JP2017145973A - 熱輸送システム - Google Patents

熱輸送システム Download PDF

Info

Publication number
JP2017145973A
JP2017145973A JP2016026153A JP2016026153A JP2017145973A JP 2017145973 A JP2017145973 A JP 2017145973A JP 2016026153 A JP2016026153 A JP 2016026153A JP 2016026153 A JP2016026153 A JP 2016026153A JP 2017145973 A JP2017145973 A JP 2017145973A
Authority
JP
Japan
Prior art keywords
heat
cooling water
heat medium
solute
transport system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016026153A
Other languages
English (en)
Other versions
JP2017145973A5 (ja
Inventor
卓哉 布施
Takuya Fuse
卓哉 布施
清三 藤川
Seizo Fujikawa
清三 藤川
圭太 荒川
Keita Arakawa
圭太 荒川
慎子 桑原
Chikako KUWABARA
慎子 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Denso Corp
Original Assignee
Hokkaido University NUC
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Denso Corp filed Critical Hokkaido University NUC
Priority to JP2016026153A priority Critical patent/JP2017145973A/ja
Priority to PCT/JP2017/000936 priority patent/WO2017141590A1/ja
Publication of JP2017145973A publication Critical patent/JP2017145973A/ja
Publication of JP2017145973A5 publication Critical patent/JP2017145973A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】熱輸送性能を確保しつつ、熱媒体の不凍機能を担保することが可能な熱輸送システムを提供する。【解決手段】液体の熱媒体が流動する流路11〜16と、流路11〜16に熱媒体を流動させる熱媒体流動部23、24と、流路11、12に配置され、熱媒体と熱交換を行う熱交換器26、35と、流路13〜16に配置され、熱媒体によって冷却および加熱の少なくとも一方が行われる熱交換対象機器33、34、40とを備える熱輸送システムにおいて、熱媒体は、水と、水に対して凝固点降下を発現させる第1溶質と、ポリフェノール類に基づく第2溶質とを含んでいる。第2溶質は、水に対する溶解度よりも第1溶質に対する溶解度の方が大きくなっており、かつ、熱媒体における含有量が水の含有量および第1溶質の含有量よりも少ない。【選択図】図1

