JP5849255B2 - Circularly polarized light-emitting rare earth complex - Google Patents

Circularly polarized light-emitting rare earth complex Download PDF

Info

Publication number
JP5849255B2
JP5849255B2 JP2011269916A JP2011269916A JP5849255B2 JP 5849255 B2 JP5849255 B2 JP 5849255B2 JP 2011269916 A JP2011269916 A JP 2011269916A JP 2011269916 A JP2011269916 A JP 2011269916A JP 5849255 B2 JP5849255 B2 JP 5849255B2
Authority
JP
Japan
Prior art keywords
rare earth
polarized light
circularly polarized
earth complex
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011269916A
Other languages
Japanese (ja)
Other versions
JP2013121921A (en
JP2013121921A5 (en
Inventor
順平 湯浅
順平 湯浅
紘史 上野
紘史 上野
長谷川 靖哉
靖哉 長谷川
壯 河合
壯 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Institute of Science and Technology NUC
Original Assignee
Nara Institute of Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nara Institute of Science and Technology NUC filed Critical Nara Institute of Science and Technology NUC
Priority to JP2011269916A priority Critical patent/JP5849255B2/en
Publication of JP2013121921A publication Critical patent/JP2013121921A/en
Publication of JP2013121921A5 publication Critical patent/JP2013121921A5/ja
Application granted granted Critical
Publication of JP5849255B2 publication Critical patent/JP5849255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

本発明は、円偏光発光性を示す希土類錯体、並びにそれを利用した光学機能材料及びセキュリティー技術に関する。   The present invention relates to a rare earth complex exhibiting circularly polarized light emission, an optical functional material and security technology using the same.

近年、円偏光発光性を示す光学機能材料を有機EL素子と組み合わせることにより、光学機能材料を3次元表示ディスプレイや電子ペーパーに応用することが期待されている。また、円偏光発光性を示す光学機能材料は、通常の可視光の中に右円偏光及び左円偏光をセキュリティー情報として付与することができることから、セキュリティーマーカーや不可視性インキの原料としても注目を集めている。   In recent years, it is expected that an optical functional material is applied to a three-dimensional display or electronic paper by combining an optical functional material exhibiting circularly polarized light emission with an organic EL element. In addition, optically functional materials that exhibit circularly polarized light emission can be given security information such as right circularly polarized light and left circularly polarized light in normal visible light. Collecting.

このような光学機能材料の一つに希土類錯体がある。例えば、BINAPOをはじめとするビナフチル構造配位子と、facam(3-trifluoroacetyl-D-camphorate)誘導体の両方が希土類イオンに配位した希土類錯体、TPPOをはじめとするホスフィンオキシド誘導体とfacam誘導体の両方が希土類イオンに配位した希土類錯体が報告されている(特許文献1〜3)。これらの希土類錯体は、ビナフチル構造配位子やホスフィンオキシド誘導体のジアステレオマー構造に由来する不斉配位子場により、右円偏光及び左円偏光を選択的に発光する、即ち円偏光発光性を有することが分かっている。一方、4個のhfbc(3-hepatafluoro-butylryl-(+)-camphorate)が希土類イオンに配位した希土類錯体や、不斉配位子場環境下における希土類錯体が、円偏光発光性を示すことが報告されている(非特許文献1及び2)。これらの希土類錯体は8配位の構造となっている。また、不斉ビスオキサゾリンピリジン骨格配位子とアセチルアセトン誘導体が配位した希土類錯体が報告されているが(特許文献4)、この希土類錯体は9配位の構造となっている。希土類錯体は、一般に8配位又は9配位の構造をとることが多い。   One such optical functional material is a rare earth complex. For example, both binaphthyl ligands such as BINAPO and rare earth complexes in which both facam (3-trifluoroacetyl-D-camphorate) derivatives are coordinated to rare earth ions, both phosphine oxide derivatives such as TPPO and facam derivatives Have been reported (Patent Documents 1 to 3). These rare earth complexes selectively emit right and left circularly polarized light by the asymmetric ligand field derived from the diastereomeric structure of binaphthyl structure ligands and phosphine oxide derivatives, that is, circularly polarized light emission. Is known to have On the other hand, rare earth complexes in which four hfbc (3-hepatafluoro-butylryl-(+)-camphorate) coordinate to rare earth ions and rare earth complexes in an asymmetric ligand field environment exhibit circularly polarized light emission. Have been reported (Non-Patent Documents 1 and 2). These rare earth complexes have an 8-coordinate structure. Further, a rare earth complex in which an asymmetric bisoxazoline pyridine skeleton ligand and an acetylacetone derivative are coordinated has been reported (Patent Document 4), and this rare earth complex has a nine-coordinate structure. Rare earth complexes generally have an 8-coordinate or 9-coordinate structure.

分子の円偏光発光性はg値(異方性因子)で示すことができる。g値は次のように定義される値である。
CDスペクトルからのg値=Δε/ε=2(εL−εR)/(εL+εR)
(式中、εLは左円偏光における吸収係数、εRは右円偏光における吸収係数を表す。)
CPLスペクトルからのg値=ΔI/I=2(IL−IR)/(IL+IR)
(式中、ILは左回りの円偏光発光強度、IRは右回りの円偏光発光強度を表す。)
なお、g値をCDスペクトルから求める場合及びCPLスペクトルから求める場合のいずれにおいても、理論上、g値の最大絶対値は2である。
The circularly polarized light-emitting property of a molecule can be represented by a g value (anisotropic factor). The g value is a value defined as follows.
G value from CD spectrum = Δε / ε = 2 (εL−εR) / (εL + εR)
(In the formula, εL represents an absorption coefficient in left circularly polarized light, and εR represents an absorption coefficient in right circularly polarized light.)
G value from CPL spectrum = ΔI / I = 2 (IL−IR) / (IL + IR)
(In the formula, IL represents counterclockwise circularly polarized light emission intensity, and IR represents clockwise circularly polarized light emission intensity.)
Note that the maximum absolute value of the g value is 2 theoretically in both cases where the g value is obtained from the CD spectrum and the CPL spectrum.

従来の有機化合物のCPLスペクトルにおけるg値は0.001程度である。これに対して、ビナフチル構造配位子とfacam誘導体の両方が配位した希土類錯体のg値は0.01程度であり、ホスフィンオキシド誘導体とfacam誘導体の両方が配位した希土類錯体のg値は0.44であることが報告されている。なお、希土類錯体が示すg値の世界最大値は約1.3である(非特許文献1参照)。
従って、これら希土類錯体のg値は従来の有機化合物のg値に比較すると格段に高く、円偏光発光性に優れているといえる。
The g value in the CPL spectrum of a conventional organic compound is about 0.001. In contrast, the g value of the rare earth complex coordinated by both the binaphthyl structure ligand and the facam derivative is about 0.01, and the g value of the rare earth complex coordinated by both the phosphine oxide derivative and the facam derivative is 0.44. It has been reported. In addition, the world largest value of g value which a rare earth complex shows is about 1.3 (refer nonpatent literature 1).
Accordingly, the g value of these rare earth complexes is much higher than that of conventional organic compounds, and it can be said that the rare earth complex is excellent in circularly polarized light emission.

特開2003−327590号公報JP 2003-327590 A 特開2005−097240号公報Japanese Patent Laying-Open No. 2005-097240 WO2008/111293WO2008 / 111293 WO2011/111607WO2011 / 111607

Jamie L. Lunkley, Dai Shirotani, Kazuaki Yamanari, Sumio Kaizaki, Gilles Muller: J. AM. CHEM. SOC. (2008) 130, 13814-13815.Jamie L. Lunkley, Dai Shirotani, Kazuaki Yamanari, Sumio Kaizaki, Gilles Muller: J. AM. CHEM. SOC. (2008) 130, 13814-13815. J. Sokolnicki, J. Legendziewicz, J. P. Riehl: J. Phys. Chem. B 106 (2002) 1508.J. Sokolnicki, J. Legendziewicz, J. P. Riehl: J. Phys. Chem. B 106 (2002) 1508.

しかしながら、希土類錯体と偏光板等を組み合わせたセキュリティー技術に応用する上では、上記した程度のg値では未だ不十分であって、より高い円偏光発光性を有する新規希土類錯体の開発が望まれていた。   However, the g value of the above degree is still insufficient for application to security technology combining a rare earth complex and a polarizing plate, and development of a new rare earth complex having higher circularly polarized light emission is desired. It was.

本発明は上記課題を解決するために成されたものであり、本発明の目的は、より高い円偏光発光性を有する希土類錯体を提供することにある。また、本発明の目的は、セキュリティー技術分野について十分に応用可能な円偏光発光性を有する希土類錯体、並びにそれを利用した光学機能材料及びセキュリティー技術を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a rare earth complex having higher circularly polarized light emission. Another object of the present invention is to provide a rare earth complex having a circularly polarized light emission property that can be sufficiently applied in the field of security technology, an optical functional material using the rare earth complex, and a security technology.

