords
hot
galvanized steel
steel sheet
dip galvanized
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017009929A
Other languages
Japanese (ja)
Other versions
JP6460131B2 (en
Inventor
光俊 剱持
Mitsutoshi Kenmochi
光俊 剱持
貴彦 大重
Takahiko Oshige
貴彦 大重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017146296A publication Critical patent/JP2017146296A/en
Application granted granted Critical
Publication of JP6460131B2 publication Critical patent/JP6460131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for evaluating surface properties of a hot-dip galvanized steel sheet, capable of accurately, quantitatively evaluating the level of rippled surface defect of the hot-dip galvanized steel sheet without being limited to specific manufacturing conditions.SOLUTION: The method and apparatus for evaluating surface properties of a hot-dip galvanized steel sheet, capable of evaluating the level of rippled surface defect of the hot-dip galvanized steel sheet comprises the steps of: calculating an undulation curve showing an undulation shape in the width direction of the hot-dip galvanized steel sheet by applying a phase compensation filter to a cross sectional curve showing a cross sectional shape in the width direction of the hot-dip galvanized steel sheet (the step S3); and evaluating the level of rippled surface defect of the hot-dip galvanized steel sheet using the average length of undulation elements constituting the undulation curve as an evaluation index.SELECTED DRAWING: Figure 1

Description

本発明は、溶融亜鉛めっき鋼板の表面性状評価方法、溶融亜鉛めっき鋼板の表面性状評価装置、及び溶融亜鉛めっき鋼板の製造方法に関する。   The present invention relates to a surface property evaluation method for a hot dip galvanized steel sheet, a surface property evaluation apparatus for a hot dip galvanized steel sheet, and a method for producing a hot dip galvanized steel sheet.

一般に、溶融亜鉛めっき鋼板の製造工程においては、溶融亜鉛めっきが入ったポットに鋼板を通した後、鋼板表面をワイピング処理することによって鋼板表面に付着した溶融亜鉛めっきの厚みを均一にしている。このような溶融亜鉛めっき鋼板の製造工程では、ワイピング処理やその後の溶融亜鉛めっきの凝固過程において溶融亜鉛めっきの厚みにむらが生じることによって、鋼板表面に波形の凹凸である湯だれ(湯じわとも呼ばれる)欠陥が発生することがある。製品製造や製造工程開発においては、湯だれ欠陥の程度を評価する必要がある。このような背景から、特許文献1には、湯だれ欠陥の程度を目視によって○、△、×の3段階で評価する方法が提案されている。また、特許文献2には、溶融亜鉛めっき鋼板の表面粗度Raを数点計測し、その標準偏差によって湯だれ欠陥の程度を定量的に評価する方法が提案されている。   Generally, in the manufacturing process of a hot dip galvanized steel sheet, after passing the steel sheet through a pot containing hot dip galvanizing, the thickness of the hot dip galvanizing adhered to the steel sheet surface is made uniform by wiping the steel sheet surface. In such a hot dip galvanized steel sheet manufacturing process, unevenness in the thickness of the hot dip galvanizing occurs during the wiping process and the subsequent solidification process of the hot dip galvanizing. (Also called). In product manufacturing and manufacturing process development, it is necessary to evaluate the degree of a bath defect. From such a background, Patent Document 1 proposes a method for evaluating the degree of a bath defect visually in three stages of ◯, Δ, and X. Patent Document 2 proposes a method of measuring several points on the surface roughness Ra of a hot-dip galvanized steel sheet and quantitatively evaluating the degree of the hot water defect based on the standard deviation.

特開平10−226863号公報JP-A-10-226863 特許第3278607号公報Japanese Patent No. 3278607

しかしながら、特許文献1記載の方法によれば、湯だれ欠陥の程度を目視によって評価しているために、評価者の主観によって評価結果にばらつきが生じる。一方、特許文献2記載の表面粗度Raの標準偏差に基づく評価方法は、特定の製造条件での例に基づくものであり、調質圧延(skin pass rolling)処理や化成処理の有無及びロール粗度の違い等、その他の製造条件では有効ではない可能性がある。このため、製造条件が変化した場合には、湯だれ欠陥の程度を精度よく評価することができず、結果として、溶融亜鉛めっき鋼板を歩留まりよく製造することが困難になる。   However, according to the method described in Patent Document 1, since the degree of the bath defect is visually evaluated, the evaluation results vary depending on the evaluator's subjectivity. On the other hand, the evaluation method based on the standard deviation of the surface roughness Ra described in Patent Document 2 is based on an example under specific manufacturing conditions, and the presence or absence of a temper rolling process, a chemical conversion process, and a roll roughness. It may not be effective under other manufacturing conditions such as differences in degrees. For this reason, when the manufacturing conditions are changed, the degree of the hot water defect cannot be accurately evaluated, and as a result, it becomes difficult to manufacture the hot-dip galvanized steel sheet with a high yield.

本発明は、上記課題に鑑みてなされたものであって、その目的は、特定の製造条件に限定されることなく、溶融亜鉛めっき鋼板の湯だれ欠陥の程度を精度よく定量的に評価可能な溶融亜鉛めっき鋼板の表面性状評価方法及び表面性状評価装置を提供することにある。また、本発明の他の目的は、溶融亜鉛めっき鋼板を歩留まりよく製造可能な溶融亜鉛めっき鋼板の製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is not limited to specific manufacturing conditions, and the degree of the sag defect of the hot-dip galvanized steel sheet can be accurately and quantitatively evaluated. An object of the present invention is to provide a surface property evaluation method and a surface property evaluation apparatus for a hot dip galvanized steel sheet. Moreover, the other object of this invention is to provide the manufacturing method of the hot dip galvanized steel plate which can manufacture a hot dip galvanized steel plate with a sufficient yield.

本発明に係る溶融亜鉛めっき鋼板の表面性状評価方法は、溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価する溶融亜鉛めっき鋼板の表面性状評価方法であって、前記溶融亜鉛めっき鋼板の幅方向の断面形状を示す断面曲線に対して位相補償形フィルタを適用することによって、前記溶融亜鉛めっき鋼板の幅方向のうねり形状を示すうねり曲線を算出し、該うねり曲線を構成するうねり要素の平均長さを評価指標として前記溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価するステップを含むことを特徴とする。   The surface property evaluation method for a hot dip galvanized steel sheet according to the present invention is a method for evaluating the surface property of a hot dip galvanized steel sheet, which evaluates the degree of the hot water defect of the hot dip galvanized steel sheet, By applying a phase compensation filter to the cross-sectional curve indicating the cross-sectional shape, a waviness curve indicating the waviness shape in the width direction of the hot-dip galvanized steel sheet is calculated, and the average length of the waviness elements constituting the waviness curve The method includes a step of evaluating the degree of the hot-dip defect of the hot-dip galvanized steel sheet using as an evaluation index.

本発明に係る溶融亜鉛めっき鋼板の表面性状評価方法は、上記発明において、前記溶融亜鉛めっき鋼板の複数の長さ方向位置において前記うねり曲線を抽出し、各うねり曲線から算出された前記評価指標の平均値又は最大値を用いて前記溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価することを特徴とする。   The surface property evaluation method for a hot dip galvanized steel sheet according to the present invention is the above invention, wherein the waviness curve is extracted at a plurality of longitudinal positions of the hot dip galvanized steel sheet, and the evaluation index calculated from each waviness curve The average value or the maximum value is used to evaluate the degree of the dip in the hot dip galvanized steel sheet.

本発明に係る溶融亜鉛めっき鋼板の表面性状評価方法は、上記発明において、前記断面曲線を含む2次元画像に対して前記位相補償形フィルタのカットオフ値より大きいカットオフ値を有する2次元の第2位相補償形フィルタを適用することによって前記溶融亜鉛めっき鋼板の表面の凹凸高さの平均値又は最大値を算出し、算出された凹凸高さの平均値又は最大値に基づいて前記溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価するステップを含むことを特徴とする。   In the above invention, the method for evaluating the surface properties of a hot-dip galvanized steel sheet according to the present invention is a two-dimensional first method having a cutoff value larger than the cutoff value of the phase compensation filter for the two-dimensional image including the cross-sectional curve. By applying a two-phase compensation filter, an average value or maximum value of the uneven height on the surface of the hot dip galvanized steel sheet is calculated, and the hot dip galvanizing is performed based on the calculated average value or maximum value of the uneven height. The method includes the step of evaluating the degree of the hot water defect of the steel sheet.

