JP2017137415A - Chiral rare earth complex polymer and optical function material prepared therewith - Google Patents
Chiral rare earth complex polymer and optical function material prepared therewith Download PDFInfo
- Publication number
- JP2017137415A JP2017137415A JP2016019164A JP2016019164A JP2017137415A JP 2017137415 A JP2017137415 A JP 2017137415A JP 2016019164 A JP2016019164 A JP 2016019164A JP 2016019164 A JP2016019164 A JP 2016019164A JP 2017137415 A JP2017137415 A JP 2017137415A
- Authority
- JP
- Japan
- Prior art keywords
- group
- rare earth
- formula
- complex polymer
- earth complex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VNCNKWYYKBBBEA-UHFFFAOYSA-N CC(C)(C1CC2)C2(C)C(C(C(F)(F)F)=O)C1=O Chemical compound CC(C)(C1CC2)C2(C)C(C(C(F)(F)F)=O)C1=O VNCNKWYYKBBBEA-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
Abstract
Description
本発明は、キラルな光物性を示すキラル型希土類錯体ポリマーおよびそれを利用した光学機能材料に関する。 The present invention relates to a chiral rare earth complex polymer exhibiting chiral optical properties and an optical functional material using the same.
円偏光発光性(CPL)や円偏光二色性(CD)はキラルな光物性である。円偏光発光は、電場および磁場の振動が伝播に伴い円を描く発光で、右円偏光発光と左円偏光発光とがある。 Circularly polarized light emission (CPL) and circular dichroism (CD) are chiral optical properties. Circularly polarized light is light that draws a circle as the electric and magnetic field vibrations propagate, and includes right-handed circularly polarized light and left-handed circularly polarized light.
近年、円偏光発光性を示す光学機能材料は三次元表示ディスプレイやセキュリティインクの原料としても注目を集めている。現在、三次元表示ディスプレイでは直線偏光を発する液晶に円偏光フィルタを組み合わせた技術が用いられるが、円偏光発光する発光素子を光源に用いれば、円偏光フィルタが不要となり、かつフィルタによるロスがなくエネルギー効率の向上が期待できる。またセキュリティインクでは右円偏光および左円偏光をセキュリティ情報として付与でき、高度なセキュリティ性を有するインクの開発が期待できる。このような光学機能材料の一つに希土類錯体がある。例えば、ホスフィンオキサイド配位子とアセチルアセトン誘導体配位子が希土類イオンに配位した希土類錯体が特許文献1〜2に報告されている。これらの希土類錯体はその構造に由来する不斉配位子場により、右円偏光および左円偏光を選択的に発光する、即ち円偏光発光性を有することが分かっている。 In recent years, optical functional materials exhibiting circularly polarized light emission have attracted attention as raw materials for three-dimensional display displays and security inks. Currently, a technology that combines a circularly polarized light filter with a liquid crystal that emits linearly polarized light is used in a three-dimensional display. The improvement of energy efficiency can be expected. In addition, security ink can provide right circularly polarized light and left circularly polarized light as security information, and development of ink having high security can be expected. One such optical functional material is a rare earth complex. For example, Patent Documents 1 and 2 report rare earth complexes in which a phosphine oxide ligand and an acetylacetone derivative ligand are coordinated to a rare earth ion. It has been found that these rare earth complexes selectively emit right-handed circularly polarized light and left-handed circularly polarized light, that is, have a circularly polarized light emission property, by an asymmetric ligand field derived from the structure.
一方、上記のような光学機能材料はプラスチック材料に混合されることが多いが、一般には高温で溶融させ成形加工(ポリカーボネート製品では300℃程度)する必要があり、発光体は十分な熱耐久性が求められる。このような耐熱性を有する発光体としては、例えば特許文献3に記載の希土類錯体ポリマーが報告されている。 On the other hand, optical functional materials such as those mentioned above are often mixed with plastic materials, but generally they need to be melted and molded at high temperatures (about 300 ° C for polycarbonate products), and the light emitters have sufficient heat durability. Is required. As such a light-emitting body having heat resistance, for example, a rare earth complex polymer described in Patent Document 3 has been reported.
熱耐久性の高い希土類錯体ポリマーとして、特許文献3ではアセチルアセトン誘導体配位子を持つEu錯体がホルフィンオキサイド二座配位子で架橋された構造をもつトリス(ヘキサフルオロアセチルアセトナート){4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマーなどが報告されているが、これらの希土類錯体ポリマーは円偏光発光性や円偏光二色性などのキラルな光物性を有さない。 As a rare earth complex polymer having high heat durability, Patent Document 3 discloses tris (hexafluoroacetylacetonate) {4 having a structure in which an Eu complex having an acetylacetone derivative ligand is cross-linked with a morphine oxide bidentate ligand. Although 4′-bis (diphenylphosphoryl) biphenyl} europium polymer has been reported, these rare earth complex polymers do not have chiral optical properties such as circularly polarized light emission and circular dichroism.
本発明者らは上記の課題を解決すべく鋭意検討した結果、一般式(1)で示される希土類錯体ポリマーが高い熱安定性を有し、キラルな光物性をもつことを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the rare earth complex polymer represented by the general formula (1) has high thermal stability and chiral optical physical properties. It came to be completed.
すなわち本発明は、
一般式(1)
That is, the present invention
General formula (1)
(式中、Aは2価の有機基を表し、Lはアセチルアセトン基を表し、AとLの少なくともいずれか一方は光学活性である。R1、R2、R3およびR4はそれぞれ独立に、炭素数1〜10のアルキル基、又は置換基を有していてもよい1価の芳香族基を表す。nは1〜20の整数を表す。mは1〜4の整数を表す。lは1〜100000の整数を表す。Lnは3価の希土類イオンを表す。)で示される希土類錯体ポリマーに関する。
また本発明は
一般式(5)
(In the formula, A represents a divalent organic group, L represents an acetylacetone group, and at least one of A and L is optically active. R 1 , R 2 , R 3 and R 4 are each independently Represents an alkyl group having 1 to 10 carbon atoms, or a monovalent aromatic group which may have a substituent, n represents an integer of 1 to 20, and m represents an integer of 1 to 4. Represents an integer of 1 to 100000. Ln represents a trivalent rare earth ion.
The present invention also provides a general formula (5)
(式中、R1、R2、R3、R4、Aおよびnは一般式(1)のR1、R2、R3、R4、Aおよびnと同義を表す。)で示されるホスフィンオキサイドと、
一般式(6)
Represented (wherein, R 1, R 2, R 3, R 4 , A and n are R 1 in the general formula (1) represents R 2, R 3, R 4 , A and n synonymous.) In Phosphine oxide;
General formula (6)
(式中、Yは配位分子を表す。jは0〜6の整数を表す。L、Lnおよびmは一般式(1)のL、Lnおよびmと同義を表す。)で示される希土類錯体を反応させる希土類錯体ポリマーの製造方法に関する。 (Wherein Y represents a coordination molecule. J represents an integer of 0 to 6. L, Ln and m have the same meaning as L, Ln and m in formula (1)). The present invention relates to a method for producing a rare earth complex polymer.
本発明は、一般式(1)で示される希土類錯体ポリマーを含むことを特徴とする光学機能材料に関する。 The present invention relates to an optical functional material including a rare earth complex polymer represented by the general formula (1).
また本発明は、一般式(1)で示される希土類錯体ポリマーを含むことを特徴とする円偏光フィルタに関する。 The present invention also relates to a circularly polarizing filter comprising a rare earth complex polymer represented by the general formula (1).
さらに本発明は、一般式(1)で示される希土類錯体ポリマーを含むことを特徴とするインクに関する。 Furthermore, the present invention relates to an ink comprising a rare earth complex polymer represented by the general formula (1).
以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.