本発明者らは、鋭意研究を重ねた結果、希土類錯体は配位数によって異なる円偏光発光性を示すことを見出し、8配位型の希土類錯体よりも高い円偏光発光性を示す7配位型の希土類錯体を得るに至った。
本明細書では、円偏光発光性を有する希土類錯体を円偏光発光性希土類錯体と呼ぶ。
As a result of intensive studies, the present inventors have found that rare earth complexes exhibit circularly polarized light emission that varies depending on the coordination number, and 7-coordinated light that exhibits higher circularly polarized light emission than 8-coordinated rare earth complexes. The type of rare earth complex has been obtained.
In this specification, a rare earth complex having circularly polarized light emission is referred to as a circularly polarized light emitting rare earth complex.

本発明に係る円偏光発光性希土類錯体は、7配位型の円偏光発光性希土類錯体であって、
一般式(1)
(式中、Ln(III)は3価の希土類イオンを表し、A1〜A4は炭素数3〜20の基を表し、R1〜R2はN原子、O原子のいずれかを少なくとも1個含む5員環又は6員環の共役複素環を表す。)
で表され、
R3は二座の不斉なアセチルアセトン配位子であって、
一般式(2)
(式中、L1〜L3は同一又は異なる水素原子、重水素原子、ハロゲン原子、炭素数1〜20の基、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基のいずれかを表す。さらに、L1とL2又はL1とL3は互いに結合して環構造を形成していてもよい。)
で表され、
R1に含まれるN原子、O原子のいずれかと、R2に結合しているP原子が結合し、前記N原子、O原子のいずれかと前記P原子を含む4〜6員環の環構造が形成されていることを特徴とする。
The circularly polarized light-emitting rare earth complex according to the present invention is a seven-coordinate circularly polarized light-emitting rare earth complex,
General formula (1)
(In the formula, Ln (III) represents a trivalent rare earth ion, A1 to A4 represent a group having 3 to 20 carbon atoms, and R1 to R2 represent a 5-membered member containing at least one of an N atom and an O atom. Represents a ring or a 6-membered conjugated heterocyclic ring.)
Represented by
R3 is a bidentate asymmetric acetylacetone ligand,
General formula (2)
(Wherein L1 to L3 are the same or different hydrogen atom, deuterium atom, halogen atom, group having 1 to 20 carbon atoms, hydroxyl group, nitro group, amino group, sulfonyl group, cyano group, silyl group, phosphonic acid group, It represents either a diazo group or a mercapto group, and L1 and L2 or L1 and L3 may be bonded to each other to form a ring structure.)
Represented by
Either the N atom or O atom contained in R1 and the P atom bonded to R2 are bonded to form a 4- to 6-membered ring structure containing either the N atom or O atom and the P atom. It is characterized by.

上記した7配位型の円偏光発光性希土類錯体は、
一般式(8)
(式中、Ln(III)は3価の希土類イオンを表し、A1〜A4は炭素数3〜20の基を表し、R1〜R2はN原子、O原子のいずれかを少なくとも1個含む5員環又は6員環の共役複素環を表す。)
で表され、
R3は二座の不斉なアセチルアセトン配位子であって、
一般式(2)
(式中、L1〜L3は同一又は異なる水素原子、重水素原子、ハロゲン原子、炭素数1〜20の基、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基のいずれかを表す。さらに、L1とL2又はL1とL3は互いに結合して環構造を形成していてもよい。)
で表されることを特徴とする、8配位型の円偏光発光性希土類錯体と互変異性の関係にある。
The seven-coordinate circularly polarized light-emitting rare earth complex described above is
General formula (8)
(In the formula, Ln (III) represents a trivalent rare earth ion, A1 to A4 represent a group having 3 to 20 carbon atoms, and R1 to R2 represent a 5-membered member containing at least one of an N atom and an O atom. Represents a ring or a 6-membered conjugated heterocyclic ring.)
Represented by
R3 is a bidentate asymmetric acetylacetone ligand,
General formula (2)
(Wherein L1 to L3 are the same or different hydrogen atom, deuterium atom, halogen atom, group having 1 to 20 carbon atoms, hydroxyl group, nitro group, amino group, sulfonyl group, cyano group, silyl group, phosphonic acid group, It represents either a diazo group or a mercapto group, and L1 and L2 or L1 and L3 may be bonded to each other to form a ring structure.)
It has a tautomeric relationship with an 8-coordinate type circularly polarized light-emitting rare earth complex characterized by the following.

本発明によれば、従来の希土類錯体が示すことのなかった、極めて高い円偏光発光性を有する円偏光発光性希土類錯体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the circularly polarized light emitting rare earth complex which has the extremely high circularly polarized light emission property which the conventional rare earth complex did not show can be provided.

実施例1に係る円偏光発光性希土類錯体の合成手順の一例を示す図。The figure which shows an example of the synthetic | combination procedure of the circularly polarized light-emitting rare earth complex which concerns on Example 1. FIG. 実施例1に係る円偏光発光性希土類錯体の結晶(A)のX線結晶構造解析の結果を示す図。The figure which shows the result of the X-ray crystal structure analysis of the crystal | crystallization (A) of the circularly polarized light emitting rare earth complex which concerns on Example 1. FIG. 実施例1に係る円偏光発光性希土類錯体の結晶(B)のX線結晶構造解析の結果を示す図。The figure which shows the result of the X-ray crystal structure analysis of the crystal | crystallization (B) of the circularly polarized light-emitting rare earth complex which concerns on Example 1. FIG. 実施例1に係る円偏光発光性希土類錯体の結晶(A)の化学式を示す図。The figure which shows chemical formula of the crystal | crystallization (A) of the circularly polarized light-emitting rare earth complex which concerns on Example 1. FIG. 実施例1に係る円偏光発光性希土類錯体の結晶(B)の化学式を示す図。The figure which shows chemical formula of the crystal | crystallization (B) of the circularly-polarized luminescent rare earth complex which concerns on Example 1. FIG. 実施例1に係る円偏光発光性希土類錯体の発光スペクトル。The emission spectrum of the circularly polarized light-emitting rare earth complex according to Example 1. 実施例1に係る円偏光発光性希土類錯体のアセトン溶液におけるCPLスペクトルの測定結果を示す図。The figure which shows the measurement result of the CPL spectrum in the acetone solution of the circularly-polarized luminescent rare earth complex which concerns on Example 1. FIG. 実施例1に係る円偏光発光性希土類錯体におけるg値の溶媒依存性を示す表。The table | surface which shows the solvent dependence of g value in the circularly polarized light emitting rare earth complex which concerns on Example 1. FIG. 実施例2に係る円偏光発光性希土類錯体のアセトニトリル溶液におけるCDスペクトルの測定結果を示す図。The figure which shows the measurement result of CD spectrum in the acetonitrile solution of the circularly-polarized luminescent rare earth complex which concerns on Example 2. FIG. 実施例2に係る円偏光発光性希土類錯体の各溶媒溶液におけるCPLスペクトルの測定結果を示す図。The figure which shows the measurement result of the CPL spectrum in each solvent solution of the circularly polarized light emitting rare earth complex which concerns on Example 2. FIG. 実施例3に係る円偏光発光性希土類錯体の合成手順の一例を示す図。The figure which shows an example of the synthetic | combination procedure of the circularly polarized light emitting rare earth complex which concerns on Example 3. FIG. 実施例3に係る円偏光発光性希土類錯体における発光スペクトルの測定結果を示す図。The figure which shows the measurement result of the emission spectrum in the circularly-polarized luminescent rare earth complex which concerns on Example 3. FIG. 実施例3に係る円偏光発光性希土類錯体におけるCPLスペクトルの測定結果を示す図。The figure which shows the measurement result of the CPL spectrum in the circularly polarized light emitting rare earth complex which concerns on Example 3. FIG. 実施例3に係る円偏光発光性希土類錯体のアセトン/アセトニトリル混合溶液について、アセトンの混合比率に対して相対発光強度 (Irel)及びg値をプロットしたグラフ。The graph which plotted relative light-emission intensity | strength (Irel) and g value with respect to the mixing ratio of acetone about the acetone / acetonitrile mixed solution of the circularly polarized light-emitting rare earth complex which concerns on Example 3. FIG.