本発明に係る溶融亜鉛めっき鋼板の表面性状評価方法は、上記発明において、前記溶融亜鉛めっき鋼板の表面の凹凸形状を測定し、所定の第1高さ閾値以上の高さが所定の第1面積閾値以上の面積連続している凸欠陥部及び前記第1高さ閾値より小さい所定の第2高さ閾値以下の高さが所定の第2面積閾値以上の面積連続している凹欠陥部の総面積をそれぞれ前記凹凸形状の測定結果から算出し、検査領域内に占める前記凸欠陥部の総面積と前記凹欠陥部の総面積との和の割合を凹凸欠陥部面積率として算出するステップと、前記溶融亜鉛めっき鋼板の表面の輝度を測定し、検査領域を複数の小領域に分割して各小領域における表面の平均輝度を前記輝度の測定結果から算出し、隣接する小領域の中に平均輝度の差が所定値以上である小領域がある小領域を輝度欠陥部として抽出し、検査領域内に占める輝度欠陥部の総面積の割合を輝度欠陥部面積率として算出するステップと、前記凹凸欠陥部面積率と前記輝度欠陥部面積率とを線形結合した評価指標によって検査領域内における凹凸性欠陥の等級評価を行うステップと、を含むことを特徴とする。   In the above invention, the surface property evaluation method for a hot dip galvanized steel sheet according to the present invention measures the uneven shape of the surface of the hot dip galvanized steel sheet, and a height equal to or higher than a predetermined first height threshold is a predetermined first area. The total of the convex defect portion having a continuous area that is equal to or greater than the threshold value and the concave defect portion having a height that is equal to or less than the predetermined second height threshold value that is smaller than the first height threshold value and that has a continuous area equal to or greater than the predetermined second area threshold value Calculating each area from the measurement result of the concave and convex shape, calculating a ratio of the sum of the total area of the convex defect portion and the total area of the concave defect portion in the inspection region as an uneven defect portion area ratio; The brightness of the surface of the hot dip galvanized steel sheet is measured, the inspection area is divided into a plurality of small areas, the average brightness of the surface in each small area is calculated from the measurement result of the brightness, and the average in the adjacent small areas Small area where the difference in brightness is greater than or equal to a predetermined value Extracting a certain small region as a luminance defect portion, calculating a ratio of the total area of the luminance defect portion in the inspection region as a luminance defect portion area ratio, and the uneven defect portion area ratio and the luminance defect portion area ratio, And a step of performing grade evaluation of the unevenness defect in the inspection region using an evaluation index obtained by linearly combining.

本発明に係る溶融亜鉛めっき鋼板の表面性状評価装置は、溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価する溶融亜鉛めっき鋼板の表面性状評価装置であって、前記溶融亜鉛めっき鋼板の幅方向の断面形状を示す断面曲線に対して位相補償形フィルタを適用することによって、前記溶融亜鉛めっき鋼板の幅方向のうねり形状を示すうねり曲線を算出する手段と、前記うねり曲線を構成するうねり要素の平均長さを前記溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価する際の評価指標として算出する手段と、を備えることを特徴とする。   The surface property evaluation apparatus for hot dip galvanized steel sheet according to the present invention is a surface property evaluation apparatus for hot dip galvanized steel sheet, which evaluates the degree of hot water defects in the hot dip galvanized steel sheet, in the width direction of the hot dip galvanized steel sheet. Means for calculating a waviness curve indicating the waviness shape in the width direction of the hot-dip galvanized steel sheet by applying a phase compensation filter to the cross-sectional curve showing the cross-sectional shape, and the average of the waviness elements constituting the waviness curve And a means for calculating a length as an evaluation index when evaluating the degree of the hot water defect of the hot-dip galvanized steel sheet.

本発明に係る溶融亜鉛めっき鋼板の製造方法は、本発明に係る溶融亜鉛めっき鋼板の表面性状評価方法によって評価された溶融亜鉛めっき鋼板の湯だれ欠陥の程度に基づいて製造条件を制御することによって溶融亜鉛めっき鋼板を製造するステップを含むことを特徴とする。   The manufacturing method of the hot dip galvanized steel sheet according to the present invention is based on controlling the manufacturing conditions based on the degree of the hot dip in the hot dip galvanized steel sheet evaluated by the surface property evaluation method of the hot dip galvanized steel sheet according to the present invention. The method includes a step of manufacturing a hot dip galvanized steel sheet.

本発明に係る溶融亜鉛めっき鋼板の表面性状評価方法及び表面性状評価装置によれば、特定の製造条件に限定されることなく、溶融亜鉛めっき鋼板の湯だれ欠陥の程度を精度よく定量的に評価できる。また、本発明に係る溶融亜鉛めっき鋼板の製造方法によれば、溶融亜鉛めっき鋼板を歩留まりよく製造できる。   According to the surface property evaluation method and the surface property evaluation apparatus for hot dip galvanized steel sheet according to the present invention, the degree of the sag defect of the hot dip galvanized steel sheet is accurately and quantitatively evaluated without being limited to specific manufacturing conditions. it can. Moreover, according to the manufacturing method of the hot dip galvanized steel plate which concerns on this invention, a hot dip galvanized steel plate can be manufactured with a sufficient yield.

図1は、本発明の第1の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法の流れを示すフローチャートである。FIG. 1 is a flowchart showing a flow of a surface property evaluation method for a hot-dip galvanized steel sheet according to the first embodiment of the present invention. 図2は、うねり要素の長さを説明するための模式図である。FIG. 2 is a schematic diagram for explaining the length of the undulation element. 図3は、溶融亜鉛めっき鋼板の表面の2次元画像の一例を示す図である。FIG. 3 is a diagram showing an example of a two-dimensional image of the surface of the hot dip galvanized steel sheet. 図4は、溶融亜鉛めっき鋼板の断面曲線の一例を示す図である。FIG. 4 is a diagram showing an example of a cross-sectional curve of a hot-dip galvanized steel sheet. 図5は、図4に示す断面曲線から得られたうねり曲線を示す図である。FIG. 5 is a diagram showing a waviness curve obtained from the cross-sectional curve shown in FIG. 図6は、本発明例の評価指標と目視により付与された湯だれ欠陥の程度の評点との関係を示す図である。FIG. 6 is a diagram showing the relationship between the evaluation index of the example of the present invention and the rating of the degree of the bath defect given visually. 図7は、比較例の評価指標と目視により付与された湯だれ欠陥の程度の評点との関係を示す図である。FIG. 7 is a diagram showing the relationship between the evaluation index of the comparative example and the rating of the degree of the bath defect given visually. 図8は、本発明の第2の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法の流れを示すフローチャートである。FIG. 8 is a flowchart showing the flow of the surface property evaluation method for hot-dip galvanized steel sheet according to the second embodiment of the present invention. 図9は、うねり要素の平均長さの最大値と目視により付与された湯だれ欠陥の程度の評点との関係を示す図である。FIG. 9 is a diagram showing the relationship between the maximum value of the average length of the swell element and the rating of the degree of the bath defect given visually. 図10は、凹凸高さの最大値と目視により付与された湯だれ欠陥の程度の評点との関係を示す図である。FIG. 10 is a diagram showing a relationship between the maximum value of the unevenness height and the rating of the degree of the bathing defect given visually. 図11は、凹凸高さの平均値と目視により付与された湯だれ欠陥の程度の評点との関係を示す図である。FIG. 11 is a diagram showing the relationship between the average value of the unevenness height and the rating of the degree of the bath defect given visually. 図12は、本発明の第3の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法の流れを示すフローチャートである。FIG. 12 is a flowchart showing the flow of the surface property evaluation method for hot-dip galvanized steel sheet according to the third embodiment of the present invention. 図13は、凹凸欠陥部面積率と目視により付与された凹凸性欠陥の程度の評点との関係を示す図である。FIG. 13 is a diagram showing the relationship between the area ratio of the concavo-convex defect portion and the rating of the degree of the concavo-convex defect given visually. 図14は、輝度欠陥部の抽出方法を説明するための図である。FIG. 14 is a diagram for explaining a method of extracting a luminance defect portion. 図15は、輝度欠陥部面積率と目視により付与された凹凸性欠陥の程度の評点との関係を示す図である。FIG. 15 is a diagram showing the relationship between the luminance defect area ratio and the rating of the degree of unevenness visually imparted. 図16は、評価指標と目視により付与された凹凸性欠陥の程度の評点との関係を示す図である。FIG. 16 is a diagram showing the relationship between the evaluation index and the score of the degree of the unevenness defect given visually.

従来、湯だれ欠陥の程度は、オペレータが溶融亜鉛めっき鋼板の表面を目視し、湯だれ欠陥の程度を複数段階の評点で表現することによって評価していた。ここで、湯だれ欠陥には平面方向に数mm以上の間隔での凹凸が見られるが、重度な湯だれ欠陥では小さな周期での凹凸のあるたれが重なりあって大きなたれとなっている。このことから、本発明の発明者らは、凹凸の間隔の大きさに着目し、うねりの平均長さを評価することにより、オペレータの目視評価と相関性の高い湯だれ欠陥の定量的な評価指標が得られることを想到した。   Conventionally, the degree of the dripping defect has been evaluated by the operator visually observing the surface of the hot-dip galvanized steel sheet and expressing the degree of the dripping defect with a plurality of grades. Here, unevenness at intervals of several millimeters or more in the plane direction is seen in the bathing defect, but in the case of a severe bathing defect, the sagging with unevenness with a small period overlaps and becomes a large sagging. From this, the inventors of the present invention focused on the size of the interval between the concaves and convexes, and evaluated the average length of the waviness, thereby quantitatively evaluating the bath defect having a high correlation with the visual evaluation of the operator. I came up with the idea that an index could be obtained.