一般式(1)のAは2価の有機基を表し、2価の有機基としては一般式(3)で表されるアリーレン基、フラン−ジイル基、チオフェン−ジイル基、フェニルカルバゾール−ジイル基等のヘテロアリーレン基、メチレン基等が挙げられ、これらは置換基を有していてもよく、直鎖状、又は分岐鎖状のいずれでもよい。これらの中でも特に一般式(3)で表されるアリーレン基が好ましい。 A in the general formula (1) represents a divalent organic group, and the divalent organic group includes an arylene group, a furan-diyl group, a thiophene-diyl group, and a phenylcarbazole-diyl group represented by the general formula (3). Such as heteroarylene groups, methylene groups, and the like, which may have a substituent, and may be linear or branched. Among these, an arylene group represented by the general formula (3) is particularly preferable.
(式中、nは一般式(1)のnと同義を表す。R12はハロゲン原子、又は炭素数1〜6のアルキル基を示し、kは0からR12が結合している環における置換可能な部位の数までの整数である。kが2以上である場合、複数のR12は、それぞれ同一であっても異なっていてもよい。)
一般式(A)の中で好ましく用いられる一般式(3)で表されるアリーレン基としては、フェニレン基、ビフェニレン基、テルフェニレン基、クアテルフェニレン基、キンクフェニレン基、セキシフェニレン基、ナフタレン−ジイル基、アントラセン−ジイル基、ビナフチル−ジイル基、フェナントレン−ジイル基、フルオレン−ジイル基等が挙げられ、その中でもフェニレン基、ビフェニレン基が好ましい。
(In the formula, n represents the same meaning as n in formula (1). R 12 represents a halogen atom or an alkyl group having 1 to 6 carbon atoms, and k represents a substitution in a ring to which R 12 is bonded to 0 to R 12. It is an integer up to the number of possible sites.When k is 2 or more, the plurality of R 12 may be the same or different.
The arylene group represented by the general formula (3) preferably used in the general formula (A) includes a phenylene group, a biphenylene group, a terphenylene group, a quaterphenylene group, a kink phenylene group, a sexiphenylene group, and a naphthalene. -Diyl group, anthracene-diyl group, binaphthyl-diyl group, phenanthrene-diyl group, fluorene-diyl group, etc. are mentioned, and among them, phenylene group and biphenylene group are preferable.
一般式(1)のLnは3価の希土類イオンを表し、具体的な3価の希土類イオンとしてはCe、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等が挙げられ、その中でもEuが好ましい。 Ln in the general formula (1) represents a trivalent rare earth ion, and specific trivalent rare earth ions include Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, and the like. Among them, Eu is preferable.
一般式(1)のLはアセチルアセトン基を表し、一般式(2)の光学活性なアセチルアセトン配位子が好ましく、特に一般式(2a)のアセチルアセトン配位子が好ましい。 L in the general formula (1) represents an acetylacetone group, an optically active acetylacetone ligand of the general formula (2) is preferable, and an acetylacetone ligand of the general formula (2a) is particularly preferable.
本発明の希土類錯体ポリマーは、AとLの少なくともいずれか一方が光学活性である。前記要件を満たすことにより、本発明の希土類錯体ポリマーはキラルな光物性を有し、優れた光学機能材料となるものである。 In the rare earth complex polymer of the present invention, at least one of A and L is optically active. By satisfying the above requirements, the rare earth complex polymer of the present invention has chiral optical properties and becomes an excellent optical functional material.
まず、一般式(1)、(2)、(2a)、(3)、(4)中のR1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11およびR12の定義について説明する。 First, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R in the general formulas (1), (2), (2a), (3), (4) 9 , definitions of R 10 , R 11 and R 12 will be described.
一般式(1)のR1、R2、R3およびR4の炭素数1〜10のアルキル基は、直鎖状、分岐状および環状のいずれでも良く、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基、1−エチルプロピル基、1−メチルブチル基、2−メチルブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、シクロペンチル基、シクロブチルメチル基、ヘキシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、1,3−ジメチルブチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、3,3−ジメチルブチル基、シクロヘキシル基、シクロペンチルメチル基、1−シクロブチルエチル基、2−シクロブチルエチル基、アダマンチル基などを例示することができ、置換基を有していてもよい1価の芳香族基は、フェニル基、p−トリル基、m−トリル基、o−トリル基、p−トリフルオロメチルフェニル基、m−トリフルオロメチルフェニル基、o−トリフルオロメチルフェニル基、2,4−ジメチルフェニル基、3,5−ジメチルフェニル基、メシチル基、2−エチルフェニル基、3−エチルフェニル基、4−エチルフェニル基、2,4−ジエチルフェニル基、3,5−ジエチルフェニル基、2−プロピルフェニル基、3−プロピルフェニル基、4−プロピルフェニル基、2,4−ジプロピルフェニル基、3,5−ジプロピルフェニル基、2−イソプロピルフェニル基、3−イソプロピルフェニル基、4−イソプロピルフェニル基、2,4−ジイソプロピルフェニル基、3,5−ジイソプロピルフェニル基、2−ブチルフェニル基、3−ブチルフェニル基、4−ブチルフェニル基、2,4−ジブチルフェニル基、3,5−ジブチルフェニル基、2−tert−ブチルフェニル基、3−tert−ブチルフェニル基、4−tert−ブチルフェニル基、2,4−ジ−tert−ブチルフェニル基、3,5−ジ−tert−ブチルフェニル基など例示することができる。本発明の希土類錯体ポリマー(1)が光学機能材料として好適な光物性を持つ点で、フェニル基が好ましい。 The alkyl group having 1 to 10 carbon atoms of R 1 , R 2 , R 3 and R 4 in the general formula (1) may be linear, branched or cyclic, specifically a methyl group or an ethyl group Propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, pentyl group, 1-ethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, isopentyl Group, neopentyl group, tert-pentyl group, cyclopentyl group, cyclobutylmethyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethyl Butyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl 3,3-dimethylbutyl group, cyclohexyl group, cyclopentylmethyl group, 1-cyclobutylethyl group, 2-cyclobutylethyl group, adamantyl group and the like, which may have a substituent 1 The valent aromatic group includes a phenyl group, p-tolyl group, m-tolyl group, o-tolyl group, p-trifluoromethylphenyl group, m-trifluoromethylphenyl group, o-trifluoromethylphenyl group, 2 , 4-dimethylphenyl group, 3,5-dimethylphenyl group, mesityl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2,4-diethylphenyl group, 3,5-diethylphenyl Group, 2-propylphenyl group, 3-propylphenyl group, 4-propylphenyl group, 2,4-dipropylphenyl group, 3,5-dip Pyrphenyl group, 2-isopropylphenyl group, 3-isopropylphenyl group, 4-isopropylphenyl group, 2,4-diisopropylphenyl group, 3,5-diisopropylphenyl group, 2-butylphenyl group, 3-butylphenyl group, 4 -Butylphenyl group, 2,4-dibutylphenyl group, 3,5-dibutylphenyl group, 2-tert-butylphenyl group, 3-tert-butylphenyl group, 4-tert-butylphenyl group, 2,4-di Examples thereof include a -tert-butylphenyl group and a 3,5-di-tert-butylphenyl group. A phenyl group is preferred in that the rare earth complex polymer (1) of the present invention has optical properties suitable as an optical functional material.