Description

本発明は、液体の熱媒体を用いて熱輸送を行う熱輸送システムに関する。
エネルギ変換システムを備える車両等においては、エネルギ変換の際に発生した熱を熱媒体によって輸送し、系外に放出する熱輸送システムが設けられている場合が多い。熱媒体としては液体が通常用いられるが、この液体は寒冷地での使用を考慮して不凍機能を付加する必要がある。
特許文献1には、熱媒体として用いられる水に、凝固点降下剤であるエチレングリコールを混合することが記載されている。要求される不凍機能を担保するために、エチレングリコールは、水に半分程度混合する場合が多い。
特許文献2には、水に界面活性剤を微量混合し、界面活性剤によって水の過冷却を促進して、不凍機能を担保することが記載されている。
特開2014−20280号公報 特開2013−32456号公報
しかしながら、特許文献1に記載のように、凝固点降下現象によって不凍機能を担保する場合には、下記の問題が生じる。すなわち、凝固点降下剤として用いられるエチレングリコールは、要求される凝固点が低いほど、濃度を高くする必要がある。エチレングリコール濃度を高くすると、熱物性の悪化や粘度の増大を招く。この結果、熱交換器や配管等の体格が大きくなり、熱媒体を流動させるために要する動力が大きくなる。
また、特許文献2に記載のように、界面活性剤によって水の過冷却を促進して、不凍機能を担保する場合には、下記の問題が生じる。すなわち、過冷却は準安定状態であるため、系内の熱的揺らぎに起因して氷核生成が生じる可能性が大きい。熱的揺らぎは、例えばシステムにおける機械的または熱的な外乱に基づいて発生し得る。このような外乱によって水の過冷却状態が解除されると、凍結が進行する。つまり、界面活性剤による過冷却促進のみでは、熱媒体の不凍機能を充分に担保することが困難である。
本発明は上記点に鑑み、熱輸送性能を確保しつつ、熱媒体の不凍機能を担保することが可能な熱輸送システムを提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、液体の熱媒体が流動する流路(11〜16)と、流路に熱媒体を流動させる熱媒体流動部(23、24)と、流路に配置され、熱媒体と熱交換を行う熱交換器(26、35)と、流路に配置され、熱媒体によって冷却および加熱の少なくとも一方が行われる熱交換対象機器(33、34、40)と、を備え、熱媒体は、水と、水に対して凝固点降下を発現させる第1溶質と、ポリフェノール類に基づく第2溶質とを含んでおり、第2溶質は、水に対する溶解度よりも第1溶質に対する溶解度の方が大きくなっており、かつ、熱媒体における含有量が水の含有量および第1溶質の含有量よりも少ないことを特徴としている。
これにより、熱媒体中に第2溶質としてポリフェノール類を含有させることで、第1溶質の濃度が同一であっても、凝固点を大幅に低下させることができる。また、同じ凝固点を得るためには、熱媒体中に第2溶質としてポリフェノール類を含有させることにより、第1溶質の濃度を大幅に低減させることができる。
また、第1溶質の濃度低減に伴って熱媒体中の水の割合を増加させることができるため、熱媒体の熱物性を改善することができ、粘度を低下させることができる。また、熱媒体中に含有させる第2の溶質は微量であるため、熱媒体の熱物性に悪影響を与えることを極力抑制できる。この結果、熱交換器や配管等の体格が大きくなることを抑制でき、熱媒体を流動させるために要する動力が大きくなることを回避できる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
車両用熱管理システムの全体構成図である。 車両用熱管理システムにおける電気制御部を示すブロック図である。 車両用熱管理システムの第1作動モードを示す全体構成図である。 車両用熱管理システムの第2作動モードを示す全体構成図である。 車両用熱管理システムの第3作動モードを示す全体構成図である。
以下、本発明の実施形態を説明する。本実施形態では、本発明の熱輸送システムを車両用熱管理システムに適用している。図1に示す車両用熱管理システム10は、車両が備える各種熱交換対象機器(すなわち、冷却または加熱を要する機器)を適切な温度に冷却するために用いられる。
本実施形態では、熱管理システム10を、エンジン(すなわち、内燃機関)および走行用モータから車両走行用の駆動力を得るハイブリッド自動車に適用している。
本実施形態のハイブリッド自動車は、車両の走行負荷や電池の蓄電残量等に応じてエンジンを作動あるいは停止させて、エンジンおよび走行用電動モータの双方から駆動力を得て走行する走行状態(すなわち、HV走行)や、エンジンを停止させて走行用電動モータのみから駆動力を得て走行する走行状態(すなわち、EV走行)等を切り替えることができる。これにより、車両走行用の駆動源としてエンジンのみを有する車両と比較して燃費を向上させることができる。
本実施形態のハイブリッド自動車は、車両停車時に外部電源から供給された電力を、車両に搭載された電池に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。
エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができ、電池に蓄えられた電力は、走行用モータのみならず、冷却システムを構成する電動式構成機器をはじめとする各種車載機器に供給される。
図1に示すように、熱管理システム10は、多数本の流路11〜16、第1切替弁21、第2切替弁22、第1、第2ポンプ23、24、およびラジエータ26等を備えている。なお、エンジンおよび走行用モータ等は図示を省略している。
流路11〜16は、冷却水が流れる冷却水流路である。冷却水は、熱媒体としての流体である。冷却水については、後で詳細に説明する。