なお、うねりの平均長さは、一つの断面曲線に対して定義される。このため、湯だれ欠陥の程度を精度よく定量化するためには、複数の断面曲線についてうねりの平均長さを算出し、うねりの平均長さの平均値又は最大値を算出する必要がある。また、湯だれ欠陥のない鋼板では、どの断面曲線に対してもうねりの平均長さは小さな値をとるのに対して、湯だれ欠陥のある鋼板では、凹凸のある箇所に応じてうねりの平均長さが大きな値をとる箇所がある。   The average swell length is defined for one cross-sectional curve. For this reason, in order to quantify the degree of the bath defect with high accuracy, it is necessary to calculate the average waviness length for a plurality of cross-sectional curves and to calculate the average value or the maximum value of the average waviness length. On the other hand, the average length of waviness takes a small value for any cross-section curve in a steel plate without a dripping defect, whereas in a steel plate with a dripping defect, the average waviness depends on the uneven part. There are places where the length takes a large value.

なお、本発明に使用する溶融亜鉛めっき鋼板としては、溶融亜鉛めっき鋼板、亜鉛−アルミニウム合金めっき鋼板、亜鉛−鉄合金めっき鋼板、亜鉛−マグネシウムめっき鋼板、亜鉛−アルミニウム−マグネシウム合金めっき鋼板等を用いることができる。加えて、本発明に使用する溶融亜鉛めっき鋼板としては、上記溶融亜鉛めっき鋼板の表面に化成処理等により表面処理皮膜を形成したものを用いることもできる。   In addition, as a hot dip galvanized steel plate used for this invention, a hot dip galvanized steel plate, a zinc-aluminum alloy plated steel plate, a zinc-iron alloy plated steel plate, a zinc-magnesium plated steel plate, a zinc-aluminum-magnesium alloy plated steel plate, etc. are used. be able to. In addition, as the hot dip galvanized steel sheet used in the present invention, a steel sheet having a surface treatment film formed on the surface of the hot dip galvanized steel sheet by chemical conversion treatment or the like can also be used.

以下、図面を参照して、本発明の第1〜第3の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法について説明する。   Hereinafter, with reference to drawings, the surface property evaluation method of the hot dip galvanized steel sheet which is the 1st-3rd embodiment of the present invention is explained.

〔第1の実施形態〕
まず、図1〜図7を参照して、本発明の第1の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法について説明する。
[First Embodiment]
First, with reference to FIGS. 1-7, the surface property evaluation method of the hot dip galvanized steel plate which is the 1st Embodiment of this invention is demonstrated.

図1は、本発明の第1の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法の流れを示すフローチャートである。図2は、うねり要素の長さを説明するための模式図である。   FIG. 1 is a flowchart showing a flow of a surface property evaluation method for a hot-dip galvanized steel sheet according to the first embodiment of the present invention. FIG. 2 is a schematic diagram for explaining the length of the undulation element.

図1に示すように、本発明の第1の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法では、まず、接触式や非接触式の表面粗さ測定装置を利用して、溶融亜鉛めっき鋼板(以下、鋼板と略記)の表面の凹凸形状の2次元画像を計測する(ステップS1)。次に、計測された2次元画像から形状補正により鋼板そのものの反りの成分を除去した後、2次元画像から幅方向の断面曲線を複数抽出する(ステップS2)。なお、幅方向の断面曲線は、鋼板の長さ1mあたり10程度抽出するとよい。また、断面曲線を抽出する箇所は、湯だれ欠陥以外の欠陥がない箇所であることが望ましい。   As shown in FIG. 1, in the surface property evaluation method for a hot dip galvanized steel sheet according to the first embodiment of the present invention, first, a hot dip galvanization is performed by using a contact type or non-contact type surface roughness measuring device. A two-dimensional image of the concavo-convex shape of the surface of a steel plate (hereinafter abbreviated as a steel plate) is measured (step S1). Next, after removing the warp component of the steel plate itself from the measured two-dimensional image by shape correction, a plurality of cross-sectional curves in the width direction are extracted from the two-dimensional image (step S2). In addition, it is good to extract the cross-sectional curve of the width direction about 10 per 1 m of length of a steel plate. Moreover, it is desirable that the location where the cross-sectional curve is extracted is a location where there is no defect other than a bath defect.

次に、抽出された各断面曲線に対して位相補償形フィルタ(波長に対するハイパスフィルタ)を適用することによって、鋼板の幅方向のうねり形状を示すうねり曲線を算出する(ステップS3)。ここで、波長に対するハイパスフィルタとは、カットオフ値λc1よりも長い波長のものを通すフィルタのことを意味する。なお、位相補償形フィルタのカットオフ値λc1は、鋼板の算出平均粗さRaを十分に除去できる値とし、例えば0.8〜2.5mmの範囲内で設定するとよい。次に、予め決められたうねり曲線の評価長さの範囲内について、うねり曲線を構成する複数のうねり要素の長さDを算出し、算出された複数のうねり要素の長さDの平均値をうねり要素の平均長さWSmとして算出する(ステップS4)。なお、うねり曲線の評価長さは、以前に求められた湯だれ欠陥の平均長さに基づいて決めるとよく、溶融亜鉛めっき鋼板の幅方向端部を含めないようにすることが望ましい。また、図2に示すように、うねり要素の長さDとは、うねり曲線Cの正から負にゼロクロスする点(谷の開始点)P1から次の正から負にゼロクロスする点(谷の開始点)P2までの長さ、換言すれば、うねりの1波長分の長さのことを意味する。   Next, a waviness curve indicating the waviness shape in the width direction of the steel sheet is calculated by applying a phase compensation filter (high-pass filter for wavelength) to each extracted cross-sectional curve (step S3). Here, the high-pass filter for the wavelength means a filter that passes a wavelength longer than the cutoff value λc1. The cut-off value λc1 of the phase compensation filter is a value that can sufficiently remove the calculated average roughness Ra of the steel sheet, and may be set within a range of, for example, 0.8 to 2.5 mm. Next, within a predetermined evaluation length range of the undulation curve, a length D of a plurality of undulation elements constituting the undulation curve is calculated, and an average value of the calculated lengths D of the plurality of undulation elements is calculated. The average length WSm of the waviness element is calculated (step S4). In addition, the evaluation length of the undulation curve may be determined based on the average length of the dip defect obtained previously, and it is desirable not to include the end in the width direction of the hot dip galvanized steel sheet. Further, as shown in FIG. 2, the length D of the undulation element is a point where the zero crossing from the positive to the negative of the undulation curve C (start point of the valley) P1 is a point (start of the valley) from the next positive to negative zero crossing. Point) It means the length up to P2, in other words, the length of one wave of swell.

次に、各うねり曲線から算出されたうねり要素の平均長さWSmの平均値又は最大値を算出し(ステップS5)、算出されたうねり要素の平均長さWSmの平均値又は最大値を評価指標として鋼板の湯だれ欠陥の程度を評価する。具体的には、うねり要素の平均長さWSmの平均値又は最大値が小さい程、湯だれ欠陥が少なく、表面性状が良い鋼板であると評価する。なお、うねり要素の平均長さWSmの平均値又は最大値は、うねり曲線Cの測定範囲内で大きな値を取り得るが、一般に、目視によって付与される湯だれ欠陥の程度の評点(湯だれ評点)は5点(劣悪)迄に抑えられているので、うねり要素の平均長さWSmの平均値又は最大値に上限値(例えば15等)を定めてもよい。   Next, the average value or the maximum value of the average length WSm of the undulation element calculated from each undulation curve is calculated (step S5), and the average value or the maximum value of the calculated average length WSm of the undulation element is used as an evaluation index. As an evaluation, the degree of hot water defects in the steel sheet is evaluated. Specifically, the smaller the average value or the maximum value of the average length WSm of the swell element, the smaller the hot water defect and the better the surface property. The average value or the maximum value of the average length WSm of the undulation element can take a large value within the measurement range of the undulation curve C. ) Is suppressed to 5 points (inferior), so an upper limit value (for example, 15) may be set to the average value or the maximum value of the average length WSm of the swell elements.

