JP2017141834A - 燃料デュアル噴射方式の内燃機関を動作させるための方法及び装置 - Google Patents

燃料デュアル噴射方式の内燃機関を動作させるための方法及び装置 Download PDF

Info

Publication number
JP2017141834A
JP2017141834A JP2017023058A JP2017023058A JP2017141834A JP 2017141834 A JP2017141834 A JP 2017141834A JP 2017023058 A JP2017023058 A JP 2017023058A JP 2017023058 A JP2017023058 A JP 2017023058A JP 2017141834 A JP2017141834 A JP 2017141834A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
fuel
compression
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2017023058A
Other languages
English (en)
Inventor
ヴントリング クラウス
Wundling Claus
ヴントリング クラウス
エッカー ライナー
Ecker Rainer
エッカー ライナー
クーン トーマス
Kuhn Thomas
クーン トーマス
ティム ホルマン
Timm Hollmann
ホルマン ティム
ウド シュルツ
Udo Schulz
シュルツ ウド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2017141834A publication Critical patent/JP2017141834A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2700/00Mechanical control of speed or power of a single cylinder piston engine
    • F02D2700/03Controlling by changing the compression ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

【課題】本発明は、デュアル型の吸気管方式の燃料供給と燃料直接供給とを行う内燃機関を動作させるための方法及び装置に関する。【解決手段】吸気管方式の燃料供給と燃料直接供給とにおいて必要な各燃料量を、量配分に基づいて算定し、当該内燃機関はさらに、当該内燃機関の少なくとも1つの燃焼室内において燃料空気混合気の可変圧縮を行い、本発明では、特に、内燃機関の現在の動作条件を、現在の圧縮(405)も含めて取得し(405,410)、取得された動作条件に依存する、量配分の値を求める(420)。【選択図】図4