多数本の流路11〜16は、一端側が第1切替弁21に互いに並列に接続され、他端側が第2切替弁22に互いに並列に接続されている。第1切替弁21および第2切替弁22は、ポンプ23、24が配置された流路11、12と残余の流路13〜16とを任意に連通させることが可能になっている。
第1切替弁21は、冷却水が流入出する6個の流入出口21a〜21fを有している。第1切替弁21は、各流入出口21a〜21f同士の連通状態を切り替える第1切替部である。第1切替弁21の流入出口21a〜21fには、多数本の流路11〜16の一端側が接続されている。
第2切替弁22も、冷却水が流入出する6個の流入出口22a〜22fを有している。第2切替弁22は、各流入出口22a〜22f同士の連通状態を切り替える第2切替部である。第2切替弁22の流入出口22a〜22fには、多数本の流路11〜16の他端側が接続されている。
図1に示すように、第1流路11には、第1ポンプ23とラジエータ26とが直列に配置されている。第2流路12には、第2ポンプ24とチラー35が直列に配置されている。
第1ポンプ23および第2ポンプ24はいずれも、冷却水を第2切替弁22側から吸入して第1切替弁21側に吐出するように配置されている。なお、第1、第2ポンプ23が本発明の熱媒体流動部に相当している。
ラジエータ26は、冷却水と車室外空気(以下、外気と言う。)とを熱交換することによって冷却水の熱を外気に放熱させる放熱器(空気熱媒体熱交換器)である。図示を省略しているが、ラジエータ26は車両の最前部に配置されている。
ラジエータ26への外気の送風は室外送風機(図示せず)によって行われる。車両の走行時にはラジエータ26に走行風が当たるようになっている。
チラー35は、冷凍サイクル41の低圧冷媒(低温冷媒)と冷却水とを熱交換させることによって冷却水を冷却する冷却水冷却用熱交換器(熱媒体冷却部)である。
冷凍サイクル41は、蒸気圧縮式冷凍機である。本例では、冷凍サイクル41の冷媒としてフロン系冷媒が用いられているので、冷凍サイクル41は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。
冷凍サイクル41は、低圧側熱交換器であるチラー35、高圧側熱交換器であるコンデンサ37の他、圧縮機42、および第2膨張弁44を有している。
圧縮機42は、電池から供給される電力によって駆動される電動圧縮機であり、気相冷媒を吸入して圧縮して吐出する。圧縮機42は、プーリー、ベルト等を介してエンジンにより回転駆動されるようになっていてもよい。圧縮機42から吐出された高温高圧の気相冷媒は、コンデンサ37で送風空気(冷却水以外の熱媒体)と熱交換することによって吸熱されて凝縮する。
膨張弁44は、コンデンサ37で凝縮された液相冷媒を減圧膨張させる減圧部である。膨張弁44で減圧膨張された冷媒は、チラー35で冷却水と熱交換することによって冷却水から吸熱して蒸発する。チラー35で蒸発した気相冷媒は圧縮機42に吸入されて圧縮される。
チラー35では冷凍サイクル41の低圧冷媒によって冷却水を冷却するので、外気によって冷却水を冷却するラジエータ26と比較して冷却水を低い温度まで冷却することが可能である。具体的には、ラジエータ26では冷却水を外気の温度よりも低い温度まで冷却することができないのに対し、チラー35では冷却水を外気の温度よりも低い温度まで冷却することが可能である。
第3流路13には、クーラコア36が配置されている。クーラコア36は、チラー35で冷却された冷却水と車室内への送風空気とを熱交換させて送風空気を冷却する空気冷却用熱交換器(すなわち、空気熱媒体熱交換器)である。
第4流路14には、熱交換対象機器であるEGRクーラ33が配置されている。EGRクーラ33は、エンジンの吸気側に戻されるエンジン排気ガス(以下、排気と言う。)と冷却水とを熱交換して排気を冷却する排気冷却水熱交換器(すなわち、排気熱媒体熱交換器)である。
第5流路15には、熱交換対象機器である電池40が配置されている。電池40は、出力低下、充電効率低下および劣化防止等の理由から10〜40℃程度の温度に維持されるのが好ましい。電池40の図示しない電池用流路に冷却水が流れることによって、電池40が冷却される。
第6流路16には、熱交換対象機器であるインバータ34が配置されている。インバータ34は、電池から供給された直流電力を交流電力に変換して走行用モータに出力する電力変換装置であり、パワーコントロールユニットを構成している。
次に、熱管理システム10の電気制御部を図2に基づいて説明する。制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された第1ポンプ23、第2ポンプ24、圧縮機42、第1切替弁21の電動アクチュエータ56、および第2切替弁22の電動アクチュエータ57等の作動を制御する制御部である。
制御装置60は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(すなわち、ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。
制御装置60の入力側には、内気センサ61、外気センサ62、日射センサ63、湿度センサ64、エンジン水温センサ65および電池監視ユニット66等の検出信号が入力される。
内気センサ61は、車室の内気温を検出する内気温度検出部である。外気センサ62は、車室の外気温を検出する外気温度検出部である。日射センサ63は、車室内の日射量を検出する日射量検出部である。湿度センサ64は、車室内の湿度を検出する湿度検出部である。
エンジン温度センサ65は、エンジンの冷却水の温度を検出するエンジン温度検出部である。電池監視ユニット66は、電池40における複数部位の温度を検出する電池温度検出部である。より具体的には、電池監視ユニット66は、電池40を構成する各セルの温度等を検出する。
