JP2006143680A - New compound, method for producing the same, and use of the same - Google Patents

New compound, method for producing the same, and use of the same Download PDF

Info

Publication number
JP2006143680A
JP2006143680A JP2004338043A JP2004338043A JP2006143680A JP 2006143680 A JP2006143680 A JP 2006143680A JP 2004338043 A JP2004338043 A JP 2004338043A JP 2004338043 A JP2004338043 A JP 2004338043A JP 2006143680 A JP2006143680 A JP 2006143680A
Authority
JP
Japan
Prior art keywords
atom
carbon atoms
general formula
group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004338043A
Other languages
Japanese (ja)
Other versions
JP4625947B2 (en
Inventor
Kazuo Takimiya
和男 瀧宮
Shuichi Tada
秀一 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2004338043A priority Critical patent/JP4625947B2/en
Publication of JP2006143680A publication Critical patent/JP2006143680A/en
Application granted granted Critical
Publication of JP4625947B2 publication Critical patent/JP4625947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/045Special non-pigmentary uses, e.g. catalyst, photosensitisers of phthalocyanine dyes or pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/062Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide having alkyl radicals linked directly to the Pc skeleton; having carboxylic groups directly linked to the skeleton, e.g. phenyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0673Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having alkyl radicals linked directly to the Pc skeleton; having carbocyclic groups linked directly to the skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/12Obtaining compounds having alkyl radicals, or alkyl radicals substituted by hetero atoms, bound to the phthalocyanine skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/105Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing a methine or polymethine dye
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new compound increased in carrier transport capacity and/or improved in optical absorptivity and having a phthalocyanine skeleton and an oligothiophene skeleton, to provide a method for producing the same, and to provide a use of the same. <P>SOLUTION: This compound has at least the phthalocyanine skeleton and the oligothiophene skeleton, wherein the phthalocyanine skeleton and the oligothiophene skeleton are conjugated. The compound comprises the new compound which is greatly increased in the carrier transport capacity and/or improved in the optical absorptivity, when compared with conventional compounds having the phthalocyanine skeleton and the oligothiophene skeleton. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光電気的、光電子的、電気的、電子的装置・部品等に利用可能な有機半導体電子材料に用いられる新規化合物及びその製造方法並びにその利用に関し、特に、色素増感太陽電池材料、薄膜光電変換素子、液晶、有機薄膜トランジスタ、有機キャリア輸送層を有する発光デバイス等に利用可能な有機有機半導体電子材料に用いられる新規化合物及びその製造方法並びにその利用に関するものである。   TECHNICAL FIELD The present invention relates to a novel compound used for an organic semiconductor electronic material that can be used for optoelectric, optoelectronic, electrical, and electronic devices / parts, a manufacturing method thereof, and use thereof, and more particularly, a dye-sensitized solar cell material. The present invention relates to a novel compound used for an organic organic semiconductor electronic material that can be used for a thin film photoelectric conversion element, a liquid crystal, an organic thin film transistor, a light emitting device having an organic carrier transport layer, and the like, and a method for producing the same.

近年、有機ELデバイス、有機FETデバイス、有機薄膜光電変換デバイスなどの有機半導体電子材料を用いた薄膜デバイスが注目されており、一部実用化も始まっている。また、酸化チタンと有機色素を組み合わせた色素増感太陽電池も活発に研究されており、これらのデバイス用途に適した特性を有する有機材料が精力的に探索されている。   In recent years, thin film devices using organic semiconductor electronic materials such as organic EL devices, organic FET devices, and organic thin film photoelectric conversion devices have attracted attention, and some of them have been put into practical use. In addition, dye-sensitized solar cells in which titanium oxide and an organic dye are combined have been actively researched, and organic materials having characteristics suitable for these device applications have been energetically searched.

一般に、有機薄膜トランジスタなどの電気的及び電子的デバイスに利用可能な有機電子材料には、キャリア輸送能が求められる。また、その一方で、薄膜光電変換素子、色素増感太陽電池、有機ELデバイスなどの光電気的及び光電子的デバイスには、キャリア輸送能に加えて、光吸収や発光といった色素としての性質も必要とされる。さらに、実用的なデバイスへの応用という観点からは、有機材料の安定性も重要な性能の1つとなる。   In general, an organic electronic material that can be used in electrical and electronic devices such as an organic thin film transistor is required to have a carrier transport capability. On the other hand, photoelectric properties such as light absorption and emission are required in addition to carrier transport capability for photoelectric and photoelectric devices such as thin film photoelectric conversion elements, dye-sensitized solar cells, and organic EL devices. It is said. Furthermore, from the viewpoint of application to practical devices, the stability of organic materials is one of the important performances.

以上のような点を考慮し、従来から、安定な有機顔料、機能性色素として用いられてきたフタロシアニン骨格を有する化合物を用いることが検討されている。しかし、フタロシアニンをそのまま電子材料に使用する場合は、電子キャリア輸送性能が十分に得られない。また、フタロシアニンを光材料に使う場合、吸収波長が偏っており、幅広い吸収スペクトルを得られないという欠点がある。   In consideration of the above points, the use of a compound having a phthalocyanine skeleton that has been conventionally used as a stable organic pigment or a functional dye has been studied. However, when phthalocyanine is used as an electronic material as it is, sufficient electron carrier transport performance cannot be obtained. Further, when phthalocyanine is used as an optical material, there is a disadvantage that the absorption wavelength is biased and a wide absorption spectrum cannot be obtained.

このため、フタロシアニン骨格と同じπ電子系のチオフェン骨格とを組み合わせて、新たな新規機能性材料を創製する試みがなされている。例えば、非特許文献1〜4には、フタロシアニン骨格およびチオフェン骨格を有する化合物が複数個開示されている。
Michael J. Cook and Ali Jafari-Fini, J. Mater. Chem., 1997, 7(1), p5-7 Douglas M. Knawby and Timothy M. Swager, Chem. Mater. 1997, 9, p535-538 Michael J. Cook and Ali Jafari-Fini, Tetrahedron 56 (2000) p4085-4094 M. Victoria Martinez-Diaz, et al., Tetrahedron Letters 44 (2003) p8475-8478
For this reason, an attempt has been made to create a new novel functional material by combining the phthalocyanine skeleton with the same π-electron thiophene skeleton. For example, Non-Patent Documents 1 to 4 disclose a plurality of compounds having a phthalocyanine skeleton and a thiophene skeleton.
Michael J. Cook and Ali Jafari-Fini, J. Mater. Chem., 1997, 7 (1), p5-7 Douglas M. Knawby and Timothy M. Swager, Chem. Mater. 1997, 9, p535-538 Michael J. Cook and Ali Jafari-Fini, Tetrahedron 56 (2000) p4085-4094 M. Victoria Martinez-Diaz, et al., Tetrahedron Letters 44 (2003) p8475-8478

上記非特許文献1〜4に開示の化合物は、いずれもフタロシアニン骨格とチオフェン骨格とを有するため、キャリア輸送能及び光吸収能の面では若干の性能の向上が認められる。しかしながら、その性能は未だ十全とはいえない。   Since the compounds disclosed in Non-Patent Documents 1 to 4 each have a phthalocyanine skeleton and a thiophene skeleton, a slight improvement in performance is recognized in terms of carrier transport ability and light absorption ability. However, its performance is still not perfect.

このため、より一層のキャリア輸送能の向上又は光吸収能の改善が図られた新規化合物の創製が強く求められていた。   For this reason, there has been a strong demand for the creation of a novel compound that can further improve the carrier transport ability or the light absorption ability.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、キャリア輸送能の向上及び/又は光吸収能の改善がなされた、フタロシアニン骨格とチオフェン骨格とを有する新規化合物及びその製造方法並びにその利用を提供することにある。   The present invention has been made in view of the above problems, and its object is to provide a novel compound having a phthalocyanine skeleton and a thiophene skeleton, which has improved carrier transport ability and / or improved light absorption ability, and its It is to provide a manufacturing method and use thereof.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、フタロシアニン骨格におけるπ電子系とチオフェン骨格とにおけるπ電子系とが共役した新規化合物を創製し、当該化合物の光吸収スペクトルを評価したところ、可視領域全体にわたって強い吸収が認められ、それゆえ、少なくとも薄膜光電変換素子、色素増感太陽電池などの光電子的デバイス材料として有用であるという知見を見出し、本願発明を完成させるに至った。本発明は、かかる新規知見に基づいて完成されたものであり、以下の発明を包含する。   As a result of intensive studies to solve the above problems, the present inventors have created a novel compound in which a π electron system in a phthalocyanine skeleton and a π electron system in a thiophene skeleton are conjugated, and a light absorption spectrum of the compound is obtained. As a result of the evaluation, strong absorption was observed over the entire visible region, and therefore, it was found that it was useful as an optoelectronic device material such as at least a thin film photoelectric conversion element and a dye-sensitized solar cell, and the present invention was completed. It was. The present invention has been completed based on such novel findings, and includes the following inventions.

(1)少なくともフタロシアニン骨格とオリゴチオフェン骨格とを有する化合物であって、上記フタロシアニン骨格と上記オリゴチオフェン骨格とが共役している化合物。   (1) A compound having at least a phthalocyanine skeleton and an oligothiophene skeleton, wherein the phthalocyanine skeleton and the oligothiophene skeleton are conjugated.

(2)下記一般式(I)で表される化合物であって、   (2) A compound represented by the following general formula (I),

Figure 2006143680
Figure 2006143680

上記一般式(I)中、Arは下記一般式(II)で表され、   In the general formula (I), Ar is represented by the following general formula (II),

Figure 2006143680
Figure 2006143680

上記一般式(I)、(II)中、R1〜R12、R、及びR’は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜18のアルキル基であって当該アルキル基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキル基、炭素数1〜18のアルキルオキシ基であって当該アルキルオキシ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルオキシ基、炭素数1〜18のアルキルチオ基であって当該アルキルチオ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルチオ基、又は、芳香族基である化合物。   In the general formulas (I) and (II), R1 to R12, R, and R ′ are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, An alkyl group in which one or more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkyloxy group having 1 to 18 carbon atoms, and one in the alkyloxy group Or an alkyloxy group in which more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkylthio group having 1 to 18 carbon atoms, and one or more of the alkylthio groups A compound in which the carbon atom is an alkylthio group which may be substituted with an oxygen atom, a nitrogen atom and / or a sulfur atom, or an aromatic group.

(3)下記一般式(III)で表される化合物であって、   (3) A compound represented by the following general formula (III),

Figure 2006143680
Figure 2006143680

上記一般式(III)中、Arは下記一般式(II)で表され、   In the general formula (III), Ar is represented by the following general formula (II),

Figure 2006143680
Figure 2006143680

上記一般式(II)、(III)中、R1〜R8、R、及びR’は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜18のアルキル基であって当該アルキル基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキル基、炭素数1〜18のアルキルオキシ基であって当該アルキルオキシ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルオキシ基、炭素数1〜18のアルキルチオ基であって当該アルキルチオ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルチオ基、又は、芳香族基である化合物。   In the general formulas (II) and (III), R1 to R8, R, and R ′ are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, An alkyl group in which one or more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkyloxy group having 1 to 18 carbon atoms, and one in the alkyloxy group Or an alkyloxy group in which more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkylthio group having 1 to 18 carbon atoms, and one or more of the alkylthio groups A compound in which the carbon atom is an alkylthio group which may be substituted with an oxygen atom, a nitrogen atom and / or a sulfur atom, or an aromatic group.

