JP2017138127A - Soc management system of onboard battery - Google Patents

Soc management system of onboard battery Download PDF

Info

Publication number
JP2017138127A
JP2017138127A JP2016017499A JP2016017499A JP2017138127A JP 2017138127 A JP2017138127 A JP 2017138127A JP 2016017499 A JP2016017499 A JP 2016017499A JP 2016017499 A JP2016017499 A JP 2016017499A JP 2017138127 A JP2017138127 A JP 2017138127A
Authority
JP
Japan
Prior art keywords
soc
value
battery
current
estimated value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016017499A
Other languages
Japanese (ja)
Other versions
JP6500795B2 (en
Inventor
南浦 啓一
Keiichi Minamiura
啓一 南浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016017499A priority Critical patent/JP6500795B2/en
Publication of JP2017138127A publication Critical patent/JP2017138127A/en
Application granted granted Critical
Publication of JP6500795B2 publication Critical patent/JP6500795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress a reduction in the accuracy of SOC correction due to memory effects when correcting an estimated SOC value based on current integration value with an estimated SOC value based on open end voltage value.SOLUTION: When SOC_I is included in a prescribed low-SOC region and a battery is in a discharge state, a first correction process to gradually bring SOC_I closer to SOC_V is executed by repeatedly carrying out a correction for adding a difference value ΔSOC between SOC_I and SOC_V that is multiplied by a correction coefficient α less than 1 to SOC_I. Further, when the battery is switched from the discharge state to a charge state, the first correction process is discontinued and a second correction process to add a maximum difference value ΔSOCmax between the estimated SOC value SOC_I and SOC_V from the start time Ready_On of a first correction period to a switched point of time t9 successively over time to SOC_I at a prescribed rate β is executed.SELECTED DRAWING: Figure 2

Description

本発明は、車両に搭載されたバッテリのSOC(State Of Charge)を管理する管理システムに関する。   The present invention relates to a management system that manages SOC (State Of Charge) of a battery mounted on a vehicle.

回転電機を駆動源とする電気自動車やハイブリッド車両等には、二次電池からなるバッテリが搭載される。バッテリの過充電や過放電を抑制するために、バッテリの充電状態すなわちSOC[%]が管理される。例えばバッテリに電流センサを接続してバッテリに流出入する電流を測定し、その積算値(電流積算値)に基づいてバッテリのSOCが推定される。   A battery made of a secondary battery is mounted on an electric vehicle, a hybrid vehicle, or the like that uses a rotating electrical machine as a drive source. In order to suppress overcharge and overdischarge of the battery, the state of charge of the battery, that is, SOC [%] is managed. For example, a current sensor is connected to the battery, the current flowing into and out of the battery is measured, and the SOC of the battery is estimated based on the integrated value (current integrated value).

バッテリはその内部で化学反応等に伴う自己放電が生じる場合があり、これに起因してSOCが低下する。しかしながら、自己放電はバッテリの内部反応であって外部への電流の流出入を伴わないため、自己放電が起こっても電流積算値には反映されない。その結果、自己放電が進むにつれて電流積算値ベースのSOC推定値と実際のSOCとの乖離が大きくなる。そこで特許文献1では、バッテリの開放端電圧値(OCV)に基づいてSOCを推定し、これに基づいて電流積算値ベースのSOC推定値を補正している。   In some cases, the battery may undergo a self-discharge due to a chemical reaction or the like, and the SOC decreases due to this. However, since the self-discharge is an internal reaction of the battery and does not involve the flow of current to the outside, even if the self-discharge occurs, it is not reflected in the integrated current value. As a result, the difference between the current integrated value-based SOC estimated value and the actual SOC increases as self-discharge progresses. Therefore, in Patent Document 1, the SOC is estimated based on the open circuit voltage value (OCV) of the battery, and the current estimated value-based SOC estimated value is corrected based on the estimated SOC.

バッテリが低SOC(例えば30%以下)または高SOC(例えば70%以上)のとき、開放端電圧とSOCとの間には高い精度で相関があることが知られている。そこで、バッテリが低SOCまたは高SOCのときの開放端電圧値を測定または推定し、これに対応するSOCを求める。さらに、求めた開放端電圧値ベースのSOCと積算電流値ベースのSOCの差分を求める。   It is known that when the battery has a low SOC (for example, 30% or less) or a high SOC (for example, 70% or more), there is a high accuracy correlation between the open-circuit voltage and the SOC. Therefore, the open-circuit voltage value when the battery is low SOC or high SOC is measured or estimated, and the SOC corresponding to this is obtained. Further, the difference between the obtained open-circuit voltage value based SOC and the integrated current value based SOC is obtained.

求められた差分をそのまま積算電流値ベースのSOCに加えると当該SOCが急増または急減することになり、SOCを基準にしたバッテリ制御や車両制御が急変するおそれがある。制御の安定性を確保するため、SOCの差分値に1未満(例えば0.1)の補正係数を掛けた値を積算電流値ベースのSOCに加える。その後再び開放端電圧値ベースのSOCと積算電流値ベースのSOCの差分を求めてこれに補正係数を掛けて積算電流値ベースのSOCに加える。このようにして、積算電流値ベースのSOCが徐々に開放端電圧値ベースのSOCに近づけられる。   If the obtained difference is directly added to the integrated current value-based SOC, the SOC rapidly increases or decreases, and battery control and vehicle control based on the SOC may change suddenly. In order to ensure the stability of the control, a value obtained by multiplying the difference value of the SOC by a correction coefficient of less than 1 (for example, 0.1) is added to the SOC based on the integrated current value. Thereafter, the difference between the open-circuit voltage value-based SOC and the accumulated current value-based SOC is obtained again, and this is multiplied by a correction coefficient and added to the accumulated current value-based SOC. In this way, the integrated current value based SOC is gradually brought closer to the open-circuit voltage value based SOC.

特開2005−114646号公報JP 2005-114646 A

ところで、バッテリがニッケル水素電池から構成される場合、SOCとバッテリの開放端電圧値(OCV)との対応関係にずれが生じる、いわゆるメモリ効果が生じることがある。例えば、バッテリが低SOCのとき放電から充電に切り替わると、同一のSOCであっても、充電時の開放端電圧は放電時の開放端電圧よりも高めに表れる。このように、SOCと開放端電圧との対応関係にずれが生じた状態で、開放端電圧値ベースのSOC推定値に基づく電流積算値ベースのSOC推定値の補正を行っても、高精度の補正を行うことは困難となる。そこで本発明は、メモリ効果によるSOC補正の精度の低下を抑制可能な、車載バッテリのSOC管理システムを提供することを目的とする。   By the way, when a battery is comprised from a nickel metal hydride battery, what is called a memory effect that a shift | offset | difference arises in the correspondence of SOC and the open circuit voltage value (OCV) of a battery may arise. For example, when switching from discharging to charging when the battery has a low SOC, the open end voltage during charging appears higher than the open end voltage during discharging even with the same SOC. As described above, even when correction of the current integrated value-based SOC estimated value based on the open-circuit voltage value-based SOC estimated value is performed in a state in which the correspondence between the SOC and the open-ended voltage is deviated, high-accuracy can be achieved. It is difficult to correct. Accordingly, an object of the present invention is to provide an in-vehicle battery SOC management system capable of suppressing a decrease in accuracy of SOC correction due to a memory effect.

本発明に係る車載バッテリのSOC管理システムは、ニッケル水素電池からなるバッテリと、前記バッテリの流出入電流を測定する電流センサと、前記バッテリの端子電圧を測定する電圧センサと、前記バッテリの温度を測定する温度センサを備える。さらに当該管理システムは、前記電流センサから測定された電流値を積算した電流積算値から前記バッテリのSOC推定値を算出するとともに、前記電流センサ、前記電圧センサ、及び前記温度センサからそれぞれ測定された電流値、端子電圧値、及び温度に基づいて求められた前記バッテリの開放端電圧値に対応する前記バッテリのSOC推定値を算出する演算部を備える。前記演算部は、前記電流積算値ベースのSOC推定値が所定の低SOC領域に含まれ、かつ、前記バッテリが放電状態であるときに、前記電流積算値ベースのSOC推定値と前記開放端電圧値ベースのSOC推定値との差分値に1未満の補正係数を掛けた値を前記電流積算値ベースのSOC推定値に加える補正を繰り返し行うことで、前記電流積算値ベースのSOC推定値を前記開放端電圧値ベースのSOC推定値に徐々に近づける第1の補正処理を実行する。さらに前記演算部は、前記バッテリが放電状態から充電状態に切り替わったときに、前記第1の補正処理を中断して、前記第1の補正処理の開始時点から、前記放電状態から充電状態への切り替わり時点までにおける、前記電流積算値ベースのSOC推定値と前記開放端電圧値ベースのSOC推定値との最大差分値を、所定割合で順次経時的に前記電流積算値ベースのSOC推定値に加える第2の補正処理を実行する。   An SOC management system for an in-vehicle battery according to the present invention includes a battery made of a nickel metal hydride battery, a current sensor that measures an inflow / outflow current of the battery, a voltage sensor that measures a terminal voltage of the battery, and a temperature of the battery. A temperature sensor to measure is provided. Further, the management system calculates an estimated value of the SOC of the battery from a current integrated value obtained by integrating the current values measured from the current sensor, and is measured from the current sensor, the voltage sensor, and the temperature sensor, respectively. A calculation unit is provided that calculates an estimated SOC value of the battery corresponding to the open-circuit voltage value of the battery obtained based on the current value, the terminal voltage value, and the temperature. The calculation unit includes the SOC estimation value based on the current integration value and the open-circuit voltage when the SOC estimation value based on the current integration value is included in a predetermined low SOC region and the battery is in a discharged state. By repeatedly performing a correction by adding a value obtained by multiplying the difference value from the value-based SOC estimated value by a correction coefficient of less than 1 to the current accumulated value-based SOC estimated value, the current accumulated value-based SOC estimated value A first correction process for gradually approaching the SOC estimation value based on the open-circuit voltage value is executed. Further, the arithmetic unit interrupts the first correction process when the battery is switched from the discharged state to the charged state, and from the start point of the first correction process, the discharge state to the charged state. The maximum difference value between the current integrated value-based SOC estimated value and the open-ended voltage value-based SOC estimated value up to the time of switching is sequentially added to the current integrated value-based SOC estimated value sequentially at a predetermined rate. A second correction process is executed.