制御装置60の入力側には、車室内前部の計器盤付近に配置された操作パネル68に設けられた各種空調操作スイッチからの操作信号が入力される。操作パネル68に設けられた各種空調操作スイッチとしては、エアコンスイッチ、オートスイッチ、風量設定スイッチ、車室内温度設定スイッチ等が設けられている。
エアコンスイッチは、空調(すなわち、冷房または暖房)の作動・停止を切り替えるスイッチである。オートスイッチは、空調の自動制御を設定または解除するスイッチである。風量設定スイッチは、室内送風機の風量を設定するスイッチである。車室内温度設定スイッチは、乗員の操作によって車室内目標温度を設定する目標温度設定部である。
冷却水は、第1溶質としてエチレングリコールを含むエチレングリコール水溶液である。エチレングリコールは、凝固点降下剤として用いられる。
冷却水には、第2溶質としてポリフェノール類が含まれている。ポリフェノール類は、エチレングリコール水溶液に溶解可能な物質である。ポリフェノール類は、水に対する溶解度よりも、エチレングリコールに対する溶解度の方が大きくなっている。また、冷却水中のポリフェノール類の含有量は、水の量およびエチレングリコールの量の何れよりも少量である。
本実施形態では、ポリフェノール類として、オリゴノールを用いている。オリゴノールは、高分子量のポリフェノールポリマーを低分子化したポリフェノール・オリゴマーである。ポリフェノールポリマーはエチレングリコール水溶液に不溶であるが、これを低分子化したオリゴノールはエチレングリコール水溶液に可溶となっている。オリゴノールには、カテキン類の単量体、2量体、3量体、 4量体、5量体、6量体、7量体、および8量体の1種類以上が含まれている。
冷却水には、エチレングリコールが25〜30%の範囲内で含まれている。冷却水中のエチレングリコール濃度が高いほど、熱物性が悪化し、粘度が増大する。このため、流路11〜16、ポンプ23、24、ラジエータ26等の体格の増大を抑制するために、冷却水中のエチレングリコール濃度を30%以下とすることが望ましい。
また、上述のように、第2溶質として用いられるオリゴノールは、水に対する溶解度よりも、エチレングリコールに対する溶解度の方が大きくなっている。つまり、冷却水中のエチレングリコール濃度が高いほど、オリゴノールの溶解度を大きくすることができる。このため、オリゴノールの溶解度を確保するために、冷却水中のエチレングリコール濃度を25%以上とすることが望ましい。
冷却水中には、オリゴノールが0.5〜1%の範囲内で含まれている。冷却水中のオリゴノール濃度が0.5%未満であると、凝固点を降下させる効果が低い。このため、冷却水の不凍機能を担保するために、冷却水中のオリゴノール濃度を0.5%以上とすることが望ましい。
また、冷却水中のオリゴノール濃度が1%より大きいと、冷却水にオリゴノールが溶解しにくくなり、オリゴノールの一部が固体のまま存在する可能性がある。このような場合には、固体状のオリゴノールを起点として冷却水が凝固しやすくなり、凝固点を降下させる効果が低くなる。このため、冷却水にオリゴノールを確実に溶解させるために、冷却水中のオリゴノール濃度を1%以下とすることが望ましい。
冷却水中のエチレングリコール濃度を25%とし、オリゴノール濃度を0.5%とした場合は、冷却水の凝固点は−35℃となる。冷却水中にエチレングリコールのみを含有させた場合には、エチレングリコール濃度50%で凝固点は−35℃となり、エチレングリコール濃度25%で凝固点は−15℃となる。
冷却水中のエチレングリコール濃度が25%の場合には、冷却水中にオリゴノールを含有させることで、凝固点を−15℃から−35℃に低下させることができる。つまり、冷却水中のエチレングリコール濃度が同一であれば、冷却水中にオリゴノールを含有させることにより、凝固点を大幅に低下させることができる。
また、冷却水の凝固点が−35℃の場合には、冷却水中にオリゴノールを含有させることにより、エチレングリコール濃度を50%から25%に低減させることができる。つまり、要求される凝固点が同じであれば、冷却水中にオリゴノールを含有させることにより、エチレングリコール濃度を大幅に低減させることができる。
上述した第1切替弁21は、流入出口21a〜21f同士の連通状態を3種類の状態に切り替え可能な構造になっている。第2切替弁22も、流入出口22a〜22f同士の連通状態を3種類の状態に切り替え可能な構造になっている。
図3は、第1切替弁21および第2切替弁22が第1状態に切り替えられたときの冷却システム10の作動(すなわち、第1モード)を示している。
第1状態では、第1切替弁21は、流入出口21aを流入出口21d、21e、21fと連通させ、流入出口21bを流入出口21cと連通させる。これにより、第1切替弁21は、図3の一点鎖線矢印に示すように流入出口21aから流入した冷却水を流入出口21d、21e、21fから流出させ、図3の実線矢印に示すように流入出口21bから流入した冷却水を流入出口21cから流出させる。
第1状態では、第2切替弁22は、流入出口22d、22e、22fを流入出口22aと連通させ、流入出口22cを流入出口22bと連通させる。これにより、第2切替弁22は、図3の一点鎖線矢印に示すように流入出口22d、22e、22fから流入した冷却水を流入出口22aから流出させ、図3の実線矢印に示すように流入出口22cから流入した冷却水を流入出口22bから流出させる。
図4は、第1切替弁21および第2切替弁22が第2状態に切り替えられたときの冷却システム10の作動(すなわち、第2モード)を示している。