まず、本発明に係る7配位型の円偏光発光性希土類錯体の構造的特徴について説明する。
本発明に係る7配位型の円偏光発光性希土類錯体は、
一般式(1)
(式中、Ln(III)は3価の希土類イオンを表し、A1〜A4は炭素数3〜20の基を表し、R1〜R2はN原子、O原子のいずれかを少なくとも1個含む5員環又は6員環の共役複素環を表す。)
で表され、
R3は二座の不斉なアセチルアセトン配位子であって、
一般式(2)
(式中、L1〜L3は同一又は異なる水素原子、重水素原子、ハロゲン原子、炭素数1〜20の基、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基のいずれかを表す。さらに、L1とL2又はL1とL3は互いに結合して環構造を形成していてもよい。)
で表され、
R1に含まれるN原子、O原子のいずれかと、R2に結合しているP原子が結合し、前記N原子、O原子のいずれかと前記P原子を含む4〜6員環の環構造が形成されていることを特徴としている。
First, the structural features of the seven-coordinate circularly polarized light-emitting rare earth complex according to the present invention will be described.
The seven-coordinate circularly polarized light-emitting rare earth complex according to the present invention is
General formula (1)
(In the formula, Ln (III) represents a trivalent rare earth ion, A1 to A4 represent a group having 3 to 20 carbon atoms, and R1 to R2 represent a 5-membered member containing at least one of an N atom and an O atom. Represents a ring or a 6-membered conjugated heterocyclic ring.)
Represented by
R3 is a bidentate asymmetric acetylacetone ligand,
General formula (2)
(Wherein L1 to L3 are the same or different hydrogen atom, deuterium atom, halogen atom, group having 1 to 20 carbon atoms, hydroxyl group, nitro group, amino group, sulfonyl group, cyano group, silyl group, phosphonic acid group, It represents either a diazo group or a mercapto group, and L1 and L2 or L1 and L3 may be bonded to each other to form a ring structure.)
Represented by
Either the N atom or O atom contained in R1 and the P atom bonded to R2 are bonded to form a 4- to 6-membered ring structure containing either the N atom or O atom and the P atom. It is characterized by having.

なお、R3は不斉な配位子であることから、L1〜L3が全て同じである場合、L1及びL3が同じである場合は除く。   In addition, since R3 is an asymmetric ligand, when L1 to L3 are all the same, the case where L1 and L3 are the same is excluded.

さらに具体的には、本発明に係る7配位型の円偏光発光性希土類錯体は、
一般式(3)
(式中、X1〜X6は同一又は異なる水素原子、重水素原子、ハロゲン原子、炭素数1〜20の基、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、ホスホン酸基、ジアゾ基、メルカプト基のいずれかを表す。)
で表され、
A1〜A4は同一又は異なる炭素数3〜20の炭素芳香族炭化水素基、複素芳香族化合物基または炭化水素基
のいずれかで表すことができる。
More specifically, the seven-coordinate circularly polarized light-emitting rare earth complex according to the present invention is:
General formula (3)
(Wherein X1 to X6 are the same or different hydrogen atom, deuterium atom, halogen atom, group having 1 to 20 carbon atoms, hydroxyl group, nitro group, amino group, sulfonyl group, cyano group, phosphonic acid group, diazo group, Represents any of the mercapto groups.)
Represented by
A1 to A4 can be represented by any of the same or different carbon aromatic hydrocarbon groups having 3 to 20 carbon atoms, heteroaromatic compound groups, or hydrocarbon groups.

本発明に係る7配位型の円偏光発光性希土類錯体の大きな特徴は、ジホスフィンオキシド配位子が単座の配位子として希土類イオンと結合している点にある。従来、ジホスフィンオキシド配位子は、二座の配位子として希土類イオンと結合する例しか知られていなかった。しかし、本発明では、ジホスフィンオキシド配位子が二座の配位子として希土類イオンに結合する8配位型の円偏光発光性希土類錯体を互変異性化することにより、7配位型の円偏光発光性希土類錯体を得ることを見出した。   A major feature of the seven-coordinate circularly polarized light-emitting rare earth complex according to the present invention is that a diphosphine oxide ligand is bonded to a rare earth ion as a monodentate ligand. Conventionally, diphosphine oxide ligands have only been known to bind to rare earth ions as bidentate ligands. However, in the present invention, a seven-coordinate type circularly polarized light-emitting rare earth complex in which a diphosphine oxide ligand binds to a rare earth ion as a bidentate ligand is tautomerized. It has been found that a polarized luminescent rare earth complex is obtained.

即ち、本発明に係る8配位型の円偏光発光性希土類錯体は、本発明に係る7配位型の円偏光発光性希土類錯体の互変異性体であって、二座のジホスフィンオキシド配位子1個と、二座の不斉なアセチルアセトン配位子3個を、希土類イオンに配位させたものである。
本発明に係る8配位型の円偏光発光性希土類錯体は、
一般式(8)
(式中、Ln(III)は3価の希土類イオンを表し、A1〜A4は炭素数3〜20の基を表し、R1〜R2はN原子、O原子のいずれかを少なくとも1個含む5員環又は6員環の共役複素環を表す。)
で表され、
R3は二座の不斉なアセチルアセトン配位子であって、
一般式(2)
(式中、L1〜L3は同一又は異なる水素原子、重水素原子、ハロゲン原子、炭素数1〜20の基、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基のいずれかを表す。さらに、L1とL2又はL1とL3は互いに結合して環構造を形成していてもよい。)
で表すことができる。
That is, the eight-coordinate circularly polarized light-emitting rare earth complex according to the present invention is a tautomer of the seven-coordinated circularly polarized light-emitting rare earth complex according to the present invention, and has a bidentate diphosphine oxide coordination. One element and three bidentate asymmetric acetylacetone ligands are coordinated to a rare earth ion.
The 8-coordinate circularly polarized light-emitting rare earth complex according to the present invention is:
General formula (8)
(In the formula, Ln (III) represents a trivalent rare earth ion, A1 to A4 represent a group having 3 to 20 carbon atoms, and R1 to R2 represent a 5-membered member containing at least one of an N atom and an O atom. Represents a ring or a 6-membered conjugated heterocyclic ring.)
Represented by
R3 is a bidentate asymmetric acetylacetone ligand,
General formula (2)
(Wherein L1 to L3 are the same or different hydrogen atom, deuterium atom, halogen atom, group having 1 to 20 carbon atoms, hydroxyl group, nitro group, amino group, sulfonyl group, cyano group, silyl group, phosphonic acid group, It represents either a diazo group or a mercapto group, and L1 and L2 or L1 and L3 may be bonded to each other to form a ring structure.)
Can be expressed as

さらに具体的には、本発明に係る8配位型の円偏光発光性希土類錯体は、
一般式(9)
(式中、X1〜X6は同一又は異なる水素原子、重水素原子、ハロゲン原子、炭素数1〜20の基、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、ホスホン酸基、ジアゾ基、メルカプト基のいずれかを表す。)
で表され、
A1〜A4は同一又は異なる炭素数3〜20の炭素芳香族炭化水素基、複素芳香族化合物基または炭化水素基
のいずれかで表すことができる。
More specifically, the 8-coordinate circularly polarized light-emitting rare earth complex according to the present invention is:
General formula (9)
(Wherein X1 to X6 are the same or different hydrogen atom, deuterium atom, halogen atom, group having 1 to 20 carbon atoms, hydroxyl group, nitro group, amino group, sulfonyl group, cyano group, phosphonic acid group, diazo group, Represents any of the mercapto groups.)
Represented by
A1 to A4 can be represented by any of the same or different carbon aromatic hydrocarbon groups having 3 to 20 carbon atoms, heteroaromatic compound groups, or hydrocarbon groups.

次に、本発明に係る7配位型及び8配位型の円偏光発光性希土類錯体が共通して有する構造上の特徴について以下に述べる。
本発明に係るこれらの円偏光発光性希土類錯体が有する、二座の不斉なアセチルアセトン配位子は、不斉性と光増感機能の双方を有する。不斉な配位子は、希土類錯体の円偏光発光性を向上させる。
Next, structural features common to the seven-coordinate and eight-coordinate circularly polarized light-emitting rare earth complexes according to the present invention will be described below.
The bidentate asymmetric acetylacetone ligands possessed by these circularly polarized light-emitting rare earth complexes according to the present invention have both asymmetry and a photosensitization function. The asymmetric ligand improves the circularly polarized light emission property of the rare earth complex.