本発明によれば、バッテリが放電状態から充電状態に切り替わり、メモリ効果が生じたときには、それ以降の開放端電圧値ベースのSOC推定値を用いることなく、電流積算値ベースのSOC推定値の補正を行っている。このようにすることで、メモリ効果によるSOC補正精度の低下を抑制できる。   According to the present invention, when the battery is switched from the discharged state to the charged state and a memory effect occurs, the current estimated value-based SOC estimated value is corrected without using the subsequent open-ended voltage value-based SOC estimated value. It is carried out. By doing in this way, the fall of SOC correction precision by a memory effect can be suppressed.

本実施形態に係るSOC管理システムを搭載した、車両のシステム構成図である。1 is a system configuration diagram of a vehicle equipped with an SOC management system according to the present embodiment. 本実施形態に係る、電流積算値ベースのSOC推定値の補正プロセスを説明するタイムチャートである。It is a time chart explaining the correction process of the SOC estimated value based on the current integrated value according to the present embodiment. 本実施形態に係る、電流積算値ベースのSOC推定値の補正プロセスを説明するフローチャートである。It is a flowchart explaining the correction process of SOC estimated value based on an electric current integrated value based on this embodiment. 本実施形態の別例に係る、電流積算値ベースのSOC推定値の補正プロセスを説明するタイムチャートである。It is a time chart explaining the correction process of SOC estimated value based on an electric current integrated value based on another example of this embodiment. 本実施形態の別例に係る、電流積算値ベースのSOC推定値の補正プロセスを説明するフローチャートである。It is a flowchart explaining the correction process of SOC estimated value based on an electric current integrated value based on the other example of this embodiment.

図1には、本実施形態に係る車載バッテリのSOC管理システム及びその周辺機器の構成が例示されている。本実施形態に係るSOC管理システムは、回転電機10を駆動源とする、電気自動車、ハイブリッド車両等に搭載される。SOC管理システムは、バッテリ12、演算部14、電流センサ16、電圧センサ18、及び温度センサ19を含んで構成される。後述するように、SOC管理システムは、電流積算値ベースのSOC推定値SOC_Iの補正を行う。   FIG. 1 illustrates the configuration of an in-vehicle battery SOC management system and its peripheral devices according to this embodiment. The SOC management system according to this embodiment is mounted on an electric vehicle, a hybrid vehicle, or the like that uses the rotating electrical machine 10 as a drive source. The SOC management system includes a battery 12, a calculation unit 14, a current sensor 16, a voltage sensor 18, and a temperature sensor 19. As will be described later, the SOC management system corrects the estimated current value SOC_I based on the current integrated value.

バッテリ12から出力される直流電力はDC/DCコンバータ20によって昇圧される。さらに昇圧後の電力はインバータ22によって直交変換され、車両の駆動源である回転電機10に供給される。また、回転電機10の回生時には回生電力がインバータ22によって交直変換される。変換後の直流電力はDC/DCコンバータ20によって降圧されてバッテリ12に供給される。   The DC power output from the battery 12 is boosted by the DC / DC converter 20. Further, the boosted electric power is orthogonally converted by the inverter 22 and supplied to the rotating electrical machine 10 which is a driving source of the vehicle. In addition, when the rotating electrical machine 10 is regenerated, the regenerative power is AC / DC converted by the inverter 22. The converted DC power is stepped down by the DC / DC converter 20 and supplied to the battery 12.

バッテリ12はニッケル水素電池から構成される。例えばバッテリ12は、ニッケル水素単電池(電池セル)を複数直列接続させた積層体(スタック)から構成される。なお、一部の電池セル群を並列接続し、その電池セル群同士を直列接続させてもよい。   The battery 12 is composed of a nickel metal hydride battery. For example, the battery 12 includes a stacked body (stack) in which a plurality of nickel metal hydride cells (battery cells) are connected in series. Note that some battery cell groups may be connected in parallel, and the battery cell groups may be connected in series.

上述したように、ニッケル水素電池にはSOCと開放端電圧値の対応関係にずれが生じる場合があり、その現象はメモリ効果と呼ばれている。具体的には、バッテリ12のSOCが所定の低SOC領域(例えば30%以下)に含まれるときに充電が行われると、同一のSOCであっても、充電時の開放端電圧は、放電時の開放端電圧よりも高めに表れる。また、バッテリ12のSOCが所定の高SOC領域(例えば70%以上)に含まれるときに放電が行われると、同一のSOCであっても、放電時の開放端電圧は、充電時の開放端電圧よりも低めに表れる。後述するように、本実施形態に係るSOC管理システムは、メモリ効果が発生した以降の開放端電圧値ベースのSOC推定値SOC_Vを用いることなく、電流積算値ベースのSOC推定値SOC_Iの補正を行う。   As described above, in the nickel metal hydride battery, there may be a deviation in the correspondence between the SOC and the open-circuit voltage value, and this phenomenon is called a memory effect. Specifically, when charging is performed when the SOC of the battery 12 is included in a predetermined low SOC region (for example, 30% or less), the open-circuit voltage at the time of charging is the same at the time of discharging even if the SOC is the same. Appears higher than the open-circuit voltage. Further, if discharging is performed when the SOC of the battery 12 is included in a predetermined high SOC region (for example, 70% or more), the open-circuit voltage at the time of discharging is the open-circuit voltage at the time of charging even if the SOC is the same. Appears lower than the voltage. As will be described later, the SOC management system according to the present embodiment corrects the current integrated value-based SOC estimated value SOC_I without using the open-ended voltage value-based SOC estimated value SOC_V after the occurrence of the memory effect. .

図1に示す車両には、回転電機10の駆動制御やバッテリ12の管理を行う制御部24が設けられる。制御部24は、コンピュータから構成されてよく、演算部14、記憶部26、クロック27、及び図示しない機器・センサインターフェースが内部バスを介して互いに接続されている。   The vehicle shown in FIG. 1 is provided with a control unit 24 that performs drive control of the rotating electrical machine 10 and management of the battery 12. The control unit 24 may be configured by a computer, and the calculation unit 14, the storage unit 26, the clock 27, and a device / sensor interface (not shown) are connected to each other via an internal bus.

演算部14は例えばCPU等の演算回路を含んで構成される。後述するように演算部14は、クロック27によりカウントされる演算周期ごとに演算処理を実行する。記憶部26はROM等の不揮発性メモリやRAM等の揮発性メモリを含む。記憶部26には後述する電流積算値ベースのSOC推定値SOC_Iの補正フロー、電流積算値ベースのSOC推定値SOC_Iと開放端電圧値ベースのSOC推定値SOC_Vとの最大差分値ΔSOCmax、及びバッテリ12の開放端電圧値OCVとSOCの対応関係が記憶されたOCV−SOCマップ等が記憶される。   The calculation unit 14 includes an arithmetic circuit such as a CPU. As will be described later, the calculation unit 14 performs calculation processing for each calculation cycle counted by the clock 27. The storage unit 26 includes a nonvolatile memory such as a ROM and a volatile memory such as a RAM. The storage unit 26 corrects a current integrated value-based SOC estimated value SOC_I, which will be described later, a maximum difference value ΔSOCmax between the current integrated value-based SOC estimated value SOC_I and the open-circuit voltage value-based SOC estimated value SOC_V, and the battery 12. An OCV-SOC map in which the correspondence relationship between the open circuit voltage value OCV and the SOC is stored is stored.