第2状態では、第1切替弁21は、流入出口21aを流入出口21d、21fと連通させ、流入出口21bを流入出口21c、21eと連通させる。これにより、第1切替弁21は、図4の一点鎖線矢印に示すように流入出口21aから流入した冷却水を流入出口21d、21fから流出させ、図4の実線矢印に示すように流入出口21bから流入した冷却水を流入出口21c、21eから流出させる。
第2状態では、第2切替弁22は、流入出口22c、22eを流入出口22bと連通させ、流入出口22d、22fを流入出口22aと連通させる。これにより、第2切替弁22は、図4の一点鎖線矢印に示すように流入出口22d、22fから流入した冷却水を流入出口22aから流出させ、図4の実線矢印に示すように流入出口22c、22eから流入した冷却水を流入出口22bから流出させる。
図5は、第1切替弁21および第2切替弁22が第3状態に切り替えられたときの冷却システム10の作動(すなわち、第3モード)を示している。
第3状態では、第1切替弁21は、流入出口21aを流入出口21dと連通させ、流入出口21bを流入出口21c、21e、21fと連通させる。これにより、第1切替弁21は、図5の一点鎖線矢印に示すように流入出口21aから流入した冷却水を流入出口21dから流出させ、図5の実線矢印に示すように流入出口21bから流入した冷却水を流入出口21c、21e、21fから流出させる。
第3状態では、第2切替弁22は、流入出口22dを流入出口22aと連通させ、流入出口22c、22e、22fを流入出口22bと連通させる。これにより、第2切替弁22は、図5の一点鎖線矢印に示すように流入出口22dから流入した冷却水を流入出口22aから流出させ、図4の実線矢印に示すように流入出口22c、22e、22fから流入した冷却水を流入出口22bから流出させる。
次に、上記構成を備えた熱管理システム10の作動を説明する。例えば、制御装置60は、外気センサ62で検出された外気温が15℃以下である場合、図3に示す第1モードを実施し、外気センサ62で検出された外気温が15℃超40℃未満である場合、図4に示す第2モードを実施し、外気センサ62で検出された外気温が40℃以上である場合、図5に示す第3モードを実施する。
第1モードでは、制御装置60は、第1切替弁21および第2切替弁22を図3に示す第1状態に切り替えるとともに第1ポンプ23、第2ポンプ24および圧縮機42を作動させる。これにより、第1ポンプ23、電池40、インバータ34、EGRクーラ33およびラジエータ26によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ24、チラー35およびクーラコア36によって第2冷却水回路(低温冷却水回路)が構成される。なお、第1冷却水回路が本発明の第1の熱輸送回路に相当し、第2冷却水回路が本発明の第2の熱輸送回路に相当している。
すなわち、図3の一点鎖線矢印に示すように、第1ポンプ23から吐出した冷却水は第1切替弁21で電池40、インバータ34およびEGRクーラ33に分岐し、電池40、インバータ34およびEGRクーラ33を並列に流れた冷却水は第2切替弁22で集合してラジエータ26を流れて第1ポンプ23に吸入される。
一方、図3の実線矢印に示すように、第2ポンプ24から吐出した冷却水はチラー35を流れ、第1切替弁21を経てクーラコア36を流れ、第2切替弁22を経て第2ポンプ24に吸入される。
このように、第1モードでは、ラジエータ26で冷却された中温冷却水が電池40、インバータ34およびEGRクーラ33を流れ、チラー35で冷却された低温冷却水がクーラコア36を流れる。
このため、中温冷却水によって電池、インバータおよび排気ガスが冷却され、低温冷却水によって車室内への送風空気が冷却される。例えば、外気温が15℃程度の場合、ラジエータ26で外気によって冷却された中温冷却水は25℃程度になるので、中温冷却水によって電池40、インバータ34および排気ガスを十分に冷却することができる。チラー35で冷凍サイクル41の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気を十分に冷却することができる。
第1モードでは、電池40、インバータ34および排気ガスを外気によって冷却するので、電池40、インバータ34および排気ガスを冷凍サイクル41の低圧冷媒で冷却する場合に比べて省エネルギー化を図ることができる。
第2モードでは、制御装置60は、第1切替弁21および第2切替弁22を図4に示す第2状態に切り替えるとともに第1ポンプ23、第2ポンプ24および圧縮機42を作動させる。
これにより、第1ポンプ23、インバータ34、EGRクーラ33およびラジエータ26によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ24、チラー35、クーラコア36および電池40によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図4の一点鎖線矢印に示すように、第1ポンプ23から吐出した冷却水は第1切替弁21でインバータ34およびEGRクーラ33に分岐し、インバータ34およびEGRクーラ33を並列に流れた冷却水は第2切替弁22で集合してラジエータ26を流れて第1ポンプ23に吸入される。
一方、図4の実線矢印に示すように、第2ポンプ24から吐出した冷却水はチラー35を流れ、第1切替弁21でクーラコア36および電池40に分岐し、クーラコア36および電池40を並列に流れた冷却水は第2切替弁22で集合して第2ポンプ24に吸入される。
すなわち、第2モードでは、ラジエータ26で冷却された中温冷却水がインバータ34およびEGRクーラ33を流れ、チラー35で冷却された低温冷却水がクーラコア36および電池40を流れる。