Description

本発明は、各独立請求項の上位概念に記載の、燃焼室内における燃料空気混合気の圧縮が可変である燃料デュアル噴射方式の内燃機関を動作させるための方法及び装置に関する。本発明はさらに、本発明に係る方法を実施するためのコンピュータプログラム、当該コンピュータプログラムを記憶するための機械可読のデータ媒体、及び、本発明に係る方法を実施するための電子コントローラも対象とする。
従来技術
本発明が対象とする燃料デュアル噴射は、内燃機関の燃料供給時に吸気管噴射と直接噴射とを結合したもの、又は、パラレル動作させるものである。実用上、かかる内燃機関はデュアルシステムとして構成できることが知られている。このデュアルシステムはその混合モードにおいて、内燃機関の同一のシリンダに、配分に従って吸気管噴射(SRE)と燃料直接噴射(BDE)とを並行して用いて燃料を供給できるものである。この配分は、吸気管噴射を用いてシリンダに供給できる燃料量と、燃料直接噴射を用いて当該シリンダに供給できる更なる燃料量とへの燃料の分割を表すものである。
例えば独国特許出願公開第102010039434号明細書(DE 10 2010 039 434 A1)に、上述の混合モードにおいて、例えば負荷及び/又は回転数等の動作点を考慮して内燃機関の配分を求めることが記載されている。このようにして上述の混合モードにより、その都度目的に応じて変換された配分によって、異なる動作条件に対応して最適な、内燃機関の動作を達成することができる。両噴射方式の利点を利用することにより、最適な混合気形成と燃焼とが可能になる。例えば、BDEは内燃機関の変動的な動作時又は全負荷動作時の方が有利である。というのもBDEにより、燃焼室充填物の自明の自己着火(いわゆる「ノッキング」)を回避できるからである。他方、内燃機関の部分負荷モード時にSREを使用すると、粒子及び/又は炭化水素(HC)による排ガス汚染が低減するという利点がある。
ノッキング制御を用いて、ノッキングが検出された場合に点火時期を遅角方向に増分シフトし、その後に以前の点火時期に戻すことにより、上述のノッキングは抑制乃至回避される。基準燃料に基づいて、最も早くに可能な点火時期を求めて特性マップに記憶する。これにより、燃焼の時間的推移を熱力学的に最適化することができる。
さらに独国特許出願公開第10258872号明細書(DE 102 58 872 A1)からは、上述のデュアル燃料供給を行わないが燃焼室乃至シリンダ内の燃料空気混合気の圧縮率乃至圧縮比が可変である内燃機関が公知となっており、当該内燃機関では、調整機構を介して回転可能な偏心リングを用いてエンジンブロックに対するクランクシャフトの相対位置を可変に調整することができ、かかる相対位置の可変調整により、いわゆる「圧縮容積」を変化させることができ、これにより圧縮比も変化させることができる。調整機構に代えて、エンジンブロックをクランクシャフトベアリングに対して傾斜させることにより、又はシリンダヘッドをエンジンブロックに対して傾斜させることにより、又は、シリンダヘッドをエンジンブロックに対して相対的に上昇若しくは下降させることによっても、圧縮比を変化させることができる。
可変圧縮は、カムシャフト位相調整器を用いるカムシャフト調整装置(位相調整装置)によって、又は可変バルブ駆動機構を用いたカム切替によっても、実現することができる。また、内燃機関のシリンダに配置されているインレットバルブの閉弁時点を変化させることによっても、圧縮を変化させることができる。
上述の可変圧縮により、部分負荷領域での燃焼の熱力学的効率を向上させることができ、これにより、消費に関する利点とCOエミッションの低減とが達成される。しかし、圧縮比が上昇するにつれて圧縮端温度も上昇し、圧縮端温度の上昇によっても、ノッキング傾向が増大する。このことにより、燃料のノッキング傾向によって最大可能圧縮比が制限されてしまう。回転数が上昇して低負荷方向に向かうと、ノッキング傾向は低減し、これにより圧縮をより大きく選択できるようになる。
独国特許出願公開第102010039434号明細書 独国特許出願公開第10258872号明細書
発明の開示
本発明は、内燃機関の燃焼室内の燃料空気混合気の上述の可変圧縮(圧搾)を行う内燃機関の、本発明が対象とするデュアル燃料供給において、燃料配分を行うための方法及び対応する装置に関する。当該方法及び装置の基礎である認識乃至技術的効果は、低ノッキング動作領域において燃料直接供給(BDE)を行う上述の燃料噴射システムの方が、吸気管方式の燃料供給(SRE)を行う燃料噴射システムよりも、より早期の燃料質量変換で動作することができ、ひいては燃焼により有利な燃料質量変換で動作できる、というのものである。その理由は、BDEモードの方がSREモードよりも早期に、点火角乃至点火時期を介して調整可能乃至制御可能な燃焼重心を選択できるからである。
本発明の基礎である認識は、実際に使用される燃料供給方式即ち上述のBDEモード又はSREモード又は両モードの組合せが、上述の量配分により、上述の燃焼時のノッキング挙動に著しく大きな影響を及ぼし、これにより、燃料消費量を削減し、燃焼に起因する排ガスエミッションを削減する大きな余地を与えることができることである。