制御部24は、機器・センサインターフェースを介して、種々のセンサからの信号を受信する。具体的には、バッテリ12の端子電圧(両端電圧)Vbを検出する電圧センサ18、バッテリ12の流出入電流Ibを検出する電流センサ16、及びバッテリ12の温度Tbを検出する温度センサ19から各測定値を受信する。また、制御部24には、車両のスタートスイッチ28から車両システムの始動(Ready−On)及びシャットダウン(Ready−Off)の指令を受信する。   The control unit 24 receives signals from various sensors via the device / sensor interface. Specifically, each of the voltage sensor 18 that detects the terminal voltage (both-end voltage) Vb of the battery 12, the current sensor 16 that detects the inflow / outflow current Ib of the battery 12, and the temperature sensor 19 that detects the temperature Tb of the battery 12 respectively. Receive measurements. The control unit 24 also receives a vehicle system start (Ready-On) and shutdown (Ready-Off) command from the vehicle start switch 28.

また制御部24は、図示しないアクセルペダルセンサの踏み込み量に基づいて回転電機10の出力を求め、これに基づいてDC/DCコンバータ20及びインバータ22の図示しないスイッチング素子をオン/オフ制御する。   Further, the control unit 24 obtains the output of the rotating electrical machine 10 based on the depression amount of an accelerator pedal sensor (not shown), and on / off controls the switching elements (not shown) of the DC / DC converter 20 and the inverter 22 based on this.

さらに制御部24は、演算部14により求められた電流積算値ベースのSOC推定値SOC_Iに基づいて、バッテリ12の充放電や負荷の挙動を制御する。例えばSOC推定値SOC_Iが所定の制限下限値に近い場合は、回転電機10に供給する電力を制限してバッテリ12の放電を絞る。また、SOC推定値SOC_Iが所定の制限上限値に近い場合は、回転電機10の回生駆動に制限を加えてバッテリ12への充電を絞る。   Further, the control unit 24 controls the charge / discharge of the battery 12 and the behavior of the load based on the current integrated value-based SOC estimated value SOC_I obtained by the calculation unit 14. For example, when the estimated SOC value SOC_I is close to a predetermined limit lower limit value, the power supplied to the rotating electrical machine 10 is limited to limit the discharge of the battery 12. Further, when the SOC estimated value SOC_I is close to a predetermined limit upper limit value, the regenerative drive of the rotating electrical machine 10 is limited to limit the charging to the battery 12.

演算部14は、電流センサ16から測定された電流値Ibを受信する。さらに演算部14は電流値Ibを積算し、その電流積算値ΣIbから、バッテリ12のSOC推定値SOC_I(以下単にSOC推定値SOC_Iとも呼ぶ)を求める。電流積算値ΣIbはバッテリ12から流出した電流(放電電流)と流入する電流(充電電流)の収支を示すものであり、当該収支に応じてバッテリ12の容量変化、すなわちSOCの変化を求めることができる。   The computing unit 14 receives the current value Ib measured from the current sensor 16. Further, calculation unit 14 integrates current value Ib, and obtains SOC estimated value SOC_I (hereinafter also simply referred to as SOC estimated value SOC_I) of battery 12 from current accumulated value ΣIb. The integrated current value ΣIb indicates the balance between the current flowing out of the battery 12 (discharge current) and the flowing-in current (charging current), and the change in the capacity of the battery 12, that is, the change in the SOC can be obtained according to the balance. it can.

また、演算部14は、電流センサ16から受信した電流値Ibの正負に応じて、バッテリ12が放電状態であるか充電状態であるかを判定する。例えば電流値Ibが正のときは放電状態、負のときは充電状態と判定する。   In addition, the calculation unit 14 determines whether the battery 12 is in a discharged state or in a charged state according to the sign of the current value Ib received from the current sensor 16. For example, when the current value Ib is positive, it is determined as a discharged state, and when it is negative, it is determined as a charged state.

さらに演算部14は、電圧センサ18から測定された端子電圧値Vb及び温度センサ19から測定されたバッテリ12の温度Tbを受信する。演算部14は、これら端子電圧値Vb、バッテリ温度Tb、及び電流センサ16から測定された電流値Ibをもとに、バッテリ12の開放端電圧(OCV)を算出(推定)する。具体的には、開放端電圧値(OCV)=端子電圧値Vb−(電流値Ib×内部抵抗)との数式から、開放端電圧値(OCV)を算出する。内部抵抗は、電流値Ibとバッテリ温度Tbに基づいて求めることができる。例えば、内部抵抗を抵抗マップまたは関数として記憶部26に記憶してもよい。例えば抵抗マップを用いて、電流センサ16から取得した電流値Ibと、温度センサ19から取得したバッテリ温度Tbとに対応する、バッテリ12の内部抵抗を求めることができる。   Further, the calculation unit 14 receives the terminal voltage value Vb measured from the voltage sensor 18 and the temperature Tb of the battery 12 measured from the temperature sensor 19. The calculation unit 14 calculates (estimates) the open-circuit voltage (OCV) of the battery 12 based on the terminal voltage value Vb, the battery temperature Tb, and the current value Ib measured from the current sensor 16. Specifically, the open-circuit voltage value (OCV) is calculated from the mathematical formula: open-circuit voltage value (OCV) = terminal voltage value Vb− (current value Ib × internal resistance). The internal resistance can be obtained based on the current value Ib and the battery temperature Tb. For example, the internal resistance may be stored in the storage unit 26 as a resistance map or a function. For example, the internal resistance of the battery 12 corresponding to the current value Ib acquired from the current sensor 16 and the battery temperature Tb acquired from the temperature sensor 19 can be obtained using a resistance map.

上述したようにバッテリ12のSOCと開放端電圧(OCV)との間には相関関係があり、定性的にはSOCが低いときには開放端電圧が低くなる。特に、バッテリ12のSOCが所定の高SOC領域(例えば70%以上)及び低SOC領域(例えば30%以下)に含まれるときであって、かつ、メモリ効果が表れていないとき、バッテリ12の開放端電圧OCVとSOCとの間には精度の高い(例えば一対一関係の)対応関係があることが従来から知られている。   As described above, there is a correlation between the SOC of the battery 12 and the open circuit voltage (OCV), and qualitatively, the open circuit voltage is low when the SOC is low. In particular, when the SOC of the battery 12 is included in a predetermined high SOC region (for example, 70% or more) and a low SOC region (for example, 30% or less), and the memory effect is not exhibited, the battery 12 is opened. It has been conventionally known that there is a highly accurate correspondence (for example, a one-to-one relationship) between the end voltage OCV and the SOC.

記憶部26には予め、高SOC領域及び低SOC領域におけるバッテリ12の開放端電圧値OCVとこれに対応するSOC推定値SOC_Vの組み合わせがOCV−SOCマップとして記憶されている。OCV−SOCマップとして、例えば低SOC領域における、バッテリ12の放電時の開放端電圧値とSOCとの対応関係と、高SOC領域における、バッテリ12の充電時の開放端電圧値とSOCとの対応関係が記憶部26に記憶されている。演算部14はOCV−SOCマップを参照して、演算部14が求めた開放端電圧値に対応するSOC推定値SOC_Vを求める。   The storage unit 26 stores, in advance, a combination of the open-circuit voltage value OCV of the battery 12 in the high SOC region and the low SOC region and the estimated SOC value SOC_V corresponding thereto as an OCV-SOC map. As an OCV-SOC map, for example, in the low SOC region, the correspondence between the open-circuit voltage value and the SOC when the battery 12 is discharged, and the correspondence between the open-circuit voltage value and the SOC when the battery 12 is charged in the high SOC region The relationship is stored in the storage unit 26. The computing unit 14 refers to the OCV-SOC map to obtain the estimated SOC value SOC_V corresponding to the open-circuit voltage value obtained by the computing unit 14.

<電流積算値ベースのSOC推定値SOC_Iの補正プロセス(1)>
図2及び図3を用いて、本実施形態に係る電流積算値ベースのSOC推定値SOC_Iの補正プロセスについて説明する。図2には補正プロセス及びその前後のタイムチャートが例示されている。横軸は時間、縦軸はSOCを示す。また、SOC推定値SOC_Iを実線、SOC推定値SOC_Vを二点鎖線、実SOCを一点鎖線で示す。SOC推定値SOC_Vと実SOCとが重なる箇所については実SOC(一点鎖線)のみを示す。図2では時刻t2からt10までSOC推定値SOC_Vと実SOCとが等しい例が示されている。さらに、縦軸に平行な破線は演算周期を表している。
<Correction Process for Current Estimated Value-Based SOC Estimated Value SOC_I (1)>
The correction process of the current integrated value-based SOC estimated value SOC_I according to the present embodiment will be described with reference to FIGS. 2 and 3. FIG. 2 illustrates a correction process and time charts before and after the correction process. The horizontal axis represents time, and the vertical axis represents SOC. Further, the SOC estimated value SOC_I is indicated by a solid line, the SOC estimated value SOC_V is indicated by a two-dot chain line, and the actual SOC is indicated by a one-dot chain line. Only the actual SOC (one-dot chain line) is shown for a portion where the SOC estimated value SOC_V and the actual SOC overlap. FIG. 2 shows an example in which the estimated SOC value SOC_V and the actual SOC are equal from time t2 to time t10. Furthermore, the broken line parallel to the vertical axis represents the calculation cycle.