特に、上記アセチルアセトン配位子として、
一般式(6)
(式中、Z1はハロゲン原子、炭素数1〜20の基、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基のいずれかを表し、Z2〜Z3は同一又は異なる水素原子、重水素原子、ハロゲン原子、炭素数1〜20の基、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基のいずれかを表す。)
で表されるカンファー誘導体を用いることにより、より高い光増感機能を有する円偏光発光性希土類錯体を得ることができる。
上記アセチルアセトン配位子としてのカンファー誘導体は、ハロゲン化炭素誘導体であることが好ましく、炭素数1から6のハロゲン化炭素誘導体など、例えば炭素数1から3の直鎖フッ化炭素が挙げられる。
ここでは、Z2及びZ3と異なり、Z1には水素原子又は重水素原子が適用されない。その理由は、希土類イオンと結合するO原子と直接結合するC原子がC−H単結合を有すると、C−H単結合の振動性によって円偏光発光性希土類錯体の発光性が低下するためである。
また、アセチルアセトン配位子としてカンファー誘導体のような嵩高い分子を採用することにより、希土類イオンの周辺に物理的な障壁が生じ、円偏光発光性希土類錯体の分子同士が架橋して配位高分子になることを防ぐことができる。
In particular, as the acetylacetone ligand,
General formula (6)
(In the formula, Z1 represents any of a halogen atom, a group having 1 to 20 carbon atoms, a hydroxyl group, a nitro group, an amino group, a sulfonyl group, a cyano group, a silyl group, a phosphonic acid group, a diazo group, and a mercapto group; ~ Z3 is the same or different hydrogen atom, deuterium atom, halogen atom, group having 1 to 20 carbon atoms, hydroxyl group, nitro group, amino group, sulfonyl group, cyano group, silyl group, phosphonic acid group, diazo group, mercapto group Represents one of these.)
By using the camphor derivative represented by the following formula, a circularly polarized light-emitting rare earth complex having a higher photosensitization function can be obtained.
The camphor derivative as the acetylacetone ligand is preferably a halogenated carbon derivative, such as a halogenated carbon derivative having 1 to 6 carbon atoms, such as a linear fluorocarbon having 1 to 3 carbon atoms.
Here, unlike Z2 and Z3, no hydrogen atom or deuterium atom is applied to Z1. The reason is that when the C atom directly bonded to the O atom bonded to the rare earth ion has a C—H single bond, the light emission of the circularly polarized light emitting rare earth complex is lowered due to the vibration of the C—H single bond. is there.
Also, by adopting bulky molecules such as camphor derivatives as acetylacetone ligands, a physical barrier is created around the rare earth ions, and the molecules of the circularly polarized light-emitting rare earth complex are cross-linked with each other to form a coordination polymer. Can be prevented.

さらに、本発明に係る円偏光発光性希土類錯体が共通して有する、ジホスフィンオキシド配位子は、二個のP=O基を有する。P=O基の二重結合は低振動型構造として知られており、このような構造を有する配位子が配位することにより、本発明に係る円偏光発光性希土類錯体の発光性を向上させることができる。
上記ジホスフィンオキシド配位子において、P原子に結合するA1〜A4は、同一又は異なる
一般式(4−1)〜(4−3)
(式中、Q1〜Q4は同一又は異なるハロゲン原子、炭素数1〜20の基、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基のいずれかを表し、Q5〜Q7は同一又は異なる水素原子、重水素原子、ハロゲン原子、炭素数1〜20の基、水酸基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基のいずれかを表す。)
のいずれかで表されるように、P原子に結合するC原子がC−H単結合を有しないことが好ましい。これは、C−H単結合の振動性によって円偏光発光性希土類錯体の発光性が低下することを防ぐためである。さらに、A1〜A4として、3〜20個の炭素を含む嵩高い分子を用いることが好ましい。例えば芳香族炭化水素基、複素芳香族化合物基、炭化水素基など、好ましくはフェニル基やt−ブチル基またはn−ブチル基などの嵩高い分子が挙げられる。
Furthermore, the diphosphine oxide ligand that the circularly polarized light-emitting rare earth complex according to the present invention has in common has two P═O groups. The double bond of the P = O group is known as a low vibration type structure, and the light emission of the circularly polarized light-emitting rare earth complex according to the present invention is improved by coordination of a ligand having such a structure. Can be made.
In the diphosphine oxide ligand, A1 to A4 bonded to the P atom are the same or different. General formulas (4-1) to (4-3)
(In the formula, Q1 to Q4 are any of the same or different halogen atoms, groups having 1 to 20 carbon atoms, hydroxyl group, nitro group, amino group, sulfonyl group, cyano group, silyl group, phosphonic acid group, diazo group, and mercapto group. Q5 to Q7 are the same or different hydrogen atom, deuterium atom, halogen atom, group having 1 to 20 carbon atoms, hydroxyl group, nitro group, amino group, sulfonyl group, cyano group, silyl group, phosphonic acid group, (Represents either a diazo group or a mercapto group.)
As represented by any of the above, it is preferable that the C atom bonded to the P atom does not have a C—H single bond. This is to prevent the light-emitting property of the circularly polarized light-emitting rare earth complex from being lowered by the vibrational property of the C—H single bond. Furthermore, it is preferable to use a bulky molecule containing 3 to 20 carbons as A1 to A4. For example, an aromatic hydrocarbon group, a heteroaromatic compound group, a hydrocarbon group, etc., preferably a bulky molecule such as a phenyl group, a t-butyl group or an n-butyl group.

こうした構造的な特徴を有することにより、本発明に係る7配位型の円偏光発光性希土類錯体及び8配位型の円偏光発光性希土類錯体は、高い円偏光発光性だけでなく、高い発光強度を示す。とりわけ、7配位型の円偏光発光性希土類錯体は、ジホスフィンオキシド配位子が単座の配位子として希土類イオンに結合することによって高い不斉性を有しており、そのために極めて高い円偏光発光性を示す。そのg値は、後述する実施例にて述べるように、希土類錯体が示すg値の世界最大値である約1.3(非特許文献1参照)を大幅に上回る。   By having such a structural feature, the seven-coordinate circularly polarized light-emitting rare earth complex and the eight-coordinated circularly polarized light-emitting rare earth complex according to the present invention have not only high circularly polarized light emission but also high light emission. Indicates strength. In particular, the seven-coordinate circularly polarized light-emitting rare earth complex has high asymmetry due to bonding of the diphosphine oxide ligand to the rare earth ion as a monodentate ligand, and thus extremely high circularly polarized light. Shows luminous properties. The g value greatly exceeds about 1.3 (see Non-Patent Document 1), which is the world's largest g value exhibited by the rare earth complex, as will be described later in Examples.

さらに、上記8配位型の円偏光発光性希土類錯体から7配位型の円偏光発光性希土類錯体を得る方法、及びそのメカニズムについて以下に説明する。   Further, a method for obtaining a seven-coordinate circularly polarized light-emitting rare earth complex from the above eight-coordinated circularly polarized light-emitting rare earth complex and its mechanism will be described below.

上述したように、本発明に係る7配位型の円偏光発光性希土類錯体及び8配位型の円偏光発光性希土類錯体は互変異性体の関係にある。これらの円偏光発光性希土類錯体を得るには、まず有機合成によって8配位型の円偏光発光性希土類錯体を作製後、これを所定の溶媒に溶解させることにより、7配位型の円偏光発光性希土類錯体に変化させる。その後、気化等によって溶媒を除去しても、円偏光発光性希土類錯体の配位型は変化しない。   As described above, the 7-coordinate circularly polarized light-emitting rare earth complex and the 8-coordinated circularly polarized light-emitting rare earth complex according to the present invention are in a tautomeric relationship. In order to obtain these circularly polarized light-emitting rare earth complexes, first, an 8-coordinate type circularly polarized light-emitting rare earth complex is prepared by organic synthesis, and then dissolved in a predetermined solvent to obtain a 7-coordinated type circularly polarized light complex. Change to luminescent rare earth complex. Thereafter, even if the solvent is removed by vaporization or the like, the coordination type of the circularly polarized light-emitting rare earth complex does not change.

より具体的には、本発明に係る8配位型の円偏光発光性希土類錯体をケトン系溶媒に溶解すると、配位子であるジホスフィンオキシド配位子において、該配位子と希土類イオンとの2つの結合のうちの一方が切断される。そして、例えば
一般式(1)
(式中、Ln(III)は3価の希土類イオンを表し、A1〜A4は炭素数3〜20の基を表し、R1〜R2はN原子、O原子のいずれかを少なくとも1個含む5員環又は6員環の共役複素環を表す。)
で表されるように、結合が切断された側のP=O基のO原子が、結合が切断されない側のP原子と結合している共役複素環内のN原子又はO原子と結合し、4〜6員環の環構造が形成される。このように、二座のジホスフィンオキシド配位子が二座から単座となることによって、7配位型の円偏光発光性希土類錯体が得られる。このメカニズムは以下のように推測される。
More specifically, when the eight-coordinate circularly polarized light-emitting rare earth complex according to the present invention is dissolved in a ketone solvent, the diphosphine oxide ligand, which is the ligand, One of the two bonds is broken. For example, the general formula (1)
(In the formula, Ln (III) represents a trivalent rare earth ion, A1 to A4 represent a group having 3 to 20 carbon atoms, and R1 to R2 represent a 5-membered member containing at least one of an N atom and an O atom. Represents a ring or a 6-membered conjugated heterocyclic ring.)
As shown below, the O atom of the P═O group on the side where the bond is broken is bonded to the N atom or the O atom in the conjugated heterocyclic ring bonded to the P atom on the side where the bond is not broken, A 4- to 6-membered ring structure is formed. Thus, a bidentate diphosphine oxide ligand is converted from a bidentate to a monodentate, whereby a seven-coordinate circularly polarized light-emitting rare earth complex is obtained. This mechanism is presumed as follows.