一般式(2)のR5の炭素数1〜6のアルキル基は、直鎖状、分岐状および環状のいずれでも良く、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基、1−エチルプロピル基、1−メチルブチル基、2−メチルブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、シクロペンチル基、シクロブチルメチル基、ヘキシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、1,3−ジメチルブチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、3,3−ジメチルブチル基、シクロヘキシル基、シクロペンチルメチル基、1−シクロブチルエチル基、2−シクロブチルエチル基などを例示することができ、炭素数1〜6のパーフルオロアルキル基は、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、イソヘプタフルオロプロピル基、ノナフルオロブチル基、イソノナフルオロブチル基、sec−ノナフルオロブチル基、tert−ノナフルオロブチル基、ウンデカフルオロペンチル基、ノナフルオロシクロペンチル基、トリデカフルオロヘキシル基、ウンデカフルオロシクロヘキシル基などが例示できる。本発明の希土類錯体ポリマー(1)が光学機能材料として好適な光物性を持つ点で、メチル基、tert−ブチル基、トリフルオロメチル基、ペンタフルオロエチル基、又はヘプタフルオロプロピル基が好ましく、トリフルオロメチル基、又はヘプタフルオロプロピル基が特に好ましい。 The alkyl group having 1 to 6 carbon atoms of R 5 in the general formula (2) may be linear, branched or cyclic, and specifically, methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl Group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, pentyl group, 1-ethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, isopentyl group, neopentyl group, tert-pentyl group , Cyclopentyl group, cyclobutylmethyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl Group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 3,3-dimethylbutyl group Cyclohexyl group, cyclopentylmethyl group, 1-cyclobutylethyl group, 2-cyclobutylethyl group, etc., and the C1-C6 perfluoroalkyl group includes trifluoromethyl group, pentafluoroethyl group , Heptafluoropropyl group, isoheptafluoropropyl group, nonafluorobutyl group, isononafluorobutyl group, sec-nonafluorobutyl group, tert-nonafluorobutyl group, undecafluoropentyl group, nonafluorocyclopentyl group, trideca Examples thereof include a fluorohexyl group and an undecafluorocyclohexyl group. A methyl group, a tert-butyl group, a trifluoromethyl group, a pentafluoroethyl group, or a heptafluoropropyl group is preferable in that the rare earth complex polymer (1) of the present invention has optical properties suitable as an optical functional material. A fluoromethyl group or a heptafluoropropyl group is particularly preferred.
一般式(2a)、および(4)のR6、R7、R8、R9、R10およびR11のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子など例示することができ、炭素数1〜6のアルキル基は、直鎖状、分岐状、および環状のいずれでも良く、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基、1−エチルプロピル基、1−メチルブチル基、2−メチルブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、シクロペンチル基、シクロブチルメチル基、ヘキシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、1,3−ジメチルブチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、3,3−ジメチルブチル基、シクロヘキシル基、シクロペンチルメチル基、1−シクロブチルエチル基、2−シクロブチルエチル基などを例示することができ、メチレンスルホン酸誘導体基としてはメチレンスルホン酸基、メチレンスルホン酸メチル基、メチレンスルホン酸エチル基、メチレンスルホン酸プロピル基、メチレンスルホン酸イソプロピル基等が挙げられる。安価である点で、水素、又はメチル基が好ましい。 Examples of the halogen atom of R 6 , R 7 , R 8 , R 9 , R 10 and R 11 in the general formulas (2a) and (4) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. The alkyl group having 1 to 6 carbon atoms may be linear, branched, or cyclic. Specifically, methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl Group, sec-butyl group, tert-butyl group, cyclobutyl group, pentyl group, 1-ethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, cyclobutyl Methyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1, 1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 3,3-dimethylbutyl group, cyclohexyl group, cyclopentyl Examples thereof include a methyl group, a 1-cyclobutylethyl group, a 2-cyclobutylethyl group and the like. Examples of the methylene sulfonic acid derivative group include a methylene sulfonic acid group, a methylene sulfonic acid methyl group, a methylene sulfonic acid ethyl group, and a methylene sulfone. Examples include an acid propyl group and an isopropyl group of methylene sulfonate. In view of being inexpensive, hydrogen or a methyl group is preferable.
一般式(3)のR12のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子など例示することができ、炭素数1〜6のアルキル基は、直鎖状、分岐状、および環状のいずれでも良く、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、ペンチル基、1−エチルプロピル基、1−メチルブチル基、2−メチルブチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、シクロペンチル基、シクロブチルメチル基、ヘキシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、4−メチルペンチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、1,3−ジメチルブチル基、2,2−ジメチルブチル基、2,3−ジメチルブチル基、3,3−ジメチルブチル基、シクロヘキシル基、シクロペンチルメチル基、1−シクロブチルエチル基、2−シクロブチルエチル基などを例示することができる。安価である点でメチル基が好ましい。 Examples of the halogen atom represented by R 12 in the general formula (3) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The alkyl group having 1 to 6 carbon atoms is linear, branched, and Any of cyclic | annular form may be sufficient and, specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a cyclopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a cyclobutyl group, a pentyl group, 1- Ethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, isopentyl group, neopentyl group, tert-pentyl group, cyclopentyl group, cyclobutylmethyl group, hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3- Methylpentyl group, 4-methylpentyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-di- Examples include methylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 3,3-dimethylbutyl group, cyclohexyl group, cyclopentylmethyl group, 1-cyclobutylethyl group, 2-cyclobutylethyl group, etc. can do. A methyl group is preferred because it is inexpensive.
一般式(2)のX1、X2は、互いに結合して環構造を形成しており、該環構造に置換基や二重結合を有していてもよく、二重結合を有する場合、その二重結合位置に由来するいずれの構造異性体でもよい。具体的な環構造としてはシクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロプロペン、シクロブタエン、シクロブタジエン、シクロペンタエン、シクロペンタジエン、シクロヘキサエン、シクロヘキサジエン、ベンゼン、シクロヘプタエン、シクロヘプタジエン、シクロヘプタトリエン、シクロオクテン、シクロオクタジエン、シクロオクタトリエン、シクロオクタテトラエン、ピロリジン、ピペラジン、ピロール、イミダゾール、ピリジン、テトラヒドロフラン、フラン、テトラヒドロチオフェン、チオフェン、ビシクロ[2.1.0]ペンタン、ビシクロ[3.1.0]ヘキサン、ビシクロ[2.2.0]ヘキサン、ビシクロ[2.1.1]ヘキサン、ビシクロ[2.2.1]ヘプタン、1,7,7−トリメチルビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.1]ヘプタエン、ビシクロ[2.2.1]ヘプタジエン、ビシクロ[2.2.2]オクタン、ビシクロ[3.2.1]オクタン、アダマンタン等が挙げられ、1,7,7−トリメチルビシクロ[2.2.1]ヘプタンが好ましい。 X 1 and X 2 in the general formula (2) are bonded to each other to form a ring structure, and the ring structure may have a substituent or a double bond. Any structural isomer derived from the double bond position may be used. Specific ring structures include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclopropene, cyclobutene, cyclobutadiene, cyclopentaene, cyclopentadiene, cyclohexaene, cyclohexadiene, benzene, cycloheptaene, Cycloheptadiene, cycloheptatriene, cyclooctene, cyclooctadiene, cyclooctatriene, cyclooctatetraene, pyrrolidine, piperazine, pyrrole, imidazole, pyridine, tetrahydrofuran, furan, tetrahydrothiophene, thiophene, bicyclo [2.1.0 ] Pentane, bicyclo [3.1.0] hexane, bicyclo [2.2.0] hexane, bicyclo [2.1.1] hexane, bicyclo [2.2.1] Butane, 1,7,7-trimethylbicyclo [2.2.1] heptane, bicyclo [2.2.1] heptaene, bicyclo [2.2.1] heptadiene, bicyclo [2.2.2] octane, bicyclo [3.2.1] octane, adamantane and the like can be mentioned, and 1,7,7-trimethylbicyclo [2.2.1] heptane is preferable.
一般式(1)、(3)のnは、1〜20の整数を表し、好ましくは1〜3である。 N of general formula (1) and (3) represents the integer of 1-20, Preferably it is 1-3.
一般式(1)のmは1〜4の整数を表し、好ましくは3である。 M in the general formula (1) represents an integer of 1 to 4, and is preferably 3.
一般式(1)のlは1〜100000の整数を表し、好ましくは3〜10000である。 L of General formula (1) represents the integer of 1-100,000, Preferably it is 3-10000.
一般式(3)のkは0〜4の整数を表し、好ましくは0である。 In general formula (3), k represents an integer of 0 to 4, and is preferably 0.