上述したように、時間の経過に伴ってバッテリ12の自己放電が進む。自己放電はバッテリ12外部への電流の流出入を伴わないので、自己放電が進むにつれて電流積算値ベースのSOC推定値SOC_Iは実際のSOC(実SOC)から乖離する。そこで、演算部14は、開放端電圧値ベースのSOC推定値SOC_Vを利用して、電流積算値ベースのSOC推定値SOC_Iを補正する。   As described above, the self-discharge of the battery 12 proceeds with time. Since self-discharge does not involve the flow of current to the outside of the battery 12, the current estimated value-based SOC estimated value SOC_I deviates from the actual SOC (actual SOC) as the self-discharge proceeds. Therefore, the calculation unit 14 corrects the current integrated value-based SOC estimated value SOC_I using the open-circuit voltage value-based SOC estimated value SOC_V.

なお、理解を容易にするために、図2のタイムチャートで例示された補正プロセスの概要を予め説明すると、演算部14は、Ready_Onから時刻t10まで第1の補正処理を実行し、時刻t10から時刻t11まで第2の補正処理を実行する。   In order to facilitate understanding, the outline of the correction process illustrated in the time chart of FIG. 2 will be described in advance. The calculation unit 14 executes the first correction process from Ready_On to time t10, and from time t10. The second correction process is executed until time t11.

図2に示されているように、直近の車両システムのシャットダウン時(Ready−Off)から起動時(Ready−On)までの期間に生じた自己放電によりバッテリ12の実SOCが低下する。一方で電流積算値ベースのSOC推定値SOC_IではReady−Off時の値が維持される。これにより両者の差が徐々に開いていく。   As shown in FIG. 2, the actual SOC of the battery 12 decreases due to self-discharge occurring during the period from the latest vehicle system shutdown (Ready-Off) to the startup (Ready-On). On the other hand, the current estimated value SOC_I maintains the value at Ready-Off. This gradually opens the difference between the two.

演算部14は、バッテリ12のSOCが所定の低SOC領域に含まれる、すなわち、低SOC領域の上限値SOC_ThL以下であり、かつ、バッテリ12が放電状態であるときに第1の補正処理を行う。第1の補正処理では、推定値SOC_I(t)及び推定値SOC_V(t)の差分値ΔSOC(t)を算出し、さらにΔSOC(t)に係数αを掛けた値を推定値SOC_I(t)に加える。さらにこの処理を演算周期ごとに繰り返し行う。このような第1の補正処理を実行することで、推定値SOC_I(t)が推定値SOC_V(t)に徐々に近づけられる。   Arithmetic unit 14 performs the first correction process when the SOC of battery 12 is included in a predetermined low SOC region, that is, not more than upper limit SOC_ThL of the low SOC region and battery 12 is in a discharged state. . In the first correction process, a difference value ΔSOC (t) between the estimated value SOC_I (t) and the estimated value SOC_V (t) is calculated, and a value obtained by multiplying ΔSOC (t) by the coefficient α is estimated value SOC_I (t). Add to. Further, this process is repeated every calculation cycle. By executing such a first correction process, the estimated value SOC_I (t) is gradually brought closer to the estimated value SOC_V (t).

一方、時刻t9にて放電状態から充電状態に切り替わったと判定されると、演算部14は、その直後の演算周期である時刻t10から、第1の補正処理を中断し、第2の補正処理に切り替える。第2の補正処理では、第1の補正処理の開始時点(Ready_On)から、バッテリ12が放電状態から充電状態に切り替わった切り替わり時点(時刻t9)までの期間における、最大差分値ΔSOCmaxを、所定割合で順次経時的にSOC推定値SOC_I(t)に加算する。   On the other hand, when it is determined that the charging state is switched to the charging state at time t9, the calculation unit 14 interrupts the first correction process from time t10, which is the calculation period immediately thereafter, and enters the second correction process. Switch. In the second correction process, the maximum difference value ΔSOCmax in a period from the start point (Ready_On) of the first correction process to the switching point (time t9) when the battery 12 is switched from the discharged state to the charged state is set to a predetermined ratio. Are sequentially added to the estimated SOC value SOC_I (t) over time.

具体的には、最大差分値ΔSOCmaxを、毎秒βの割合で時刻t10から時刻t11に至るまで順次加算していく。係数βは1未満(例えば0.3)の実数である。このようにすることで、高い推定精度の推定値SOC_V(t)から求めた最大差分値ΔSOCmaxを、徐々に推定値SOC_I(t)に加えていくことができる。   Specifically, the maximum difference value ΔSOCmax is sequentially added from time t10 to time t11 at a rate of β per second. The coefficient β is a real number less than 1 (for example, 0.3). In this way, the maximum difference value ΔSOCmax obtained from the estimated value SOC_V (t) with high estimation accuracy can be gradually added to the estimated value SOC_I (t).

図3には、第1及び第2の補正処理を実行するためのフローチャートが例示されている。まず、スタートスイッチ28が押され制御部24が車両システムの起動指令(Ready−On指令)を受信すると、制御部24は図示しないシステムメインリレーを遮断状態から接続状態に切り替えてバッテリ12と回転電機10等の負荷とを導通させる。   FIG. 3 illustrates a flowchart for executing the first and second correction processes. First, when the start switch 28 is pressed and the control unit 24 receives a start command (Ready-On command) for the vehicle system, the control unit 24 switches the system main relay (not shown) from the shut-off state to the connected state, and the battery 12 and the rotating electrical machine. A load such as 10 is conducted.

このとき、演算部14はシャットダウン時(Ready−Off)のバッテリ12の開放端電圧値とシステム起動時(Ready−On)のバッテリ12の開放端電圧値との差ΔOCVを求める。さらにこの値ΔOCVが所定の閾値ΔOCV_th以上であるか否かを判定する(S10)。上述したように、開放端電圧とSOCとの間には相関があり、このステップでは、開放端電圧の差異をもとに、Ready−Off時からReady−On時までのSOC(実SOC)の変化の大きさを判定している。   At this time, the calculation unit 14 obtains a difference ΔOCV between the open-ended voltage value of the battery 12 at the time of shutdown (Ready-Off) and the open-ended voltage value of the battery 12 at the time of system startup (Ready-On). Further, it is determined whether or not the value ΔOCV is equal to or greater than a predetermined threshold value ΔOCV_th (S10). As described above, there is a correlation between the open-circuit voltage and the SOC. In this step, the SOC (actual SOC) from Ready-Off to Ready-On is determined based on the difference in the open-circuit voltage. The magnitude of change is judged.

演算部14はΔOCVが閾値ΔOCV_th以上であるとき、次のステップS12に進む。またΔOCVが閾値ΔOCV_th未満であるときには、電流積算値ベースのSOC推定値SOC_Iと実SOCとの差がそれほど大きく開いていないと考えられることから、電流積算値ベースのSOC推定値SOC_Iの補正は行わずに、本フローを終了させる。   When ΔOCV is greater than or equal to threshold value ΔOCV_th, operation unit 14 proceeds to the next step S12. When ΔOCV is less than the threshold value ΔOCV_th, it is considered that the difference between the current integrated value-based SOC estimated value SOC_I and the actual SOC is not so large, and thus the current integrated value-based SOC estimated value SOC_I is corrected. Without ending this flow.

ステップS12にて演算部14は、時刻tにおける電流積算値ベースのSOC推定値SOC_I(t)が、低SOC領域の上限値SOC_ThL以下であるか否かを判定する。このステップでは、バッテリ12の実SOCが、開放端電圧値ベースのSOC推定値SOC_Vの推定精度の高い領域に含まれているか否かが判定される。低SOC領域の上限値SOC_ThLは例えば30%である。   In step S12, operation unit 14 determines whether or not current estimated value-based SOC estimated value SOC_I (t) at time t is equal to or lower than upper limit value SOC_ThL of the low SOC region. In this step, it is determined whether or not the actual SOC of the battery 12 is included in a region where the estimation accuracy of the open-circuit voltage value-based SOC estimation value SOC_V is high. The upper limit SOC_ThL of the low SOC region is, for example, 30%.