一般的にケトン基のO原子は配位結合性を有し、その結合エネルギーはP=O基のO原子が有する配位結合性よりも大きいといわれている。8配位型の円偏光発光性希土類錯体をケトン系溶媒に溶解すると、溶媒分子中のケトン基のO原子が希土類イオンに作用することによって、P=O基のO原子の配位結合の一方が切断される。配位結合が切断された側のP=O基は、希土類イオンから遠ざかる。そして、このP=O基のO原子と、配位結合を維持する側のP原子と結合している共役複素環内のN原子又はO原子の間に相互作用が働き、両者は結合する。その結果、P原子、及び、共役複素環内のN原子又はO原子を含む環構造がジホスフィンオキシド配位子内に形成される。こうした環構造が形成されることにより、ジホスフィンオキシド配位子は単座の配位子となる。
本発明に係る円偏光発光性希土類錯体では、複素環として、平面系の構造を有し、嵩高くなく、且つ自由回転の可能な共役複素環を導入することにより、このような環構造の形成が容易に生じるようにしている。
In general, an O atom of a ketone group has a coordination bond, and the bond energy is said to be larger than the coordination bond of an O atom of a P═O group. When an 8-coordinate type circularly polarized light-emitting rare earth complex is dissolved in a ketone solvent, the O atom of the ketone group in the solvent molecule acts on the rare earth ion, thereby causing one of the coordination bonds of the O atom of the P = O group. Is disconnected. The P═O group on the side where the coordination bond is cut away from the rare earth ions. Then, an interaction acts between the O atom of the P═O group and the N atom or O atom in the conjugated heterocyclic ring bonded to the P atom on the side maintaining the coordination bond, and both are bonded. As a result, a ring structure containing P atoms and N or O atoms in the conjugated heterocycle is formed in the diphosphine oxide ligand. By forming such a ring structure, the diphosphine oxide ligand becomes a monodentate ligand.
In the circularly polarized light-emitting rare earth complex according to the present invention, such a ring structure is formed by introducing a conjugated heterocycle having a planar structure as a heterocycle, not bulky, and capable of free rotation. Is easily generated.

また、以下のようなメカニズムも推測することができる。
本発明の円偏光発光性希土類錯体は、非ケトン系溶媒中において、8配位型として安定的に存在する。この8配位型の円偏光発光性希土類錯体は、ケトン系溶液中においては、溶媒の触媒作用により錯体構造が7配位型の構造へと変化すると考えられる。ここでいう触媒作用とは、ケトン系溶液中が活性化状態において中心金属イオンに配位することで8配位型から7配位構造型への構造変化反応の活性化障壁を下げることを意味している。一方で、ケトン系溶媒以外の非配位性溶媒においてはこのような触媒作用が得られないため、円偏光発光性希土類錯体が8配位型として安定的に存在するものと考えられる。
Moreover, the following mechanisms can also be estimated.
The circularly polarized light-emitting rare earth complex of the present invention stably exists as an 8-coordinate type in a non-ketone solvent. This octacoordinate circularly polarized light-emitting rare earth complex is considered to change its complex structure to a 7-coordinate structure in the ketone solution due to the catalytic action of the solvent. The catalytic action here means that the activation barrier of the structural change reaction from the 8-coordinate type to the 7-coordinated structure type is lowered by coordination with the central metal ion in the activated state in the ketone solution. doing. On the other hand, since such a catalytic action cannot be obtained in a non-coordinating solvent other than the ketone solvent, it is considered that the circularly polarized light-emitting rare earth complex exists stably as an 8-coordinate type.

なお、上記ケトン系溶媒は、
一般式(12)
(式中、E1〜E2は同一又は異なる炭素数1〜5の基を表す。)
で表される鎖状又は環状のケトン系溶媒であることが望ましい。
The ketone solvent is
Formula (12)
(In formula, E1-E2 represents the same or different C1-C5 group.)
A linear or cyclic ketone solvent represented by

逆に、7配位型の円偏光発光性希土類錯体を非ケトン系溶媒に溶解すると、8配位型の円偏光発光性希土類錯体へと変化する。
このような非ケトン系溶媒として、アセトニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒、又は、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエチレン等のハロゲン系溶媒を使用することができる。
Conversely, when a 7-coordinate circularly polarized light-emitting rare earth complex is dissolved in a non-ketone solvent, it changes to an 8-coordinated circularly polarized light-emitting rare earth complex.
As such non-ketone solvents, nitrile solvents such as acetonitrile, methoxyacetonitrile, propionitrile, and benzonitrile, or halogen solvents such as dichloromethane, chloroform, carbon tetrachloride, dichloroethane, and trichloroethylene can be used. .

また、ケトン系溶媒と非ケトン系溶媒を0:10〜10:0の割合で混合した析出溶媒を調製し、本発明に係る7配位型の円偏光発光性希土類錯体又は8配位型の円偏光発光性希土類錯体又はこれらの混合物を溶解させ、前記析出溶媒を気化等によって除去することにより、7配位型の円偏光発光性希土類錯体及び8配位型の円偏光発光性希土類錯体を所望の比率で含む円偏光発光性希土類錯体群を得ることができる。
このようにして得られた円偏光発光性希土類錯体群は、7配位型及び8配位型の円偏光発光性希土類錯体が単独で示す円偏光発光性、又はその存在比率に対応した円偏光発光性を示す。
以下、本発明に係る円偏光発光性希土類錯体(以下、「Ln(III)錯体」という)の具体的な実施例について述べる。
In addition, a precipitation solvent in which a ketone solvent and a non-ketone solvent are mixed at a ratio of 0:10 to 10: 0 is prepared, and the seven-coordinate circularly polarized light-emitting rare earth complex or the eight-coordinate type of the present invention is used. By dissolving a circularly polarized light-emitting rare earth complex or a mixture thereof and removing the precipitation solvent by vaporization or the like, a 7-coordinate circularly polarized light-emitting rare earth complex and an 8-coordinated circularly polarized light-emitting rare earth complex are obtained. A group of circularly polarized light-emitting rare earth complexes containing a desired ratio can be obtained.
The circularly polarized light-emitting rare earth complex group thus obtained is a circularly polarized light corresponding to the circularly polarized light emitting property or the abundance ratio of the seven-coordinate and eight-coordinated circularly polarized light-emitting rare earth complexes alone. Shows luminous properties.
Specific examples of the circularly polarized light-emitting rare earth complex according to the present invention (hereinafter referred to as “Ln (III) complex”) will be described below.

1.Ln(III)錯体の合成
図1(1)及び(2)に示す合成手順に従い、希土類イオンとしてEu(III)イオンを有するLn(III)錯体を合成した。図1及び以下の説明では、Meはメチル基、Phはフェニル基を示す。
まず、酢酸ユウロピウムn水和物(658mg、2.0mmol)および蒸留水150mLを500mLナスフラスコに加え、酢酸ユウロピウムn水和物が溶解するまで超音波処理を施し、酢酸ユウロピウム水溶液を得た。L-facam(1120mg、4.5mmol)をメタノール30mLに溶かし、前記酢酸ユウロピウム水溶液に撹拌しながら加え、室温で12時間撹拌した。生成した黄色の沈殿を吸引ろ過により回収した後、蒸留水で洗浄し、得られた黄色の粉末を減圧下で乾燥させた。これにより、[Eu(L-facam)3(H2O)2]を得た(図1(1))。[Eu(L-facam)3(H2O)2]の収量は1.183gであり、収率は85%であった。
1. Synthesis of Ln (III) Complex An Ln (III) complex having Eu (III) ions as rare earth ions was synthesized according to the synthesis procedure shown in FIGS. 1 (1) and (2). In FIG. 1 and the following description, Me represents a methyl group and Ph represents a phenyl group.
First, europium acetate n hydrate (658 mg, 2.0 mmol) and 150 mL of distilled water were added to a 500 mL eggplant flask and subjected to sonication until europium acetate n hydrate was dissolved to obtain a europium acetate aqueous solution. L-facam (1120 mg, 4.5 mmol) was dissolved in 30 mL of methanol, added to the above europium acetate aqueous solution with stirring, and stirred at room temperature for 12 hours. The produced yellow precipitate was collected by suction filtration, washed with distilled water, and the resulting yellow powder was dried under reduced pressure. Thereby, [Eu (L-facam) 3 (H 2 O) 2 ] was obtained (FIG. 1 (1)). The yield of [Eu (L-facam) 3 (H 2 O) 2 ] was 1.183 g, and the yield was 85%.