(4)下記一般式(IV)で表される化合物であって、   (4) A compound represented by the following general formula (IV),

Figure 2006143680
Figure 2006143680

上記一般式(IV)中、Arは下記一般式(II)で表され、   In the general formula (IV), Ar is represented by the following general formula (II),

Figure 2006143680
Figure 2006143680

上記一般式(II)、(IV)中、R1〜R4、R、及びR’は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜18のアルキル基であって当該アルキル基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキル基、炭素数1〜18のアルキルオキシ基であって当該アルキルオキシ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルオキシ基、炭素数1〜18のアルキルチオ基であって当該アルキルチオ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルチオ基、又は、芳香族基である化合物。   In the general formulas (II) and (IV), R1 to R4, R, and R ′ are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, An alkyl group in which one or more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkyloxy group having 1 to 18 carbon atoms, and one in the alkyloxy group Or an alkyloxy group in which more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkylthio group having 1 to 18 carbon atoms, and one or more of the alkylthio groups A compound in which the carbon atom is an alkylthio group which may be substituted with an oxygen atom, a nitrogen atom and / or a sulfur atom, or an aromatic group.

(5)下記一般式(V)で表される化合物であって、   (5) A compound represented by the following general formula (V),

Figure 2006143680
Figure 2006143680

上記一般式(V)中、Arは下記一般式(II)で表され、   In the general formula (V), Ar is represented by the following general formula (II),

Figure 2006143680
Figure 2006143680

上記一般式(II)中、R及びR’は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜18のアルキル基であって当該アルキル基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキル基、炭素数1〜18のアルキルオキシ基であって当該アルキルオキシ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルオキシ基、炭素数1〜18のアルキルチオ基であって当該アルキルチオ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルチオ基、又は、芳香族基である化合物。   In the general formula (II), R and R ′ are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, and one or more carbon atoms in the alkyl group are An alkyl group optionally substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, or an alkyloxy group having 1 to 18 carbon atoms, wherein one or more carbon atoms in the alkyloxy group are oxygen atoms , A nitrogen atom, and / or an alkyloxy group optionally substituted with a sulfur atom, an alkylthio group having 1 to 18 carbon atoms, wherein one or more carbon atoms in the alkylthio group are an oxygen atom and a nitrogen atom And / or a compound which is an alkylthio group optionally substituted with a sulfur atom or an aromatic group.

(6)下記の化学式(VI)で表される化合物。   (6) A compound represented by the following chemical formula (VI).

Figure 2006143680
Figure 2006143680

(7)下記の化学式(VII)で表される化合物。   (7) A compound represented by the following chemical formula (VII).

Figure 2006143680
Figure 2006143680

(8)上記(1)〜(7)のいずれか1項に記載の化合物において、フタロシアニン骨格が金属イオンと錯体を形成していることを特徴とする化合物。   (8) The compound according to any one of (1) to (7) above, wherein the phthalocyanine skeleton forms a complex with a metal ion.

(9)下記一般式(VIII)で表される化合物であって、   (9) A compound represented by the following general formula (VIII),

Figure 2006143680
Figure 2006143680

上記一般式(VIII)中、Arは、下記一般式(II)で表され、   In the general formula (VIII), Ar is represented by the following general formula (II),

Figure 2006143680
Figure 2006143680

上記一般式(II)中、R及びR’は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜18のアルキル基であって当該アルキル基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキル基、炭素数1〜18のアルキルオキシ基であって当該アルキルオキシ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルオキシ基、炭素数1〜18のアルキルチオ基であって当該アルキルチオ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルチオ基、又は、芳香族基である化合物。   In the general formula (II), R and R ′ are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, and one or more carbon atoms in the alkyl group are An alkyl group optionally substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, or an alkyloxy group having 1 to 18 carbon atoms, wherein one or more carbon atoms in the alkyloxy group are oxygen atoms , A nitrogen atom, and / or an alkyloxy group optionally substituted with a sulfur atom, an alkylthio group having 1 to 18 carbon atoms, wherein one or more carbon atoms in the alkylthio group are an oxygen atom and a nitrogen atom And / or a compound which is an alkylthio group optionally substituted with a sulfur atom or an aromatic group.

(10)下記一般式(IX)で表される化合物であって、   (10) A compound represented by the following general formula (IX),

Figure 2006143680
Figure 2006143680

上記一般式(IX)中、Bはハロゲン原子である化合物。   In the general formula (IX), compounds wherein B is a halogen atom.

(11)上記一般式(IX)中、Bがヨウ素原子であることを特徴とする(10)に記載の化合物。   (11) The compound according to (10), wherein B is an iodine atom in the general formula (IX).

(12)上記(10)に記載の化合物を製造する方法において、下記一般式(X)で表される化合物を、有機金属試薬と反応させる第1の工程と、上記第1の工程の後、ハロゲン化試薬と反応させる第2の工程と、を含む製造方法。   (12) In the method for producing the compound according to (10) above, a first step of reacting a compound represented by the following general formula (X) with an organometallic reagent, and after the first step, And a second step of reacting with a halogenating reagent.

Figure 2006143680
Figure 2006143680

(13)上記ハロゲン化試薬が、ヨウ素化試薬である(12)に記載の製造方法。   (13) The production method according to (12), wherein the halogenating reagent is an iodination reagent.

(14)上記(1)〜(8)のいずれか1項に記載の化合物の製造方法であって、下記一般式(X)で表される化合物を、有機金属試薬と反応させる第1の工程と、上記第1の工程の後、ハロゲン化試薬と反応させる第2の工程と、を含む製造方法。   (14) A process for producing the compound according to any one of (1) to (8) above, wherein the compound represented by the following general formula (X) is reacted with an organometallic reagent And a second step of reacting with a halogenating reagent after the first step.

Figure 2006143680
Figure 2006143680

(15)上記(1)〜(8)のいずれかに記載の化合物を含むデバイス。   (15) A device comprising the compound according to any one of (1) to (8) above.

(16)上記デバイスは、光電変換素子、色素増感太陽電池素子、有機EL素子、液晶表示素子、有機薄膜トランジスタ素子、又は有機キャリア輸送層を有する発光素子である(15)に記載のデバイス。   (16) The device according to (15), wherein the device is a light-emitting element having a photoelectric conversion element, a dye-sensitized solar cell element, an organic EL element, a liquid crystal display element, an organic thin film transistor element, or an organic carrier transport layer.

本発明に係る化合物は、従来から安定な有機顔料、機能性色素として用いられてきたフタロシアニン骨格に、光電子及び電子的機能性有機材料として注目されているオリゴチオフェン骨格を組み込んだフタロシアニン−オリゴチオフェン多元系の構成を有する新規化合物である。この新規化合物は、フタロシアニン骨格とチオフェン骨格におけるπ電子系が互いに共役している。それゆえ、従来のフタロシアニン骨格とチオフェン骨格とを有する化合物に比べて、キャリア輸送能と光吸収能が著しく向上しているという効果を有する。   The compound according to the present invention is a phthalocyanine-oligothiophene multicomponent in which an oligothiophene skeleton that has been attracting attention as a photoelectron and electronic functional organic material is incorporated into a phthalocyanine skeleton that has been used as a stable organic pigment or functional dye. It is a novel compound having a system configuration. In this novel compound, the π electron systems in the phthalocyanine skeleton and the thiophene skeleton are conjugated with each other. Therefore, the carrier transport ability and the light absorption ability are remarkably improved as compared with the conventional compound having a phthalocyanine skeleton and a thiophene skeleton.

したがって、本発明に係る化合物は、例えば、薄膜光電変換素子、色素増感太陽電池などの光電子的デバイス材料として非常に有用である。   Therefore, the compound according to the present invention is very useful as an optoelectronic device material such as a thin film photoelectric conversion element and a dye-sensitized solar cell.

なお、本発明には、上記化合物の製造方法のほか、上記化合物を製造する際の中間体化合物も含まれる。特に、本発明に係る中間体化合物は、上記化合物を製造するために用いられるだけでなく、例えば、チオフェン骨格を有する半導体材料の中間体としても非常に有用である。   In addition to the manufacturing method of the said compound, the intermediate compound at the time of manufacturing the said compound is also contained in this invention. In particular, the intermediate compound according to the present invention is not only used for producing the above compound, but is also very useful as an intermediate of a semiconductor material having a thiophene skeleton, for example.

本発明は、光電子的デバイス材料等に利用可能な新規化合物、その中間体及びその製造方法、並びにその利用に関するものである。そこで、以下では、まず、新規化合物について説明し、次いで、その中間体及び製造方法、最後にその利用法について説明する。   The present invention relates to a novel compound that can be used as an optoelectronic device material, an intermediate thereof, a production method thereof, and use thereof. Therefore, in the following, first, the novel compound will be described, then its intermediate and production method, and finally its usage will be described.

<1.本発明に係る化合物>
本発明に係る化合物は、少なくともフタロシアニン骨格とオリゴチオフェン骨格とを有する化合物であって、上記フタロシアニン骨格と上記オリゴチオフェン骨格とが共役している化合物であればよい。
<1. Compound according to the present invention>
The compound according to the present invention may be a compound having at least a phthalocyanine skeleton and an oligothiophene skeleton, and may be any compound in which the phthalocyanine skeleton and the oligothiophene skeleton are conjugated.

本明細書中、文言「オリゴチオフェン骨格」とは、複数(好ましくは2〜21)のチオフェン骨格が、そのπ電子系が共役した状態で結合しているものをいう。具体的には、例えば、上記一般式(II)で表されるものを挙げることができるが、この構造に限定されるものではない。   In this specification, the term “oligothiophene skeleton” refers to a structure in which a plurality of (preferably 2 to 21) thiophene skeletons are bonded in a state in which the π-electron system is conjugated. Specific examples include those represented by the above general formula (II), but are not limited to this structure.

また、文言「フタロシアニン骨格とチオフェン骨格とが共役している」とは、フタロシアニン骨格が有するπ電子系とオリゴチオフェン骨格が有するπ電子系とが、(例えば、単結合を通じて)相互作用しており、非局在化しているという意である。   Moreover, the phrase “the phthalocyanine skeleton and the thiophene skeleton are conjugated” means that the π electron system of the phthalocyanine skeleton and the π electron system of the oligothiophene skeleton interact (for example, through a single bond). It means that it is delocalized.

上記化合物としては、例えば、本発明に係る化合物は、上記一般式(I)、(III)、(IV)、及び(V)で表される化合物を挙げることができる。なお、上記一般式(I)、(III)、(IV)、及び(V)中、Arは、上記一般式(II)で示すオリゴチオフェンを表し、一般式(II)中、nは1〜20の整数である。また、上記一般式(I)〜(V)中、R1〜R12、R、及びR’は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜18のアルキル基であって当該アルキル基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキル基、炭素数1〜18のアルキルオキシ基であって当該アルキルオキシ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルオキシ基、炭素数1〜18のアルキルチオ基であって当該アルキルチオ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルチオ基、又は、芳香族基であればよい。   As said compound, the compound which concerns on this invention can mention the compound represented by the said general formula (I), (III), (IV), and (V), for example. In the general formulas (I), (III), (IV), and (V), Ar represents the oligothiophene represented by the general formula (II), and in the general formula (II), n is 1 to 1 It is an integer of 20. Moreover, in said general formula (I)-(V), R1-R12, R, and R 'are respectively independently a hydrogen atom, a halogen atom, and a C1-C18 alkyl group, Comprising: The said alkyl group An alkyl group in which one or more carbon atoms therein may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, or an alkyloxy group having 1 to 18 carbon atoms, in the alkyloxy group One or more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkylthio group having 1 to 18 carbon atoms, It may be an alkylthio group or an aromatic group in which further carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom.

より具体的には、例えば、上記化学式(VI)、化学式(VII)を挙げることができる。   More specifically, for example, the above chemical formula (VI) and chemical formula (VII) can be mentioned.