SOC推定値SOC_I(t)が上限値SOC_ThLを超過する場合には、SOC推定値SOC_Iの補正は行わずに、本フローを終了させる。SOC推定値SOC_I(t)が、低SOC領域の上限値SOC_ThL以下である場合、演算部14は、電流センサ16の測定値を参照して、バッテリ12が放電状態であるか否かを判定する(S14)。放電状態でない場合(充電状態の場合)、メモリ効果により、SOC推定値SOC_Vの推定精度が低いため、SOC推定値SOC_Iの補正は行わずに、本フローを終了させる。   When the SOC estimated value SOC_I (t) exceeds the upper limit SOC_ThL, this flow is terminated without correcting the SOC estimated value SOC_I. When SOC estimated value SOC_I (t) is equal to or lower than upper limit SOC_ThL of the low SOC region, operation unit 14 refers to the measurement value of current sensor 16 to determine whether battery 12 is in a discharged state or not. (S14). When not in the discharging state (in the charging state), the estimation accuracy of the SOC estimated value SOC_V is low due to the memory effect. Therefore, the present flow is terminated without correcting the SOC estimated value SOC_I.

バッテリ12が放電中である場合、演算部14は時刻tにおける電流積算値ベースのSOC推定値SOC_I(t)と開放端電圧値ベースの推定値SOC_V(t)との差分値ΔSOC(t)を求める(S16)。例えば図2の時刻t1におけるSOC推定値SOC_V(t1)からSOC推定値SOC_I(t1)を引いた値を差分値ΔSOC(t1)とする(ΔSOC(t1)=SOC_V(t1)−SOC_I(t1))。   When the battery 12 is being discharged, the calculation unit 14 calculates a difference value ΔSOC (t) between the current integrated value-based SOC estimated value SOC_I (t) and the open-ended voltage value-based estimated value SOC_V (t) at time t. Obtained (S16). For example, a value obtained by subtracting the SOC estimated value SOC_I (t1) from the SOC estimated value SOC_V (t1) at time t1 in FIG. ).

さらに演算部14は差分値ΔSOC(t)に補正係数αを掛けた値を電流積算値ベースのSOC推定値SOC_I(t)に加える(S18)。補正係数αは1未満(例えば0.1)の実数であり、差分値ΔSOC(t)がそのままSOC推定値SOC_I(t)に加えられることを防止している。補正係数αによってSOC推定値SOC_I(t)は徐々にSOC推定値SOC_V(t)に近づいていく。このようななだらかな補正を行うことで、SOC推定値SOC_I(t)の急変が回避され、その結果、SOC推定値SOC_I(t)に基づくバッテリ制御及び車両制御の急変が回避される。   Further, the calculation unit 14 adds a value obtained by multiplying the difference value ΔSOC (t) by the correction coefficient α to the SOC estimated value SOC_I (t) based on the current integrated value (S18). The correction coefficient α is a real number less than 1 (for example, 0.1), and the difference value ΔSOC (t) is prevented from being added to the SOC estimated value SOC_I (t) as it is. The SOC estimated value SOC_I (t) gradually approaches the SOC estimated value SOC_V (t) by the correction coefficient α. By performing such gentle correction, a sudden change in the SOC estimated value SOC_I (t) is avoided, and as a result, a sudden change in battery control and vehicle control based on the SOC estimated value SOC_I (t) is avoided.

演算部14はSOC推定値SOC_I(t)に差分値ΔSOC(t)×αが加えられた値と、SOC推定値SOC_V(t)との差が十分に詰められたか否かを判定する(S20)。補正係数αが1未満の実数であることから、SOC推定値SOC_I(t)はSOC推定値SOC_V(t)と完全には一致せず、徐々に漸近することになる。そこで、推定値SOC_I(t)と推定値SOC_V(t)との差が実質的になくなったと評価できる程度にまで両者の差が詰められた場合に、推定値SOC_Iの補正フローを終了させる。例えば、推定値SOC_V(t)を推定値SOC_I(t)で割った値が0.9以上1.1以下の範囲に含まれる場合に、演算部14は図3に示す補正フローを終了させる。   The calculation unit 14 determines whether or not the difference between the SOC estimated value SOC_I (t) and the difference value ΔSOC (t) × α and the SOC estimated value SOC_V (t) is sufficiently narrowed (S20). ). Since the correction coefficient α is a real number less than 1, the SOC estimated value SOC_I (t) does not completely match the SOC estimated value SOC_V (t) and gradually approaches gradually. Therefore, when the difference between the estimated value SOC_I (t) and the estimated value SOC_V (t) is reduced to such an extent that it can be evaluated that the estimated value has disappeared, the correction flow of the estimated value SOC_I is terminated. For example, when the value obtained by dividing the estimated value SOC_V (t) by the estimated value SOC_I (t) is included in the range of 0.9 to 1.1, the calculation unit 14 ends the correction flow illustrated in FIG.

推定値SOC_I(t)に差分値ΔSOC(t)×αを加えた値と、SOC推定値SOC_V(t)との差がまだ開いている場合には、演算部14はステップS22に進む。このステップでは、第1の補正処理の開始時点から現在時点(ステップS22実行時点)までの差分値ΔSOCの最大値(最大差分値)ΔSOCmaxの更新可否を判定する。演算部14は現在記憶されている最大差分値ΔSOCmaxがステップS16にて算出された差分値ΔSOC(t)を下回るか否かを判定する。   When the difference between the value obtained by adding the difference value ΔSOC (t) × α to the estimated value SOC_I (t) and the SOC estimated value SOC_V (t) is still open, the calculation unit 14 proceeds to step S22. In this step, it is determined whether or not the maximum value (maximum difference value) ΔSOCmax of the difference value ΔSOC from the start time of the first correction process to the current time (step S22 execution time) can be updated. The computing unit 14 determines whether or not the currently stored maximum difference value ΔSOCmax is less than the difference value ΔSOC (t) calculated in step S16.

ΔSOC(t) > ΔSOCmaxである場合、演算部14は最大差分値ΔSOCmaxをステップS16にて算出された差分値ΔSOC(t)に更新する(S24)。具体的には記憶部26に記憶された最大差分値ΔSOCmaxを書き換える。一方、ステップS22にてΔSOC(t) ≦ ΔSOCmaxである場合には、現在の最大差分値ΔSOCmaxを保持したまま次のステップS26に進む。   When ΔSOC (t)> ΔSOCmax, the calculation unit 14 updates the maximum difference value ΔSOCmax to the difference value ΔSOC (t) calculated in step S16 (S24). Specifically, the maximum difference value ΔSOCmax stored in the storage unit 26 is rewritten. On the other hand, if ΔSOC (t) ≦ ΔSOCmax in step S22, the process proceeds to the next step S26 while maintaining the current maximum difference value ΔSOCmax.

例えば図2に示す例では、まず、時刻t1における差分値ΔSOC(t1)が最大差分値ΔSOCmaxとして記憶部26に記憶される。次に時刻t2において、ΔSOCmax(=ΔSOC(t1)) < ΔSOC(t2)であることから、ΔSOC(t2)がΔSOCmaxとして更新される。時刻t3ではΔSOCmax(=ΔSOC(t2)) > ΔSOC(t3)であることから、ΔSOCmaxは更新されることなく維持される。さらに時刻t4において、ΔSOCmax(=ΔSOC(t2)) < ΔSOC(t4)であることから、ΔSOC(t4)がΔSOCmaxとして更新される。   For example, in the example illustrated in FIG. 2, first, the difference value ΔSOC (t1) at time t1 is stored in the storage unit 26 as the maximum difference value ΔSOCmax. Next, at time t2, since ΔSOCmax (= ΔSOC (t1)) <ΔSOC (t2), ΔSOC (t2) is updated as ΔSOCmax. Since ΔSOCmax (= ΔSOC (t2))> ΔSOC (t3) at time t3, ΔSOCmax is maintained without being updated. Further, at time t4, since ΔSOCmax (= ΔSOC (t2)) <ΔSOC (t4), ΔSOC (t4) is updated as ΔSOCmax.

ステップS26では、次の演算周期まで待機する。このとき、演算周期のカウントがインクリメントされる(t→t+1)。その後、演算部14はステップS12と同様に、推定値SOC_I(t)が、低SOC領域の上限値SOC_ThL以下であるか否かを判定する(S28)。推定値SOC_I(t)が上限値SOC_ThLを超過する場合、開放端電圧値ベースのSOC推定値SOC_VによるSOC補正の精度が低くなるため、演算部14は図3に示す補正フローを終了させる。   In step S26, the process waits until the next calculation cycle. At this time, the count of the calculation cycle is incremented (t → t + 1). After that, the calculation unit 14 determines whether or not the estimated value SOC_I (t) is equal to or lower than the upper limit value SOC_ThL of the low SOC region, similarly to step S12 (S28). When the estimated value SOC_I (t) exceeds the upper limit SOC_ThL, the accuracy of the SOC correction using the open-circuit voltage value-based SOC estimated value SOC_V is low, and the calculation unit 14 ends the correction flow shown in FIG.