次に、得られた[Eu(L-facam)3(H2O)2](930mg、1.0mmol)、BIPYPO(558mg、1.0mmol)及びメタノール100mLを200mlナスフラスコに入れ、70℃で15時間撹拌した。撹拌後、減圧下で溶媒を留去し、淡黄色の固体を得た。得られた淡黄色の固体をヘキサンに溶解させ、不溶物をろ過により取り除いた後、減圧下でろ液から溶媒を留去し、淡黄色の固体を得た。これにより、[Eu(BIPYPO)(L-facam)3]を得た(図1(2))。[Eu(BIPYPO)(L-facam)3]の収量は1.325gであり、収率は91%であった。 Next, the obtained [Eu (L-facam) 3 (H 2 O) 2 ] (930 mg, 1.0 mmol), BIPYPO (558 mg, 1.0 mmol) and 100 mL of methanol were placed in a 200 ml eggplant flask and stirred at 70 ° C. for 15 hours. Stir. After stirring, the solvent was distilled off under reduced pressure to obtain a pale yellow solid. The obtained pale yellow solid was dissolved in hexane, insoluble matters were removed by filtration, and then the solvent was distilled off from the filtrate under reduced pressure to obtain a pale yellow solid. As a result, [Eu (BIPYPO) (L-facam) 3 ] was obtained (FIG. 1 (2)). The yield of [Eu (BIPYPO) (L-facam) 3 ] was 1.325 g, and the yield was 91%.

さらに、得られた[Eu(BIPYPO)(L-facam)3]約100mgを少量のアセトンに溶解し、その溶液が濁るまでヘキサンを加え、濁りが消えるまで加熱した後、室温で静置して結晶を析出させた。以下の説明では、この結晶を結晶(A)と呼ぶ。
また、得られた[Eu(BIPYPO)(L-facam)3]約100mgをアセトニトリル約5mlに溶解し、その溶液が濁るまでヘキサンを加え、濁りが消えるまで加熱した後、室温で静置して結晶を析出させた。以下の説明では、この結晶を結晶(B)と呼ぶ。
Further, about 100 mg of the obtained [Eu (BIPYPO) (L-facam) 3 ] was dissolved in a small amount of acetone, hexane was added until the solution became cloudy, and the mixture was heated until the cloudiness disappeared, and then allowed to stand at room temperature. Crystals were precipitated. In the following description, this crystal is referred to as crystal (A).
Also, dissolve about 100 mg of the obtained [Eu (BIPYPO) (L-facam) 3 ] in about 5 ml of acetonitrile, add hexane until the solution becomes cloudy, heat until the cloudiness disappears, and leave it at room temperature. Crystals were precipitated. In the following description, this crystal is referred to as crystal (B).

2.Ln(III)錯体の同定
得られた結晶(A)及び結晶(B)をESI-MASS(エレクトロスプレー質量分析)及びX線結晶構造解析で同定した。ESI-MASSは日本電子株式会社(JEOL)製のJMS-700、MStationを用いた。また、X線結晶構造解析には株式会社リガク製の有機低分子X線構造解析装置(Rapid)を用いた。
ESI-MASSの結果を以下に示す。
2. Identification of Ln (III) Complex The obtained crystals (A) and (B) were identified by ESI- MASS (electrospray mass spectrometry) and X-ray crystal structure analysis. ESI-MASS used JMS-700 and MStation manufactured by JEOL Ltd. (JEOL). For the X-ray crystal structure analysis, an organic low molecular X-ray structure analyzer (Rapid) manufactured by Rigaku Corporation was used.
The results of ESI-MASS are shown below.

(1) 結晶(A)
ESI-MASS(m/z):[M-(facam)]+ calcd. for C58H54Eu1F6N2O6P2 +, 1201.25597、found, 1201.25605
(2) 結晶(B)
ESI-MASS(m/z):[M-(facam]+ calcd. for C58H54Eu1F6N2O6P2 +, 1201.25597、found, 1201.25612
(1) Crystal (A)
ESI-MASS (m / z): [M- (facam)] + calcd. For C 58 H 54 Eu 1 F 6 N 2 O 6 P 2 + , 1201.25597, found, 1201.25605
(2) Crystal (B)
ESI-MASS (m / z): [M- (facam] + calcd. For C 58 H 54 Eu 1 F 6 N 2 O 6 P 2 + , 1201.25597, found, 1201.25612

また、結晶(A)及び結晶(B)のX線結晶構造解析の結果を図2A及び図2Bに示す。
ESI-MASSの結果及びX線結晶構造解析の結果から、得られた結晶(A)は図3Aに示す7配位型のEu(III)錯体であり、結晶(B)は図3Bに示す8配位型のEu(III)錯体であるといえる。この結果より、本実施例に係るEu(III)錯体は、溶媒条件によって配位数が変化することが示された。図2Bの、右端の2本の短い構造体は、結晶中に存在する溶媒のアセトニトリルである。このような溶媒は、いわゆる結晶水のように、結晶の錯体間の隙間を埋めるように存在し、必ずしも錯体の構造にかかわらないものである。
Moreover, the result of the X-ray crystal structure analysis of the crystal (A) and the crystal (B) is shown in FIGS. 2A and 2B.
From the results of ESI-MASS and X-ray crystal structure analysis, the obtained crystal (A) is a seven-coordinate Eu (III) complex shown in FIG. 3A, and the crystal (B) is shown in FIG. It can be said that it is a coordination type Eu (III) complex. From this result, it was shown that the coordination number of the Eu (III) complex according to this example varies depending on the solvent conditions. The two short structures at the right end of FIG. 2B are the solvent acetonitrile present in the crystals. Such a solvent exists like a so-called crystal water so as to fill a gap between crystal complexes, and is not necessarily concerned with the structure of the complex.

そこで、[Eu(BIPYPO)(L-facam)3]7.25mgを以下に示す溶媒5mLに溶解し、1mMのEu(III)錯体溶液(C)〜(H)を作製して、各種試験に供した。
Eu(III)錯体溶液(C):アセトン(又は重アセトン-d6)
Eu(III)錯体溶液(D):メチルエチルケトン
Eu(III)錯体溶液(E):ジエチルケトン
Eu(III)錯体溶液(F):シクロヘキサノン
Eu(III)錯体溶液(G):アセトニトリル(又は重アセトニトリル-d3)
Eu(III)錯体溶液(H):ジメチルスルホキシド(又は重ジメチルスルホキシド-d6)
Accordingly, 7.25 mg of [Eu (BIPYPO) (L-facam) 3 ] is dissolved in 5 mL of the solvent shown below to prepare 1 mM Eu (III) complex solutions (C) to (H), which are used for various tests. did.
Eu (III) complex solution (C): acetone (or heavy acetone-d6)
Eu (III) complex solution (D): methyl ethyl ketone
Eu (III) complex solution (E): diethyl ketone
Eu (III) complex solution (F): cyclohexanone
Eu (III) complex solution (G): acetonitrile (or deuterated acetonitrile-d3)
Eu (III) complex solution (H): dimethyl sulfoxide (or heavy dimethyl sulfoxide-d6)

3.Eu(III)錯体溶液の発光スペクトル
各Eu(III)錯体溶液(C)〜(H)の発光スペクトルを測定した。発光スペクトルの測定にはJASCOの分光蛍光光度計(FP-6500)を用いた。発光スペクトルの測定は、各Eu(III)錯体溶液(C)〜(H)について、溶存酸素による消光を防ぐためにArバブリングを10分間行った後に行った。励起波長は365nmに設定した。Eu(III)錯体溶液(C)〜(H)の発光スペクトルを図4に示す。
図4に示すように、いずれのEu(III)錯体溶液においても波長610〜620nm付近において高い発光強度が観察された。また、特にEu(III)錯体溶液(C)において最も高い発光強度が観察された。
3. Emission spectrum of Eu (III) complex solution The emission spectrum of each Eu (III) complex solution (C)-(H) was measured. A JASCO spectrofluorometer (FP-6500) was used to measure the emission spectrum. The emission spectrum was measured after Ar bubbling was performed for each Eu (III) complex solution (C) to (H) for 10 minutes in order to prevent quenching by dissolved oxygen. The excitation wavelength was set at 365 nm. The emission spectra of Eu (III) complex solutions (C) to (H) are shown in FIG.
As shown in FIG. 4, high emission intensity was observed in the vicinity of the wavelength of 610 to 620 nm in any Eu (III) complex solution. In addition, the highest emission intensity was observed particularly in the Eu (III) complex solution (C).

4.Eu(III)錯体溶液の円偏光発光性
Eu(III)錯体溶液(C)〜(H)の円偏光発光性を求めるために、Eu(III)錯体溶液(C)〜(H)のCPLスペクトルを測定した。代表としてEu(III)錯体溶液(C)のCPLスペクトルを図5に示す。
得られたCPLスペクトルの結果を基に、以下の式を用いてg値(gCD)を計算した。
CPLスペクトルからのg値=ΔI/I=2(IL−IR)/(IL+IR)
(式中、ILは左回りの円偏光発光強度、IRは右回りの円偏光発光強度を表す。)
g値の計算結果を以下に示す。
4). Circularly polarized light emission of Eu (III) complex solution
In order to obtain circularly polarized light emission properties of Eu (III) complex solutions (C) to (H), CPL spectra of Eu (III) complex solutions (C) to (H) were measured. As a representative, the CPL spectrum of the Eu (III) complex solution (C) is shown in FIG.
Based on the result of the obtained CPL spectrum, g value (gCD) was calculated using the following formula.
G value from CPL spectrum = ΔI / I = 2 (IL−IR) / (IL + IR)
(In the formula, IL represents counterclockwise circularly polarized light emission intensity, and IR represents clockwise circularly polarized light emission intensity.)
The calculation result of g value is shown below.