このため、中温冷却水によってインバータ34および排気ガスが冷却され、低温冷却水によって車室内への送風空気および電池40が冷却される。例えば、外気温が25℃程度の場合、ラジエータ26で外気によって冷却された中温冷却水は40℃程度になるので、中温冷却水によってインバータ34および排気ガスを十分に冷却することができる。
チラー35で冷凍サイクル41の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気および電池40を十分に冷却することができる。
このように、第2モードでは、電池40を冷凍サイクル41の低圧冷媒で冷却するので、外気温が高いために外気では電池を十分に冷却できない場合であっても電池を十分に冷却することができる。
第3モードでは、制御装置60は、第1切替弁21および第2切替弁22を図5に示す第3状態に切り替えるとともに第1ポンプ23、第2ポンプ24および圧縮機42を作動させる。これにより、第1ポンプ23、EGRクーラ33およびラジエータ26によって第1冷却水回路(中温冷却水回路)が構成され、第2ポンプ24、チラー35、クーラコア36、電池40およびインバータ34によって第2冷却水回路(低温冷却水回路)が構成される。
すなわち、図5の一点鎖線矢印に示すように、第1ポンプ23から吐出した冷却水は第1切替弁21を経てEGRクーラ33を流れ、第2切替弁22を経てラジエータ26を流れて第1ポンプ23に吸入される。
一方、図5の実線矢印に示すように、第2ポンプ24から吐出した冷却水はチラー35を流れ、第1切替弁21でクーラコア36、電池40およびインバータ34に分岐し、クーラコア36、電池40およびインバータ34を並列に流れた冷却水は第2切替弁22で集合して第2ポンプ24に吸入される。
したがって、第3モードでは、ラジエータ26で冷却された中温冷却水がEGRクーラ33を流れ、チラー35で冷却された低温冷却水がクーラコア36、電池40およびインバータ34を流れる。
このため、ラジエータ26で冷却された冷却水によって排気ガスが冷却され、チラー35で冷却された冷却水によって車室内への送風空気、電池40およびインバータ34が冷却される。例えば、外気温が40℃程度の場合、ラジエータ26で外気によって冷却された中温冷却水は50℃程度になるので、中温冷却水によって排気ガスを十分に冷却することができる。
チラー35で冷凍サイクル41の低圧冷媒によって冷却された低温冷却水は0℃程度になるので、低温冷却水によって車室内への送風空気、電池40およびインバータ34を十分に冷却することができる。
このように、第3モードでは、電池40およびインバータ34を冷凍サイクル41の低圧冷媒で冷却するので、外気温が非常に高いために外気では電池40およびインバータ34を十分に冷却できない場合であっても電池40およびインバータ34を十分に冷却することができる。
以上説明した本実施形態によれば、エチレングリコールを含有する冷却水にポリフェノール類として微量のオリゴノールを含有させることで、エチレングリコール濃度が同一であっても、凝固点を大幅に低下させることができる。また、同じ凝固点を得るためには、冷却水中にオリゴノールを含有させることにより、エチレングリコール濃度を大幅に低減させることができる。
エチレングリコール濃度の低減に伴って冷却水中の水の割合を増加させることができるため、冷却水の熱物性を改善することができ、かつ、粘度を低下させることができる。また、冷却水中に含有させるオリゴノールは微量であるため、冷却水の熱物性に悪影響を与えることを極力抑制できる。この結果、流路11〜16、ポンプ23、24、ラジエータ26等の体格の増大を抑制することができる。
また、本実施形態では、複数の流路11〜16に、複数の熱交換対象機器33、34、36と、複数の熱交換器26、34と、複数のポンプ23、24とが配置され、切替弁21、22によって独立した複数の熱輸送回路を形成可能となっている。このような複雑な流路構成を備えるシステムでは、冷却水の粘度の影響が大きくなる。このため、複雑な流路構成を備えるシステムにおいて、本実施形態による粘度を低減可能な冷却水を用いた場合には、特に大きな効果が得ることができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。
(1)上記実施形態では、第1溶質としてエチレングリコールを用いたが、これに限らず、第1溶質としてエチレングリコール以外の凝固点降下剤を用いてもよい。例えば、第1溶質として、プロピレングリコール、エタノールあるいはメタノール等を用いることができる。
(2)上記実施形態では、第2溶質としてカテキン類を用いたが、これに限らず、カテキン類以外のポリフェノール類を用いてもよい。
(3)熱交換対象機器として種々の機器を用いることができる。例えば、乗員が着座するシートに内蔵されて冷却水によりシートを冷却・加熱する熱交換器を熱交換対象機器として用いてもよい。熱交換対象機器の個数は、複数個(2個以上)であるならば何個でもよい。
(4)上記実施形態において、コンデンサ37を冷却水が流動する流路に配置し、冷却水と冷凍サイクル41の高圧冷媒(高温冷媒)とを熱交換させることによって、冷却水を加熱するように構成してもよい。この場合には、コンデンサ37は本発明の熱交換器に相当する。
(5)上記実施形態では、本発明の熱輸送システムをハイブリッド自動車に適用した例を示したが、エンジンを備えず走行用電動モータから車両走行用の駆動力を得る電気自動車や、燃料電池を走行用エネルギー発生手段とする燃料電池自動車等に本発明を適用してもよい。
11〜16 流路
21、22 第1、第2切替弁(第1、第2切替部)
23、24 第1、第2ポンプ(熱媒体流動部)
26 ラジエータ(熱交換器)
33 EGRクーラ(熱交換対象機器)
34 インバータ(熱交換対象機器)
35 チラー(熱交換器)
40 電池(熱交換対象機器)