推定値SOC_I(t)が上限値SOC_ThL以下である場合、演算部14は電流センサ16の測定値を参照して、バッテリ12が放電状態から充電状態に切り替わったか否かを判定する(S30)。放電状態が継続されている場合、演算部14はステップS16に戻り、再び推定値SOC_I(t)及び推定値SOC_V(t)の差分値ΔSOC(t)を算出し、さらにΔSOC(t)に係数αを掛けた値を推定値SOC_I(t)に加える(S18)。このように、推定値SOC_I(t)及び推定値SOC_V(t)の差分値ΔSOC(t)に係数αを掛けた値を推定値SOC_I(t)に加える補正を繰り返す第1の補正処理を実行することで、推定値SOC_I(t)が推定値SOC_V(t)に徐々に近づけられる。   When the estimated value SOC_I (t) is equal to or lower than the upper limit value SOC_ThL, the calculation unit 14 refers to the measured value of the current sensor 16 and determines whether or not the battery 12 is switched from the discharged state to the charged state (S30). When the discharge state is continued, the calculation unit 14 returns to step S16, calculates again the difference value ΔSOC (t) between the estimated value SOC_I (t) and the estimated value SOC_V (t), and further calculates a coefficient to ΔSOC (t). A value multiplied by α is added to the estimated value SOC_I (t) (S18). As described above, the first correction process is executed to repeat the correction for adding the value obtained by multiplying the difference value ΔSOC (t) between the estimated value SOC_I (t) and the estimated value SOC_V (t) by the coefficient α to the estimated value SOC_I (t). Thus, the estimated value SOC_I (t) is gradually brought closer to the estimated value SOC_V (t).

一方、ステップS30にてバッテリ12が放電状態から充電状態に切り替わったと判定されると、演算部14は、放電状態から充電状態に切り替わった直後の演算周期(図2の時刻t10)において、第1の補正処理の開始時点(Ready_On)から、放電から充電への切り替わり時点(時刻t9)までの期間における、最大差分値ΔSOCmaxを、所定割合で順次経時的にSOC推定値SOC_I(t)に加算する第2の補正処理を実行する(S32)。   On the other hand, when it is determined in step S30 that the battery 12 has been switched from the discharged state to the charged state, the calculation unit 14 performs the first operation in the calculation cycle (time t10 in FIG. 2) immediately after switching from the discharged state to the charged state. The maximum difference value ΔSOCmax in the period from the start time (Ready_On) of the correction process to the time point (time t9) when switching from discharging to charging is sequentially added to the SOC estimated value SOC_I (t) sequentially at a predetermined rate. A second correction process is executed (S32).

具体的には、最大差分値ΔSOCmaxを、毎秒βの割合で順次加算していく。係数βは1未満(例えば0.3)の実数である。このようにすることで、高い推定精度の推定値SOC_V(t)から求めた最大差分値ΔSOCmaxを、徐々に推定値SOC_I(t)に加えていくことができる。   Specifically, the maximum difference value ΔSOCmax is sequentially added at a rate of β per second. The coefficient β is a real number less than 1 (for example, 0.3). In this way, the maximum difference value ΔSOCmax obtained from the estimated value SOC_V (t) with high estimation accuracy can be gradually added to the estimated value SOC_I (t).

また、図3に示すフローチャートでは、第1の補正処理の開始時点からバッテリ12が放電から充電に切り替わる時点まで、すべての差分値ΔSOC(t)を記憶するのではなく、ステップS22及びS24のように、最大差分値ΔSOCmaxのみを記憶している。このようにすることで、記憶部26の負荷を軽減することが可能となる。   Further, in the flowchart shown in FIG. 3, not all the difference values ΔSOC (t) are stored from the start of the first correction process to the time when the battery 12 switches from discharging to charging, as in steps S22 and S24. In addition, only the maximum difference value ΔSOCmax is stored. In this way, the load on the storage unit 26 can be reduced.

<電流積算値ベースのSOC推定値SOC_Iの補正プロセス(2)>
図2、図3に示す補正プロセスでは、バッテリ12のSOCが低SOC領域に含まれ、かつ、バッテリ12が放電状態にあるときを狙ってSOC推定値SOC_Iの補正(第1の補正処理)を行っていたが、この形態に限らない。上述したように、バッテリ12のSOCが高SOC領域に含まれ、かつ、バッテリ12が充電状態にあるときにも、開放端電圧値ベースのSOC推定値SOC_Vの推定精度は高い。そこで、図4及び図5に示すように、バッテリ12のSOCが高SOC領域に含まれ、かつ、バッテリ12が充電状態にあるときを狙って、電流積算値ベースのSOC推定値SOC_Iの補正を行ってもよい。
<Correction Process (2) of Current Estimated Value-Based SOC Estimated Value SOC_I>
In the correction processes shown in FIGS. 2 and 3, the SOC estimation value SOC_I is corrected (first correction process) with the SOC of the battery 12 included in the low SOC region and the battery 12 in a discharged state. Although it went, it is not restricted to this form. As described above, even when the SOC of the battery 12 is included in the high SOC region and the battery 12 is in a charged state, the estimation accuracy of the open-circuit voltage value-based SOC estimated value SOC_V is high. Therefore, as shown in FIG. 4 and FIG. 5, correction of the SOC estimation value SOC_I based on the current integrated value is performed aiming at the time when the SOC of the battery 12 is included in the high SOC region and the battery 12 is in a charged state. You may go.

図4には、本実施形態に係る補正プロセス及びその前後のタイムチャートが例示されている。タイムチャートに係る凡例は図2と同様である。また、なお、図5に示すフローチャートは、図3のフローチャートのステップS12、S14、S28、S30が、それぞれ、ステップS42、S44、S48、S50に置き換えられたものである。なお以下では、ステップ番号が重複するものについては適宜説明を省略する。   FIG. 4 illustrates a correction process according to the present embodiment and a time chart before and after the correction process. The legend relating to the time chart is the same as in FIG. 5 is obtained by replacing steps S12, S14, S28, and S30 in the flowchart of FIG. 3 with steps S42, S44, S48, and S50, respectively. In addition, below, description is abbreviate | omitted suitably about what overlaps a step number.

図4に示されているように、車両システムのシャットダウン時(Ready−Off)から車両システムの起動時(Ready−On)までの期間に生じた自己放電によりバッテリ12の実SOCが低下する。一方で電流積算値ベースのSOC推定値SOC_Iではシャットダウン時(Ready−Off)の値が維持される。これにより両者の差が徐々に開いていく。   As shown in FIG. 4, the actual SOC of the battery 12 decreases due to self-discharge occurring during a period from when the vehicle system is shut down (Ready-Off) to when the vehicle system is started (Ready-On). On the other hand, the current estimated value-based SOC estimated value SOC_I maintains the value at the time of shutdown (Ready-Off). This gradually opens the difference between the two.

スタートスイッチ28が押され制御部24がReady−On指令を受信すると、制御部24は図示しないシステムメインリレーを遮断状態から接続状態に切り替えてバッテリ12と回転電機10等の負荷とを導通させる。   When the start switch 28 is pressed and the control unit 24 receives the Ready-On command, the control unit 24 switches the system main relay (not shown) from the disconnected state to the connected state, thereby conducting the battery 12 and the load such as the rotating electrical machine 10.

演算部14はReady−Off時のバッテリ12の開放端電圧値とReady−On時のバッテリ12の開放端電圧値との差ΔOCVが、所定の閾値ΔOCV_th以上であるか否かを判定する(図5のS10)。   The calculation unit 14 determines whether or not the difference ΔOCV between the open-circuit voltage value of the battery 12 at Ready-Off and the open-circuit voltage value of the battery 12 at Ready-On is equal to or greater than a predetermined threshold value ΔOCV_th (FIG. 5 S10).

ΔOCVが閾値ΔOCV_th以上であるとき、演算部14は、電流積算値ベースのSOC推定値SOC_I(t)が、高SOC領域の下限値SOC_ThH以上であるか否かを判定する(S42)。SOC推定値SOC_I(t)が下限値SOC_ThH未満である場合には、SOC推定値SOC_I(t)の補正は行わずに、本フローを終了させる。SOC推定値SOC_I(t)が、下限値SOC_ThH以上である場合、演算部14は、電流センサ16の測定値を参照して、バッテリ12が充電状態であるか否かを判定する(S44)。   When ΔOCV is greater than or equal to threshold ΔOCV_th, operation unit 14 determines whether or not current integrated value-based SOC estimated value SOC_I (t) is greater than or equal to lower limit SOC_ThH in the high SOC region (S42). When the SOC estimated value SOC_I (t) is less than the lower limit SOC_ThH, the present flow is terminated without correcting the SOC estimated value SOC_I (t). When the estimated SOC value SOC_I (t) is equal to or greater than the lower limit SOC_ThH, the calculation unit 14 refers to the measured value of the current sensor 16 and determines whether or not the battery 12 is in a charged state (S44).

ステップS44にてバッテリ12が充電状態でない場合(放電状態の場合)、メモリ効果により、SOC推定値SOC_V(t)の推定精度が低下するため、SOC推定値SOC_I(t)の補正は行わずに、本フローを終了させる。バッテリ12が充電中である場合、演算部14は次のステップS16に進む。   If the battery 12 is not in the charged state (in the discharged state) in step S44, the estimation accuracy of the SOC estimated value SOC_V (t) is reduced due to the memory effect, and thus the SOC estimated value SOC_I (t) is not corrected. This flow is terminated. When the battery 12 is being charged, the calculation unit 14 proceeds to the next step S16.