上記化合物は、フタロシアニン骨格とオリゴチオフェン骨格とが共役している化学構造を有するゆえに、フタロシアニン骨格のみを有する化合物やオリゴチオフェン骨格のみを有する化合物、さらに、フタロシアニン骨格とオリゴチオフェン骨格とが共役しない状態で結合している化合物と比べて、著しくその性質を異にする。   Since the above compound has a chemical structure in which the phthalocyanine skeleton and the oligothiophene skeleton are conjugated, the compound having only the phthalocyanine skeleton, the compound having only the oligothiophene skeleton, and the phthalocyanine skeleton and the oligothiophene skeleton are not conjugated. Compared with the compound bonded with, its properties are remarkably different.

具体的には、例えば、フタロシアニン骨格のみを有する化合物は、吸収スペクトルを測定すると、300nm〜400nm付近、及び650nm〜700nm付近に強い吸収帯を有することが知られているが、これらの波長領域以外の光は吸収できない(例えば、後述の実施例における図2(a)参照)。このため、幅広い波長の光を利用できないため、フタロシアニン骨格のみを有する化合物は、そのままでは太陽電池材料や光電変換素子材料としては不十分であった。また、オリゴチオフェン骨格のみを有する化合物は、フタロシアニン化合物の吸収帯を補うように、400nm〜600nm付近に吸収スペクトルのピークを有するが、それ以外の領域の光を吸収することはできない。   Specifically, for example, a compound having only a phthalocyanine skeleton is known to have a strong absorption band in the vicinity of 300 nm to 400 nm and in the vicinity of 650 nm to 700 nm when the absorption spectrum is measured. Cannot be absorbed (see, for example, FIG. 2A in the examples described later). For this reason, since the light of a wide wavelength cannot be utilized, the compound which has only a phthalocyanine frame | skeleton is inadequate as a solar cell material or a photoelectric conversion element material as it is. A compound having only an oligothiophene skeleton has an absorption spectrum peak in the vicinity of 400 nm to 600 nm so as to supplement the absorption band of the phthalocyanine compound, but cannot absorb light in other regions.

また、フタロシアニン骨格とオリゴチオフェン骨格とが共役しない状態で結合している化合物の吸収スペクトルは、例えば、上記非特許文献4の“Figure 1”に示すように、フタロシアニン骨格のみを有する化合物に比べて、400nm〜500nmまでの位置において若干の吸収スペクトルの向上が認められるが、500nm〜700nmにかけての吸収スペクトルではほとんど変化しておらず、この領域の光は吸収できていないことを示している。   Further, the absorption spectrum of a compound in which the phthalocyanine skeleton and the oligothiophene skeleton are bonded in a non-conjugated state is, for example, as shown in “Figure 1” of Non-Patent Document 4 above, compared with a compound having only a phthalocyanine skeleton. In the position from 400 nm to 500 nm, a slight improvement in the absorption spectrum is observed, but the absorption spectrum from 500 nm to 700 nm hardly changes, indicating that light in this region cannot be absorbed.

その一方、本発明に係る化合物は、300nm〜800nmの幅広い可視領域において、まんべんなく吸収スペクトルが認められる。例えば、後述する実施例に示すように、フタロシアニン骨格と共役するオリゴチオフェン骨格が1つの化合物における400nm〜600nmの吸収スペクトルは、フタロシアニン骨格を有する化合物のそれに比べて、大幅に増加している。   On the other hand, the compound according to the present invention has an even absorption spectrum in a wide visible region of 300 nm to 800 nm. For example, as shown in the Examples described later, the absorption spectrum of 400 nm to 600 nm in a compound having one oligothiophene skeleton conjugated with a phthalocyanine skeleton is greatly increased as compared with that of a compound having a phthalocyanine skeleton.

さらに、本発明に係る化合物における上記性質は、フタロシアニン骨格と共役するオリゴチオフェン骨格の数が増加するにつれ、より一層顕著なものとなる。つまり、吸収スペクトルは、フタロシアニン骨格と共役するオリゴチオフェン骨格が1つから4つに増加すると、予想以上に大きく、顕著に変化する。   Furthermore, the above properties of the compound according to the present invention become more prominent as the number of oligothiophene skeletons conjugated to the phthalocyanine skeleton increases. That is, when the number of oligothiophene skeletons conjugated with the phthalocyanine skeleton increases from one to four, the absorption spectrum is larger than expected and changes significantly.

具体的には、例えば、後述する実施例に示すように、フタロシアニン骨格と共役するオリゴチオフェン骨格が1つの化合物(例えば、上記化学式(VI)で示す化合物)に比べて、フタロシアニン骨格と共役するオリゴチオフェン骨格が4つの化合物(例えば、上記化学式(VII)で示す化合物)は、吸収スペクトルのピークが長波長側(350nmのピークが420nm)にシフトし、500nm〜800nm付近までブロードに吸収スペクトルが認められるようになる。   Specifically, for example, as shown in the examples described later, an oligothiophene skeleton conjugated with a phthalocyanine skeleton is an oligoconjugated with a phthalocyanine skeleton compared to one compound (for example, a compound represented by the above chemical formula (VI)). A compound having four thiophene skeletons (for example, a compound represented by the above chemical formula (VII)) has its absorption spectrum peak shifted to the longer wavelength side (350 nm peak is 420 nm), and the absorption spectrum is broadly observed from 500 nm to 800 nm. Be able to.

なお、上記性質は、フタロシアニン骨格とオリゴチオフェン骨格とが共役しているために認められるものであり、上記一般式(I)、(III)、(IV)、(V)についても同様のことがいえることは当業者にとって明確である。   The above properties are recognized because the phthalocyanine skeleton and the oligothiophene skeleton are conjugated, and the same applies to the above general formulas (I), (III), (IV), and (V). It will be clear to those skilled in the art that this can be said.

また、フタロシアニン骨格は金属イオンとともに安定な錯体を形成する性質を有するが、本発明に係る化合物のフタロシアニン骨格が金属イオンと錯体を形成している化合物も、本願発明に含まれることはいうまでもない。なお、データは示さないが、銅錯体が形成されることが確認されている。かかる金属イオンとしては、例えば、鉄、銅、ニッケル、コバルト等の従来公知のフタロシアニン錯体に用いられる金属イオンを好適に用いることができる。このような金属イオンと錯体を形成することにより、例えば、電気伝導性、磁性、半導体特性の性質を有するようになる。   Further, although the phthalocyanine skeleton has a property of forming a stable complex with a metal ion, it goes without saying that a compound in which the phthalocyanine skeleton of the compound according to the present invention forms a complex with a metal ion is also included in the present invention. Absent. Although data are not shown, it has been confirmed that a copper complex is formed. As such metal ions, for example, metal ions used in conventionally known phthalocyanine complexes such as iron, copper, nickel and cobalt can be suitably used. By forming a complex with such a metal ion, for example, it has properties of electrical conductivity, magnetism, and semiconductor characteristics.

以上のように、本発明に係る化合物は、可視領域全体に幅広く、かつ強い吸収スペクトルが認められる。すなわち、従来知られていた化合物では、特定の波長領域の光しか吸収・利用できなかったが、本発明に係る化合物によれば、可視領域全般の光をまんべんなく吸収・利用できる。このため、本発明に係る化合物は、例えば、可視領域全般の光を幅広く利用可能な薄膜光電変換素子、色素増感太陽電池などの光電子的デバイス材料として非常に有用である。   As described above, the compound according to the present invention has a broad absorption spectrum that is wide in the entire visible region. That is, conventionally known compounds can only absorb and use light in a specific wavelength region, but the compounds according to the present invention can absorb and use light in the entire visible region evenly. Therefore, the compound according to the present invention is very useful as an optoelectronic device material such as a thin film photoelectric conversion element and a dye-sensitized solar cell that can widely use light in the entire visible region.

また、本発明に係る化合物は、フタロシアニン骨格及びオリゴチオフェン骨格を有するため、化学的にも安定であり、優れた有機材料である。   Moreover, since the compound according to the present invention has a phthalocyanine skeleton and an oligothiophene skeleton, it is chemically stable and is an excellent organic material.

さらに本発明に係る化合物は、溶液中の核磁気共鳴スペクトル測定において会合状態にあることが示唆されることから、凝集状態においても液晶相を持つ可能性が高い。それゆえ、液晶を用いた、例えば表示素子などの各種光電子デバイスや、液晶相の持つ自己会合性を利用した高配向性分子薄膜からなる有機半導体層等にも利用できる。   Furthermore, since it is suggested that the compound according to the present invention is in an associated state in nuclear magnetic resonance spectrum measurement in a solution, there is a high possibility of having a liquid crystal phase even in an aggregated state. Therefore, it can be used for various optoelectronic devices using liquid crystals, such as display elements, and organic semiconductor layers composed of highly oriented molecular thin films using the self-association property of the liquid crystal phase.

<2.本発明に係る中間体及び本発明に係る製造方法>
上述の<1>欄で説明した化合物は、これまで合成の報告はなされていない全く新規な化合物である。上記化合物は、上記一般式(VIII)で表される化合物を得ることができなかったため、これまで合成することができなかった。また、この一般式(VIII)で表される化合物は、上記一般式(IX)で表される化合物を得ることができなかったため、合成することができなかった。
<2. Intermediate according to the present invention and production method according to the present invention>
The compound described in the above section <1> is a completely new compound that has not been reported for synthesis. Since the compound represented by the general formula (VIII) could not be obtained, the compound could not be synthesized so far. Further, the compound represented by the general formula (VIII) could not be synthesized because the compound represented by the general formula (IX) could not be obtained.

すなわち、本発明は、上記一般式(IX)で表される化合物を得ることができたため、完成することができたといえる。   That is, it can be said that the present invention was completed because the compound represented by the general formula (IX) was obtained.

したがって、上記一般式(VIII)で表される化合物及び上記一般式(IX)で表される化合物はともに、上述の<1>欄で説明した本発明に係る化合物を得る上で、有用な中間体であるといえる。このため、本発明には、上記中間体化合物も含まれる。また、かかる中間体は、オリゴチオフェン骨格を有する半導体材料を製造するためにも非常に有用である。   Therefore, both of the compound represented by the general formula (VIII) and the compound represented by the general formula (IX) are useful intermediates for obtaining the compound according to the present invention described in the section <1>. It can be said to be a body. For this reason, the intermediate compound is also included in the present invention. Such an intermediate is also very useful for producing a semiconductor material having an oligothiophene skeleton.

また、上述の<1>欄で説明した本発明に係る化合物を得る方法として、上記一般式(VIII)で表される化合物及び上記一般式(IX)で表される化合物を経由する方法がある。このため、上記一般式(VIII)で表される化合物及び上記一般式(IX)で表される化合物を製造する方法は、上述の<1>欄で説明した本発明に係る化合物を製造する方法の1つの工程となり、非常に有用である。それゆえ、本発明には、上述の中間体の製造方法、及び中間体の製造方法を含む上述の<1>欄の化合物の製造方法も含まれる。   In addition, as a method for obtaining the compound according to the present invention described in the section <1>, there is a method via a compound represented by the above general formula (VIII) and a compound represented by the above general formula (IX). . Therefore, the method for producing the compound represented by the above general formula (VIII) and the compound represented by the above general formula (IX) is a method for producing the compound according to the present invention explained in the above section <1>. This process is very useful. Therefore, the present invention also includes a method for producing the above-described intermediate and a method for producing the compound in the above-described <1> column including the method for producing the intermediate.