上述の効果の本来的な技術的原因は、燃焼室内において直接行われる燃料の蒸発と、噴射された燃料粒子乃至燃料液滴の運動エネルギーがBDEモードによって導入されることにより生成される乱流が増大することとによって、混合気冷却が増大して燃料のより迅速な冷却が生じることにより、BDEモード時のノッキング傾向をSREモードより低減できることである。上述の効果は特に、比較的高い負荷下での内燃機関の動作時において熱力学的に有利であり、かかる効果によって特に、燃料消費量を削減することができる。
本発明に係る方法は、内燃機関の現在の動作点、現在の圧縮比ε(イプシロン)、周囲条件及び/又は先行若しくは最後の複数の燃焼の履歴とに依存して、上記の量配分の適切な値又は最適値をも求めるというアプローチに基づく。本方法では、SREモードの混合気形成に関する上述の可能な利点と、BDEモードの上述の高いノッキング耐性の利点とを組み合わせる。上述の最後の複数の燃焼の履歴は、現在及び/又は先行の移行挙動、乃至、移行モードにあるときの内燃機関乃至噴射システムの挙動も含み、具体的には例えば、運転者要望に起因する突然のトルク要求乃至突然の負荷切替も含む。
本発明に係る方法は特に、吸気管方式の燃料供給(SRE)と燃料直接供給(BDE)との間での、供給される燃料の量配分を、現在の可変圧縮乃至圧搾に依存して調整することを提案する。有利には、現在の圧縮率が比較的高く、かつ現在の負荷が高負荷である場合、上述の量配分を、BDE供給が比較的多い方向にシフトさせ、さらに点火角を進角方向に調整する。ここでの上述の技術的効果は、BDEモードではノッキング限界を進角方向にシフトさせることができることに基づいており、これにより、現在の低ノッキング動作において燃焼効率が上昇するという利点が奏される。その際に有利なのは、点火角を進角方向に調整せず、ノッキング低減に使用される、点火角の非効率的な遅角調整を省略できることであり、これにより、エンジンを最適な動作点で動作させることができる。
ここで留意すべき点は、本発明では、可変圧縮比を実現する際の技術的な個別事項は重要ではなく、よって、本発明に係る方法は、従来において技術的に可能であった可変圧縮のいかなる実用化手法にも適用することができ、上述の利点を奏することである。
本発明に係る方法では特に、現在の圧縮乃至圧搾を取得し、例えばエンジンコントローラから読み出し、内燃機関の現在の負荷状態を取得し、例えばこれも同様に、エンジンコントローラから読み出す。上述のようにして取得された、圧縮及び負荷の両値が、実験により設定可能な閾値を超える場合、量配分を、BDE燃料供給量が比較的増大する方向に変化させる。
上掲の閾値に基づいて行われる、量配分の不連続的な計算乃至適応調整に代えて、量配分の連続的な計算乃至適応調整を行うことも可能であり、しかも、圧縮比に依存して行うことができる。適切な値、例えば量配分の最適値を、適切な特性マップに記憶することができ、しかも、圧縮、回転数又は負荷等に依存して記憶することができる。
さらに、取得された圧縮と負荷との上述の比較に際し、内燃機関の動作に関連する周囲条件、例えばエンジン温度及び/又は吸気温度を考慮することもできる。というのも、かかる動作温度は内燃機関のノッキング挙動に著しく大きな影響を及ぼすからである。
また、本発明に係る方法は、シリンダ個別のエラー解析に適用することもできる。例えば、全てのシリンダにおいて同時に圧縮の異常な変化が生じた場合、例えば、可変圧縮のための冒頭に述べた調整機構の不具合を推定することができる。他方、1つのシリンダにのみ圧縮比εの異常な偏差が生じた場合、当該シリンダにおいて例えばガス交換バルブ及び/又はピストンリングに漏れがあると推定することができる。
本発明に係る方法ではさらに、内燃機関乃至噴射システムの複数の異なる動作状態、量配分、上述の燃焼の履歴及び/又は(可変の)圧縮値に依存して、内燃機関のノッキング挙動を、有利には特性マップ、参照特性マップ又はアプリケーション参照マップ等に記憶しておくことができる。ここで記憶された値は内燃機関の動作中に、自明の手法で、適切なアルゴリズムによって学習することができる。これにより、上述のエラー発生時には、ノッキング限界を考慮して、量配分乃至対応する配分率(「分割率」)を目的に応じて変化させることにより、迅速に応答すること乃至当該エラー状態を補償することができる。
上述の態様に代えて、又は上述の態様と共に、内燃機関の動作中に求められた現在のノッキング限界と、上掲の特性マップに記憶された(参照)値とを単に比較することにより、動作中の現在の圧縮比εを直接推定することもできる。かかる推定は、量配分乃至対応する配分率の変化を介して圧縮比を求めることができるとの考えに基づく。
上掲の特性マップには、特定の動作点におけるノッキング限界と配分率の値とを、圧縮に依存して記憶しておくことができる。配分率の変化によってノッキング限界を求める場合には、予測されるノッキング限界と、当該配分率の変化によって求められたノッキング限界とを比較することにより、現在乃至実際の圧縮を推定することができる。
圧縮比εを求めるための上述の手順により、上述の可変圧縮に対応する診断機能であって、周期的に、例えば1運転サイクルあたり1回実施され、又は、必要な場合にのみ、例えばノッキング若しくは失火等の燃焼上の問題が生じているときにのみ実施される診断機能を、実現することができる。