[実施例1]
本実施例では、連続式溶融亜鉛めっき設備で製造条件(調質圧延処理及び化成処理の有無)を変えて製造された40個の溶融亜鉛めっき鋼板サンプルについて、湯だれ欠陥の程度を本発明例及び比較例を用いて評価した。比較例では、本発明と同様の処理で得られた複数のうねり曲線について高さの絶対値の平均値(算術平均うねり)を算出し、各うねり曲線から求められた算術平均うねりの平均値を湯だれ欠陥の評価指標Waとして用いた。なお、うねり曲線の評価長さlrは44.2mmとした。また、各サンプルについて、目視で0点(良好)から5点(劣悪)の0.5点刻みで湯だれ評点を付与した。また、本実施例では、表面の凹凸形状は、非接触式の光学式表面粗さ測定装置(株式会社キーエンス製、VR−3000)を用いて約30mm×40mmの範囲について計測した。また、位相補償形フィルタのカットオフ値λc1は0.8mmとした。計測された表面の凹凸形状の2次元画像を図3に示す。また、図4に図3に示す線分Lにおける断面曲線を示し、図5に図4に示す断面曲線から得られたうねり曲線を示す。なお、溶融亜鉛めっき鋼板の幅方向端部(図4,5に示すハッチ領域)には形状補正の影響が残ることから処理対象範囲からは除いた。
[Example 1]
In this example, for 40 hot-dip galvanized steel sheet samples manufactured by changing the manufacturing conditions (with or without temper rolling treatment and chemical conversion treatment) in a continuous hot dip galvanizing facility, the degree of the sag defect is shown as an example of the present invention. And it evaluated using the comparative example. In the comparative example, the average value (arithmetic average waviness) of the absolute value of the height is calculated for a plurality of waviness curves obtained by the same processing as the present invention, and the average value of the arithmetic average waviness obtained from each waviness curve is calculated. It was used as an evaluation index Wa for a bath defect. The evaluation length lr of the undulation curve was 44.2 mm. In addition, for each sample, a hot water scoring score was given visually in increments of 0.5 points from 0 points (good) to 5 points (poor). Moreover, in the present Example, the uneven | corrugated shape of the surface was measured about the range of about 30 mm x 40 mm using the non-contact-type optical surface roughness measuring apparatus (the Keyence Corporation make, VR-3000). The cut-off value λc1 of the phase compensation filter was 0.8 mm. A two-dimensional image of the measured surface irregularities is shown in FIG. 4 shows a cross-sectional curve along the line segment L shown in FIG. 3, and FIG. 5 shows a waviness curve obtained from the cross-sectional curve shown in FIG. In addition, since the influence of shape correction remained in the edge part (hatch area | region shown in FIG. 4, 5) of the width direction of a hot dip galvanized steel plate, it excluded from the process target range.

図6は、本発明例により求められたうねり要素の平均長さWSmの最大値(単位:mm)と湯だれ評点との関係を示す図である。図7は、比較例により求められた評価指標Wa(単位:μm)と湯だれ評点との関係を示す図である。図6と図7との比較から明らかなように、本発明例により求められたうねり要素の平均長さWSmの最大値の方が、比較例により求められた評価指標Waと比較して、湯だれ評点との相関関係が深いものとなっている。具体的には、図6に示す本発明例では、相関係数Rの二乗値(決定係数)R2が0.80であったのに対して、図7に示す比較例では、決定係数R2が0.37であった。以上のことから、本発明例によれば、目視による評価を行わなくても、特定の製造条件に限定されることなく、溶融亜鉛めっき鋼板における湯だれ欠陥の程度を精度よく定量的に評価できることが確認された。また、本発明例により評価された溶融亜鉛めっき鋼板の湯だれ欠陥の程度に基づいて製造条件を制御することによって溶融亜鉛めっき鋼板を製造することにより、溶融亜鉛めっき鋼板を歩留まりよく製造できる。 FIG. 6 is a diagram showing the relationship between the maximum value (unit: mm) of the average length WSm of the swell elements obtained by the example of the present invention and the hot water score. FIG. 7 is a diagram showing the relationship between the evaluation index Wa (unit: μm) obtained by the comparative example and the hot water score. As apparent from the comparison between FIG. 6 and FIG. 7, the maximum value of the average length WSm of the swell element obtained by the example of the present invention is higher than the evaluation index Wa obtained by the comparative example. Correlation with anyone's score is deep. Specifically, in the example of the present invention shown in FIG. 6, the square value (decision coefficient) R 2 of the correlation coefficient R was 0.80, whereas in the comparative example shown in FIG. 2 was 0.37. From the above, according to the example of the present invention, it is possible to accurately and quantitatively evaluate the degree of the sag defect in the hot-dip galvanized steel sheet without being limited to specific manufacturing conditions without performing visual evaluation. Was confirmed. Moreover, a hot dip galvanized steel sheet can be manufactured with a sufficient yield by manufacturing a hot dip galvanized steel sheet by controlling manufacturing conditions based on the degree of the hot-dip defect of the hot dip galvanized steel sheet evaluated by the example of this invention.

〔第2の実施形態〕
次に、図8〜図11を参照して、本発明の第2の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法について説明する。
[Second Embodiment]
Next, with reference to FIGS. 8-11, the surface property evaluation method of the hot dip galvanized steel plate which is the 2nd Embodiment of this invention is demonstrated.

軽度な湯だれ欠陥は、たれが単発であり、大きな周期でのうねりで凹凸の差が小さいという特徴を有している。このため、軽度の湯だれ欠陥については、うねり要素の平均長さWSmのみの評価では精度良く評価できないことがある。そこで、本発明の発明者らは、この軽度の湯だれ欠陥を細分化して評価するためには、発生する単発のたれの凹凸高さを抽出する必要があると考えた。そして、本発明の発明者らは、重度の湯だれ欠陥を評価するものとは異なるカットオフ値の大きい(数mm以上の)位相補償形フィルタ(波長に対するハイパスフィルタ)を適用して凹凸の高さ方向のパラメータで評価することが軽度な湯だれ欠陥の評価には効果的であり、その評価指標が湯だれ評点と相関性が高いことを知見した。   A mild bath defect has the feature that the dripping is single-shot, and the difference in unevenness is small due to undulation in a large cycle. For this reason, it may not be possible to evaluate a slight bathing defect with high accuracy by evaluating only the average length WSm of the waviness element. Therefore, the inventors of the present invention considered that it is necessary to extract the uneven height of the single-shot dripping that occurs in order to subdivide and evaluate this mild dripping defect. Then, the inventors of the present invention apply a phase compensation filter (high-pass filter for wavelength) having a large cutoff value (several mm or more) different from that for evaluating a severe bath defect, thereby increasing the unevenness. It was found that the evaluation with the direction parameter was effective for the evaluation of mild bath defects, and the evaluation index was highly correlated with the bath score.

図8は、本発明の第2の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法の流れを示すフローチャートである。なお、図8に示すステップS11〜ステップS15の処理内容は、図1に示すステップS1〜ステップS5の処理内容と同じであるので、以下ではステップS6以後の処理についてのみ説明する。   FIG. 8 is a flowchart showing the flow of the surface property evaluation method for hot-dip galvanized steel sheet according to the second embodiment of the present invention. Note that the processing contents of steps S11 to S15 shown in FIG. 8 are the same as the processing contents of steps S1 to S5 shown in FIG. 1, so only the processing after step S6 will be described below.

図8に示すように、本発明の第2の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法では、ステップS15の処理が完了した後、ステップS11において計測された2次元画像から形状補正により鋼板そのものの反りの成分を除去する。この反りの成分を除去する形状補正の方法は、ステップS12で用いた方法と条件を含めて同一であることが望ましい。計測対象が同じ溶融亜鉛めっき鋼板であるため、鋼板の反りは同じだからである。その結果、反りの成分が除去された2次元画像にステップS12で得られる幅方向の断面曲線が含まれることになる。次に、反りの成分が除去された後の2次元画像に対してステップS12の処理において用いた位相補償形フィルタとは別のカットオフ値を持つ2次元の位相補償形フィルタ(波長に対するハイパスフィルタ)を適用する(ステップS16)。詳しくは、ステップS16の処理では、ステップS13の処理において用いた位相補償形フィルタのカットオフ値λc1よりも大きいカットオフ値λc2を有する2次元の位相補償形フィルタを用いる。具体的には、カットオフ値λc2は、カットオフ値λc1の2倍程度の値とし、2.5〜10.0mmの範囲内で設定することが望ましい。   As shown in FIG. 8, in the surface texture evaluation method for hot-dip galvanized steel sheet according to the second embodiment of the present invention, after the processing in step S15 is completed, shape correction is performed from the two-dimensional image measured in step S11. The warping component of the steel plate itself is removed. The shape correction method for removing the warp component is desirably the same as the method used in step S12, including the conditions. This is because the warpage of the steel sheet is the same because the measurement object is the same hot-dip galvanized steel sheet. As a result, the cross-sectional curve in the width direction obtained in step S12 is included in the two-dimensional image from which the warp component has been removed. Next, a two-dimensional phase compensation filter (high-pass filter for wavelength) having a cutoff value different from the phase compensation filter used in the process of step S12 for the two-dimensional image from which the warp component has been removed. ) Is applied (step S16). Specifically, in the process of step S16, a two-dimensional phase compensation filter having a cutoff value λc2 larger than the cutoff value λc1 of the phase compensation filter used in the process of step S13 is used. Specifically, the cut-off value λc2 is preferably about twice the cut-off value λc1, and is preferably set within a range of 2.5 to 10.0 mm.