上記製造方法は、少なくとも、上記一般式(X)で表される化合物を有機金属試薬と反応させる第1の工程と、上記第1の工程の後、ハロゲン化試薬と反応させる第2の工程と、を含む方法であればよく、その他の工程、反応条件、材料、触媒、製造機器・製造装置等については従来公知のものを好適に利用でき、特に限定されるものではない。つまり、本発明に係る製造方法は、上記第1の工程及び第2の工程を含んでいれば、その他にどのような工程を含んでいてもよく、特に限定されるものではないといえる。   The manufacturing method includes at least a first step of reacting the compound represented by the general formula (X) with an organometallic reagent, and a second step of reacting with a halogenating reagent after the first step. As for other processes, reaction conditions, materials, catalysts, manufacturing equipment / manufacturing equipment, etc., conventionally known ones can be suitably used and are not particularly limited. That is, it can be said that the manufacturing method according to the present invention may include any other process as long as it includes the first process and the second process, and is not particularly limited.

上記一般式(X)で表される化合物は、従来から知られている化合物であり、例えば、当業者であれば、文献(D. W. H. MacDowell and F. l. Ballas, J. Org. Chem., Vol.42 No.23, p3717-3721 1977)に開示の方法を用いて、容易に得ることができる。   The compound represented by the general formula (X) is a conventionally known compound. For example, a person skilled in the art can refer to a document (DWH MacDowell and F. l. Ballas, J. Org. Chem., Vol. .42 No. 23, p3717-3721 1977) can be easily obtained.

上記「有機金属試薬」は、上記一般式(X)で表される化合物から水素原子を引き抜くことができる試薬であればよく、特に、立体障害が大きく、かつ求核性が低く、強塩基性の物質であることが好ましい。有機金属試薬の求核性が高いと、上記一般式(X)で表されるチオフェン骨格のニトリル基と反応してしまうため、所望の生産物の収率が低下し好ましくない。また、有機金属試薬の立体障害が小さい場合も、同様に、チオフェン骨格のニトリル基と反応してしまうため、好ましくない。   The “organometallic reagent” is not particularly limited as long as it is a reagent capable of extracting a hydrogen atom from the compound represented by the above general formula (X). It is preferable that the substance is When the organometallic reagent has high nucleophilicity, it reacts with the nitrile group of the thiophene skeleton represented by the above general formula (X), which is not preferable because the yield of the desired product is lowered. Similarly, when the steric hindrance of the organometallic reagent is small, it similarly reacts with the nitrile group of the thiophene skeleton, which is not preferable.

かかる有機金属試薬としては、例えば、後述する実施例でも使用しているLDA(リチウム ジイソプロピルアミド)、LiTMP(リチウム テトラメチルテトラメチルピペリジン)、及びLiHMDS(リチウム ヘキサメチルジシラザン)等を好適に用いることができるが、これらの試薬に限定されるものではない。   As such an organometallic reagent, for example, LDA (lithium diisopropylamide), LiTMP (lithium tetramethyltetramethylpiperidine), LiHMDS (lithium hexamethyldisilazane), etc., which are also used in the examples described later, are preferably used. However, it is not limited to these reagents.

また「ハロゲン化試薬」は、従来公知のハロゲン化試薬を用いることができ、その具体的な構成等については特に限定されるものではない。例えば、ハロゲンとしてヨウ素を用いる場合は、後述するCやの他、Iを用いることができる。 As the “halogenation reagent”, a conventionally known halogenation reagent can be used, and its specific configuration and the like are not particularly limited. For example, when iodine is used as the halogen, I 2 can be used in addition to C 2 H 4 I 2 described later.

つまり、上記製造方法において第1の工程は、上記一般式(X)で表される化合物から水素原子を引き抜き、アニオンを形成する工程であり、上記第2の工程は、当該アニオンの水素原子が引き抜かれた位置にハロゲン原子を導入する工程であるといえる。   That is, in the production method, the first step is a step of extracting a hydrogen atom from the compound represented by the general formula (X) to form an anion, and the second step is a step in which the hydrogen atom of the anion is It can be said that this is a step of introducing a halogen atom into the extracted position.

上記第1の工程及び第2の工程により、上記一般式(IX)で表される化合物を効率よく得ることができる。   Through the first step and the second step, the compound represented by the general formula (IX) can be obtained efficiently.

このように、今まで上記一般式(X)で表される化合物から上記一般式(IX)で表される化合物を得ることはできなかったが、本発明者らが鋭意努力した結果、初めて上記一般式(IX)で表される化合物を得ることができた。今回上記化合物を得ることに成功した理由としては、以下の理由が考えられる。   As described above, it has not been possible to obtain the compound represented by the general formula (IX) from the compound represented by the general formula (X) until now. A compound represented by the general formula (IX) could be obtained. The following reasons can be considered as a reason why the above-mentioned compound was successfully obtained.

通常、チオフェン骨格を有する化合物にハロゲン原子を導入する場合、チオフェンは電子リッチであるため、求電子的なハロゲン化試薬を加えるのが一般的である。しかし、この場合、チオフェン骨格が有するニトリル基(CN)が電子を吸引するため、ハロゲン化試薬とチオフェン骨格が有する水素原子とが反応せず、ニトリル基とハロゲン化試薬が優先して反応してしまっていた。   Usually, when a halogen atom is introduced into a compound having a thiophene skeleton, an electrophilic halogenating reagent is generally added because thiophene is electron-rich. However, in this case, since the nitrile group (CN) of the thiophene skeleton attracts electrons, the halogenating reagent and the hydrogen atom of the thiophene skeleton do not react, and the nitrile group and the halogenating reagent preferentially react. I was sorry.

そこで、本発明者らは、水素引き抜き試薬(有機金属試薬)によってチオフェン骨格の水素を一旦引き抜き、アニオンを形成した後、当該アニオンとハロゲン化試薬と反応させて所望の化合物を取得する手法を開発した。ただし、この場合でも、ニトリル基は、水素引き抜き試薬(有機金属試薬)と反応するため、反応温度等の条件を制御することが好ましい。   Therefore, the present inventors have developed a method for obtaining a desired compound by once extracting hydrogen of a thiophene skeleton with a hydrogen abstraction reagent (organometallic reagent) to form an anion and then reacting the anion with a halogenating reagent. did. However, even in this case, since the nitrile group reacts with the hydrogen abstraction reagent (organometallic reagent), it is preferable to control the conditions such as the reaction temperature.

例えば、本発明では、チオフェン骨格が有するニトリル基と水素引き抜き試薬(有機金属試薬)との反応を可能な限り抑制するような反応条件、例えば、低温環境下にて、上記第1の工程及び第2の工程を行うことが好ましい。例えば、後述する実施例に示すように、−106℃以下にて反応を行う方法を挙げることができる。後述の実施例では、反応を低温環境下にて行うために、液体窒素とエタノールとを混ぜてシャーベット状になったものを使用しており、「−106℃以下」とは、この液体窒素とエタノールとを混ぜてシャーベット状になった際の温度である。   For example, in the present invention, under the reaction conditions that suppress the reaction between the nitrile group of the thiophene skeleton and the hydrogen abstraction reagent (organometallic reagent) as much as possible, for example, in a low temperature environment, It is preferable to perform the process of 2. For example, as shown in the Example mentioned later, the method of reacting at -106 degrees C or less can be mentioned. In the examples described later, in order to perform the reaction in a low temperature environment, liquid nitrogen and ethanol are mixed to form a sherbet, and “−106 ° C. or lower” means that this liquid nitrogen and This is the temperature when mixing with ethanol to form a sherbet.

なお、−70℃以上の反応温度では、上記一般式(IX)で表される化合物を十分に得ることはできなかった。これは、反応温度が高いと、おそらく、ニトリル基と有機金属試薬とが反応してしまうため、著しく収率が悪化するためと考えられる。   In addition, at the reaction temperature of -70 degreeC or more, the compound represented by the said general formula (IX) was not able to fully be obtained. This is presumably because when the reaction temperature is high, the nitrile group and the organometallic reagent react with each other, so that the yield is remarkably deteriorated.

また、上述したように、上記一般式(IX)で表される化合物が得られれば、従来公知の有機化学的な合成方法により、上述の<1>欄の化合物を製造することができる。具体的には、例えば、後述する実施例に示すように、公知文献(D. W. MacDowellら、J. Org. Chem. 1977, 42, 3717、M. J. Cookら、J. Mater. Chem. 1997, 7, 5.、M. J. Cookら、Tetrahedoron. 2000, 56, 4085. 、D. M. Knawbyら、Chem. Mater. 1997, 9, 535. M. Victoria Martinez-Diazら、Tetrahedron Lett. 2003, 44, 8475. )等に基づき、遷移金属触媒下でのクロスカップリング反応を行うことにより、オリゴチオフェン化合物を得ることができる。さらに、このようにして得られたオリゴチオフェン化合物を複数用いて、Li(リチウム)存在下にて閉環させることにより、オリゴチオフェン骨格とフタロシアニン骨格とが共役している、所望の構造の化合物を得ることができる。   In addition, as described above, if the compound represented by the above general formula (IX) is obtained, the above-described compound in the <1> column can be produced by a conventionally known organic chemical synthesis method. Specifically, for example, as shown in Examples described later, known literature (DW MacDowell et al., J. Org. Chem. 1977, 42, 3717, MJ Cook et al., J. Mater. Chem. 1997, 7, 5 , MJ Cook et al., Tetrahedoron. 2000, 56, 4085. DM Knawby et al., Chem. Mater. 1997, 9, 535. M. Victoria Martinez-Diaz et al., Tetrahedron Lett. 2003, 44, 8475. An oligothiophene compound can be obtained by performing a cross-coupling reaction under a transition metal catalyst. Furthermore, by using a plurality of oligothiophene compounds thus obtained and ring-closing in the presence of Li (lithium), a compound having a desired structure in which the oligothiophene skeleton and the phthalocyanine skeleton are conjugated is obtained. be able to.

さらに、用いるオリゴチオフェン化合物の種類と反応条件を適宜設定することにより、1つのフタロシアニン骨格に対して、1〜4のいずれかのオリゴチオフェン骨格を有する化合物を適宜製造することができる。具体的には、例えば、上記一般式(VIII)で表されるオリゴチオフェン骨格を有するジシアノ化合物とフタロニトリル誘導体とを任意の割合で混合し、上記のように閉環させることにより、1〜4のオリゴチオフェン骨格を有するフタロシアニン誘導体を製造できる。また、その混合比に応じて、複数の生成物の中で優先して得られるフタロシアニン誘導体のオリゴチオフェン骨格の数を調整できる。上述したように、フタロシアニン骨格に対する、オリゴチオフェン骨格の形状や数量によってその性質が変化する可能性があるため、多種多様なフタロシアニン骨格とオリゴチオフェン骨格とを有する化合物を簡便かつ効率的に製造することができる本発明に係る製造方法は、非常に有用である。   Furthermore, by appropriately setting the type of oligothiophene compound to be used and the reaction conditions, a compound having any one of oligothiophene skeletons 1 to 4 can be appropriately produced for one phthalocyanine skeleton. Specifically, for example, a dicyano compound having an oligothiophene skeleton represented by the above general formula (VIII) and a phthalonitrile derivative are mixed at an arbitrary ratio, and ring-closing is performed as described above, whereby 1 to 4 A phthalocyanine derivative having an oligothiophene skeleton can be produced. Moreover, according to the mixing ratio, the number of oligothiophene skeletons of the phthalocyanine derivative obtained preferentially among a plurality of products can be adjusted. As described above, since the properties of the phthalocyanine skeleton may change depending on the shape and quantity of the oligothiophene skeleton, a compound having a wide variety of phthalocyanine skeletons and oligothiophene skeletons can be easily and efficiently produced. The production method according to the present invention which can be used is very useful.