よって、本発明に係る方法は、上記にて提案されている、配分率の適応調整乃至シフトにより、本発明の対象であるデュアル燃料供給方式の内燃機関の動作を、従来技術よりノッキングを生じにくい動作とすることができる。可変圧縮及び可変燃料配分により達成される利点を組み合わせることにより、全体的に消費量が削減され、排ガスエミッションが削減され、かつ、走行快適性乃至運転快適性が改善される。既に述べたように、SREモードは混合気生成の改善に寄与し、BDEモードはノッキング耐性の向上に寄与する。
吸気管方式の燃料供給及び燃料直接供給の双方の燃料量の本発明の計算は、有利には内燃機関の各シリンダごとに行われ、しかも、逐次乃至順次行われる。
本発明は特に、自動車の内燃機関の、本発明が対象とする燃料デュアル噴射システムにおいて使用することができる。さらに、例えば化学プロセス技術等の産業分野において使用される上述の燃料デュアル噴射方式の内燃機関において使用することも可能である。
本発明に係るコンピュータプログラムは、特に計算機又はコントローラ上にて実行されるときに、上記方法の各ステップを実施するように構成されている。電子コントローラにて、その構造を変更する必要なく、本発明に係る方法を実施することができる。こうするために、機械可読データ媒体が設けられ、このデータ媒体上に本発明に係るコンピュータプログラムが記憶されている。本発明に係るコンピュータプログラムを電子コントローラ上にインストールすることにより、可変圧縮を行う内燃機関において本発明に係る方法を用いて本発明の対象である燃料デュアル噴射を制御する本発明に係る電子コントローラが実現される。
明細書及び添付の図面から、本発明の別の利点及び実施形態を導き出すことができる。
もちろん、上記及び下記の特徴は、記載された組合せでだけ使用できるという訳ではなく、別の組合せ及び単独で、本発明の範囲を逸脱することなく使用できると解すべきである。
4気筒内燃機関に対応する従来技術の燃料デュアル噴射装置の概略図である。 燃料吸気管噴射時における従来技術の燃料噴射の概略的なタイムチャートである。 燃料直接噴射時における従来技術の燃料噴射の概略的なタイムチャートである。 本発明に係る方法の一実施例のフローチャートである。 内燃機関のノッキング挙動についての事前に求められたデータを内燃機関乃至噴射システムの複数の異なる動作状態に依存して含む、本発明の一実施例の(参照)特性マップを示す図である。
実施例の説明
図1に示されている内燃機関は4つのシリンダ11を備えており、これらのシリンダ11はシリンダヘッド12によって覆われている。シリンダヘッド12は、各シリンダ11において、各シリンダ11内にて案内される往復ピストンと共に燃焼室13を画定しており、この燃焼室13は、インレットバルブ14によって制御されるインレット開口部15を有する。往復ピストンは、同図中には示されていない。インレット開口部15は、シリンダヘッド12を貫通するインレット流路16の合流部を成す。
図中の燃料噴射装置は、燃焼空気をシリンダ11の燃焼室13へ供給するための空気流路18を備えており、この空気流路18は終端側に、各インレット流路16に連通している、複数の互いに分離された流路17を有する。さらに、シリンダ11の各燃焼室13内に燃料をそれぞれ直接噴射する第1群の燃料噴射バルブ19と、燃料を流路17内に噴射する第2群の燃料噴射バルブ20とが配置されている。
シリンダ11に直接噴射する第1群の燃料噴射バルブ19への供給は燃料高圧ポンプ21によって行われ、それに対して、流路17に噴射する第2群の燃料噴射バルブ20への供給は燃料低圧ポンプ22によって行われる。通常は燃料タンク23内に配置される燃料低圧ポンプは、燃料タンク23内から第2群の燃料噴射バルブ20と燃料高圧ポンプ21とへ燃料を移送する。燃料噴射バルブ19,20の噴射時期及び噴射持続時間は、エンジンコントローラに組み込まれた電子コントローラによって、内燃機関の動作点に依存して制御される。基本的には、燃料噴射は第1群の燃料噴射バルブ19によって行われ、第2群の燃料噴射バルブ20は、所定の動作領域において第1群の燃料噴射バルブ19による燃料直接噴射が不十分であることを改善し、更なる自由度乃至噴射ストラテジーを使用するため、補助的にのみ使用される。
第2群の燃料噴射バルブ20は、互いに角度シフトされた少なくとも2つの分離した燃料ジェットを同時に放出乃至噴射するマルチジェット噴射バルブとして構成されており、これらの燃料噴射バルブ20は、通常はスプレー円錐の形状になる噴射された燃料ジェット24,25がそれぞれ異なる流路内に達するように、空気流路18内に配置されている。上述の内燃機関の場合、2つの2ジェット噴射バルブ26,27が設けられており、1つの2ジェット噴射バルブ26が、第1及び第2のシリンダ11に連通している流路17内に噴射し、かつ第2の2ジェット噴射バルブ27が、第3及び第4のシリンダ11に連通している流路17内に噴射するように、両2ジェット噴射バルブ26,27は空気流路18内に配置されている。こうするためには、2つの直接隣接する流路17間に2ジェット噴射バルブ26乃至27のための組付位置ができるように、流路17を構成する。