車両システムの起動時にステップS44を満たす、つまり起動直後にバッテリ12が充電状態となるケースとして、例えば車両が下り坂で停車している場合が挙げられる。この停車状態で車両システムが起動(Ready−On)されると、車両は下り坂を走行する。このとき回生制動によって回転電機10からバッテリ12に充電電流が供給される。このときバッテリ12が高SOCであれば、ステップS42の条件も満たされる。   As a case where step S44 is satisfied when the vehicle system is activated, that is, the battery 12 is in a charged state immediately after activation, for example, a case where the vehicle is stopped on a downhill can be cited. When the vehicle system is activated (Ready-On) in this stopped state, the vehicle travels downhill. At this time, a charging current is supplied from the rotating electrical machine 10 to the battery 12 by regenerative braking. At this time, if the battery 12 has a high SOC, the condition of step S42 is also satisfied.

ステップS16にて電流積算値ベースのSOC推定値SOC_I(t)と開放端電圧値ベースの推定値SOC_V(t)との差分値ΔSOC(t)が求められる。さらに演算部14は差分値ΔSOC(t)に補正係数αを掛けた値を電流積算値ベースのSOC推定値SOC_I(t)に加える(S18)。   In step S16, a difference value ΔSOC (t) between the current integrated value-based SOC estimated value SOC_I (t) and the open-circuit voltage value-based estimated value SOC_V (t) is obtained. Further, the calculation unit 14 adds a value obtained by multiplying the difference value ΔSOC (t) by the correction coefficient α to the SOC estimated value SOC_I (t) based on the current integrated value (S18).

演算部14はSOC推定値SOC_I(t)に差分値ΔSOC(t)×αが加えられた値と、SOC推定値SOC_V(t)との差が十分に詰められたか否かを判定する(S20)。両者の差がまだ開いている場合には、演算部14はステップS22、S24に進み、最大差分値ΔSOCmaxの更新可否を判定する。その後、次の演算周期まで待機する(S26)。   The calculation unit 14 determines whether or not the difference between the SOC estimated value SOC_I (t) and the difference value ΔSOC (t) × α and the SOC estimated value SOC_V (t) is sufficiently narrowed (S20). ). If the difference between the two is still open, the calculation unit 14 proceeds to steps S22 and S24, and determines whether or not the maximum difference value ΔSOCmax can be updated. Then, it waits until the next calculation cycle (S26).

ステップS26で演算周期がインクリメントされると、演算部14はステップS42と同様に、推定値SOC_I(t)が、高SOC領域の下限値SOC_ThH以上であるか否かを判定する(S48)。推定値SOC_I(t)が下限値SOC_ThH未満である場合、演算部14は図5に示す補正フローを終了させる。   When the calculation cycle is incremented in step S26, the calculation unit 14 determines whether or not the estimated value SOC_I (t) is equal to or higher than the lower limit value SOC_ThH in the high SOC region, similarly to step S42 (S48). When the estimated value SOC_I (t) is less than the lower limit SOC_ThH, the computing unit 14 ends the correction flow shown in FIG.

推定値SOC_I(t)が下限値SOC_ThH以上である場合、演算部14は電流センサ16の測定値を参照して、バッテリ12が充電状態から放電状態に切り替わったか否かを判定する(S50)。充電状態が継続されている場合、演算部14はステップS16に戻り、再び推定値SOC_I(t)及び推定値SOC_V(t)の差分値ΔSOC(t)を算出し、さらにΔSOC(t)に係数αを掛けた値を推定値SOC_I(t)に加える(S18)。   When the estimated value SOC_I (t) is greater than or equal to the lower limit SOC_ThH, the calculation unit 14 refers to the measurement value of the current sensor 16 and determines whether or not the battery 12 has been switched from the charged state to the discharged state (S50). When the state of charge is continued, the calculation unit 14 returns to step S16, calculates again the difference value ΔSOC (t) between the estimated value SOC_I (t) and the estimated value SOC_V (t), and further calculates a coefficient in ΔSOC (t). A value multiplied by α is added to the estimated value SOC_I (t) (S18).

ステップS50にてバッテリ12が充電状態から放電状態に切り替わったと判定されると、演算部14は、図4の時刻t30に示すように、充電状態から放電状態に切り替わった(時刻t29)直後の演算周期において、第1の補正処理を中断し、第2の補正処理に切り替える。すなわち、第1の補正処理の開始時点(Ready_On)から切り替わり時点(時刻t29)までの期間における、最大差分値ΔSOCmaxを、所定割合(β)で順次経時的にSOC推定値SOC_I(t)に加算する(S32)。図4に示す例では、この加算期間(すなわち、第2の補正処理期間)は時刻t30からt31までの期間である。また、最大差分値ΔSOCmaxは時刻t24における差分値ΔSOC(t24)である。   When it is determined in step S50 that the battery 12 has been switched from the charged state to the discharged state, the calculation unit 14 calculates immediately after the charge state is switched to the discharged state (time t29), as shown at time t30 in FIG. In the cycle, the first correction process is interrupted and switched to the second correction process. That is, the maximum difference value ΔSOCmax in the period from the start time point (Ready_On) of the first correction process to the switching time point (time t29) is sequentially added to the estimated SOC value SOC_I (t) over time at a predetermined ratio (β). (S32). In the example shown in FIG. 4, this addition period (that is, the second correction processing period) is a period from time t30 to t31. The maximum difference value ΔSOCmax is the difference value ΔSOC (t24) at time t24.

<電流積算値ベースのSOC推定値SOC_Iの補正処理 その他の実施形態>
なお、図2〜図5の実施形態では、車両システムの起動時、つまり車両システムの起動時(Ready−On)に電流積算値ベースのSOC推定値SOC_Iの補正を行っていたが、この形態に限らない。電流センサ16の誤差を補正する目的で図2〜図5の補正フローを実行してもよい。
<Current Correction Value-Based SOC Estimated Value SOC_I Correction Process Other Embodiments>
In the embodiment of FIGS. 2 to 5, the current estimated value-based SOC estimated value SOC_I is corrected when the vehicle system is activated, that is, when the vehicle system is activated (Ready-On). Not exclusively. The correction flow of FIGS. 2 to 5 may be executed for the purpose of correcting the error of the current sensor 16.

SOC推定値SOC_Iは電流センサ16の測定値Ibが積算されることで求められる。電流センサ16の測定値に誤差が含まれる場合、測定値Ibの積算過程で誤差も蓄積される。この誤差の蓄積により、SOC推定値SOC_Iは実SOCから乖離するおそれがある。そこで、演算部14は、前回のSOC推定値SOC_Iの補正フロー終了時点から所定時間経過後に、図2〜図5の補正フローを実行するようにしてもよい。   The estimated SOC value SOC_I is obtained by integrating the measured value Ib of the current sensor 16. If the measured value of the current sensor 16 includes an error, the error is also accumulated in the process of integrating the measured value Ib. Due to the accumulation of this error, the estimated SOC value SOC_I may deviate from the actual SOC. Therefore, the calculation unit 14 may execute the correction flow of FIGS. 2 to 5 after a predetermined time has elapsed since the end of the correction flow of the previous SOC estimated value SOC_I.

また、図2〜5に示す補正処理フローでは、メモリ効果が生じた以降の補正処理を、最大差分値ΔSOCmaxに基づいて行っていたが、この形態に限らない。例えば、低SOCであれば放電から充電に切り替わったときの差分値ΔSOC(t9)を、高SOCであれば充電から放電に切り替わったときの差分値ΔSOC(t29)を、所定割合(β)で順次経時的にSOC推定値SOC_I(t)に加算するようにしてもよい。   In the correction process flow shown in FIGS. 2 to 5, the correction process after the memory effect is generated is performed based on the maximum difference value ΔSOCmax. However, the present invention is not limited to this form. For example, the difference value ΔSOC (t9) when switching from discharging to charging if the SOC is low, and the difference value ΔSOC (t29) when switching from charging to discharging if the SOC is high are the predetermined ratio (β). You may make it add to SOC estimated value SOC_I (t) sequentially sequentially.

最大差分値ΔSOCmaxと差分値ΔSOC(t9)またはΔSOC(t29)との差異が、開放端電圧に基づくSOC推定の推定誤差を上回るような場合には、最大差分値ΔSOCmaxの代わりに差分値ΔSOC(t9)またはΔSOC(t29)に基づいて補正処理を行うことで、より精度の高い補正を行うことができる。   When the difference between the maximum difference value ΔSOCmax and the difference value ΔSOC (t9) or ΔSOC (t29) exceeds the estimation error of the SOC estimation based on the open circuit voltage, the difference value ΔSOC ( By performing the correction process based on t9) or ΔSOC (t29), more accurate correction can be performed.