<3.本発明に係る利用>
上述したように、本発明に係る化合物は、可視領域全体において強い光吸収スペクトルが認められるという特異な性質を有するものである。それゆえ、本発明に係る化合物は、光電変換素子、色素増感太陽電池素子、有機EL素子、液晶表示素子、有機薄膜トランジスタ素子、又は有機キャリア輸送層を有する発光素子等のデバイスや有機半導体電子材料に好適に利用することができる。本発明に係るデバイスは、上記化合物を用いていればよく、その他の具体的な構成、材料、大きさ、形状、用途等は特に限定されるものではない。
<3. Use according to the present invention>
As described above, the compound according to the present invention has a unique property that a strong light absorption spectrum is observed in the entire visible region. Therefore, the compound according to the present invention is a photoelectric conversion element, a dye-sensitized solar cell element, an organic EL element, a liquid crystal display element, an organic thin film transistor element, a light emitting element having an organic carrier transport layer, or an organic semiconductor electronic material. Can be suitably used. The device according to the present invention only needs to use the above compound, and other specific configurations, materials, sizes, shapes, uses, and the like are not particularly limited.

本発明に係る化合物を、例えば、光電変換素子や太陽電池に用いる場合、幅広い領域の波長の光を吸収する光電変換能が優れた光電変換素子や太陽電池を製造することができ、効率的に電気エネルギーを得ることができる。特に、太陽エネルギーでは、約400nm〜1300nmの可視領域のエネルギーが大きいため、その利用が可能な光電変換素子や太陽電池の開発が強く望まれていた。したがって、これらの光エネルギーを効率よく電気エネルギーに変換することが可能な本発明に係るデバイスは、非常に有用であるといえる。   When the compound according to the present invention is used for, for example, a photoelectric conversion element or a solar cell, a photoelectric conversion element or solar cell excellent in photoelectric conversion ability that absorbs light in a wide range of wavelengths can be produced efficiently. Electric energy can be obtained. In particular, in the case of solar energy, since the energy in the visible region of about 400 nm to 1300 nm is large, development of a photoelectric conversion element and a solar cell that can be used has been strongly desired. Therefore, it can be said that the device according to the present invention capable of efficiently converting such light energy into electric energy is very useful.

特に、フタロシアニン骨格に対して、複数のオリゴチオフェン骨格を有する化合物は、幅広い光吸収スペクトルを示す。このため、幅広い領域の波長の光を利用可能な、非常に優れた光電変換能を有する素子を得ることができる。また、上述したように、本発明に係る化合物は、液晶としての性質を有する。このため、液晶を用いた、例えば表示素子などの各種光電子デバイスや、液晶相の持つ自己会合性を利用した高配向性分子薄膜からなる有機半導体層にも利用できる。   In particular, a compound having a plurality of oligothiophene skeletons exhibits a wide light absorption spectrum with respect to the phthalocyanine skeleton. For this reason, the element which has the very outstanding photoelectric conversion ability which can utilize the light of the wavelength of a wide area | region can be obtained. Further, as described above, the compound according to the present invention has properties as a liquid crystal. Therefore, it can be used for various optoelectronic devices using liquid crystals, such as display elements, and organic semiconductor layers composed of highly oriented molecular thin films using the self-association property of the liquid crystal phase.

さらに、オリゴチオフェン骨格及びフタロシアニン骨格のいずれも電子キャリア輸送能が優れているため、有用な電子材料として利用可能であることはいうまでもない。   Furthermore, it goes without saying that both the oligothiophene skeleton and the phthalocyanine skeleton are excellent in electron carrier transport ability and can be used as useful electronic materials.

なお、本発明に係るデバイスの主題は、キャリア輸送能の向上及び/又は光吸収能の改善がなされた新規デバイスを提供することに存するのであって、本明細書中に具体的に記載した個々の具体例に存するのではない。したがって、上記具体的なデバイス以外の機器・部品等も本発明の範囲に属することに留意しなければならない。   The subject of the device according to the present invention resides in providing a novel device with improved carrier transport capability and / or improved light absorption capability, and the individual devices specifically described in the present specification. It does not exist in the specific example. Therefore, it should be noted that devices / parts other than the specific devices belong to the scope of the present invention.

以下実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   Hereinafter, examples will be shown, and the embodiment of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Furthermore, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the embodiments obtained by appropriately combining the respective technical means disclosed are also included in the present invention. It is included in the technical scope of the invention.

図1に本発明に係る化合物の一例を製造する際の製造スキームを示す。各反応の詳細は、以下のとおりである。   FIG. 1 shows a production scheme for producing an example of the compound according to the present invention. Details of each reaction are as follows.