Claims (7)

  1. 液体の熱媒体が流動する流路(11〜16)と、
    前記流路に前記熱媒体を流動させる熱媒体流動部(23、24)と、
    前記流路に配置され、前記熱媒体と熱交換を行う熱交換器(26、35)と、
    前記流路に配置され、前記熱媒体によって冷却および加熱の少なくとも一方が行われる熱交換対象機器(33、34、40)と、を備え、
    前記熱媒体は、水と、前記水に対して凝固点降下を発現させる第1溶質と、ポリフェノール類に基づく第2溶質とを含んでおり、
    前記第2溶質は、前記水に対する溶解度よりも前記第1溶質に対する溶解度の方が大きくなっており、かつ、前記熱媒体における含有量が前記水の含有量および前記第1溶質の含有量よりも少ない熱輸送システム。
  2. 前記第1溶質は、エチレングリコールであり、
    前記第2溶質は、前記ポリフェノール類として、カテキン類の単量体、2量体、3量体、 4量体、5量体、6量体、7量体、および8量体の1種類以上が含まれている請求項1に記載の熱輸送システム。
  3. 前記熱媒体における前記第1溶質の濃度は、30%以下である請求項1または2に記載の熱輸送システム。
  4. 前記熱媒体における前記第1溶質の濃度は、25%以上である請求項1ないし3のいずれか1つに記載の熱輸送システム。
  5. 前記熱媒体における前記第2溶質の濃度は、0.5%以上である請求項1ないし4のいずれか1つに記載の熱輸送システム。
  6. 前記熱媒体における前記第2溶質の濃度は、1%以下である請求項1ないし5のいずれか1つに記載の熱輸送システム。
  7. 前記流路、前記熱媒体流動部、前記熱交換器および前記熱交換対象機器は、それぞれ複数設けられ、
    前記複数の熱媒体流動部は、それぞれ前記複数の流路のいずれかに配置され、前記複数の熱交換器は、それぞれ前記複数の流路のいずれかに配置され、前記複数の熱交換対象機器は、それぞれ前記複数の流路のいずれかに配置され、
    さらに、前記複数の流路の接続状態を切り替え、前記複数の流路同士を選択的に連通させる切替部(21、22)を備え、
    前記切替部は、前記複数の熱交換器のうち第1の熱交換器と、前記複数の熱交換対象機器のうち第1の熱交換対象機器とが連通した第1の熱輸送回路と、前記複数の熱交換器のうち第2の熱交換器と、前記複数の熱交換対象機器のうち第2の熱交換対象機器とが連通した第2の熱輸送回路とを形成可能であり、
    前記第1の熱輸送回路および前記第2の熱輸送回路のそれぞれに、前記熱媒体流動部が配置されている請求項1ないし6のいずれか1つに記載の熱輸送システム。
JP2016026153A 2016-02-15 2016-02-15 熱輸送システム Pending JP2017145973A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016026153A JP2017145973A (ja) 2016-02-15 2016-02-15 熱輸送システム
PCT/JP2017/000936 WO2017141590A1 (ja) 2016-02-15 2017-01-13 熱輸送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026153A JP2017145973A (ja) 2016-02-15 2016-02-15 熱輸送システム