10 回転電機、12 バッテリ、14 演算部、16 電流センサ、18 電圧センサ、19、温度センサ、24 制御部、26 記憶部、SOC_I 電流積算値ベースのSOC推定値、SOC_V 開放端電圧値ベースのSOC推定値。   DESCRIPTION OF SYMBOLS 10 Rotating electrical machine, 12 Battery, 14 Computation part, 16 Current sensor, 18 Voltage sensor, 19, Temperature sensor, 24 Control part, 26 Memory | storage part, SOC_I SOC estimated value based on current integration value, SOC_V Open end voltage value based SOC Estimated value.

Claims (1)

ニッケル水素電池からなるバッテリと、
前記バッテリの流出入電流を測定する電流センサと、
前記バッテリの端子電圧を測定する電圧センサと、
前記バッテリの温度を測定する温度センサと、
前記電流センサから測定された電流値を積算した電流積算値から前記バッテリのSOC推定値を算出するとともに、前記電流センサ、前記電圧センサ、及び前記温度センサからそれぞれ測定された電流値、端子電圧値、及び温度に基づいて求められた前記バッテリの開放端電圧値に対応する前記バッテリのSOC推定値を算出する演算部と、
を備える車載バッテリのSOC管理システムであって、
前記演算部は、
前記電流積算値ベースのSOC推定値が所定の低SOC領域に含まれ、かつ、前記バッテリが放電状態であるときに、前記電流積算値ベースのSOC推定値と前記開放端電圧値ベースのSOC推定値との差分値に1未満の補正係数を掛けた値を前記電流積算値ベースのSOC推定値に加える補正を繰り返し行うことで、前記電流積算値ベースのSOC推定値を前記開放端電圧値ベースのSOC推定値に徐々に近づける第1の補正処理を実行し、
前記バッテリが放電状態から充電状態に切り替わったときに、前記第1の補正処理を中断して、前記第1の補正処理の開始時点から、前記放電状態から充電状態への切り替わり時点までにおける、前記電流積算値ベースのSOC推定値と前記開放端電圧値ベースのSOC推定値との最大差分値を、所定割合で順次経時的に前記電流積算値ベースのSOC推定値に加える第2の補正処理を実行する、
ことを特徴とする、車載バッテリのSOC管理システム。
A battery comprising a nickel metal hydride battery;
A current sensor for measuring an inflow / outflow current of the battery;
A voltage sensor for measuring a terminal voltage of the battery;
A temperature sensor for measuring the temperature of the battery;
The SOC estimated value of the battery is calculated from the current integrated value obtained by integrating the current values measured from the current sensor, and the current value and the terminal voltage value respectively measured from the current sensor, the voltage sensor, and the temperature sensor. And a calculation unit for calculating an estimated value of the SOC of the battery corresponding to the open circuit voltage value of the battery obtained based on the temperature,
An in-vehicle battery SOC management system comprising:
The computing unit is
When the current integrated value-based SOC estimated value is included in a predetermined low SOC region and the battery is in a discharged state, the current integrated value-based SOC estimated value and the open-circuit voltage value-based SOC estimated By repeatedly performing correction by adding a value obtained by multiplying the difference value from the value by a correction coefficient of less than 1 to the current integrated value based SOC estimated value, the current integrated value based SOC estimated value is converted into the open-circuit voltage value base. A first correction process for gradually approaching the estimated SOC value of
When the battery is switched from the discharged state to the charged state, the first correction process is interrupted, and from the start time of the first correction process to the time point when the discharged state is switched to the charged state, A second correction process for sequentially adding a maximum difference value between the current estimated value-based SOC estimated value and the open-circuit voltage value-based SOC estimated value to the current accumulated value-based SOC estimated value sequentially at a predetermined rate; Run,
In-vehicle battery SOC management system characterized by the above.
JP2016017499A 2016-02-01 2016-02-01 Vehicle battery SOC management system Active JP6500795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016017499A JP6500795B2 (en) 2016-02-01 2016-02-01 Vehicle battery SOC management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016017499A JP6500795B2 (en) 2016-02-01 2016-02-01 Vehicle battery SOC management system

Publications (2)

Publication Number Publication Date
JP2017138127A true JP2017138127A (en) 2017-08-10
JP6500795B2 JP6500795B2 (en) 2019-04-17

Family

ID=59565738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016017499A Active JP6500795B2 (en) 2016-02-01 2016-02-01 Vehicle battery SOC management system

Country Status (1)

Country Link
JP (1) JP6500795B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983100A (en) * 2017-05-31 2018-12-11 东莞前沿技术研究院 The processing method and processing device of battery dump energy
CN111913119A (en) * 2019-05-08 2020-11-10 丰田自动车株式会社 State of charge estimation device
CN112406628A (en) * 2019-08-21 2021-02-26 丰田自动车株式会社 Control device
KR20230022667A (en) * 2021-08-09 2023-02-16 주식회사 씨에스에너텍 Battery Management Method and Battery Management System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369391A (en) * 2001-06-07 2002-12-20 Matsushita Electric Ind Co Ltd Method and device for controlling residual capacity of secondary battery
JP2005114646A (en) * 2003-10-10 2005-04-28 Toyota Motor Corp Device for calculating remaining capacity of secondary battery and method therefor
JP2006267014A (en) * 2005-03-25 2006-10-05 Nec Lamilion Energy Ltd Remaining capacity estimating technique of secondary cell, device, and battery pack
JP2011257207A (en) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd Device for estimating charge capacity of secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002369391A (en) * 2001-06-07 2002-12-20 Matsushita Electric Ind Co Ltd Method and device for controlling residual capacity of secondary battery
US20020196026A1 (en) * 2001-06-07 2002-12-26 Matsushita Electric Industrial Co., Ltd. Method and apparatus for controlling residual battery capacity of secondary battery
JP2005114646A (en) * 2003-10-10 2005-04-28 Toyota Motor Corp Device for calculating remaining capacity of secondary battery and method therefor
JP2006267014A (en) * 2005-03-25 2006-10-05 Nec Lamilion Energy Ltd Remaining capacity estimating technique of secondary cell, device, and battery pack
JP2011257207A (en) * 2010-06-08 2011-12-22 Nissan Motor Co Ltd Device for estimating charge capacity of secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983100A (en) * 2017-05-31 2018-12-11 东莞前沿技术研究院 The processing method and processing device of battery dump energy
CN108983100B (en) * 2017-05-31 2022-03-01 东莞前沿技术研究院 Method and device for processing residual electric quantity of battery
CN111913119A (en) * 2019-05-08 2020-11-10 丰田自动车株式会社 State of charge estimation device
CN111913119B (en) * 2019-05-08 2023-12-05 丰田自动车株式会社 Charge state estimating device
CN112406628A (en) * 2019-08-21 2021-02-26 丰田自动车株式会社 Control device
CN112406628B (en) * 2019-08-21 2023-12-05 丰田自动车株式会社 Control device for charging and discharging of vehicle-mounted battery
KR20230022667A (en) * 2021-08-09 2023-02-16 주식회사 씨에스에너텍 Battery Management Method and Battery Management System
KR102548137B1 (en) 2021-08-09 2023-06-27 주식회사 씨에스에너텍 Battery Management Method and Battery Management System

Also Published As

Publication number Publication date
JP6500795B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP4523738B2 (en) Secondary battery remaining capacity control method and apparatus
JP3964635B2 (en) Memory effect detection method and solution
JP5960063B2 (en) Battery full charge capacity detection method
US11214168B2 (en) Deterioration state computation method and deterioration state computation device
US10838011B2 (en) Method for estimating state of charge and on-vehicle battery system
JP5261828B2 (en) Battery state estimation device
JP5840116B2 (en) Secondary battery state estimation apparatus and method
JP5009223B2 (en) Secondary battery remaining capacity estimation method and apparatus
JP2007212298A (en) Remaining capacity of secondary battery presuming system
JP5641215B2 (en) Secondary battery control device
CN107482269B (en) Discharging control method and device of power battery, controller and automobile
JP6449609B2 (en) Secondary battery charging rate estimation method and charging rate estimation device
US20150369871A1 (en) State-of-charge estimation device and state-of-charge estimation method
JP6500795B2 (en) Vehicle battery SOC management system
CN111301219A (en) Electric vehicle battery control method, system, device and readable storage medium
JP2015215258A (en) State-of-charge detector and state-of-charge detection method
JP2018157694A (en) Charge control device for on-vehicle battery
JP2017032294A (en) Method for estimating charge rate of secondary battery, charge rate estimation device, and soundness estimation device
JP5487183B2 (en) Charge capacity parameter estimation device for power storage device
JP6631377B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
CN115864559A (en) Method for charging battery
JP6672976B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP2019144211A (en) Estimation device and method for estimation
JP7006311B2 (en) Electric vehicle and control method of electric vehicle
JP2021090275A (en) Calculation device and full charge capacity calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R151 Written notification of patent or utility model registration

Ref document number: 6500795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151