そして、複数の断面曲線に対してカットオフ値λc2の2次元の位相補償形フィルタを適用することにより得られた曲線から鋼板表面の2次元の凹凸高さの平均値又は最大値を算出し、算出された凹凸高さの平均値又は最大値を評価指標として鋼板の湯だれ欠陥の程度を評価する(ステップS17)。これにより、軽度(例えば湯だれ評点0〜0.5の範囲)の湯だれ欠陥の定量化の精度を高めることができる。なお、凹凸高さの平均値の定義はISO規格において規定されている以下の数式(1)に示す2次元の算術平均粗さSaに準じ、凹凸高さの最大値の定義はISO規格において規定されている以下の数式(2)に示す2次元の最大高さSzに準じ、用いるカットオフ値のみが異なっている。ここで、数式(1)中、パラメータAは評価範囲を示し、数式(1),(2)中、パラメータZ(x,y)は2次元の凹凸高さを示している。また、評価範囲Aとx,yとの間には、以下の数式(3)に示す関係がある。   And, the average value or maximum value of the two-dimensional unevenness height of the steel sheet surface is calculated from the curve obtained by applying a two-dimensional phase compensation filter with a cutoff value λc2 for a plurality of cross-sectional curves, Using the calculated average value or maximum value of the unevenness height as an evaluation index, the degree of the bath defect of the steel sheet is evaluated (step S17). Thereby, the precision of the quantification of a mild bath defect (for example, the range of the hot bath score 0 to 0.5) can be increased. In addition, the definition of the average value of the concavo-convex height conforms to the two-dimensional arithmetic average roughness Sa shown in the following formula (1) specified in the ISO standard, and the definition of the maximum value of the concavo-convex height is specified in the ISO standard. Only the cut-off value to be used is different according to the two-dimensional maximum height Sz shown in the following formula (2). Here, in the formula (1), the parameter A indicates the evaluation range, and in the formulas (1) and (2), the parameter Z (x, y) indicates the two-dimensional uneven height. Further, there is a relationship represented by the following mathematical formula (3) between the evaluation range A and x, y.

但し、maxZ(x,y)とmin|Z(x,y)|は評価範囲Aに対する値である。 However, maxZ (x, y) and min | Z (x, y) | are values for the evaluation range A.

[実施例2]
上述した通り、本発明の第1の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法のみでは、軽度の湯だれ欠陥については定量化の精度が高くない場合がある。このため、この場合、図8に示すステップS16,S17の処理によって求められた凹凸高さの平均値又は最大値を評価指標の補足として用いる。本実施例では、連続式溶融亜鉛めっき設備で製造条件を変えて製造された別の10個の溶融亜鉛めっき鋼板サンプル(湯だれ評点0〜0.5)について、湯だれ欠陥の程度を本発明例及び比較例を用いて評価した。位相補償形フィルタのカットオフ値λc2は5.0mmとした。一方、比較例における位相補償形フィルタのカットオフ値λc1は、実施例1と同じ0.8mmとした。また、同様に、溶融亜鉛めっき鋼板の端部には形状補正の影響が残ることから処理対象範囲からは除いた。また、評価範囲Aは幅方向49.9mm、長手方向34.1mmの領域とした。
[Example 2]
As described above, the accuracy of quantification may not be high with respect to mild hot water defects only by the surface property evaluation method of the hot-dip galvanized steel sheet according to the first embodiment of the present invention. For this reason, in this case, the average value or the maximum value of the uneven height obtained by the processing of steps S16 and S17 shown in FIG. 8 is used as a supplement to the evaluation index. In the present embodiment, the degree of the hot water defect is determined for another 10 hot dip galvanized steel sheet samples (hot water score 0 to 0.5) manufactured by changing the manufacturing conditions in a continuous hot dip galvanizing facility. It evaluated using the example and the comparative example. The cutoff value λc2 of the phase compensation filter was 5.0 mm. On the other hand, the cutoff value λc1 of the phase compensation filter in the comparative example was set to 0.8 mm, which is the same as that in the first embodiment. Similarly, since the influence of the shape correction remains on the end of the hot dip galvanized steel sheet, it was excluded from the processing target range. The evaluation range A was an area of 49.9 mm in the width direction and 34.1 mm in the longitudinal direction.

図9は、うねり要素の平均長さWSmの最大値(単位:mm)と湯だれ評点との関係を示す図である。図10は、凹凸高さの最大値Sz(単位:μm)と湯だれ評点との関係を示す図である。図11は、凹凸高さの平均値Sa(単位:μm)と湯だれ評点との関係を示す図である。図9〜図11から明らかなように、湯だれ評点0〜0.5のサンプルに対しては、うねり要素の平均長さWSmの最大値よりも凹凸高さの最大値Sz又は平均値Saの方が相関関係が深いものとなっている。具体的には、図9に示す例では、相関係数Rの二乗値(決定係数)R2が0.04であったのに対して、図10に示す例では決定係数R2が0.74、図10に示す例では決定係数R2が0.66であった。以上により、本発明の第1の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法を行った後に、図8に示すステップS16,S17の処理を行うことにより、湯だれ欠陥の程度の定量的評価の精度を高められることが確認された。 FIG. 9 is a diagram showing the relationship between the maximum value (unit: mm) of the average length WSm of the undulation element and the hot water score. FIG. 10 is a diagram showing a relationship between the maximum unevenness height value Sz (unit: μm) and the bath score. FIG. 11 is a diagram showing the relationship between the average value Sa (unit: μm) of the unevenness height and the bath score. As apparent from FIGS. 9 to 11, the maximum value Sz or the average value Sa of the uneven height is higher than the maximum value of the average length WSm of the waviness element for the samples having the hot water score 0 to 0.5. The correlation is deeper. Specifically, in the example shown in FIG. 9, while the square value of the correlation coefficient R (coefficient of determination) R 2 was 0.04, the coefficient of determination R 2 in the example shown in FIG. 10 0. 74, in the example shown in FIG. 10, the determination coefficient R 2 was 0.66. As described above, after performing the surface property evaluation method for the hot-dip galvanized steel sheet according to the first embodiment of the present invention, the process of steps S16 and S17 shown in FIG. It was confirmed that the accuracy of evaluation could be improved.

〔第3の実施形態〕
最後に、図12〜図16を参照して、本発明の第3の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法について説明する。
[Third Embodiment]
Finally, with reference to FIGS. 12-16, the surface property evaluation method of the hot dip galvanized steel plate which is the 3rd Embodiment of this invention is demonstrated.

湯だれ欠陥は良好であっても別の凹凸性欠陥が問題となることがある。そこで、本実施形態では、別の評価指標を用いて湯だれ欠陥の評価と別の凹凸性欠陥の評価とを同時に行う。具体的には、本発明の発明者らは、測定したデータを用いることにより湯だれ欠陥の程度と同時に別の凹凸性欠陥の程度を定量化する評価指標が算出できることを想到した。ここで、主な評価対象とする別の凹凸性欠陥は、凹みとも呼ばれる欠陥であり、溶融亜鉛めっき工程において溶融亜鉛浴面の酸化物を巻き込み、酸化物を中心とした部分が凹凸となってめっきされることによって生じる。   Even if the dripping defect is good, another irregularity defect may be a problem. Therefore, in the present embodiment, evaluation of a bathing defect and evaluation of another concavo-convex defect are simultaneously performed using another evaluation index. Specifically, the inventors of the present invention have conceived that by using the measured data, an evaluation index for quantifying the degree of the hot water defect and the degree of another uneven defect can be calculated. Here, another irregularity defect to be mainly evaluated is a defect called a dent, and the oxide on the surface of the molten zinc bath is involved in the hot dip galvanizing process, and the portion centering on the oxide becomes uneven. Generated by being plated.

また、本発明の発明者らは、目視によって評価する場合、凹凸性欠陥の程度は一定の閾値を超える凹凸のある面積率と相関があることを知見した。しかしながら、本発明の発明者らは、特に程度の軽い凹凸性欠陥では、調質圧延処理及び化成処理を行った場合に、表面上の凹凸が小さくなるため、それだけで評価することは十分ではなく、凹凸の痕跡によって生じる輝度の違いも評価に加える必要があると知見した。さらに、本発明の発明者らは、凹凸欠陥部面積率と輝度欠陥部面積率とを線形結合することによって、湯だれ評点と相関性の高い凹凸性欠陥の定量的指標が得られることを知見した。   In addition, the inventors of the present invention have found that the degree of irregularity defects correlates with the area ratio with irregularities exceeding a certain threshold when evaluated visually. However, the inventors of the present invention are not sufficient to evaluate by themselves because the unevenness on the surface becomes small when the temper rolling treatment and the chemical conversion treatment are performed, particularly in the case of a light unevenness defect of a moderate degree. It was found that the difference in brightness caused by the traces of unevenness also needs to be added to the evaluation. Furthermore, the inventors of the present invention have found that a quantitative index of uneven defects having a high correlation with the hot water score can be obtained by linearly combining the uneven defect area ratio and the luminance defect area ratio. did.