Eu(III)錯体溶液(C):-1.81
Eu(III)錯体溶液(D):-1.82
Eu(III)錯体溶液(E):-0.41
Eu(III)錯体溶液(F):-2.45
Eu(III)錯体溶液(G):-0.66
Eu (III) complex solution (C): -1.81
Eu (III) complex solution (D):-1.82
Eu (III) complex solution (E): -0.41
Eu (III) complex solution (F): -2.45
Eu (III) complex solution (G): -0.66

このように、溶媒としてアセトンを用いたEu(III)錯体溶液(C)、(D)、(F)では、絶対値1.8を上回る極めて大きなg値が観察された。一方、アセトニトリルを用いたEu(III)錯体溶液(G)では、ケトン系溶媒を用いた他のEu(III)錯体溶液に比べて小さなg値が観察された。溶媒としてジメチルスルホキシドを用いたEu(III)錯体溶液(H)については、測定中にサンプルの退色が観察されたため、g値を算出していない。
なお、ジエチルケトンを用いたEu(III)錯体溶液(E)が、他のケトン系溶媒を用いた溶液に比べて低いg値を示しているが、これは、ジエチルケトンの立体障害が大きく、Euイオンに配位しにくいためと考えられる。また、Eu(III)錯体溶液(F)のg値が理論値である2を超えているが、これは、当該溶液では左右円偏光のうち左円偏光の強度が極めて低く、そのためベースラインのノイズが左円偏光の強度に含まれているためと考えられる。
次に、本実施例に係るEu(III)錯体が示すg値の溶媒依存性について、以下に検証した。
Thus, in the Eu (III) complex solutions (C), (D), and (F) using acetone as a solvent, an extremely large g value exceeding the absolute value 1.8 was observed. On the other hand, in the Eu (III) complex solution (G) using acetonitrile, a small g value was observed as compared with other Eu (III) complex solutions using a ketone solvent. For Eu (III) complex solution (H) using dimethyl sulfoxide as a solvent, since the fading of the sample was observed during the measurement, the g value was not calculated.
In addition, Eu (III) complex solution (E) using diethyl ketone shows a lower g value than solutions using other ketone solvents, but this is because the steric hindrance of diethyl ketone is large, This is probably because it is difficult to coordinate to Eu ions. In addition, the g value of the Eu (III) complex solution (F) exceeds the theoretical value of 2, which is that the intensity of the left circularly polarized light is extremely low in the left and right circularly polarized light, and therefore the baseline This is probably because noise is included in the intensity of the left circularly polarized light.
Next, the solvent dependence of the g value exhibited by the Eu (III) complex according to this example was verified as follows.

5.Eu(III)錯体溶液のg値の溶媒依存性
[Eu(BIPYPO)(L-facam)3]の1mM重アセトン溶液及び1mM重アセトニトリルをそれぞれ調製し、両溶液を適宜混合して、重アセトン:重アセトニトリル=100:0、63:37、35:65、0:100の計4種類の溶液を用意した。それぞれの溶液についてCPLスペクトルを測定し、g値を得た。その結果を図6に示す。
図6に示されるように、アセトン100%において-1.81という大きな絶対値のg値が示された。また、g値の絶対値は、アセトンの比率が下がるにつれて(即ち、アセトニトリルの比率が上がるにつれて)小さくなる傾向が認められ、アセトン0%(即ちアセトニトリル100%)では-0.66であった。
5. Solvent dependence of g value of Eu (III) complex solution
A 1 mM heavy acetone solution and 1 mM heavy acetonitrile of [Eu (BIPYPO) (L-facam) 3 ] are prepared, and both solutions are mixed as appropriate. Heavy acetone: heavy acetonitrile = 100: 0, 63:37, 35: A total of four solutions of 65, 0: 100 were prepared. The CPL spectrum was measured for each solution to obtain the g value. The result is shown in FIG.
As shown in FIG. 6, a large absolute g value of -1.81 was shown in 100% acetone. Further, the absolute value of the g value tended to decrease as the acetone ratio decreased (that is, as the acetonitrile ratio increased), and was −0.66 at 0% acetone (that is, 100% acetonitrile).

1.[Eu(BIPYPO)(D-facam)3]の合成
上述した実施例1における[Eu(BIPYPO)(L-facam)3]と同様の方法により、[Eu(BIPYPO)(D-facam)3]を合成した。[Eu(BIPYPO)(L-facam)3]及び[Eu(BIPYPO)(D-facam)3]について、以下に述べる通り円偏光発光性を調べた。
1. Synthesis of [Eu (BIPYPO) (D-facam) 3 ] By the same method as [Eu (BIPYPO) (L-facam) 3 ] in Example 1 described above, [Eu (BIPYPO) (D-facam) 3 ] Was synthesized. [Eu (BIPYPO) (L-facam) 3 ] and [Eu (BIPYPO) (D-facam) 3 ] were examined for circularly polarized light emission as described below.

2.[Eu(BIPYPO)(L-facam)3]及び[Eu(BIPYPO)(D-facam)3]の円偏光発光性
[Eu(BIPYPO)(L-facam)3]及び[Eu(BIPYPO)(D-facam)3]の円偏光発光性を求めるために、[Eu(BIPYPO)(L-facam)3]及び[Eu(BIPYPO)(D-facam)3]のCDスペクトル及びCPLスペクトルを測定した。
まず、[Eu(BIPYPO)(L-facam)3]及び[Eu(BIPYPO)(D-facam)3]のアセトニトリル溶液(1.0× 10-5M)を調製し、CDスペクトルを測定した。その結果を図7に示す。
次に、[Eu(BIPYPO)(D-facam)3]のアセトン溶液、ジメチルスルホキシド溶液、アセトニトリル溶液及びメタノール溶液(いずれも重水素溶媒、1.0M)を調製し、CPLスペクトルを測定した。その結果を図8に示す。
2. Circularly polarized luminescence of [Eu (BIPYPO) (L-facam) 3 ] and [Eu (BIPYPO) (D-facam) 3 ]
To determine the circularly polarized luminescence of [Eu (BIPYPO) (L- facam) 3] and [Eu (BIPYPO) (D- facam) 3], [Eu (BIPYPO) (L-facam) 3] and [Eu The CD spectrum and CPL spectrum of (BIPYPO) (D-facam) 3 ] were measured.
First, acetonitrile solutions (1.0 × 10 −5 M) of [Eu (BIPYPO) (L-facam) 3 ] and [Eu (BIPYPO) (D-facam) 3 ] were prepared, and CD spectra were measured. The result is shown in FIG.
Next, an acetone solution, a dimethyl sulfoxide solution, an acetonitrile solution, and a methanol solution (all of which are deuterium solvents, 1.0 M) of [Eu (BIPYPO) (D-facam) 3 ] were prepared, and CPL spectra were measured. The result is shown in FIG.

1.[Eu(BIPYPO)(D-hfbc)3]の合成
[Eu(D-hfbc)3(H2O)2](1230mg、1.0mmol)、BIPYPO(558mgl、1.0mmol)及びメタノール100mLを200mlナスフラスコに入れ、70℃で15時間撹拌した。撹拌後、減圧下で溶媒を留去し、淡黄色の固体を得た。得られた淡黄色の固体をヘキサンに溶解させ、不溶物をろ過により取り除いた後、減圧下でろ液から溶媒を留去し、淡黄色の固体を得た。これにより、[Eu(BIPYPO)(D-hfbc) 3 ]を得た(図9)。[Eu(BIPYPO)(D-hfbc)3]の収量は1500mgであり、収率は83%であった。
1. Synthesis of [Eu (BIPYPO) (D-hfbc) 3 ]
[Eu (D-hfbc) 3 (H 2 O) 2 ] (1230 mg, 1.0 mmol), BIPYPO (558 mgl, 1.0 mmol) and 100 mL of methanol were placed in a 200 ml eggplant flask and stirred at 70 ° C. for 15 hours. After stirring, the solvent was distilled off under reduced pressure to obtain a pale yellow solid. The obtained pale yellow solid was dissolved in hexane, insoluble matters were removed by filtration, and then the solvent was distilled off from the filtrate under reduced pressure to obtain a pale yellow solid. Thus, [Eu (BIPYPO) (D-hfbc ) 3 ] was obtained (FIG. 9). The yield of [Eu (BIPYPO) (D-hfbc) 3 ] was 1500 mg, and the yield was 83%.