本発明の希土類錯体ポリマー(1)の具体例としては、トリス{(+)−3−(トリフルオロアセチル)カンファー}{1,4−ビス(ジフェニルホスホリル)ベンゼン}ユーロピウムポリマー、トリス{(−)−3−(トリフルオロアセチル)カンファー}{1,4−ビス(ジフェニルホスホリル)ベンゼン}ユーロピウムポリマー、トリス{(+)−3−(ヘプタフルオロブチリル)カンファー}{1,4−ビス(ジフェニルホスホリル)ベンゼン}ユーロピウムポリマー、トリス{(−)−3−(ヘプタフルオロブチリル)カンファー}{1,4−ビス(ジフェニルホスホリル)ベンゼン}ユーロピウムポリマー、トリス{(+)−3−(アセチル)カンファー}{1,4−ビス(ジフェニルホスホリル)ベンゼン}ユーロピウムポリマー、トリス{(−)−3−(アセチル)カンファー}{1,4−ビス(ジフェニルホスホリル)ベンゼン}ユーロピウムポリマー、トリス{(+)−3−(ピバロイル)カンファー}{1,4−ビス(ジフェニルホスホリル)ベンゼン}ユーロピウムポリマー、トリス{(−)−3−(ピバロイル)カンファー}{1,4−ビス(ジフェニルホスホリル)ベンゼン}ユーロピウムポリマー、トリス{(+)−3−(トリフルオロアセチル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマー、トリス{(−)−3−(トリフルオロアセチル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマー、トリス{(+)−3−(ヘプタフルオロブチリル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマー、トリス{(−)−3−(ヘプタフルオロブチリル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマー、トリス{(+)−3−(アセチル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマー、トリス{(−)−3−(アセチル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマー、トリス{(+)−3−(ピバロイル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマー、トリス{(−)−3−(ピバロイル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマーなどを例示することができる。好適な光物性を持つ点で、一般式(4)の錯体ポリマーが好ましく、特にトリス{(+)−3−(トリフルオロアセチル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマー、トリス{(−)−3−(トリフルオロアセチル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマーが好ましい。 Specific examples of the rare earth complex polymer (1) of the present invention include tris {(+)-3- (trifluoroacetyl) camphor} {1,4-bis (diphenylphosphoryl) benzene} europium polymer, tris {(−). -3- (trifluoroacetyl) camphor} {1,4-bis (diphenylphosphoryl) benzene} europium polymer, tris {(+)-3- (heptafluorobutyryl) camphor} {1,4-bis (diphenylphosphoryl) ) Benzene} europium polymer, tris {(−)-3- (heptafluorobutyryl) camphor} {1,4-bis (diphenylphosphoryl) benzene} europium polymer, tris {(+)-3- (acetyl) camphor} {1,4-bis (diphenylphosphoryl) benzene} europium poly -, Tris {(-)-3- (acetyl) camphor} {1,4-bis (diphenylphosphoryl) benzene} europium polymer, tris {(+)-3- (pivaloyl) camphor} {1,4-bis ( Diphenylphosphoryl) benzene} europium polymer, tris {(−)-3- (pivaloyl) camphor} {1,4-bis (diphenylphosphoryl) benzene} europium polymer, tris {(+)-3- (trifluoroacetyl) camphor } {4,4′-bis (diphenylphosphoryl) biphenyl} europium polymer, tris {(−)-3- (trifluoroacetyl) camphor} {4,4′-bis (diphenylphosphoryl) biphenyl} europium polymer, tris { (+)-3- (Heptafluorobutyryl) camphor } {4,4′-bis (diphenylphosphoryl) biphenyl} europium polymer, tris {(−)-3- (heptafluorobutyryl) camphor} {4,4′-bis (diphenylphosphoryl) biphenyl} europium polymer, tris {(+)-3- (acetyl) camphor} {4,4′-bis (diphenylphosphoryl) biphenyl} europium polymer, tris {(−)-3- (acetyl) camphor} {4,4′-bis (diphenyl) Phosphoryl) biphenyl} europium polymer, tris {(+)-3- (pivaloyl) camphor} {4,4′-bis (diphenylphosphoryl) biphenyl} europium polymer, tris {(−)-3- (pivaloyl) camphor} { 4,4′-bis (diphenylphosphoryl) biphenyl} U An example is a ropium polymer. A complex polymer of the general formula (4) is preferable in that it has suitable optical properties, and in particular, tris {(+)-3- (trifluoroacetyl) camphor} {4,4′-bis (diphenylphosphoryl) biphenyl} europium. The polymer, tris {(−)-3- (trifluoroacetyl) camphor} {4,4′-bis (diphenylphosphoryl) biphenyl} europium polymer is preferred.
次に、本発明の希土類錯体ポリマー(1)の製造方法について説明する。本製造方法はホスフィンオキサイド(5)、希土類錯体(6)を反応させることにより、希土類錯体ポリマー(1)を製造する方法である。 Next, the manufacturing method of the rare earth complex polymer (1) of this invention is demonstrated. This production method is a method for producing a rare earth complex polymer (1) by reacting a phosphine oxide (5) and a rare earth complex (6).
(式中、Aは2価の有機基を表し、Lはアセチルアセトン基を表し、AとLの少なくともいずれか一方は光学活性である。R1、R2、R3およびR4はそれぞれ独立に、炭素数1〜10のアルキル基、又は置換基を有していてもよい1価の芳香族基を表す。Yは配位分子を表す。nは1〜20の整数を表す。mは1〜4の整数を表す。jは0〜6の整数を表す。lは1〜100000の整数を表す。Lnは3価の希土類イオンを表す。)
一般式(5)で示されるホスフィンオキサイドの具体的な例としては、1,4−ビス(ジフェニルホスホリル)ベンゼン、4,4’−ビス(ジフェニルホスホリル)ビフェニル(dpbp)、4,4’’−ビス(ジフェニルホスホリル)テルフェニル、4,4’’’−ビス(ジフェニルホスホリル)クアテルフェニル、4,4’’’’−ビス(ジフェニルホスホリル)キンクフェニル、4,4’’’’’−ビス(ジフェニルホスホリル)セキシフェニル、1,4−ビス(ジフェニルホスホリル)ナフチル、9,10−ビス(ジフェニルホスホリル)アントラセン、4,4’−ビス(ジフェニルホスホリル)−1,1’−ビナフチル、2,7−ビス(ジフェニルホスホリル)フェナントレン、2,7−ビス(ジフェニルホスホリル)−9,9−ジメチル−9H−フルオレン、2,5−ビス(ジフェニルホスホリル)チオフェン、2,5−ビス(ジフェニルホスホリル)フラン、5,5’−ビス(ジフェニルホスホリル)ビチオフェン、5,5’−ビス(ジフェニルホスホリル)ビフラン、3,6−ビス(ジフェニルホスホリル)−9−フェニルカルバゾール、1,1−ビス(ジフェニルホスホリル)メタン、1,2−ビス(ジフェニルホスホリル)エタン、1,3−ビス(ジフェニルホスホリル)プロパン、1,4−ビス(ジフェニルホスホリル)ブタン、1,5−ビス(ジフェニルホスホリル)ペンタン、1,6−ビス(ジフェニルホスホリル)ヘキサン、1,4−ビス(ジトリルホスホリル)ベンゼン、4,4’−ビス(ジトリルホスホリル)ビフェニル、1,4−ビス(ジメチルホスホリル)ベンゼン、4,4’−ビス(ジメチルホスホリル)ビフェニル、1,4−ビス(ジエチルホスホリル)ベンゼン、4,4’−ビス(ジエチルホスホリル)ビフェニル、1,4−ビス(ジイソプロピルホスホリル)ベンゼン、4,4’−ビス(ジイソプロピルホスホリル)ビフェニル、1,4−ビス(ジtert−ブチルホスホリル)ベンゼン、4,4’−ビス(ジtert−ブチルホスホリル)ビフェニル、1,4−ビス(ジシクロペンチルホスホリル)ベンゼン、4,4’−ビス(ジシクロペンチルホスホリル)ビフェニル、1,4−ビス(ジシクロヘキシルホスホリル)ベンゼン、4,4’−ビス(ジシクロヘキシルホスホリル)ビフェニル、1,4−ビス(ジアダマンチルホスホリル)ベンゼン、4,4’−ビス(ジジアダマンチルホスホリル)ビフェニルなどを例示することができる。本発明の希土類錯体ポリマー(1)が光学機能材料として好適な光物性を持つ点で、1,4−ビス(ジフェニルホスホリル)ベンゼン、又は4,4’−ビス(ジフェニルホスホリル)ビフェニルが好ましい。
(In the formula, A represents a divalent organic group, L represents an acetylacetone group, and at least one of A and L is optically active. R 1 , R 2 , R 3 and R 4 are each independently , An alkyl group having 1 to 10 carbon atoms, or a monovalent aromatic group which may have a substituent, Y represents a coordination molecule, n represents an integer of 1 to 20, and m represents 1. Represents an integer of ˜4, j represents an integer of 0 to 6, l represents an integer of 1 to 100,000, and Ln represents a trivalent rare earth ion.)