図12は、本発明の第3の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法の流れを示すフローチャートである。なお、図12に示すステップS21〜ステップS25の処理内容は、図1に示すステップS1〜ステップS5の処理内容と同じであるので、以下ではステップS26以後の処理についてのみ説明する。   FIG. 12 is a flowchart showing the flow of the surface property evaluation method for hot-dip galvanized steel sheet according to the third embodiment of the present invention. Note that the processing contents of steps S21 to S25 shown in FIG. 12 are the same as the processing contents of steps S1 to S5 shown in FIG. 1, and therefore only the processing after step S26 will be described below.

図12に示すように、本発明の第3の実施形態である溶融亜鉛めっき鋼板の表面性状評価方法では、ステップS25の処理が完了した後、まず、鋼板の表面の凹凸形状を測定し、所定の第1高さ閾値以上の高さが所定の第1面積閾値以上の面積連続している凸欠陥部及び第1高さ閾値より小さい所定の第2高さ閾値未満の高さが所定の第2面積閾値以上の面積連続している凹欠陥部の総面積をそれぞれ凹凸形状の測定結果から算出し、検査領域内に占める凸欠陥部の総面積と凹欠陥部の総面積との和の割合を凹凸欠陥部面積率として算出する(ステップS26)。なお、第1高さ閾値及び第2高さ閾値は±1.0〜±10.0μmの範囲内、第1面積閾値及び第2面積閾値は0.1〜100.0mm2の範囲内で設定するとよい。 As shown in FIG. 12, in the surface texture evaluation method for hot dip galvanized steel sheet according to the third embodiment of the present invention, after the process of step S25 is completed, first, the uneven shape on the surface of the steel sheet is measured, A convex defect portion having a height that is equal to or greater than a first height threshold and a height that is less than a predetermined second height threshold that is smaller than the first height threshold. Calculate the total area of concave defects that have a continuous area of two or more area thresholds from the measurement results of the concave and convex shapes, and the ratio of the sum of the total area of convex defects and the total area of concave defects in the inspection area Is calculated as the area ratio of the concavo-convex defect portion (step S26). The first height threshold and the second height threshold are set within a range of ± 1.0 to ± 10.0 μm, and the first area threshold and the second area threshold are set within a range of 0.1 to 100.0 mm 2. Good.

次に、鋼板の表面の輝度を測定し(ステップS27)、検査領域を複数の小領域に分割して各小領域の平均輝度を輝度の測定結果から算出する。そして、隣接する小領域の中に平均輝度の差が所定値以上である小領域がある小領域を輝度欠陥部として抽出し、検査領域内に占める輝度欠陥部の総面積の割合を輝度欠陥部面積率として算出する(ステップS28)。具体的には、評価対象の小領域に隣接する小領域の平均輝度の最大値と最小値との差が所定値以上である場合や、評価対象の小領域の平均輝度と評価対象の小領域に隣接する小領域の平均輝度との差が所定値以上である場合、評価対象の小領域を輝度欠陥部として抽出する。なお、小領域の一辺の大きさは0.1〜5.0mmの範囲内で設定するとよく、所定値は0〜255のグレースケールに対して5〜50の範囲内で設定するとよい。そして、凹凸欠陥部面積率と輝度欠陥部面積率とを線形結合した評価指標によって検査領域内における凹凸性欠陥の等級評価を行う(ステップS29)。これにより、湯だれ欠陥の程度の評価と別の凹凸性欠陥の程度の評価とを同時に行うことができる。   Next, the luminance of the surface of the steel plate is measured (step S27), the inspection area is divided into a plurality of small areas, and the average luminance of each small area is calculated from the luminance measurement result. Then, a small area having a small area whose average luminance difference is equal to or larger than a predetermined value in adjacent small areas is extracted as a luminance defect portion, and the ratio of the total area of the luminance defect portion in the inspection area is determined as the luminance defect portion. The area ratio is calculated (step S28). Specifically, when the difference between the maximum value and the minimum value of the average brightness of the small area adjacent to the small area to be evaluated is a predetermined value or more, or the average brightness of the small area to be evaluated and the small area to be evaluated When the difference from the average luminance of the small area adjacent to the pixel is equal to or greater than a predetermined value, the small area to be evaluated is extracted as a luminance defect portion. The size of one side of the small area may be set within a range of 0.1 to 5.0 mm, and the predetermined value may be set within a range of 5 to 50 with respect to a gray scale of 0 to 255. And the grade evaluation of the unevenness | corrugation defect in a test | inspection area | region is performed with the evaluation parameter | index which linearly combined the uneven | corrugated defect part area rate and the brightness | luminance defect part area rate (step S29). Thereby, the evaluation of the level of the bath defect and the evaluation of the level of another uneven defect can be performed simultaneously.

[実施例3]
本実施例では、連続式溶融亜鉛めっき設備で製造条件(調質圧延処理及び化成処理の有無)を変えて製造された23個の溶融亜鉛めっき鋼板サンプルについて、凹凸性欠陥の程度を本発明例及び比較例を用いて評価した。各サンプルについて、目視で0点(良好)から5点(劣悪)の0.1点刻みで凹凸性欠陥の程度の評価(凹凸評点)を付与した。測定した結果に対し、基準面から+1.0μm以上の高さが面積0.56mm2以上連続している箇所を凸欠陥部とした。また、基準面から−1.0μm以下の高さが面積0.56mm2以上連続している箇所を凹欠陥部とした。但し、計測範囲の境界付近については、形状補正の影響が除去しきれない場合があるため、欠陥部からは除外した。凸欠陥部の面積と凹欠陥部の面積との総和を、境界付近を除いた計測範囲の面積で除した面積率を凹凸欠陥部面積率とした。凹凸評点の上限が5点と抑えられているため、凹凸欠陥部面積率には上限を設けることとした。本実施例においては、上限値を0.148と定めた。凹凸欠陥部面積率(単位:%)と凹凸評点との関係を図13に示す。図13に示すように、得られた評価指標と凹凸評点との間にはある程度の相関は見られるが十分ではない。
[Example 3]
In this example, the degree of irregularity defects was determined for the 23 hot-dip galvanized steel sheet samples produced by changing the production conditions (with or without temper rolling and chemical conversion treatment) in a continuous hot-dip galvanizing facility. And it evaluated using the comparative example. About each sample, the evaluation (unevenness | corrugation rating) of the degree of unevenness | corrugation defect was provided by 0.1 point | interval of 0 point (good) to 5 points (inferior) visually. With respect to the measurement results, a portion where a height of +1.0 μm or more from the reference surface is continuous for an area of 0.56 mm 2 or more was defined as a convex defect portion. Further, a portion where a height of −1.0 μm or less from the reference plane is continuous for an area of 0.56 mm 2 or more was defined as a concave defect portion. However, in the vicinity of the boundary of the measurement range, the influence of the shape correction may not be completely removed, so it was excluded from the defective part. The area ratio obtained by dividing the sum of the area of the convex defect portion and the area of the concave defect portion by the area of the measurement range excluding the vicinity of the boundary was defined as the uneven defect portion area ratio. Since the upper limit of the concavo-convex rating is suppressed to 5 points, an upper limit is set for the concavo-convex defect area ratio. In this example, the upper limit value was set to 0.148. FIG. 13 shows the relationship between the irregularity defect area ratio (unit:%) and the irregularity score. As shown in FIG. 13, a certain degree of correlation is found between the obtained evaluation index and the unevenness score, but it is not sufficient.

次に、鋼鈑の表面の輝度を測定した。非接触式の光学式表面粗さ測定装置(株式会社キーエンス製、VR−3000)では凹凸測定と同時に、画像によって輝度の測定が可能であるので、その測定結果を用いた。測定結果を0〜255のグレースケールに変換し、抽出したい凹凸性欠陥の大きさに応じた大きさの小領域に分割し、その小領域の平均輝度を算出した。本実施例においては、小領域の大きさは縦約1.03mm、横約1.03mmとした。この小領域をさらに、縦44ピクセル、横44ピクセルに分割して測定した。次に、図14に示すように、評価対象の小領域R0に対し、その小領域R0を含む周囲16箇所の小領域Rnの平均輝度の最大値(本例では75)と最小値(本例では64)の差を計算し、その差が閾値を超えた箇所を輝度欠陥部とした。本実施例においては閾値を10とした。全ての小領域に対して上記の計算を行い、輝度欠陥部の面積の総和を同様に境界付近を除いた計測範囲の面積で除した輝度欠陥部の面積率を輝度欠陥部面積率とした。同様に、輝度欠陥部面積率に対しても、上限値を0.402と定めた。輝度欠陥部面積率(単位:%)と凹凸評点との関係を図15に示す。凹凸評点は、複数の人間が0点(良好)から5点(劣悪)の1点刻みで凹凸性欠陥の程度の評価を付与し、その平均値を取った。図15に示す輝度欠陥部面積率が上下に2分されていることは、凹凸性欠陥は、輝度欠陥部として表れるものと、表れないものと大別できることを示唆している。 Next, the brightness of the surface of the steel plate was measured. In the non-contact optical surface roughness measuring device (manufactured by Keyence Co., Ltd., VR-3000), it is possible to measure the brightness with an image at the same time as the unevenness measurement, and the measurement result was used. The measurement result was converted to a gray scale of 0 to 255, divided into small areas having a size corresponding to the size of the uneven defect to be extracted, and the average luminance of the small area was calculated. In this example, the size of the small area was about 1.03 mm in length and about 1.03 mm in width. This small area was further measured by dividing it into 44 pixels vertically and 44 pixels horizontally. Next, as shown in FIG. 14, with respect to the small region R 0 to be evaluated, the maximum value (75 in this example) and the minimum value of the average luminance of 16 surrounding small regions R n including the small region R 0. A difference of (64 in this example) was calculated, and a portion where the difference exceeded the threshold was determined as a luminance defect portion. In this embodiment, the threshold is set to 10. The above calculation was performed for all the small regions, and the area ratio of the luminance defect portion obtained by dividing the total sum of the areas of the luminance defect portions by the area of the measurement range excluding the vicinity of the boundary was defined as the luminance defect portion area ratio. Similarly, the upper limit is set to 0.402 for the luminance defect area ratio. FIG. 15 shows the relationship between the luminance defect area ratio (unit:%) and the unevenness score. As for the unevenness score, a plurality of persons gave an evaluation of the degree of unevenness defect in increments of 1 point from 0 (good) to 5 (inferior), and took the average value. The fact that the luminance defect area ratio shown in FIG. 15 is vertically divided into two suggests that unevenness defects can be broadly classified into those that appear as luminance defects and those that do not appear.