〔1〕2,3-Dicyanothiophene(図1中、“1”で示す化合物)
文献(D. W. MacDowellら、J. Org. Chem. 1977, 42, 3717)に従い、以下のように合成した。窒素雰囲気下、DMF(150ml)中に2,3-Dibromothiophene(2.8ml、24.8mmol)、第一シアン化銅(7.2g、80.4mmol)を加え、7時間還流した。冷却後、これをFeCl(28.6g)と2N塩酸(150ml)の混合溶液に加え、60〜70℃を保ち、窒素ガスを吹き込みながら1時間攪拌した。混合溶液を塩化メチレン(180ml×4)で抽出し、2N塩酸(200ml×3)、水(600ml)、炭酸水素ナトリウム飽和水溶液(200ml×2)、水(600ml)で順次洗浄した。無水硫酸マグネシウムで乾燥し、減圧下で溶媒を留去した。カラムクロマトグラフィー(シリカゲル、塩化メチレン:ヘキサン=3:1、Rf=0.4)で分取した後、クロロホルム:ヘキサン混合溶媒で再結晶を行い、無色の針状結晶として“1”の化合物を得た。(2.26g、68%);mp 116〜122℃(文献値115〜122°C)。H NMR(400MHz、CDCl、TMS)δ 7.83(d,1H、J=5.2Hz)、7.44(d,1H,J=5.2Hz)
〔2〕2,3-Dicyano-5-iodothiophene(図1中、“2”で示す化合物)
窒素雰囲気下、0.33MのLDA−THF溶液(9.6ml、3.1mmol)にTHF(30ml)を、反応容器を冷却しながら加え、−110℃以下に保ちながら2,3−ジシアノチオフェン(0.4g、3mmol)/THF溶液(8ml)を滴下した。さらに40分攪拌した後、1,2−ジヨードエタン(1.1g,4mmol)を加え、ゆっくり室温まで戻した。水(100ml)を加え、塩化メチレン(80ml×3)で抽出した。抽出液を水(150ml)、飽和食塩水(150ml)、水(150ml)で順次洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、カラムクロマトグラフィー(シリカゲル、塩化メチレン:ヘキサン=3:1、Rf=0.4)、再結晶(クロロホルム−ヘキサン)混合溶媒により精製し、淡黄色針状結晶として“2”の化合物を得た。(0.52g、67%);mp 115〜117°C
H NMR(60MHz、CDCl、TMS);δ 7.47(s,1H)
13C NMR(100MHz、CDCl、TMS);δ 138.09,123.00,120.24,109.99,109.46,82.77
元素分析:計算値CHINS:C,27.71;H,0.39;N,10.77.実測値:C,27.70;H,0.39;N,10.69.
〔3〕2,3-Dicyano-3’,3’’’’-dihexyl-5,5’2’,5’’;’2’’,5’’’;2’’’,5’’’’-quinquethiophene(図1中、“3”で示す化合物)
窒素雰囲気下、2,3-Dicyano-5-iodothiophene (図1中、“2”で示す化合物、206mg、0.79mmol)と2-tributylstanyl-4,3’’’-dihexyl-5,2’;5’2’’;5’’,2’’’-quaterthiophene(660mg,0.84mmol、T. Yamashiroら、Chem. Lett., 1999, 443. に従い合成)を無水トルエン(40ml)に溶解させ、30分間アルゴンガスを吹き込み脱気した後、Pd(PPh(70mg、60mmol)を加え18時間還流した。その後、セライトろ過を行い、溶媒を減圧下で留去した。カラムクロマトグラフィー(シリカゲル、塩化メチレン:ヘキサン=5:3、Rf=0.4)により精製し、赤色固体“3”で示す化合物を得た。(270mg,54%);mp88〜93°C
MS(MALDI−TOF)m/z630.52(計算値.630.98)
H NMR(400MHz、CDCl、TMS)δ7.27(s,1H)、7.20(d,1H,J=5.1Hz),7.15(d,1H,J=3.9Hz),7.13(d,1H,J=3.9 Hz),7.15(s,1H),7.09(d,1H,J=3.8Hz),7.03(d,1H,J=3.8 Hz),6.95(d,1H,J=5.1Hz),2.78(t,2H,J=6.7Hz),2.79(t,2H,J=6.7Hz),1.87(m,12H),1.39(m,8H),1.26(m,8H),0.92(t,3H,J=7.2Hz),0.89(t,3H,J=7.2 Hz).
13C NMR(100MHz、CDCl、TMS)δ145.20,140.76,139.79,138.08,135.97,135.74,134.16,133.04,130.12,130.10,129.96,129.67,127.23,126.16,124.14,123.89,123.70,123.64,119.85,113.85,111.73,110.87,31.54,31.48,30.43,30.15,29.37,29.26,29.13,29.09,22.52,22.50,14.01(×2).
元素分析:計算値C343422:C,64.72;H,5.43;N,4.44.実測値:C,64.99;H,5.42;N,4.63.
〔4〕Tetrakis(3’,3’’’’-dihexyl-5,5’;2’,5’’;’2’’,5’’’;2’’’,5’’’’-quinquethiopheno) [2,3]porphyrazine(図1中、“4”で示す化合物)
窒素雰囲気下、“3”で示す化合物(250mg,0.4mmol)を80℃の1−ペンタノール(3ml)に溶解し、金属リチウム(120mg)を少量ずつ加え、110℃で19時間攪拌した。反応終了後、アセトン(50ml)を加えて30分攪拌し、不溶物を濾過しアセトンで洗浄した。濾液を20mlに濃縮して酢酸(100ml)を加え一晩攪拌した後、粗製の“4”の化合物を沈殿物として濾取した。さらに、濾液を濃縮後、水(50ml)で希釈し、塩化メチレン(50ml×3)で抽出した。抽出液を水で洗浄後、硫酸ナトリウムで乾燥、減圧下で濃縮し、先の生成物と合わせてカラムクラマトグラフィー(アルミナ クロロホルム)により、緑色の成分を分取後、ゲル浸透液体クロマトグラフィー(カラム:JAIGEL−3H,4H,V=250ml)を行い、緑色固体を得た(40mg,16%)。mp>300°C
MS(MALDI−TOF)m/z2528.83(calcd.2525.92).元素分析:計算値C13613820:C,64.67,H,5.51,N,4.44. 実測値:C,64.64,H,5.49,N,4.50.
〔5〕Hexakis(butoxymethyl)tribenzo[d,i,n]-5-(3,3’’-dihexyl-2,2’;5’,2’’;5’’,2’’’-quarterthiophene-5-yl)thiopheno[2,3-s]porphyrazine(図1中、“5”で示す化合物)
窒素雰囲気下、“3”で示す化合物(130mg,0.2mmol)と4,5-bis(n-butoxymethyl)phthalonitrule (371mg,1.24mmol)を80℃の1−ペンタノールに溶解し、金属リチウム(0.3g)を少しずつ加えて、110℃で16時間攪拌した。反応終了後、アセトン(30ml)を加えて30分攪拌し、沈殿を濾別しアセトンで洗浄した。濾液を濃縮して酢酸(20ml)を加え、1時間攪拌し、目的物を沈殿として濾取した。濾液を減圧下濃縮し、水(100ml)を加え、塩化メチレン(80ml×3)で抽出した。抽出液を水(200ml)で洗浄、硫酸ナトリウムで乾燥後、減圧下で濃縮し、先の粗生成物と合わせてカラムクラマトグラフィー(塩化メチレン:THF=100:1、Rf=0.3)により、“5”で示す化合物を緑色固体として得た(99mg,18%)。mp133〜141°C
H NMR(400MHz,CDCl,TMS);δ8.92(s,1H),8.85(s,1H),8.59(s,1H),8.49(s,1H),8.48(s,1H),8.37(s,1H),7.79(s,1H),7.20(d,1H,J=5.4Hz),7.15(s,1H),7.03(d,1H,J=3.7Hz),7.01(d,1H,J=3.7Hz),6.98(d,1H,J=3.7Hz),6.97(s,1H),6.97(d,1H,J=5.4 Hz),6.94(d,1H,J=3.7Hz),4.99(s,2H),4.98(s,2H),4.92(s,2H),4.88(s,2H),4.88(s,2H),4.81(s,2H),3.80(m,12H),2.80(t,2H,J=6.7Hz),2.65(t,2H,J=6.7Hz),1.87(d,12H,J=3.7Hz),1.63(m,24H),1.43(m,8H),1.36(m,8H),1.11(m,18H),1.01(t,3H,J=7.2Hz),0.95(t,3H,J=7.2Hz)
MS(MALDI−TOF)m/z1531.97(calcd.1534.18).
元素分析:計算値C88108:C,68.89;H,7.10;N,7.30 実測値:C,69.74,H,7.23,N,7.26.
なお、上述の説明において、特に言及していない場合は、関連文献(D. W. MacDowellら、J. Org. Chem. 1977, 42, 3717、M. J. Cookら、J. Mater. Chem. 1997, 7, 5. 、M. J. Cookら、Tetrahedoron. 2000, 56, 4085. 、D. M. Knawbyら、Chem. Mater. 1997, 9, 535. 、M. Victoria Martinez-Diazら、Tetrahedron Lett. 2003, 44, 8475.)に基づいて行った。
[1] 2,3-Dicyanothiophene (compound indicated by “1” in FIG. 1)
According to the literature (DW MacDowell et al., J. Org. Chem. 1977, 42, 3717), it was synthesized as follows. Under a nitrogen atmosphere, 2,3-Dibromothiophene (2.8 ml, 24.8 mmol) and cuprous cyanide (7.2 g, 80.4 mmol) were added to DMF (150 ml) and refluxed for 7 hours. After cooling, this was added to a mixed solution of FeCl 3 (28.6 g) and 2N hydrochloric acid (150 ml), kept at 60 to 70 ° C., and stirred for 1 hour while blowing nitrogen gas. The mixed solution was extracted with methylene chloride (180 ml × 4), and washed successively with 2N hydrochloric acid (200 ml × 3), water (600 ml), saturated aqueous sodium hydrogencarbonate (200 ml × 2), and water (600 ml). The extract was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. After fractionation by column chromatography (silica gel, methylene chloride: hexane = 3: 1, Rf = 0.4), recrystallization was performed with a mixed solvent of chloroform: hexane, and the compound “1” was obtained as colorless needle crystals. Obtained. (2.26 g, 68%); mp 116-122 ° C (literature value 115-122 ° C). 1 H NMR (400 MHz, CDCl 3 , TMS) δ 7.83 (d, 1H, J = 5.2 Hz), 7.44 (d, 1H, J = 5.2 Hz)
[2] 2,3-Dicyano-5-iodothiophene (compound indicated by “2” in FIG. 1)
Under a nitrogen atmosphere, THF (30 ml) was added to a 0.33 M LDA-THF solution (9.6 ml, 3.1 mmol) while cooling the reaction vessel, and 2,3-dicyanothiophene ( 0.4 g, 3 mmol) / THF solution (8 ml) was added dropwise. After further stirring for 40 minutes, 1,2-diiodoethane (1.1 g, 4 mmol) was added, and the temperature was slowly returned to room temperature. Water (100 ml) was added and extracted with methylene chloride (80 ml × 3). The extract was washed successively with water (150 ml), saturated brine (150 ml) and water (150 ml), and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, purification by column chromatography (silica gel, methylene chloride: hexane = 3: 1, Rf = 0.4), recrystallization (chloroform-hexane) mixed solvent, pale yellow needle-like crystals As a result, a compound of “2” was obtained. (0.52 g, 67%); mp 115-117 ° C
1 H NMR (60 MHz, CDCl 3 , TMS); δ 7.47 (s, 1H)
13 C NMR (100 MHz, CDCl 3 , TMS); δ 138.09, 123.00, 120.24, 109.99, 109.46, 82.77
Elemental analysis: calculated C 6 HIN 2 S: C, 27.71; H, 0.39; N, 10.77. Found: C, 27.70; H, 0.39; N, 10.69.
[3] 2,3-Dicyano-3 ', 3''''-dihexyl-5,5'2', 5 '';'2'',5'''; 2 ''',5''''-quinquethiophene (compound indicated by “3” in FIG. 1)
Under a nitrogen atmosphere, 2,3-Dicyano-5-iodothiophene (the compound indicated by “2” in FIG. 1, 206 mg, 0.79 mmol) and 2-tributylstanyl-4,3 ′ ″-dihexyl-5,2 ′; 5′2 ″; 5 ″, 2 ′ ″-quaterthiophene (660 mg, 0.84 mmol, synthesized according to T. Yamashiro et al., Chem. Lett., 1999, 443.) was dissolved in anhydrous toluene (40 ml) After degassing by blowing argon gas for 30 minutes, Pd (PPh 3 ) 4 (70 mg, 60 mmol) was added and refluxed for 18 hours. Then, celite filtration was performed and the solvent was distilled off under reduced pressure. Purification by column chromatography (silica gel, methylene chloride: hexane = 5: 3, Rf = 0.4) gave a compound represented by a red solid “3”. (270 mg, 54%); mp 88-93 ° C
MS (MALDI-TOF) m / z 630.52 (calculated value 630.98)
1 H NMR (400 MHz, CDCl 3 , TMS) δ 7.27 (s, 1 H), 7.20 (d, 1 H, J = 5.1 Hz), 7.15 (d, 1 H, J = 3.9 Hz), 7.13 (d, 1H, J = 3.9 Hz), 7.15 (s, 1H), 7.09 (d, 1H, J = 3.8 Hz), 7.03 (d, 1H, J = 3.8 Hz), 6.95 (d, 1H, J = 5.1 Hz), 2.78 (t, 2H, J = 6.7 Hz), 2.79 (t, 2H, J = 6.7 Hz) , 1.87 (m, 12H), 1.39 (m, 8H), 1.26 (m, 8H), 0.92 (t, 3H, J = 7.2 Hz), 0.89 (t, 3H) , J = 7.2 Hz).
13 C NMR (100 MHz, CDCl 3 , TMS) δ 145.20, 140.76, 139.79, 138.08, 135.97, 135.74, 134.16, 133.04, 130.12, 130.10 , 129.96, 129.67, 127.23, 126.16, 124.14, 123.89, 123.70, 123.64, 119.85, 113.85, 111.73, 110.87, 31 .54, 31.48, 30.43, 30.15, 29.37, 29.26, 29.13, 29.09, 22.52, 22.50, 14.01 (× 2).
Calcd C 34 H 34 N 22 S 5 : C, 64.72; H, 5.43; N, 4.44. Found: C, 64.99; H, 5.42; N, 4.63.
[4] Tetrakis (3 ', 3''''-dihexyl-5,5'; 2 ', 5'';' 2 '', 5 ''';2''', 5 ''''-quinquethiopheno ) [2,3] porphyrazine (compound indicated by “4” in FIG. 1)
Under a nitrogen atmosphere, the compound represented by “3” (250 mg, 0.4 mmol) was dissolved in 1-pentanol (3 ml) at 80 ° C., metallic lithium (120 mg) was added little by little, and the mixture was stirred at 110 ° C. for 19 hours. After completion of the reaction, acetone (50 ml) was added and stirred for 30 minutes, insoluble matter was filtered and washed with acetone. The filtrate was concentrated to 20 ml, acetic acid (100 ml) was added and stirred overnight, and then the crude “4” compound was collected by filtration as a precipitate. Further, the filtrate was concentrated, diluted with water (50 ml), and extracted with methylene chloride (50 ml × 3). The extract is washed with water, dried over sodium sulfate, concentrated under reduced pressure, combined with the previous product, the green component is separated by column chromatography (alumina chloroform), and gel permeation liquid chromatography (column : JAIGEL-3H, 4H, V R = 250 ml) to obtain a green solid (40 mg, 16%). mp> 300 ° C
MS (MALDI-TOF) m / z 2528.83 (calcd. 2525.92). Elemental analysis: calculated value C 136 H 138 N 8 S 20 : C, 64.67, H, 5.51, N, 4.44. Actual value: C, 64.64, H, 5.49, N, 4.50.
[5] Hexakis (butoxymethyl) tribenzo [d, i, n] -5- (3,3 ''-dihexyl-2,2 ';5', 2 ''; 5 '', 2 '''-quarterthiophene- 5-yl) thiopheno [2,3-s] porphyrazine (compound indicated by “5” in FIG. 1)
In a nitrogen atmosphere, the compound represented by “3” (130 mg, 0.2 mmol) and 4,5-bis (n-butoxymethyl) phthalonitrule (371 mg, 1.24 mmol) are dissolved in 1-pentanol at 80 ° C. to obtain metallic lithium. (0.3 g) was added little by little, and the mixture was stirred at 110 ° C. for 16 hours. After completion of the reaction, acetone (30 ml) was added and stirred for 30 minutes, the precipitate was filtered off and washed with acetone. The filtrate was concentrated, acetic acid (20 ml) was added, and the mixture was stirred for 1 hour, and the target product was collected as a precipitate by filtration. The filtrate was concentrated under reduced pressure, water (100 ml) was added, and the mixture was extracted with methylene chloride (80 ml × 3). The extract was washed with water (200 ml), dried over sodium sulfate, concentrated under reduced pressure, and combined with the previous crude product by column chromatography (methylene chloride: THF = 100: 1, Rf = 0.3). , To give the compound represented by “5” as a green solid (99 mg, 18%). mp 133-141 ° C
1 H NMR (400 MHz, CDCl 3 , TMS); δ 8.92 (s, 1H), 8.85 (s, 1H), 8.59 (s, 1H), 8.49 (s, 1H), 8. 48 (s, 1H), 8.37 (s, 1H), 7.79 (s, 1H), 7.20 (d, 1H, J = 5.4 Hz), 7.15 (s, 1H), 7 .03 (d, 1H, J = 3.7 Hz), 7.01 (d, 1H, J = 3.7 Hz), 6.98 (d, 1H, J = 3.7 Hz), 6.97 (s, 1H), 6.97 (d, 1H, J = 5.4 Hz), 6.94 (d, 1H, J = 3.7 Hz), 4.99 (s, 2H), 4.98 (s, 2H) ), 4.92 (s, 2H), 4.88 (s, 2H), 4.88 (s, 2H), 4.81 (s, 2H), 3.80 (m, 12H), 2.80 (T, 2H, J = 6.7H z), 2.65 (t, 2H, J = 6.7 Hz), 1.87 (d, 12H, J = 3.7 Hz), 1.63 (m, 24H), 1.43 (m, 8H) 1.36 (m, 8H), 1.11 (m, 18H), 1.01 (t, 3H, J = 7.2 Hz), 0.95 (t, 3H, J = 7.2 Hz)
MS (MALDI-TOF) m / z 1531.97 (calcd. 1534.18).
Calcd C 88 H 108 N 8 O 6 S 5: C, 68.89; H, 7.10; N, 7.30 Found: C, 69.74, H, 7.23 , N, 7.26.
In addition, in the above description, unless otherwise mentioned, related documents (DW MacDowell et al., J. Org. Chem. 1977, 42, 3717, MJ Cook et al., J. Mater. Chem. 1997, 7, 5. MJ Cook et al. Tetrahedoron. 2000, 56, 4085. DM Knawby et al. Chem. Mater. 1997, 9, 535. M. Victoria Martinez-Diaz et al. Tetrahedron Lett. 2003, 44, 8475.) went.