Specific examples of the phosphine oxide represented by the general formula (5) include 1,4-bis (diphenylphosphoryl) benzene, 4,4′-bis (diphenylphosphoryl) biphenyl (dpbp), 4,4 ″- Bis (diphenylphosphoryl) terphenyl, 4,4 ′ ″-bis (diphenylphosphoryl) quaterphenyl, 4,4 ″ ″-bis (diphenylphosphoryl) kinkphenyl, 4,4 ′ ″ ″-bis (Diphenylphosphoryl) sexiphenyl, 1,4-bis (diphenylphosphoryl) naphthyl, 9,10-bis (diphenylphosphoryl) anthracene, 4,4′-bis (diphenylphosphoryl) -1,1′-binaphthyl, 2,7- Bis (diphenylphosphoryl) phenanthrene, 2,7-bis (diphenylphosphoryl) -9,9-dimethyl-9H-fluoro 2,5-bis (diphenylphosphoryl) thiophene, 2,5-bis (diphenylphosphoryl) furan, 5,5′-bis (diphenylphosphoryl) bithiophene, 5,5′-bis (diphenylphosphoryl) bifuran, 3, 6-bis (diphenylphosphoryl) -9-phenylcarbazole, 1,1-bis (diphenylphosphoryl) methane, 1,2-bis (diphenylphosphoryl) ethane, 1,3-bis (diphenylphosphoryl) propane, 1,4- Bis (diphenylphosphoryl) butane, 1,5-bis (diphenylphosphoryl) pentane, 1,6-bis (diphenylphosphoryl) hexane, 1,4-bis (ditolylphosphoryl) benzene, 4,4′-bis (ditolyl) Phosphoryl) biphenyl, 1,4-bis (dimethylphosphoryl) benzene, 4, 4′-bis (dimethylphosphoryl) biphenyl, 1,4-bis (diethylphosphoryl) benzene, 4,4′-bis (diethylphosphoryl) biphenyl, 1,4-bis (diisopropylphosphoryl) benzene, 4,4′-bis (Diisopropylphosphoryl) biphenyl, 1,4-bis (ditert-butylphosphoryl) benzene, 4,4′-bis (ditert-butylphosphoryl) biphenyl, 1,4-bis (dicyclopentylphosphoryl) benzene, 4,4 '-Bis (dicyclopentylphosphoryl) biphenyl, 1,4-bis (dicyclohexylphosphoryl) benzene, 4,4'-bis (dicyclohexylphosphoryl) biphenyl, 1,4-bis (diadamantylphosphoryl) benzene, 4,4'- Bis (didiadamantylphosphoryl) biphenyl, etc. Can be illustrated. 1,4-bis (diphenylphosphoryl) benzene or 4,4′-bis (diphenylphosphoryl) biphenyl is preferred in that the rare earth complex polymer (1) of the present invention has optical properties suitable as an optical functional material.
一般式(6)のYは配位分子を表し、反応を阻害しない限り制限はなく、具体的には、水、重水、テトラヒドロフラン、ピリジン、イミダゾール、アセトン、メタノール、エタノール、プロパノール、イソプロパノールなどを例示することができ、好ましくは水である。 Y in the general formula (6) represents a coordination molecule and is not limited as long as it does not inhibit the reaction. Specific examples include water, heavy water, tetrahydrofuran, pyridine, imidazole, acetone, methanol, ethanol, propanol, and isopropanol. Preferably, it is water.
一般式(6)のjは0〜6の整数を表し、好ましくは2である。 J in the general formula (6) represents an integer of 0 to 6, preferably 2.
希土類錯体(6)の具体的な例としては、トリス{(+)−3−(トリフルオロアセチル)カンファー}ユーロピウム水和物、トリス{(−)−3−(トリフルオロアセチル)カンファー}ユーロピウム水和物、トリス{(+)−3−(ヘプタフルオロブチリル)カンファー}ユーロピウム水和物、トリス{(−)−3−(ヘプタフルオロブチリル)カンファー}ユーロピウム水和物、トリス{(+)−3−(アセチル)カンファー}ユーロピウム水和物、トリス{(−)−3−(アセチル)カンファー}ユーロピウム水和物、トリス{(+)−3−(ピバロイル)カンファー}ユーロピウム水和物、トリス{(−)−3−(ピバロイルル)カンファー}ユーロピウム水和物などを例示することができる。 Specific examples of the rare earth complex (6) include tris {(+)-3- (trifluoroacetyl) camphor} europium hydrate, tris {(−)-3- (trifluoroacetyl) camphor} europium water. Japanese, tris {(+)-3- (heptafluorobutyryl) camphor} europium hydrate, tris {(−)-3- (heptafluorobutyryl) camphor} europium hydrate, tris {(+) -3- (acetyl) camphor} europium hydrate, tris {(−)-3- (acetyl) camphor} europium hydrate, tris {(+)-3- (pivaloyl) camphor} europium hydrate, tris {(-)-3- (pivaloyl) camphor} europium hydrate and the like can be exemplified.
本製造方法は、希土類錯体ポリマー(1)の収率が良い点で、溶媒中で実施することが好ましい。使用可能な溶媒の種類には、反応を阻害しない限り特に制限は無い。使用可能な溶媒の例としては、メタノール、エタノール、プロパノール、イソプロパノールなどのアルコール類、酢酸エチル、酢酸ブチル、酢酸イソアミルなどのエステル類、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル類、ジエチルエーテル、tert−ブチルメチルエーテル、グライム、ジグライム、トリグライム、テトラヒドロフラン等のエーテル類、tert−ブチルメチルケトン、イソブチルメチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、アセトン等のケトン類、ヘキサン、シクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン等の炭化水素類、水を挙げることが出来る。これら溶媒のうち一種類を単独で用いることができ、複数を任意の比率で混合して用いることも出来る。希土類錯体ポリマー(1)の収率が良い点で、溶媒としてはメタノール、又はエタノールが好ましい。 This production method is preferably carried out in a solvent in that the yield of the rare earth complex polymer (1) is good. The type of solvent that can be used is not particularly limited as long as the reaction is not inhibited. Examples of usable solvents include alcohols such as methanol, ethanol, propanol and isopropanol, esters such as ethyl acetate, butyl acetate and isoamyl acetate, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether and ethylene glycol monobutyl ether. Glycol ethers, diethyl ether, tert-butyl methyl ether, ethers such as glyme, diglyme, triglyme, tetrahydrofuran, tert-butyl methyl ketone, isobutyl methyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone , Ketones such as cyclohexanone, acetone, hexane, cyclohexane, ethylcyclohexane, heptane, octane, benzene, Toluene, hydrocarbons such as xylene, can be mentioned water. One of these solvents can be used alone, or a plurality of these solvents can be mixed at an arbitrary ratio. As the solvent, methanol or ethanol is preferable because the yield of the rare earth complex polymer (1) is good.
次に本製造方法を実施するときのホスフィンオキサイド(5)および希土類錯体(6)のモル比に関して説明する。希土類錯体(6)1モルに対して0.1〜10.0モル、更に好ましくは0.5〜1.5モルのホスフィンオキサイド(5)を用いることが好ましい。 Next, the molar ratio of the phosphine oxide (5) and the rare earth complex (6) when carrying out this production method will be described. It is preferable to use 0.1 to 10.0 mol, more preferably 0.5 to 1.5 mol of phosphine oxide (5) with respect to 1 mol of the rare earth complex (6).