最後に、凹凸欠陥部面積率と輝度欠陥部面積率に重みをかけて和をとり、評価指標を算出する。凹凸欠陥部面積率をX、輝度欠陥部面積率をY、それぞれの重みをa,bとすると、評価指標f=aX+bYである。重みに関しては、対象とする凹凸性欠陥、材料等によって調整する必要があるが、実施例においては、a=18.1、b=4.3とした。a,bの値は対象とする凹凸性欠陥や材料等に応じて線形計画法により求めることができる。評価指標と凹凸評点との関係を図16のグラフに示す。図13、図15と比較すると、凹凸欠陥部面積率、輝度欠陥部面積率それぞれのみよりも、組み合わせることによって凹凸評点との相関がよくなっていることがわかる。具体的には、図13に示す例では、相関係数Rの二乗値(決定係数)R2が0.80、図15に示す例では決定係数R2が0.69であったの対して、図16に示す例では決定係数R2が0.91であった。以上により、湯だれ欠陥の程度の評価に凹凸性欠陥の程度の評価を加えることにより、表面性状の定量的評価の精度を高められることが確認された。 Finally, the evaluation index is calculated by weighting and summing the uneven defect portion area ratio and the luminance defect portion area ratio. When the uneven defect area ratio is X, the luminance defect area ratio is Y, and the respective weights are a and b, the evaluation index is f = aX + bY. The weight needs to be adjusted according to the target irregularity defect, material, etc., but in the example, a = 18.1 and b = 4.3. The values of a and b can be obtained by linear programming according to the target irregularity defect and material. The relationship between the evaluation index and the unevenness score is shown in the graph of FIG. Compared with FIG. 13 and FIG. 15, it can be seen that the correlation with the concave / convex score is improved by combining them, rather than only the concave / convex defect portion area ratio and the luminance defect portion area ratio. Specifically, in the example shown in FIG. 13, the square value (determination coefficient) R 2 of the correlation coefficient R is 0.80, and in the example shown in FIG. 15, the determination coefficient R 2 is 0.69. In the example shown in FIG. 16, the determination coefficient R 2 was 0.91. From the above, it was confirmed that the accuracy of the quantitative evaluation of the surface property can be improved by adding the evaluation of the degree of unevenness to the evaluation of the degree of the bathing defect.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。例えば、溶融亜鉛めっき鋼板の表面性状評価方法の各処理ステップをコンピュータに実行させることによって、溶融亜鉛めっき鋼板の表面性状評価方法を実行する溶融亜鉛めっき鋼板の表面性状評価装置を構成してもよい。このように、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。   The embodiment to which the invention made by the present inventors is applied has been described above, but the present invention is not limited by the description and the drawings that constitute a part of the disclosure of the present invention. For example, a surface quality evaluation apparatus for a hot dip galvanized steel sheet that executes the surface texture evaluation method for a hot dip galvanized steel sheet may be configured by causing a computer to execute each processing step of the surface texture evaluation method for a hot dip galvanized steel sheet. . As described above, other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

D うねり要素の長さ   D Length of swell element

Claims (6)

溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価する溶融亜鉛めっき鋼板の表面性状評価方法であって、
前記溶融亜鉛めっき鋼板の幅方向の断面形状を示す断面曲線に対して位相補償形フィルタを適用することによって、前記溶融亜鉛めっき鋼板の幅方向のうねり形状を示すうねり曲線を算出し、該うねり曲線を構成するうねり要素の平均長さを評価指標として前記溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価するステップを含むことを特徴とする溶融亜鉛めっき鋼板の表面性状評価方法。
A method for evaluating the surface properties of a hot dip galvanized steel sheet for evaluating the degree of hot water defects in the hot dip galvanized steel sheet,
By applying a phase compensation filter to a cross-sectional curve showing the cross-sectional shape in the width direction of the hot-dip galvanized steel sheet, a waviness curve showing the waviness shape in the width direction of the hot-dip galvanized steel sheet is calculated, and the waviness curve A method for evaluating the surface property of a hot dip galvanized steel sheet, comprising the step of evaluating the degree of a hot dip in the hot dip galvanized steel sheet using the average length of the undulating elements constituting the swell as an evaluation index.
前記溶融亜鉛めっき鋼板の複数の長さ方向位置において前記うねり曲線を抽出し、各うねり曲線から算出された前記評価指標の平均値又は最大値を用いて前記溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価することを特徴とする請求項1に記載の溶融亜鉛めっき鋼板の表面性状評価方法。   The waviness curve is extracted at a plurality of lengthwise positions of the hot-dip galvanized steel sheet, and the degree of the hot-dip defect of the hot-dip galvanized steel sheet using the average value or the maximum value of the evaluation index calculated from each waviness curve The surface property evaluation method for hot-dip galvanized steel sheets according to claim 1, wherein 前記断面曲線を含む2次元画像に対して、前記位相補償形フィルタのカットオフ値より大きいカットオフ値を有する2次元の第2位相補償形フィルタを適用することによって前記溶融亜鉛めっき鋼板の表面の凹凸高さの平均値又は最大値を算出し、算出された凹凸高さの平均値又は最大値に基づいて前記溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価するステップを含むことを特徴とする請求項1又は2に記載の溶融亜鉛めっき鋼板の表面性状評価方法。   By applying a two-dimensional second phase compensation filter having a cutoff value larger than the cutoff value of the phase compensation filter to a two-dimensional image including the cross-sectional curve, the surface of the hot-dip galvanized steel sheet Calculating the average value or the maximum value of the uneven height, and evaluating the degree of the hot-dip defect of the hot-dip galvanized steel sheet based on the calculated average value or maximum value of the uneven height, The surface property evaluation method of the hot dip galvanized steel sheet according to claim 1 or 2. 前記溶融亜鉛めっき鋼板の表面の凹凸形状を測定し、所定の第1高さ閾値以上の高さが所定の第1面積閾値以上の面積連続している凸欠陥部及び前記第1高さ閾値より小さい所定の第2高さ閾値以下の高さが所定の第2面積閾値以上の面積連続している凹欠陥部の総面積をそれぞれ前記凹凸形状の測定結果から算出し、検査領域内に占める前記凸欠陥部の総面積と前記凹欠陥部の総面積との和の割合を凹凸欠陥部面積率として算出するステップと、
前記溶融亜鉛めっき鋼板の表面の輝度を測定し、検査領域を複数の小領域に分割して各小領域における表面の平均輝度を前記輝度の測定結果から算出し、隣接する小領域の中に平均輝度の差が所定値以上である小領域がある小領域を輝度欠陥部として抽出し、検査領域内に占める輝度欠陥部の総面積の割合を輝度欠陥部面積率として算出するステップと、
前記凹凸欠陥部面積率と前記輝度欠陥部面積率とを線形結合した評価指標によって検査領域内における凹凸性欠陥の等級評価を行うステップと、
を含むことを特徴とする請求項1又は2に記載の溶融亜鉛めっき鋼板の表面性状評価方法。
The convex-concave shape of the surface of the hot dip galvanized steel sheet is measured, and the height of a predetermined first height threshold or higher is a continuous area of a predetermined first area threshold or higher and the first height threshold. Calculate the total area of the concave defects where the height below the small predetermined second height threshold is an area equal to or larger than the predetermined second area threshold from the measurement results of the concave and convex shapes, and occupy the inspection area Calculating the ratio of the sum of the total area of the convex defect part and the total area of the concave defect part as the uneven defect part area ratio;
The brightness of the surface of the hot dip galvanized steel sheet is measured, the inspection area is divided into a plurality of small areas, the average brightness of the surface in each small area is calculated from the measurement result of the brightness, and the average in the adjacent small areas Extracting a small area having a small area having a luminance difference equal to or greater than a predetermined value as a luminance defect portion, and calculating a ratio of the total area of the luminance defect portion in the inspection region as a luminance defect portion area ratio;
Performing a grade evaluation of the unevenness defect in the inspection region by an evaluation index that linearly combines the unevenness defect area ratio and the luminance defect area ratio;
The surface property evaluation method for hot-dip galvanized steel sheets according to claim 1 or 2, characterized by comprising:
溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価する溶融亜鉛めっき鋼板の表面性状評価装置であって、
前記溶融亜鉛めっき鋼板の幅方向の断面形状を示す断面曲線に対して位相補償形フィルタを適用することによって、前記溶融亜鉛めっき鋼板の幅方向のうねり形状を示すうねり曲線を算出する手段と、
前記うねり曲線を構成するうねり要素の平均長さを前記溶融亜鉛めっき鋼板の湯だれ欠陥の程度を評価する際の評価指標として算出する手段と、
を備えることを特徴とする溶融亜鉛めっき鋼板の表面性状評価装置。
A surface quality evaluation device for hot dip galvanized steel sheet for evaluating the degree of hot water defects in hot dip galvanized steel sheet,
Means for calculating a waviness curve indicating the waviness shape in the width direction of the hot-dip galvanized steel sheet by applying a phase compensation filter to the cross-sectional curve showing the cross-sectional shape in the width direction of the hot-dip galvanized steel sheet;
Means for calculating the average length of the undulation elements constituting the undulation curve as an evaluation index when evaluating the degree of the dip in the hot-dip galvanized steel sheet;
An apparatus for evaluating the surface properties of a hot-dip galvanized steel sheet.
請求項1〜4のうち、いずれか1項に記載の溶融亜鉛めっき鋼板の表面性状評価方法によって評価された溶融亜鉛めっき鋼板の湯だれ欠陥の程度に基づいて製造条件を制御することによって溶融亜鉛めっき鋼板を製造するステップを含むことを特徴とする溶融亜鉛めっき鋼板の製造方法。   Hot-dip galvanization by controlling manufacturing conditions based on the degree of the hot-dip defect of the hot-dip galvanized steel sheet evaluated by the surface property evaluation method of the hot-dip galvanized steel sheet according to any one of claims 1 to 4. The manufacturing method of the hot dip galvanized steel plate characterized by including the step which manufactures a plated steel plate.
JP2017009929A 2016-02-16 2017-01-24 Method for evaluating surface properties of hot dip galvanized steel sheet, apparatus for evaluating surface properties of hot dip galvanized steel sheet, and method for producing hot dip galvanized steel sheet Active JP6460131B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016026486 2016-02-16
JP2016026486 2016-02-16