次に、フタロシアニン骨格を有する化合物、上記“4”で示す化合物、及び上記“5”で示す化合物のそれぞれについて、吸収スペクトルを調べた。その結果を図2に示す。   Next, the absorption spectrum of each of the compound having a phthalocyanine skeleton, the compound represented by “4”, and the compound represented by “5” was examined. The result is shown in FIG.

図2(a)に示すように、フタロシアニン骨格のみを有する化合物は、従来知られているとおり、300nm〜400nm、及び650nm〜700nm付近に強いピークが認められた。   As shown in FIG. 2A, the compounds having only the phthalocyanine skeleton were observed to have strong peaks in the vicinity of 300 nm to 400 nm and 650 nm to 700 nm, as is conventionally known.

また、図2(b)に示すように、フタロシアニン骨格と4つのオリゴチオフェン骨格とが共役している上記化合物“4”は、400nm付近に強いピークが認められるとともに、300nm〜800nm付近まで幅広い吸収が認められた。   In addition, as shown in FIG. 2B, the compound “4” in which the phthalocyanine skeleton and the four oligothiophene skeletons are conjugated has a strong peak in the vicinity of 400 nm and a wide absorption from 300 to 800 nm. Was recognized.

また、図2(c)に示すように、フタロシアニン骨格と1つのオリゴチオフェン骨格とが共役している上記化合物“5”は、最も強い吸収ピークの位置は、フタロシアニン骨格のみを有する化合物と略同じであるが、さらに、フタロシアニン骨格のみを有する化合物に比べて、400nm〜600nmの吸収が強くなっていることがわかった。   In addition, as shown in FIG. 2C, the compound “5” in which the phthalocyanine skeleton and one oligothiophene skeleton are conjugated has substantially the same position of the strongest absorption peak as the compound having only the phthalocyanine skeleton. However, it was further found that the absorption at 400 nm to 600 nm was stronger than that of the compound having only the phthalocyanine skeleton.

以上のように、フタロシアニン骨格とオリゴチオフェン骨格とが共役している化合物は、これまでにない特異な吸収スペクトルを示し、その性質は、フタロシアニン骨格と共役するオリゴチオフェン骨格の数が増加するにつれ、顕著になることがわかった。したがって、本化合物は、全く新規な性質を有する化合物であり、例えば、光電気的、光電子的、電気的、電子的部品等に使用可能な有機半導体電子材料として非常に有用であると考えられる。   As described above, the compound in which the phthalocyanine skeleton and the oligothiophene skeleton are conjugated exhibits an unprecedented absorption spectrum, and the nature of the compound increases as the number of oligothiophene skeletons conjugated with the phthalocyanine skeleton increases. It turned out to be remarkable. Therefore, this compound is a compound having completely new properties, and is considered to be very useful as an organic semiconductor electronic material that can be used for, for example, a photoelectric, photoelectronic, electrical, and electronic component.

本発明に係る化合物は、例えば、色素増感太陽電池材料、薄膜光電変換素子、液晶、有機薄膜トランジスタ、有機キャリア輸送層を有する発光デバイス等といった、光電気的、光電子的、電気的、電子的部品等に使用可能な有機半導体電子材料に用いることができるため、非常に有望な産業上の利用可能性がある。   The compound according to the present invention includes, for example, a photoelectric-sensitized solar cell material, a thin-film photoelectric conversion element, a liquid crystal, an organic thin-film transistor, a light-emitting device having an organic carrier transport layer, and the like. Therefore, there is a very promising industrial applicability.

本発明に係る実施例に示す化合物の製造スキームの一例を示す図である。It is a figure which shows an example of the manufacturing scheme of the compound shown in the Example which concerns on this invention. (a)〜(c)は、本発明に係る実施例に示す化合物の吸収スペクトルを調べた結果を示す図である。(A)-(c) is a figure which shows the result of having investigated the absorption spectrum of the compound shown in the Example based on this invention.

Claims (16)

少なくともフタロシアニン骨格とオリゴチオフェン骨格とを有する化合物であって、
上記フタロシアニン骨格と上記オリゴチオフェン骨格とが共役していることを特徴とする化合物。
A compound having at least a phthalocyanine skeleton and an oligothiophene skeleton,
A compound in which the phthalocyanine skeleton and the oligothiophene skeleton are conjugated.
下記一般式(I)で表される化合物であって、
Figure 2006143680
上記一般式(I)中、Arは下記一般式(II)で表され、
Figure 2006143680
上記一般式(I)、(II)中、R1〜R12、R、及びR’は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜18のアルキル基であって当該アルキル基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキル基、炭素数1〜18のアルキルオキシ基であって当該アルキルオキシ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルオキシ基、炭素数1〜18のアルキルチオ基であって当該アルキルチオ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルチオ基、又は、芳香族基であることを特徴とする化合物。
A compound represented by the following general formula (I),
Figure 2006143680
In the general formula (I), Ar is represented by the following general formula (II),
Figure 2006143680
In the general formulas (I) and (II), R1 to R12, R, and R ′ are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, An alkyl group in which one or more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkyloxy group having 1 to 18 carbon atoms, and one in the alkyloxy group Or an alkyloxy group in which more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkylthio group having 1 to 18 carbon atoms, and one or more of the alkylthio groups A carbon atom is an alkylthio group which may be substituted with an oxygen atom, a nitrogen atom and / or a sulfur atom, or an aromatic group.
下記一般式(III)で表される化合物であって、
Figure 2006143680
上記一般式(III)中、Arは下記一般式(II)で表され、
Figure 2006143680
上記一般式(II)、(III)中、R1〜R8、R、及びR’は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜18のアルキル基であって当該アルキル基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキル基、炭素数1〜18のアルキルオキシ基であって当該アルキルオキシ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルオキシ基、炭素数1〜18のアルキルチオ基であって当該アルキルチオ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルチオ基、又は、芳香族基であることを特徴とする化合物。
A compound represented by the following general formula (III),
Figure 2006143680
In the general formula (III), Ar is represented by the following general formula (II),
Figure 2006143680
In the general formulas (II) and (III), R1 to R8, R, and R ′ are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, An alkyl group in which one or more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkyloxy group having 1 to 18 carbon atoms, and one in the alkyloxy group Or an alkyloxy group in which more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkylthio group having 1 to 18 carbon atoms, and one or more of the alkylthio groups A carbon atom is an alkylthio group which may be substituted with an oxygen atom, a nitrogen atom and / or a sulfur atom, or an aromatic group.
下記一般式(IV)で表される化合物であって、
Figure 2006143680
上記一般式(IV)中、Arは下記一般式(II)で表され、
Figure 2006143680
上記一般式(II)、(IV)中、R1〜R4、R、及びR’は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜18のアルキル基であって当該アルキル基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキル基、炭素数1〜18のアルキルオキシ基であって当該アルキルオキシ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルオキシ基、炭素数1〜18のアルキルチオ基であって当該アルキルチオ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルチオ基、又は、芳香族基であることを特徴とする化合物。
A compound represented by the following general formula (IV),
Figure 2006143680
In the general formula (IV), Ar is represented by the following general formula (II),
Figure 2006143680
In the general formulas (II) and (IV), R1 to R4, R, and R ′ are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, An alkyl group in which one or more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkyloxy group having 1 to 18 carbon atoms, and one in the alkyloxy group Or an alkyloxy group in which more carbon atoms may be substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, an alkylthio group having 1 to 18 carbon atoms, and one or more of the alkylthio groups A carbon atom is an alkylthio group which may be substituted with an oxygen atom, a nitrogen atom and / or a sulfur atom, or an aromatic group.
下記一般式(V)で表される化合物であって、
Figure 2006143680
上記一般式(V)中、Arは下記一般式(II)で表され、
Figure 2006143680
上記一般式(II)中、R及びR’は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜18のアルキル基であって当該アルキル基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキル基、炭素数1〜18のアルキルオキシ基であって当該アルキルオキシ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルオキシ基、炭素数1〜18のアルキルチオ基であって当該アルキルチオ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルチオ基、又は、芳香族基であることを特徴とする化合物。
A compound represented by the following general formula (V),
Figure 2006143680
In the general formula (V), Ar is represented by the following general formula (II),
Figure 2006143680
In the general formula (II), R and R ′ are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, and one or more carbon atoms in the alkyl group are An alkyl group optionally substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, or an alkyloxy group having 1 to 18 carbon atoms, wherein one or more carbon atoms in the alkyloxy group are oxygen atoms , A nitrogen atom, and / or an alkyloxy group optionally substituted with a sulfur atom, an alkylthio group having 1 to 18 carbon atoms, wherein one or more carbon atoms in the alkylthio group are an oxygen atom and a nitrogen atom And / or an alkylthio group which may be substituted with a sulfur atom, or an aromatic group.
下記の化学式(VI)で表される化合物。
Figure 2006143680
A compound represented by the following chemical formula (VI).
Figure 2006143680
下記の化学式(VII)で表される化合物。
Figure 2006143680
A compound represented by the following chemical formula (VII).
Figure 2006143680
請求項1〜7のいずれか1項に記載の化合物において、フタロシアニン骨格が金属イオンと錯体を形成していることを特徴とする化合物。   The compound according to any one of claims 1 to 7, wherein the phthalocyanine skeleton forms a complex with a metal ion. 下記一般式(VIII)で表される化合物であって、
Figure 2006143680
上記一般式(VIII)中、Arは、下記一般式(II)で表され、
Figure 2006143680
上記一般式(II)中、R及びR’は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜18のアルキル基であって当該アルキル基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキル基、炭素数1〜18のアルキルオキシ基であって当該アルキルオキシ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルオキシ基、炭素数1〜18のアルキルチオ基であって当該アルキルチオ基中の1個又はそれ以上の炭素原子が酸素原子、窒素原子、及び/又は硫黄原子で置換されていてもよいアルキルチオ基、又は、芳香族基であることを特徴とする化合物。
A compound represented by the following general formula (VIII),
Figure 2006143680
In the general formula (VIII), Ar is represented by the following general formula (II),
Figure 2006143680
In the general formula (II), R and R ′ are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 18 carbon atoms, and one or more carbon atoms in the alkyl group are An alkyl group optionally substituted with an oxygen atom, a nitrogen atom, and / or a sulfur atom, or an alkyloxy group having 1 to 18 carbon atoms, wherein one or more carbon atoms in the alkyloxy group are oxygen atoms , A nitrogen atom, and / or an alkyloxy group optionally substituted with a sulfur atom, an alkylthio group having 1 to 18 carbon atoms, wherein one or more carbon atoms in the alkylthio group are an oxygen atom and a nitrogen atom And / or an alkylthio group which may be substituted with a sulfur atom, or an aromatic group.
下記一般式(IX)で表される化合物であって、
Figure 2006143680
上記一般式(IX)中、Bはハロゲン原子であることを特徴とする化合物。
A compound represented by the following general formula (IX),
Figure 2006143680
In the above general formula (IX), B is a halogen atom.
上記一般式(IX)中、Bがヨウ素原子であることを特徴とする請求項10に記載の化合物。   In the said general formula (IX), B is an iodine atom, The compound of Claim 10 characterized by the above-mentioned. 請求項10に記載の化合物を製造する方法において、
下記一般式(X)で表される化合物を、有機金属試薬と反応させる第1の工程と、
上記第1の工程の後、ハロゲン化試薬と反応させる第2の工程と、を含むことを特徴とする製造方法。
Figure 2006143680
A method for producing the compound of claim 10,
A first step of reacting a compound represented by the following general formula (X) with an organometallic reagent;
And a second step of reacting with a halogenating reagent after the first step.
Figure 2006143680
上記ハロゲン化試薬が、ヨウ素化試薬であることを特徴とする請求項12に記載の製造方法。   The production method according to claim 12, wherein the halogenating reagent is an iodination reagent. 請求項1〜8のいずれか1項に記載の化合物の製造方法であって、
下記一般式(X)で表される化合物を、有機金属試薬と反応させる第1の工程と、
上記第1の工程の後、ハロゲン化試薬と反応させる第2の工程と、を含むことを特徴とする製造方法。
Figure 2006143680
It is a manufacturing method of the compound of any one of Claims 1-8,
A first step of reacting a compound represented by the following general formula (X) with an organometallic reagent;
And a second step of reacting with a halogenating reagent after the first step.
Figure 2006143680
請求項1〜8のいずれか1項に記載の化合物を含むことを特徴とするデバイス。   A device comprising the compound according to claim 1. 上記デバイスは、光電変換素子、色素増感太陽電池素子、有機EL素子、液晶表示素子、有機薄膜トランジスタ素子、又は有機キャリア輸送層を有する発光素子であることを特徴とする請求項15に記載のデバイス。
The device according to claim 15, wherein the device is a photoelectric conversion element, a dye-sensitized solar cell element, an organic EL element, a liquid crystal display element, an organic thin film transistor element, or a light emitting element having an organic carrier transport layer. .
JP2004338043A 2004-11-22 2004-11-22 Optoelectronic device Active JP4625947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338043A JP4625947B2 (en) 2004-11-22 2004-11-22 Optoelectronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338043A JP4625947B2 (en) 2004-11-22 2004-11-22 Optoelectronic device