本製造方法では、反応温度および反応時間には特に制限はなく、当業者が金属錯体を製造するときの一般的な条件を用いることが出来る。具体例としては、−80℃から120℃の温度範囲から適宜選択した反応温度において、1分間から120時間の範囲から適宜選択した反応時間を選択することによって希土類錯体ポリマー(1)を収率良く製造することができる。 In this production method, the reaction temperature and reaction time are not particularly limited, and those skilled in the art can use general conditions for producing a metal complex. As a specific example, the rare earth complex polymer (1) is obtained in a high yield by selecting a reaction time appropriately selected from a range of 1 minute to 120 hours at a reaction temperature appropriately selected from a temperature range of −80 ° C. to 120 ° C. Can be manufactured.
本製造方法によって製造した希土類錯体ポリマー(1)は、当業者が金属錯体を精製するときの一般的な精製方法を適宜選択して用いることによって精製することが出来る。具体的な精製方法としては、ろ過、抽出、遠心分離、デカンテーション、蒸留、昇華、結晶化、カラムクロマトグラフィーなどを挙げることができる。 The rare earth complex polymer (1) produced by this production method can be purified by a person skilled in the art appropriately selecting and using a general purification method for purifying a metal complex. Specific purification methods include filtration, extraction, centrifugation, decantation, distillation, sublimation, crystallization, column chromatography and the like.
本製造方法で用いることができるホスフィンオキサイド(5)は、本明細書の参考例1に記載の方法やJournal of Organic Chemistry、第32巻、1572ページ(1967年)などに記載の方法によって入手することができる。 The phosphine oxide (5) that can be used in this production method is obtained by the method described in Reference Example 1 of this specification or the method described in Journal of Organic Chemistry, Vol. 32, page 1572 (1967). be able to.
本製造方法で用いることができる希土類錯体(6)は、本明細書の参考例2に記載の方法やJournal of the American Chemical Society、第87巻、5254ページ(1965年)などに記載の方法によって入手することができる。 The rare earth complex (6) that can be used in this production method is obtained by the method described in Reference Example 2 of this specification or the method described in Journal of the American Chemical Society, Vol. 87, page 5254 (1965). It can be obtained.
本発明の希土類錯体ポリマーは、光物性に優れることから、光学機能材料に好適である。光学機能材料としては、円偏光フィルム、インク等が挙げられる。 Since the rare earth complex polymer of the present invention is excellent in optical properties, it is suitable for optical functional materials. Examples of the optical functional material include a circularly polarizing film and ink.
本発明の希土類錯体ポリマー(1)を材料として用いることにより、キラルな光物性をもつ光学機能材料を作製することができる。 By using the rare earth complex polymer (1) of the present invention as a material, an optical functional material having chiral optical properties can be produced.
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。各種分析は、次の条件で行った。1H−NMR測定は、日本電子社製ECS400(400MHz)を用いて行い、テトラメチルシランを内部標準として化学シフトを決定した。元素分析はジェイ・サイエンス・ラボ社製JM10またはエグゼター・アナリティカル社製CE−440を用いた。ESI−MS測定は日本電子社製JMS−T100LPまたはサーモフィッシャーサイエンティフィック社製Thermo Scientific Exactiveを用いた。FAB−MS測定は日本電子社製JMS−700TZを用いた。単結晶X線構造解析はリガク社製R−AXISを用いた。熱重量測定は、セイコーインスツルメンツEXSTAR6000(TG−DTA6300)を用い、アルゴン雰囲気下、5℃/分の昇温速度で行った。発光スペクトルの測定は、堀場製作所Fluorolog−3スペクトロフルオロメーターを用いた。円偏光二色性スペクトル測定は、日本分光J−1100を用いた。メタノール、ジクロロメタン、酢酸エチル、無水MgSO4は関東化学、テトラヒドロフランは脱水品を和光純薬工業よりそれぞれ購入したものを用いた。酢酸ユウロピウム水和物は和光純薬工業より購入し、化学式中の配位水の数を表すxは任意の数である。 Hereinafter, although an example is given and the present invention is explained still in detail, the present invention is not limited to these. Various analyzes were performed under the following conditions. 1 H-NMR measurement was performed using ECS400 (400 MHz) manufactured by JEOL Ltd., and chemical shift was determined using tetramethylsilane as an internal standard. Elemental analysis was performed using JM10 manufactured by Jay Science Lab or CE-440 manufactured by Exeter Analytical. The ESI-MS measurement used JMS-T100LP manufactured by JEOL Ltd. or Thermo Scientific Exactive manufactured by Thermo Fisher Scientific. For FAB-MS measurement, JMS-700TZ manufactured by JEOL Ltd. was used. R-AXIS manufactured by Rigaku Corporation was used for the single crystal X-ray structural analysis. Thermogravimetric measurement was performed using a Seiko Instruments EXSTAR6000 (TG-DTA6300) in an argon atmosphere at a heating rate of 5 ° C./min. The emission spectrum was measured using a Horiba Fluorolog-3 spectrofluorometer. The circular dichroism spectrum measurement used JASCO J-1100. Methanol, dichloromethane, ethyl acetate, and anhydrous MgSO 4 were purchased from Kanto Chemical, and tetrahydrofuran was a dehydrated product purchased from Wako Pure Chemical Industries. Europium acetate hydrate is purchased from Wako Pure Chemical Industries, and x representing the number of coordination water in the chemical formula is an arbitrary number.
参考例1 Reference example 1
窒素ガス雰囲気下、東京化成工業製の4,4’−ジブロモビフェニル(1.91g, 6.1 mmol)に脱水テトラヒドロフラン30mLを加えた溶液に、−78℃で関東化学製のブチルリチウムのヘキサン溶液9.3mL(1.54mol/L,14.3mmol)を加えた。この混合物を−10℃で3時間撹拌した後、−78℃で東京化成工業製のジフェニルクロロホスフィン3.2g(14.5mmol)を加えた。この混合物を室温で14時間撹拌した後、酢酸エチル70ml、飽和食塩水溶液100mL加え分液操作を行った。続いて、得られた有機層を2回飽和食塩水溶液100mLで洗浄し、得られた有機層を無水MgSO4で脱水した後、溶媒を乾固し白色固体を得た。得られた白色固体にジクロロメタン40mLを加えた溶液に、0℃で和光純薬工業製の30%H2O2水溶液を5 mL加えた。この混合物を室温で2時間撹拌した後、飽和食塩水溶液40mLを加え分液操作を行った。続いて、得られた有機層を2回飽和食塩水溶液80mLで洗浄し、得られた有機層を無水MgSO4で脱水した後、溶媒を乾固し4,4’−ビス(ジフェニルホスホリル)ビフェニル(dpbp)を白色結晶として得た。(0.780g、1.4mmol、収率23%)1H−NMR(400MHz,CDCl3,δ/ppm)7.65−7.79 (m,16H,Ar),7.54−7.59(m,4H, Ar),7.42−7.53(m,8H,Ar).
参考例2
Under a nitrogen gas atmosphere, butyl lithium hexane solution manufactured by Kanto Chemical Co., Ltd. at −78 ° C. was added to a solution obtained by adding 30 mL of dehydrated tetrahydrofuran to 4,4′-dibromobiphenyl (1.91 g, 6.1 mmol) manufactured by Tokyo Chemical Industry. 9.3 mL (1.54 mol / L, 14.3 mmol) was added. After this mixture was stirred at −10 ° C. for 3 hours, 3.2 g (14.5 mmol) of diphenylchlorophosphine manufactured by Tokyo Chemical Industry was added at −78 ° C. After stirring this mixture at room temperature for 14 hours, 70 ml of ethyl acetate and 100 mL of a saturated saline solution were added to carry out a liquid separation operation. Subsequently, the obtained organic layer was washed twice with 100 mL of a saturated saline solution, and the obtained organic layer was dehydrated with anhydrous MgSO 4 , and then the solvent was dried to obtain a white solid. To a solution obtained by adding 40 mL of dichloromethane to the obtained white solid, 5 mL of 30% H 2 O 2 aqueous solution manufactured by Wako Pure Chemical Industries, Ltd. was added at 0 ° C. After stirring this mixture at room temperature for 2 hours, 40 mL of saturated saline solution was added and liquid separation operation was performed. Subsequently, the obtained organic layer was washed twice with 80 mL of saturated saline solution, and the obtained organic layer was dehydrated with anhydrous MgSO 4 , and then the solvent was evaporated to dryness, 4,4′-bis (diphenylphosphoryl) biphenyl ( dpbp) was obtained as white crystals. (0.780 g, 1.4 mmol, yield 23%) 1 H-NMR (400 MHz, CDCl 3 , δ / ppm) 7.65-7.79 (m, 16H, Ar), 7.54-7.59 (M, 4H, Ar), 7.42-7.53 (m, 8H, Ar).