Publications (2)

Publication Number Publication Date
JP2017146296A true JP2017146296A (en) 2017-08-24
JP6460131B2 JP6460131B2 (en) 2019-01-30

Family

ID=59682239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009929A Active JP6460131B2 (en) 2016-02-16 2017-01-24 Method for evaluating surface properties of hot dip galvanized steel sheet, apparatus for evaluating surface properties of hot dip galvanized steel sheet, and method for producing hot dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP6460131B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774323A (en) * 2017-11-14 2021-12-10 大日本印刷株式会社 Metal plate for manufacturing vapor deposition mask, method for manufacturing metal plate, vapor deposition mask, and method for manufacturing vapor deposition mask

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718402A (en) * 1993-06-30 1995-01-20 Nkk Corp Galvannealed steel sheet excellent in press formability and image clarity after coating
JPH10226863A (en) * 1996-12-09 1998-08-25 Kawasaki Steel Corp Hot dip galvanized steel sheet and its production
JPH10276065A (en) * 1997-03-31 1998-10-13 Nippon Seiko Kk Digital filter
JPH11236658A (en) * 1998-02-20 1999-08-31 Kawasaki Steel Corp Production of hot dip galvanized steel sheet good in surface property
JP2004276064A (en) * 2003-03-14 2004-10-07 Nippon Steel Corp Metal plate excellent in press formability
JP2006061953A (en) * 2004-08-27 2006-03-09 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet and method for manufacturing the same
WO2008108044A1 (en) * 2007-03-01 2008-09-12 Jfe Steel Corporation High tensile cold rolled steel plate and method for manufacturing the cold rolled steel plate
JP2012526916A (en) * 2009-05-14 2012-11-01 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Method for producing coated metal strip with improved appearance
US20150225831A1 (en) * 2012-09-03 2015-08-13 Voestalpine Stahl Gmbh Method for applying a protective coating to a flat steel product and flat steel product having a corresponding protective coating

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718402A (en) * 1993-06-30 1995-01-20 Nkk Corp Galvannealed steel sheet excellent in press formability and image clarity after coating
JPH10226863A (en) * 1996-12-09 1998-08-25 Kawasaki Steel Corp Hot dip galvanized steel sheet and its production
JPH10276065A (en) * 1997-03-31 1998-10-13 Nippon Seiko Kk Digital filter
JPH11236658A (en) * 1998-02-20 1999-08-31 Kawasaki Steel Corp Production of hot dip galvanized steel sheet good in surface property
JP2004276064A (en) * 2003-03-14 2004-10-07 Nippon Steel Corp Metal plate excellent in press formability
JP2006061953A (en) * 2004-08-27 2006-03-09 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet and method for manufacturing the same
WO2008108044A1 (en) * 2007-03-01 2008-09-12 Jfe Steel Corporation High tensile cold rolled steel plate and method for manufacturing the cold rolled steel plate
JP2012526916A (en) * 2009-05-14 2012-11-01 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ Method for producing coated metal strip with improved appearance
US20150225831A1 (en) * 2012-09-03 2015-08-13 Voestalpine Stahl Gmbh Method for applying a protective coating to a flat steel product and flat steel product having a corresponding protective coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吉田一朗: "表面粗さ −その測定方法と規格に関して−", 精密工学会誌, vol. 78, no. 4, JPN6018037264, 5 April 2012 (2012-04-05), JP, pages 301 - 304, ISSN: 0003884687 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774323A (en) * 2017-11-14 2021-12-10 大日本印刷株式会社 Metal plate for manufacturing vapor deposition mask, method for manufacturing metal plate, vapor deposition mask, and method for manufacturing vapor deposition mask
CN113774323B (en) * 2017-11-14 2023-12-12 大日本印刷株式会社 Metal plate for manufacturing vapor deposition mask, and method for manufacturing same

Also Published As

Publication number Publication date
JP6460131B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
CN108387587B (en) Defect detection method and defect detection equipment
JP6787503B2 (en) Method of manufacturing metal plate for manufacturing vapor deposition mask
CN103459055B (en) Corrosion resistant plate and manufacture method thereof
KR20120083478A (en) Method of measuring flatness of plate and method of manufacturing steel plate using same
CN110681702B (en) Control method for transverse warping plate shape defect of hot-rolled titanium strip
JP6460131B2 (en) Method for evaluating surface properties of hot dip galvanized steel sheet, apparatus for evaluating surface properties of hot dip galvanized steel sheet, and method for producing hot dip galvanized steel sheet
Wentink et al. A generic model for surface texture development, wear and roughness transfer in skin pass rolling
KR20190030754A (en) Material for Metal Mask and Manufacturing Method Thereof
CN115035106A (en) Strip steel defect intelligent detection method
Younes et al. A parameters design approach to improve product quality and equipment performance in hot rolling
KR20160058152A (en) Method and device for determining the abrasion properties of a coated flat product
Mucsi Analysis of coil break defects
JP4873902B2 (en) Operation support apparatus, operation support method, computer program, and computer-readable recording medium in continuous processing equipment for metal strip
JP2018065190A (en) Steel plate shape correction device, correction method, and continuous acid cleaning device for steel plate
Menendez et al. Obtaining batch corrosion inhibitor film thickness measurements using an optical profiler
KR20190075479A (en) Rolling roll, method for treating surface of rolling roll, and coated steel sheet manufactured by rolling roll
CN104266619B (en) Method for measuring position and density distribution of zinc slag on surface of hot-dip galvanized steel sheet
TWI464273B (en) Production Method of Hot - dip Galvanized Steel Coil
Theeb et al. Six Sigma framework methodology for deep drawing process improvement
CN107686958B (en) A kind of accurate control method of continuous hot-dipping galvanizing steel plate finished product thickness
KR101204843B1 (en) Method for fabricating cold rolled sheet
CN116523925B (en) Polyurethane production abnormality identification method
RU2776262C1 (en) Method and electronic control device for production of a group of final metal products from a group of intermediate metal products, associated computer program, production method and installation
RU2788586C1 (en) Method for control of steel sheets for surface defects using laser triangulation scanners
CN112257220B (en) Method and device for acquiring local wear degree of high-speed steel working roller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R150 Certificate of patent or registration of utility model

Ref document number: 6460131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250