ここで留意すべき点は、図1に示されている内燃機関の場合には大抵、4つの各シリンダ11ごとにそれぞれ(図示されている)1つの燃料噴射バルブ19と1つの2ジェット噴射バルブ26,27(図中には2つのみ示されている)とが配置されていることである。
また、本発明が対象とする内燃機関の上述の燃料吸気管噴射の場合、空気燃料混合気は燃焼室の外部において、吸気管内にて発生することも知られている。各噴射バルブは燃料をインレットバルブより上流にて噴射し、その混合気は吸気系統において、開弁されているインレットバルブを通って燃焼室内へ流入する。燃料供給は燃料移送モジュールを用いて行われ、この燃料移送モジュールは、所要量の燃料を所定の圧力でタンクから噴射バルブへ移送する。空気制御により、いかなる動作点においても内燃機関に適正量の空気が供給される。燃料分配器に配置された噴射バルブが、所望量の燃料を正確に空気流中に調量する。上掲のエンジンコントローラが、中央参照量としてのトルクに基づき、現在必要とされている空気燃料混合気に制御する。常に理論空燃比(λ=1)に制御するためのラムダ制御によって、効果的な排ガス浄化が実現される。
それに対して燃料直接噴射の場合には、空気燃料混合気は燃焼室において直接形成される。上述のインレットバルブを介して新気が流入し、この空気流中に高圧(典型的には200バール)で燃料を噴射する。これにより、空気燃料混合気の最適な渦形成と燃焼室の冷却の改善とが可能になる。
さらに、4ストローク内燃機関(ガソリンエンジン)の場合には、1動作サイクルは吸入工程と圧縮工程と燃焼工程と排気工程とを含み、各シリンダは2回上下に運動して、2つの上死点(OT)と2つの下死点(UT)とにおいて静止する。よって、クランクシャフトは1動作サイクルにおいて2周回転し、カムシャフトは1周回転する。シリンダ内に導入されたガス燃料混合気の点火は、混合気がちょうど圧縮された上死点において行われる。これは点火上死点(ZOT)と称される。これに対して交差上死点(UeOT)も存在する。これは、排気工程から吸入工程への移行時にインレットバルブ及びアウトレットバルブの双方が開弁している上死点である。
これによれば、始動直後に少なくとも1つのシリンダにおいて、全ての上死点(OT)において点火が行われ、特定の上死点、特に2番目の上死点ごとに、720°のクランクシャフト角においてその都度、点火時期のシフトが行われる。点火時期シフトが行われる上死点(OT)において、又は、360シフトしたクランクシャフト角において、空気燃料混合気が実際に点火されるか否かに応じて、各シリンダにおいて行われた物理的動作の減少を特定することができる。
図2中、y方向は、内燃機関の複数の異なる回転数の場合に行われる吸気管噴射を、単位[°]で測定されたクランクシャフト角(KW)に対して示している。オットーエンジン方式の4ストローク燃焼サイクルは公知のように、第1の下死点(UT1)と第1の上死点(OT)と他の下死点(UT2)と他の上死点(ZOT)との間に、燃焼室内に存在する空気燃料混合気が点火するクランクシャフト角を含む。
上述の時間的な基準マークは、2つの各噴射系統ごとに非常に異なって設定される。例えば吸気管噴射(SRE)では、図2に概略的に示されているように、単なる例として4つの異なる回転数n=1000,2000,4000及び7000rpmにおいて噴射200が行われる場合、噴射サイクル225の終了210前に設けられる一定の時間遅延成分205を考慮する。というのも、SREの場合、噴射バルブは内燃機関の各燃焼室の外部に配置されており、よって、燃料は、まず噴射位置から燃焼室内に到達しなければならないからである。この追加の所要時間は、図2を見ると分かるように、内燃機関の回転数が変化する場合乃至増大する場合に変化するものではない。よって、どの回転数においても一定の所要時間205となるようにするためには、噴射を相応により早い時期に作動させ、例えば7000rpmにおいて、又は、先行のZOT220において行われる点火より時間的に後のUT1より前に作動させる。図中の噴射サイクルの総噴射期間は、上記にて述べたように、図中に示されている括弧225に相当する。先行のZOT220に続く次のZOTには、215が付されている。
それに対してガソリン筒内噴射(BDE)では、各噴射300ごとに基準マークとして、図3に概略的に示されているように(具体的な)角度マークを実験により設定する。即ち、SREとは異なってBDEでは、例えば各噴射終了時の推移305から分かるように、一定の時間成分を考慮するのではない。従って、BDEでは、噴射をZOT315の点火発生のより近くで行うことができるので、これに対応して、噴射はより遅い時期に計算される。本実施例では、図中に示されている噴射サイクル325の終了310後に、次のZOT315における点火が続く。このZOT315より前の点火時期は、先行のZOT320になる。