Reference example 2
和光純薬工業製の酢酸ユウロピウム水和物(430.9mg)を純水170mLに溶かし、室温で1.5時間撹拌した。この溶液にシグマアルドリッチ製の(+)−3−(トリフルオロアセチル)カンファー[(+)−facam](802.0mg,3.23mmol)をメタノール20mLに溶かした溶液を添加し、室温で17時間撹拌した。得られた黄色懸濁液をろ別することで、Eu[(+)−facam]3(H2O)2錯体を黄色固体として得た。(775.5mg、0.83mmol) ESI−MS(m/z)=917.19{Eu[(+)−facam]3Na}+,Anal.Calcd.for[C36H46EuF9O8]:C,46.51%;H,4.99%.Found:C,47.15%;H,4.87%.
参考例3
Europium acetate hydrate (430.9 mg) manufactured by Wako Pure Chemical Industries, Ltd. was dissolved in 170 mL of pure water and stirred at room temperature for 1.5 hours. A solution of (+)-3- (trifluoroacetyl) camphor [(+)-facam] (802.0 mg, 3.23 mmol) manufactured by Sigma-Aldrich in 20 mL of methanol was added to this solution, and the solution was stirred at room temperature for 17 hours. Stir. The obtained yellow suspension was filtered off to obtain a Eu [(+)-facam] 3 (H 2 O) 2 complex as a yellow solid. (775.5 mg, 0.83 mmol) ESI-MS (m / z) = 917.19 {Eu [(+)-facam] 3 Na} + , Anal. Calcd. for [C 36 H 46 EuF 9 O 8]: C, 46.51%; H, 4.99%. Found: C, 47.15%; H, 4.87%.
Reference example 3
和光純薬工業製の酢酸ユウロピウム水和物(592.4mg)を純水200mLに溶かし、室温で0.5時間撹拌した。この溶液にシグマアルドリッチ製の(−)−3−(トリフルオロアセチル)カンファー[(−)−facam](255.9mg,1.03mmol)のメタノール溶液12mLを添加し、室温で6時間撹拌した。得られた黄色懸濁液をろ別することで、Eu[(−)−facam]3(H2O)2錯体を黄色固体として得た。(299.4mg、0.32mmol)
実施例1
Europium acetate hydrate (592.4 mg) manufactured by Wako Pure Chemical Industries, Ltd. was dissolved in 200 mL of pure water and stirred at room temperature for 0.5 hour. To this solution, 12 mL of a methanol solution of (−)-3- (trifluoroacetyl) camphor [(−)-facam] (255.9 mg, 1.03 mmol) manufactured by Sigma-Aldrich was added and stirred at room temperature for 6 hours. The obtained yellow suspension was filtered off to obtain a Eu [(−)-facam] 3 (H 2 O) 2 complex as a yellow solid. (299.4 mg, 0.32 mmol)
Example 1
参考例2で調製したEu[(+)−facam]3(H2O)2錯体(185.9mg,0.20mmol)にメタノール3mLを加えた溶液に、参考例1で調製した4,4’−ビス(ジフェニルホスホリル)ビフェニル(dpbp)(110.9mg,0.20mmol)にメタノール7.7mLを加えた溶液を添加した。この混合物を70℃で24時間撹拌した。得られた白色懸濁液をろ別することで、トリス{(+)−3−(トリフルオロアセチル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマー[Eu(dpbp)[(+)−facam]3]lを白色固体として得た。(154.2mg、0.106mmol、53%) FAB−MS(m/z)=1201.2[Eu(dpbp)[(+)−facam]2(dpbp)]+,Anal.Calcd.for[C72H70EuF9O8P2]:C,59.71%;H,4.87%.Found:C,59.47%;H,4.86%.
単結晶X線構造解析に用いた結晶は以下の方法で合成した。参考例1で調製した4,4’−ビス(ジフェニルホスホリル)ビフェニル(dpbp)(16.5mg,0.03mmol)のジクロロメタン溶液0.5mLに、参考例2で調製したEu[(+)−facam]3(H2O)2錯体(18.3mg, 0.02mmol)のメタノール溶液0.5mLを界面が形成されるよう加え、室温にて8日間静置後したところ、[Eu(dpbp)[(+)−facam]3]lの結晶を得た。
4,4 ′ prepared in Reference Example 1 was added to a solution obtained by adding 3 mL of methanol to Eu [(+)-facam] 3 (H 2 O) 2 complex (185.9 mg, 0.20 mmol) prepared in Reference Example 2. A solution of 7.7 mL of methanol in bis (diphenylphosphoryl) biphenyl (dpbp) (110.9 mg, 0.20 mmol) was added. The mixture was stirred at 70 ° C. for 24 hours. By filtering off the obtained white suspension, tris {(+)-3- (trifluoroacetyl) camphor} {4,4′-bis (diphenylphosphoryl) biphenyl} europium polymer [Eu (dpbp) [ (+)-Facam] 3 ] 1 was obtained as a white solid. (154.2 mg, 0.106 mmol, 53%) FAB-MS (m / z) = 1201.2 [Eu (dpbp) [(+)-facam] 2 (dpbp)] + , Anal. Calcd. for [C 72 H 70 EuF 9 O 8 P 2]: C, 59.71%; H, 4.87%. Found: C, 59.47%; H, 4.86%.
The crystals used for the single crystal X-ray structure analysis were synthesized by the following method. The Eu [(+)-facam prepared in Reference Example 2 was added to 0.5 mL of a dichloromethane solution of 4,4′-bis (diphenylphosphoryl) biphenyl (dpbp) (16.5 mg, 0.03 mmol) prepared in Reference Example 1. ] 0.5 mL of a methanol solution of 3 (H 2 O) 2 complex (18.3 mg, 0.02 mmol) was added so that an interface was formed, and after standing at room temperature for 8 days, [Eu (dpbp) [ (+)-Facam] 3 ] l crystals were obtained.
得られた[Eu(dpbp)[(+)−facam]3]lを単結晶X線構造解析により解析した。得られた結果を図1に示す。1つのEu(III)イオンに対し、2分子のdpbpが2箇所において配位し、また3分子の[(+)−facam]が6箇所において配位しており、8配位型の錯体構造が形成されていることが分かった。 The obtained [Eu (dpbp) [(+)-facam] 3 ] l was analyzed by single crystal X-ray structural analysis. The obtained results are shown in FIG. For one Eu (III) ion, two molecules of dpbp are coordinated at two positions, and three molecules of [(+)-facam] are coordinated at six positions. It was found that was formed.
[Eu(dpbp)[(+)−facam]3]lについて、TGによる熱重量分析を行った。得られた結果を図2に示す。[Eu(dpbp)[(+)−facam]3]lの熱分解温度は、356℃であることが分かった。 [Eu (dpbp) [(+)-facam] 3 ] 1 was subjected to thermogravimetric analysis by TG. The obtained results are shown in FIG. It was found that the thermal decomposition temperature of [Eu (dpbp) [(+)-facam] 3 ] l was 356 ° C.
[Eu(dpbp)[(+)−facam]3]lの380nm励起(配位子励起)による固体状態の発光スペクトルを図3に示す。Eu(III)のf−f電子遷移に基づく593nm、612nm、655nmおよび699nmの発光が観察された。 FIG. 3 shows a solid state emission spectrum of [Eu (dpbp) [(+)-facam] 3 ] l excited by 380 nm (ligand excitation). Emissions of 593 nm, 612 nm, 655 nm, and 699 nm based on Eu (III) ff electronic transition were observed.