Publications (2)

Publication Number Publication Date
JP2006143680A true JP2006143680A (en) 2006-06-08
JP4625947B2 JP4625947B2 (en) 2011-02-02

Family

ID=36623786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338043A Active JP4625947B2 (en) 2004-11-22 2004-11-22 Optoelectronic device

Country Status (1)

Country Link
JP (1) JP4625947B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108442A1 (en) * 2007-03-07 2008-09-12 Hiroshima University Novel porphyrazine derivative and intermediate thereof, method for production of novel porphyrazine derivative and intermediate thereof, and use of porphyrazine derivative
WO2009131183A1 (en) * 2008-04-24 2009-10-29 シャープ株式会社 Pyridine-type metal complex, photoelectrode comprising the metal complex, and dye-sensitized solar cell comprising the photoelectrode
WO2011065133A1 (en) 2009-11-26 2011-06-03 Dic株式会社 Material for photoelectric conversion element, and photoelectric conversion element
CN102432982A (en) * 2011-08-30 2012-05-02 同济大学 Method for preparing phthalocyanine-carbon nanotube-polythiophene composite light-sensitive material by click chemical method
WO2012095524A1 (en) * 2011-01-14 2012-07-19 Solvay Sa Phthalocyanine dyes, method of making them, and their use in dye sensitized solar cells
JP2012528101A (en) * 2009-05-26 2012-11-12 ビーエーエスエフ ソシエタス・ヨーロピア Use of phthalocyanine compounds having aryl or hetaryl substituents in organic solar cells
WO2012157110A1 (en) 2011-05-19 2012-11-22 Dic株式会社 Phthalocyanine nanorods and photoelectric conversion element
WO2012172107A1 (en) * 2011-06-17 2012-12-20 Solvay Sa Dyes, method of making them, and their use in dye sensitized solar cells
US8470204B2 (en) 2009-04-23 2013-06-25 Dic Corporation Phthalocyanine nanowires, ink composition and electronic element each containing same, and method for producing phthalocyanine nanowires
CN111461586A (en) * 2019-05-28 2020-07-28 上海汽车集团股份有限公司 Dual-target optimization method, device and medium for transportation cost and transportation time

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112159519B (en) * 2020-09-24 2021-07-06 中国科学院长春光学精密机械与物理研究所 Porous poly-phthalocyanine laser protection material with carbon bridging and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291187A (en) * 1985-06-19 1986-12-20 Mitsubishi Chem Ind Ltd Optical recording material
DE3941279A1 (en) * 1988-12-17 1990-06-21 Basf Ag New metal phthalocyanine type cpds. derived from heterocyclic cpds. - forming electroconductive system useful e.g. as battery electrode, shield material etc.
JP2000072975A (en) * 1998-08-31 2000-03-07 Toyo Ink Mfg Co Ltd Charge-generating material and electrophotographic photoreceptor
JP2003301116A (en) * 2002-04-11 2003-10-21 Konica Minolta Holdings Inc Organic semiconductor material, field-effects transistor using the same, and switching element
JP2004006758A (en) * 2002-04-11 2004-01-08 Konica Minolta Holdings Inc Organic semiconductor material, field effect transistor and switching element employing it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291187A (en) * 1985-06-19 1986-12-20 Mitsubishi Chem Ind Ltd Optical recording material
DE3941279A1 (en) * 1988-12-17 1990-06-21 Basf Ag New metal phthalocyanine type cpds. derived from heterocyclic cpds. - forming electroconductive system useful e.g. as battery electrode, shield material etc.
JP2000072975A (en) * 1998-08-31 2000-03-07 Toyo Ink Mfg Co Ltd Charge-generating material and electrophotographic photoreceptor
JP2003301116A (en) * 2002-04-11 2003-10-21 Konica Minolta Holdings Inc Organic semiconductor material, field-effects transistor using the same, and switching element
JP2004006758A (en) * 2002-04-11 2004-01-08 Konica Minolta Holdings Inc Organic semiconductor material, field effect transistor and switching element employing it

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108442A1 (en) * 2007-03-07 2008-09-12 Hiroshima University Novel porphyrazine derivative and intermediate thereof, method for production of novel porphyrazine derivative and intermediate thereof, and use of porphyrazine derivative
EP2664655A1 (en) 2007-03-07 2013-11-20 Hiroshima University Novel synthesis for 5-alkyl-2,3-dihalogenthiophenes
JP5252508B2 (en) * 2007-03-07 2013-07-31 国立大学法人広島大学 ORGANIC SEMICONDUCTOR MATERIAL, ITS MANUFACTURING METHOD, AND USE OF ORGANIC SEMICONDUCTOR MATERIAL
WO2009131183A1 (en) * 2008-04-24 2009-10-29 シャープ株式会社 Pyridine-type metal complex, photoelectrode comprising the metal complex, and dye-sensitized solar cell comprising the photoelectrode
JP5504154B2 (en) * 2008-04-24 2014-05-28 シャープ株式会社 Pyridine-based metal complex, photoelectrode using the same, and dye-sensitized solar cell including the same
US8470204B2 (en) 2009-04-23 2013-06-25 Dic Corporation Phthalocyanine nanowires, ink composition and electronic element each containing same, and method for producing phthalocyanine nanowires
JP2012528101A (en) * 2009-05-26 2012-11-12 ビーエーエスエフ ソシエタス・ヨーロピア Use of phthalocyanine compounds having aryl or hetaryl substituents in organic solar cells
US8629431B2 (en) 2009-11-26 2014-01-14 Dic Corporation Material for photoelectric conversion device and photoelectric conversion device
WO2011065133A1 (en) 2009-11-26 2011-06-03 Dic株式会社 Material for photoelectric conversion element, and photoelectric conversion element
WO2012095524A1 (en) * 2011-01-14 2012-07-19 Solvay Sa Phthalocyanine dyes, method of making them, and their use in dye sensitized solar cells
US9080055B2 (en) 2011-01-14 2015-07-14 Solvay Sa Photoelectric conversion device using TiOF2 as semiconductor
WO2012157110A1 (en) 2011-05-19 2012-11-22 Dic株式会社 Phthalocyanine nanorods and photoelectric conversion element
WO2012172107A1 (en) * 2011-06-17 2012-12-20 Solvay Sa Dyes, method of making them, and their use in dye sensitized solar cells
CN102432982A (en) * 2011-08-30 2012-05-02 同济大学 Method for preparing phthalocyanine-carbon nanotube-polythiophene composite light-sensitive material by click chemical method
CN111461586A (en) * 2019-05-28 2020-07-28 上海汽车集团股份有限公司 Dual-target optimization method, device and medium for transportation cost and transportation time
CN111461586B (en) * 2019-05-28 2024-03-19 上海汽车集团股份有限公司 Dual-objective optimization method, device and medium for transportation cost and transportation time

Also Published As

Publication number Publication date
JP4625947B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
KR101267854B1 (en) π-CONJUGATED COMPOUND HAVING CARDO STRUCTURE, PROCESS FOR PREPARING SAME AND USE OF SAME
KR20150058301A (en) Metal compounds, methods, and uses thereof
TW201002721A (en) Dioxaanthanthrene compound and semiconductor device
CN113929709B (en) Organic compound containing boron and nitrogen and organic electroluminescent device containing same
JP4625947B2 (en) Optoelectronic device
TW200938543A (en) Compound having substituted pyridyl group and pyridoindole ring structure linked through phenylene group, and organic electroluminescent device
CN108203417A (en) Organic compound and organic electroluminescence device based on fluorenes
CN107880058A (en) A kind of compound containing benzheterocycle and its application in OLED
JP5757609B2 (en) Donor-π-acceptor compound, fluorescent dye compound, and fluorescent dye compound for dye-sensitized solar cell
CN114644632B (en) Thermal activation delayed fluorescent material based on bipyridophenazine receptor and preparation method and application thereof
CN107868083A (en) A kind of organic compound of fluorenes of 9,9 &#39; spiral shell two for core and its application on organic electroluminescence device
US10249833B2 (en) Phthalocyanine compound and synthesis method and use thereof
CN109912564A (en) It is a kind of using cyano pyridine as the compound of core and its application in OLED device
CN107868049A (en) Organic compound and organic electroluminescence device using the fluorenes of 9,9 &#39; spiral shell two as core
Ye et al. AIEE-active blue-emitting molecules derived from methoxyl-decorated triarylcyclopentadienes: Synthesis, crystal structures, photophysical and electroluminescence properties
CN109575046A (en) A kind of four aryl of dithienothiophene replace and double luxuriant and rich with fragrance condensed compounds and preparation
Shi et al. Solution concentration-dependent tunable emission in cyclometalated iridium complex bearing perylene diimide (PDI) ligand: From visible to near-infrared emission
TW201209105A (en) Fusing porphyrins with polycyclic aromatic hydrocarbons and heterocycles for optoelectronic applications
JP5381976B2 (en) Liquid porphyrin derivative and method for producing the same
JP6945841B2 (en) Near-infrared absorption squarylium derivatives and organic electronic devices containing them
CN114933609B (en) N-type organic semiconductor material based on isoindigo fluorine boron hybridization, preparation method thereof and organic field effect transistor
JP4913007B2 (en) Novel liquid crystalline n-type organic conductor material
CN114478588B (en) Organic compound based on pyrene and indolocarbazole, organic electroluminescent composition and organic electroluminescent device
CN118005672A (en) Synthesis method of silicon-containing electron transport material
Wu et al. Nitrogen introduction of spirobifluorene to form α-, β-, γ-, and δ-aza-9, 9′-spirobifluorenes: New bipolar system for efficient blue organic light-emitting diodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150