本実施例が対象とする内燃機関はさらに、独国特許出願公開第10258872号明細書に記載されている可変圧縮も含み、同文献では、クランクシャフトは偏心リングを用いてエンジンブロック内に取り付けられており、偏心リングはエンジンブロック内の支持軸受部に回転可能に取り付けられている。調整機構を用いて偏心リングを制御により回転させることができ、これにより、エンジンブロックに対するクランクシャフトの相対位置が変化する。このようにクランクシャフトの相対位置が変化することにより、内燃機関のシリンダ内のピストンの位置が変化し、また、シリンダ内のピストンのいわゆる上死点(OT)の位置も変化し、これにより、上死点位置にあるピストン上方において封止された圧縮容積VCも変化する。これに応じてピストンの下死点位置も変化するので、エンジンブロックに対するクランクシャフトの相対位置が変化しても往復動容積VHは変化しない。従って、圧縮容積が変化し、かつ往復動容積VHが一定であるということは、圧縮比ε=(VH+VC)/VCが変化していることを示している。
可変圧縮により、部分負荷領域での燃焼の熱力学的効率を向上させることができる。その結果、消費に関する利点とCOエミッションの低減とが達成される。圧縮比が高くなるほど圧縮端温度も高くなり、圧縮端温度が高くなるにつれて、ガソリンエンジンの場合には燃焼室充填物が自己着火(ノッキング)するおそれが増大し、最大可能圧縮比は、燃料のノッキング傾向によって制限される。
本実施例が対象としている燃料供給デュアルシステムでは、上述のSRE配分及びBDE配分という2つの配分は、公知のようにシステム乃至システム構成要素の形態で組み合わせられる。その際には特に、使用可能乃至供給される総燃料質量の正確な配分が必要である。1シリンダあたりの総燃料質量KMgesは、以下のような構成となっている:
KMges=KMSRE+KMBDE
同式中、KMSREはSRE系統の相対燃料質量を表し、KMBDEはBDE系統の相対燃料質量を表す。以下、かかるデュアルシステムにおける噴射時に必要な燃料質量を計算乃至配分するための、対応する処理フローについて、図4に示されたフローチャートを参照して説明する。
以下説明するルーティンは、本実施例では内燃機関の全てのシリンダについて逐次乃至順次行われ、ここではi番目のシリンダについて行われる。
ルーティンの開始400後、圧縮の実際値405及び負荷の実際値410を取得する。さらに、燃焼を決定する他のパラメータ、特に、例えば空気圧及び/又は空気温度等の現在の周囲条件を取得して、後続のステップにおいて考慮することもできる。ステップ415において、取得された圧縮値405と、取得されたパラメータのうち少なくとも1つの他のパラメータ410即ちここでは負荷値とが、それぞれ事前に実験により設定された閾値を超えるか否かを検査する。これらの閾値は、燃焼時に上述のノッキングを効果的に回避できるように決定される。上記条件が満たされない場合、ルーティンの開始までジャンプして戻る。
ここで留意すべき点は、上述の不連続的な適応調整に代えて、連続的な適応調整を行うことも可能であることである。
しかし、条件415が満たされない場合には、BDE噴射量が増加する方向に燃料量配分をシフトさせる420。即ち、上述の両パラメータの算術比KMBDE/KMSREであるいわゆる「配分率」を、同様に実験により設定された値だけ増加させる。さらに、内燃機関の点火時期乃至点火角を遅角方向にシフトする必要がない構成も可能である425。
さらに、上述のようにして変化した配分率乃至BDE系統の配分された燃料量に基づいて、現在のi番目のシリンダにおいていわゆるBDE噴射を行い440、他の燃料量についてはSRE噴射を行う445。その後、次のシリンダについて、即ち、本実施例ではi+1番目のシリンダについて、上述のルーティン405乃至445を行う450。
ここで留意すべき点は、量配分、点火時期の上述の変化の具体的な値、及び、具体的な閾値は、本発明では重要ではないことである。というのも、これらの値は各内燃機関乃至組み付けられた燃料供給部に個別に依存するからである。
図5は、内燃機関のノッキング挙動についての、事前にテスト測定又は実験により求められたデータ505を、内燃機関乃至噴射システムの複数の異なる動作状態500に依存して記憶した、本発明の一実施例の特性マップを示す図である。本実施例ではこの動作状態には、上述の量配分KMBDE/KMSREの値、上述の圧縮値ε及び燃焼の上述の履歴の値が含まれ、本実施例では特に、ピストン温度Tの値が含まれる。これは本実施例では、単位[℃]である。ここで留意すべき点は、低いエンジン負荷から高いエンジン負荷への負荷の急激な変化が示された場合、ピストンは最も早くても数秒後に初めて加熱され、数分後に初めて加熱されることさえあることである。かかる場合、高負荷状態の開始時に未だ比較的低温のピストンは燃料で濡れ、これにより、燃料の蒸発は過度に緩慢になり、このことによって今度は、粒子及び/又はHC/COエミッションの増大が生じる。しかもこれは、ピストンが十分に加熱されるまで生じている。
また、上述の特性マップに格納される上記パラメータの値は、内燃機関の動作中に適切なアルゴリズムによっても学習できることに留意すべきである。
例えば、図4に示されたエラー事例では、量配分に対応する配分率を目的に応じて変化させることにより、当該エラー状態を迅速に補償することができる。また、内燃機関の動作中に求められた現在のノッキング限界と、特性マップに記憶された対応する参照値とを比較することにより、現在の圧縮比εを推定することも可能である。
上記方法は、内燃機関を制御するための電子コントローラ用の制御プログラムの形態で、又は、対応する1つ若しくは複数の電子制御ユニット(ECU)の形態で実現することができる。