[Eu(dpbp)[(+)−facam]3]lの円偏光二色性スペクトルを図4に示す。測定は和光純薬工業製の分光分析用テトラヒドロフランを用い、2.0×10−5Mの濃度の溶液を測定に用いた。結果、キラルな光物性が観測された。 The circular dichroism spectrum of [Eu (dpbp) [(+)-facam] 3 ] l is shown in FIG. For the measurement, tetrahydrofuran for spectroscopic analysis manufactured by Wako Pure Chemical Industries, Ltd. was used, and a solution having a concentration of 2.0 × 10 −5 M was used for the measurement. As a result, chiral photophysical properties were observed.
実施例2 Example 2
参考例3で調製したEu[(−)−facam]3(H2O)2錯体(184.6mg,0.20mmol)にメタノール3.2mLを加えた溶液に、参考例1で調製した4,4’−ビス(ジフェニルホスホリル)ビフェニル(dpbp)(110.2mg,0.20mmol)にメタノール8.7mLを加えた溶液を添加した。この混合物を70℃で14時間撹拌した。得られた白色懸濁液をろ別することで、トリス{(−)−3−(トリフルオロアセチル)カンファー}{4,4’−ビス(ジフェニルホスホリル)ビフェニル}ユーロピウムポリマー[Eu(dpbp)[(−)−facam]3]lを白色固体として得た。(183.0mg、0.13mmol、64%)
[Eu(dpbp)[(−)−facam]3]lの円偏光二色性スペクトルを図4に示す。測定は和光純薬工業製の分光分析用テトラヒドロフランを用い、2.0×10−5Mの濃度の溶液を測定に用いた。結果、キラルな光物性が観測された。
4 prepared in Reference Example 1 was added to a solution obtained by adding 3.2 mL of methanol to Eu [(−)-facam] 3 (H 2 O) 2 complex (184.6 mg, 0.20 mmol) prepared in Reference Example 3. A solution of 8.7 mL of methanol in 4′-bis (diphenylphosphoryl) biphenyl (dpbp) (110.2 mg, 0.20 mmol) was added. The mixture was stirred at 70 ° C. for 14 hours. By filtering off the obtained white suspension, tris {(−)-3- (trifluoroacetyl) camphor} {4,4′-bis (diphenylphosphoryl) biphenyl} europium polymer [Eu (dpbp) [ (−)-Facam] 3 ] 1 was obtained as a white solid. (183.0 mg, 0.13 mmol, 64%)
The circular dichroism spectrum of [Eu (dpbp) [(−)-facam] 3 ] l is shown in FIG. For the measurement, tetrahydrofuran for spectroscopic analysis manufactured by Wako Pure Chemical Industries, Ltd. was used, and a solution having a concentration of 2.0 × 10 −5 M was used for the measurement. As a result, chiral photophysical properties were observed.
Claims (10)
一般式(6)
General formula (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016019164A JP2017137415A (en) | 2016-02-03 | 2016-02-03 | Chiral rare earth complex polymer and optical function material prepared therewith |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016019164A JP2017137415A (en) | 2016-02-03 | 2016-02-03 | Chiral rare earth complex polymer and optical function material prepared therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017137415A true JP2017137415A (en) | 2017-08-10 |
Family
ID=59566718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016019164A Pending JP2017137415A (en) | 2016-02-03 | 2016-02-03 | Chiral rare earth complex polymer and optical function material prepared therewith |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017137415A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018047951A1 (en) * | 2016-09-09 | 2018-03-15 | 国立大学法人北海道大学 | Light emitting material, ink and light emitting device |
WO2019053963A1 (en) * | 2017-09-15 | 2019-03-21 | 大日本印刷株式会社 | Ink composition, printed matter, and authenticity determination method |
WO2019053962A1 (en) * | 2017-09-15 | 2019-03-21 | 大日本印刷株式会社 | Ink composition and printed matter |
-
2016
- 2016-02-03 JP JP2016019164A patent/JP2017137415A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018047951A1 (en) * | 2016-09-09 | 2018-03-15 | 国立大学法人北海道大学 | Light emitting material, ink and light emitting device |
WO2019053963A1 (en) * | 2017-09-15 | 2019-03-21 | 大日本印刷株式会社 | Ink composition, printed matter, and authenticity determination method |
WO2019053962A1 (en) * | 2017-09-15 | 2019-03-21 | 大日本印刷株式会社 | Ink composition and printed matter |
JPWO2019053962A1 (en) * | 2017-09-15 | 2020-10-15 | 大日本印刷株式会社 | Ink composition and printed matter |
JP7081602B2 (en) | 2017-09-15 | 2022-06-07 | 大日本印刷株式会社 | Ink composition and printed matter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jin | Mechanical-stimulation-triggered and solvent-vapor-induced reverse single-crystal-to-single-crystal phase transitions with alterations of the luminescence color | |
Müller et al. | Synthesis, structural characterization and photophysical properties of ethyne-gold (I) complexes | |
JP5904600B2 (en) | Rare earth complex polymer and plastic molding | |
Lin et al. | Structure versatility of coordination polymers constructed from a semirigid tetracarboxylate ligand: Syntheses, structures, and photoluminescent properties | |
Fujisawa et al. | Photoluminescent properties of liquid crystalline gold (I) isocyanide complexes with a rod-like molecular structure | |
Huang et al. | Achieving bright mechanoluminescence in a hydrogen-bonded organic framework by polar molecular rotor incorporation | |
JP2017137415A (en) | Chiral rare earth complex polymer and optical function material prepared therewith | |
Delbari et al. | Mononuclear and dinuclear indium (III) complexes containing methoxy and hydroxy-bridge groups, nitrate anion and 4, 4′-dimethyl-2, 2′-bipyridine ligand: synthesis, characterization, crystal structure determination, luminescent properties, and thermal analyses | |
Zhu et al. | 3D lanthanide metal-organic frameworks constructed from 2, 6-naphthalenedicarboxylate ligand: synthesis, structure, luminescence and dye adsorption | |
Łyszczek | Synthesis, structure, thermal and luminescent behaviors of lanthanide—pyridine-3, 5-dicarboxylate frameworks series | |
Tsurui et al. | Asymmetric lumino-transformer: circularly polarized luminescence of chiral Eu (III) coordination polymer with phase-transition behavior | |
Yan et al. | Substituent-Mediated Transformation of Polynuclear Gold (I)-Sulfido Complexes—From Pentanuclear to Octadecanuclear Cluster-to-Cluster Transformation | |
JP2016166139A (en) | Rare earth complex and light emitting device | |
JP2013121921A (en) | Circularly-polarized emission rare earth complex | |
Li et al. | Lanthanide-organic frameworks constructed from multi-functional ligands: Syntheses, structures, near-infrared and visible photoluminescence properties | |
JP2007291063A (en) | 10-dentate rare earth complex and 9-dentate rare earth complex | |
CN110698332B (en) | Tetraphenyl ethylene alkyne phenyl alkoxy bridging alkoxy benzophenanthrene binary compound and preparation method thereof | |
JP6316206B2 (en) | Luminescent material | |
Butuza et al. | Silver (i) complexes containing heteroleptic diorganochalcogen (ii) ligands | |
JP2018012826A (en) | Chiral rare earth complex polymer and optical functional material using the same | |
Jena et al. | Single Molecular Persistent Room‐Temperature Phosphorescence and Circularly Polarized Luminescence from Binaphthol‐Decorated Optically Innocent Cyclotriphosphazenes | |
WO2020241498A1 (en) | Luminescent europium complex | |
JP7335377B2 (en) | Rare earth metal complex and light emitting device using the same | |
JP2022168581A (en) | Rare earth complex, light-emitting material, light emitter, and compound having phosphine oxide group | |
JP2006077169A (en) | Optically active acetylene compound, acetylenic polymer and method for producing the same |