Publications (2)

Publication Number Publication Date
JP2017145973A true JP2017145973A (ja) 2017-08-24
JP2017145973A5 JP2017145973A5 (ja) 2018-04-26

Family

ID=59625789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026153A Pending JP2017145973A (ja) 2016-02-15 2016-02-15 熱輸送システム

Country Status (2)

Country Link
JP (1) JP2017145973A (ja)
WO (1) WO2017141590A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196509A1 (ja) * 2019-03-26 2020-10-01 株式会社デンソー 熱輸送媒体およびそれが用いられる熱輸送システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020280A (ja) * 2012-07-18 2014-02-03 Denso Corp 車両用熱管理システム
JP2015212376A (ja) * 2010-03-04 2015-11-26 国立大学法人北海道大学 タンニンを含有する不凍性液体及びガラス化液

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212376A (ja) * 2010-03-04 2015-11-26 国立大学法人北海道大学 タンニンを含有する不凍性液体及びガラス化液
JP2014020280A (ja) * 2012-07-18 2014-02-03 Denso Corp 車両用熱管理システム

Also Published As

Publication number Publication date
WO2017141590A1 (ja) 2017-08-24

Similar Documents

Publication Publication Date Title
CN110549817B (zh) 热流管理设备以及用于运行热流管理设备的方法
CN104842752B (zh) 车辆冷却回路
KR102382721B1 (ko) 자동차의 통합 열관리 시스템
US9643469B2 (en) Vehicle thermal management system
US20140202178A1 (en) Multiple circuit cooling system
US8893522B2 (en) Cooling device
JP6015184B2 (ja) 車両用熱管理システム
US20170021698A1 (en) Vehicle-mounted temperature adjustment device, vehicle air-conditioning device, and battery temperature adjustment device
US20120304674A1 (en) Climate control system for a vehicle and method for controlling temperature
KR101759027B1 (ko) 자동차의 공기 조화 시스템 및 상기 공기 조화 시스템의 작동 방법
US20220069387A1 (en) Cooling water circuit
US9631544B2 (en) Cooling system and vehicle that includes cooling system
KR20170008603A (ko) 차량용 배터리의 온도 제어 장치
JP2012172917A (ja) 冷却装置
JPWO2011087001A1 (ja) 車両用空調システム
JP2014181574A (ja) 車両用熱管理システム
US20180272840A1 (en) Vehicle-mounted heat utilization device
JP2010115993A (ja) 車両用空調装置
CN110402203B (zh) 车辆的制冷设备
JP2012236577A (ja) 車両用冷凍サイクル装置
JP2014037179A (ja) 電動車両用熱管理システム
CN112385066A (zh) 用于燃料电池的带有热泵的组合式冷却循环
JP5896817B2 (ja) 冷却発電システム
JP2014201148A (ja) 車両用熱管理システム
JP5320419B2 (ja) 冷却装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190604