Claims (13)

  1. デュアル型の吸気管方式の燃料供給(20)と燃料直接供給(19)とを行う内燃機関の動作方法であって、
    前記吸気管方式の前記燃料供給と前記燃料直接供給とにおいて必要な各燃料量を、量配分に基づいて算定し、
    前記内燃機関はさらに、当該内燃機関の少なくとも1つの燃焼室内において燃料空気混合気の可変圧縮を行う、動作方法において、
    前記内燃機関の現在の動作条件を、現在の圧縮(405)も含めて取得し(405,410)、
    取得された前記動作条件に依存する、前記量配分の値を算定する(420)
    ことを特徴とする動作方法。
  2. 前記内燃機関の前記動作条件は、現在の圧縮比ε(イプシロン)の他にさらに、当該内燃機関の現在の動作点及び/又は現在の負荷及び/又は周囲条件及び/又は当該内燃機関の各燃焼室内における燃焼に関する履歴を含む、
    請求項1に記載の動作方法。
  3. 前記燃焼の前記履歴は、前記内燃機関乃至前記燃料供給の現在及び/又は先行の移行挙動を含む、
    請求項2に記載の動作方法。
  4. 取得された圧縮が、設定可能な第1の閾値を超え、かつ、取得された負荷が、設定可能な第2の閾値を超える場合、前記量配分を、BDE燃料供給が増大する方向に不連続的又は連続的にシフトさせる(420)、
    請求項1乃至3のいずれか一項に記載の動作方法。
  5. 前記内燃機関の現在の点火角度又は点火時期を、遅角方向には調整しない(425)、
    請求項4に記載の動作方法。
  6. 前記内燃機関乃至噴射システムの複数の異なる動作状態、前記量配分、前記燃焼の前記履歴及び(可変の)圧縮値に依存して、前記内燃機関のノッキング挙動を表すパラメータを特性マップに記憶する、
    請求項1乃至5のいずれか一項に記載の動作方法。
  7. 前記内燃機関の動作中に求められた現在のノッキング限界と、前記特性マップに記憶されたノッキング値とを比較することにより、当該内燃機関の動作中の現在の圧縮比ε(イプシロン)を推定する、
    請求項6に記載の動作方法。
  8. 前記特性マップには、前記圧縮に依存して、前記内燃機関の特定の動作点におけるノッキング限界値と、配分率の値とが記憶されており、
    前記ノッキング限界は、前記配分率の変化により求められ、
    予想されるノッキング限界と、前記配分率の変化により求められた前記ノッキング限界とを比較することにより、実際の圧縮を推定する、
    請求項7に記載の動作方法。
  9. 前記圧縮比εを求めることにより、周期的に又は必要に応じて行われる、前記可変圧縮の診断機能を実現する、
    請求項7又は8に記載の動作方法。
  10. 前記吸気管方式の前記燃料供給及び前記燃料直接供給のための両燃料量の算定を、前記内燃機関の各シリンダごとに行い、かつ、逐次乃至順次行う、
    請求項1乃至9のいずれか一項に記載の動作方法。
  11. 請求項1乃至10のいずれか一項に記載の動作方法の各ステップを実施するために構成されたコンピュータプログラム。
  12. 請求項11に記載のコンピュータプログラムを記憶した機械可読データ媒体。
  13. 請求項1乃至10のいずれか一項に記載の動作方法を用いてデュアル燃料供給を制御するように構成された電子コントローラ。
JP2017023058A 2016-02-12 2017-02-10 燃料デュアル噴射方式の内燃機関を動作させるための方法及び装置 Ceased JP2017141834A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016202168.0A DE102016202168A1 (de) 2016-02-12 2016-02-12 Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine mit dualer Kraftstoffeinspritzung
DE102016202168.0 2016-02-12

Publications (1)

Publication Number Publication Date
JP2017141834A true JP2017141834A (ja) 2017-08-17

Family

ID=59410544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023058A Ceased JP2017141834A (ja) 2016-02-12 2017-02-10 燃料デュアル噴射方式の内燃機関を動作させるための方法及び装置

Country Status (3)

Country Link
JP (1) JP2017141834A (ja)
CN (1) CN107084062B (ja)
DE (1) DE102016202168A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330943A (ja) * 2004-05-21 2005-12-02 Toyota Motor Corp 内燃機関の制御装置
JP2007211637A (ja) * 2006-02-08 2007-08-23 Toyota Motor Corp 可変圧縮比内燃機関

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10258872A1 (de) 2002-12-17 2004-07-08 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betrieb eines mehrzylindrigen Verbrennungsmotors mit variablem Verdichtungsverhältnis
JP2005256675A (ja) * 2004-03-10 2005-09-22 Toyota Motor Corp 内燃機関の運転制御方法及び内燃機関運転制御装置、並びに内燃機関
DE102010039434A1 (de) 2010-08-18 2012-02-23 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen eines Aufteilungsmaßes für eine Aufteilung der Kraftstoffmenge in Verbrennungsmotoren mit Direkt- und Saugrohreinspritzung
JP2015083792A (ja) * 2013-10-25 2015-04-30 ヤマハ発動機株式会社 パワーユニットおよび車両

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330943A (ja) * 2004-05-21 2005-12-02 Toyota Motor Corp 内燃機関の制御装置
JP2007211637A (ja) * 2006-02-08 2007-08-23 Toyota Motor Corp 可変圧縮比内燃機関

Also Published As

Publication number Publication date
CN107084062B (zh) 2022-03-04
CN107084062A (zh) 2017-08-22
DE102016202168A1 (de) 2017-08-17

Similar Documents

Publication Publication Date Title
RU2705349C2 (ru) Способ и система для снижения выбросов твердых частиц
RU2716103C2 (ru) Способ прогрева каталитического нейтрализатора отработавших газов (варианты) и система двигателя
US7367318B2 (en) Control system and control method of internal combustion engine
US5738074A (en) Engine control system and method
US5778857A (en) Engine control system and method
US7813866B2 (en) Fuel injection control device of internal combustion engine
RU2697016C2 (ru) Способ и система для оценки заряда воздуха
CN101476509B (zh) 用于控制发动机进气流量的方法
CN102454502B (zh) 缸内喷射式汽油机的控制装置
US9587577B2 (en) Fuel injection control device for internal combustion engine
CN108204308B (zh) 用于脉冲式发动机水喷射的方法和系统
US8000881B2 (en) Internal combustion engine control device
US7565899B2 (en) Engine fueling control during cylinder valve mode transitions
US9631574B2 (en) Fuel injection control device for internal combustion engine
EP2767703B1 (en) Control device for internal combustion engine
US9890722B2 (en) Fuel injection control method for internal combustion engine
US9447721B2 (en) Fuel injection control device for internal combustion engine
JP2004521228A (ja) マルチインジェクション作動モードにおける燃料調量を制御する方法
US10047692B2 (en) GDCI cold start misfire prevention
JP6679723B2 (ja) 内燃機関、特に自動車の燃料デュアル噴射方式の内燃機関を動作させるための方法及び装置
US10519892B2 (en) Method for operating an internal combustion engine
JP2017141834A (ja) 燃料デュアル噴射方式の内燃機関を動作させるための方法及び装置
JPH11280530A (ja) 内燃機関の各シリンダへ噴射される燃料の量を均等化する方法
JP6007568B2 (ja) 内燃機関の燃料噴射制御装置
JP4946996B2 (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210720

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210720

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210729

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210803

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210820

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210830

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220117

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220621

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230117

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230328

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20230925