2.[Eu(BIPYPO)(D-hfbc)3]の発光スペクトル
[Eu(BIPYPO)(D-hfbc)3]の発光スペクトルを測定した。
[Eu(BIPYPO)(D-hfbc)3]の1mM重アセトン溶液及び1mM重アセトニトリル溶液を調製し、それぞれの溶液を体積比1:0、3:1、1:1、1:3、0:1で混合した後、これらの混合溶液について発光スペクトルを測定した。この結果を図10に示す。
[Eu(BIPYPO)(D-hfbc)3]溶液は、いずれの混合比率においても尖鋭な発光スペクトルを示したが、アセトニトリルの比率が高くなるほど高い発光強度を示した。
2. Emission spectrum of [Eu (BIPYPO) (D-hfbc) 3 ]
The emission spectrum of [Eu (BIPYPO) (D-hfbc) 3 ] was measured.
A 1 mM heavy acetone solution and a 1 mM heavy acetonitrile solution of [Eu (BIPYPO) (D-hfbc) 3 ] are prepared, and the volume ratios of the respective solutions are 1: 0, 3: 1, 1: 1, 1: 3, 0: After mixing in 1, the emission spectra of these mixed solutions were measured. The result is shown in FIG.
The [Eu (BIPYPO) (D-hfbc) 3 ] solution showed a sharp emission spectrum at any mixing ratio, but the higher the acetonitrile ratio, the higher the emission intensity.

3.[Eu(BIPYPO)(D-hfbc)3]の円偏光発光性
[Eu(BIPYPO)(D-hfbc)3]の1mM重アセトン溶液及び1mM重アセトニトリル溶液を調製し、それぞれの溶液を体積比1:0、3:1、1:1、1:3、0:1で混合した後、これらの混合溶液についてCPLスペクトルを測定した。この結果を図11に示す。
図11に示すように、[Eu(BIPYPO)(D-hfbc)3]溶液は、アセトンの混合比率が低いほど(即ち、アセトニトリルの混合比率が高いほど)、高い円偏光発光性を示した。
また、上記混合溶液についてg値を求めた。アセトンの混合比率に対して相対発光強度 (Irel)及びg値をプロットしたグラフを図12に示す。
図12に示すように、[Eu(BIPYPO)(D-hfbc)3]は、アセトンの混合比率が高くなるほど(即ち、アセトニトリルの混合比率が低いほど)g値が小さくなる傾向を示した。これは、アセトン存在下における錯体構造とアセトニトリル存在下における錯体構造が、それぞれ異なる符号のCPLを示すためと考えられる。
3. Circularly polarized luminescence of [Eu (BIPYPO) (D-hfbc) 3 ]
A 1 mM heavy acetone solution and a 1 mM heavy acetonitrile solution of [Eu (BIPYPO) (D-hfbc) 3 ] are prepared, and the volume ratios of the respective solutions are 1: 0, 3: 1, 1: 1, 1: 3, 0: After mixing in 1, CPL spectra were measured for these mixed solutions. The result is shown in FIG.
As shown in FIG. 11, the [Eu (BIPYPO) (D-hfbc) 3 ] solution exhibited higher circularly polarized light emission as the acetone mixing ratio was lower (that is, the acetonitrile mixing ratio was higher).
Moreover, g value was calculated | required about the said mixed solution. FIG. 12 is a graph plotting relative emission intensity (Irel) and g value against the mixing ratio of acetone.
As shown in FIG. 12, [Eu (BIPYPO) (D-hfbc) 3 ] showed a tendency that the g value decreased as the mixing ratio of acetone increased (that is, the mixing ratio of acetonitrile decreased). This is presumably because the complex structure in the presence of acetone and the complex structure in the presence of acetonitrile exhibit different CPLs.

これらの結果から明らかなように、上記各実施例に係るEu(III)錯体は、高い円偏光発光性だけでなく、高い発光強度を示した。また、アセトン等のケトン系溶媒とアセトニトリルの混合溶媒に上記実施例に係るEu(III)錯体を溶解して得たEu(III)錯体溶液は、混合溶媒中の混合比率に依存して異なるg値を示した。   As is clear from these results, the Eu (III) complexes according to the above examples exhibited not only high circularly polarized light emission but also high light emission intensity. In addition, the Eu (III) complex solution obtained by dissolving the Eu (III) complex according to the above example in a mixed solvent of a ketone solvent such as acetone and acetonitrile is different depending on the mixing ratio in the mixed solvent. The value is shown.

なお、上述した各実施例では、Ln(III)イオンとしてEu(III)を用いたが、その他、Nd、Sm、Tb、Ybを適用することも可能である。希土類イオンを適宜変更することによって、発光色が異なる円偏光発光性希土類錯体を得ることができる。   In each of the embodiments described above, Eu (III) is used as the Ln (III) ion, but Nd, Sm, Tb, and Yb can also be applied. By appropriately changing the rare earth ions, circularly polarized light-emitting rare earth complexes having different emission colors can be obtained.

また、上述した実施例では、まず8配位体の円偏光発光性希土類錯体を合成し、該錯体をケトン系溶媒に溶解することによって7配位型の円偏光発光性希土類錯体を得た。このように7配位型の円偏光発光性希土類錯体は8配位型の円偏光発光性希土類錯体を前駆体として作製することができる。また、上述した各円偏光発光性希土類錯体の合成例において、溶媒にケトン系溶媒を用いて合成を行えば8配位型を経ずに7配位型を作製することができる。7配位型の円偏光発光性希土類錯体はいずれの方法を用いても作製することが可能である。   In the above-described Examples, an 8-coordinate circularly polarized light-emitting rare earth complex was first synthesized, and the complex was dissolved in a ketone solvent to obtain a 7-coordinate circularly polarized light-emitting rare earth complex. As described above, the seven-coordinate circularly polarized light-emitting rare earth complex can be prepared using an 8-coordinated circularly polarized light-emitting rare earth complex as a precursor. In addition, in the above-described synthesis examples of each circularly polarized light-emitting rare earth complex, a 7-coordination type can be produced without going through an 8-coordination type by using a ketone solvent as a solvent. The seven-coordinate circularly polarized light-emitting rare earth complex can be produced by any method.

次に、本発明の円偏光発光性希土類錯体を利用した光学機能材料の実施例をいくつか述べる。
本発明に係る円偏光発光性希土類錯体に一方の円偏光を吸収させれば、他方の円偏光を得ることができる。即ち、円偏光板などの円偏光フィルタと同じ役割を果たすことから、本発明に係る円偏光発光性希土類錯体を円偏光フィルタに適用することが可能である。この円偏光フィルタは光多重通信など、広範な用途への適用が可能である。
また、本発明に係る円偏光発光性希土類錯体は、セキュリティインクに適用することも可能である。
本発明の円偏光発光性希土類錯体は、上記のような光学機能材料について単独で用いることができるが、7配位型と8配位型を所望の比率で含む円偏光発光性希土類錯体群を用いても良い。このような円偏光発光性希土類錯体群を用いれば、所望の円偏光発光性を有する光学機能材料を提供することができる。
Next, several examples of optical functional materials using the circularly polarized light-emitting rare earth complex of the present invention will be described.
If the circularly polarized light-emitting rare earth complex according to the present invention absorbs one circularly polarized light, the other circularly polarized light can be obtained. That is, since it plays the same role as a circularly polarizing filter such as a circularly polarizing plate, the circularly polarizing luminescent rare earth complex according to the present invention can be applied to the circularly polarizing filter. This circularly polarizing filter can be applied to a wide range of applications such as optical multiplex communication.
The circularly polarized light-emitting rare earth complex according to the present invention can also be applied to security inks.
The circularly polarized light-emitting rare earth complex of the present invention can be used alone for the optical functional materials as described above, but a circularly polarized light-emitting rare earth complex group containing a 7-coordinate type and an 8-coordinated type in a desired ratio is used. It may be used. By using such a circularly polarized light emitting rare earth complex group, an optical functional material having desired circularly polarized light emitting property can be provided.

本発明の円偏光発光性希土類錯体を上記のような光学機能材料として用いる際は、その結晶を直接用いてもよいし、透明ポリマーや透明ガラスなどの透明固体担体に含有させてもよい。また、その結晶を溶媒に溶解、分散などさせて塗料とすることもできる。   When the circularly polarized light-emitting rare earth complex of the present invention is used as an optical functional material as described above, the crystal may be used directly or may be contained in a transparent solid support such as a transparent polymer or transparent glass. Also, the crystals can be dissolved or dispersed in a solvent to form a paint.

本発明に係る円偏光発光性希土類錯体を含有させる透明ポリマーとしては、ポリメチルメタクリレート、含フッ素ポリメタクリレート、ポリアクリレート、含フッ素ポリアクリレート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン、含フッ素ポリオレフィン、ポリビニルエーテル、含フッ素ポリビニルエーテル、ポリ酢酸ビニル、ポリ塩化ビニル、及びそれらの共重合体、セルロース、ポリアセタール、ポリエステル、ポリカーボネイト、エポキシ樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン、ナフィオン、石油樹脂、ロジン、ケイ素樹脂などが例示され、好ましくはポリメチルメタクリレート、含フッ素ポリメタクリレート、ポリアクリレート、含フッ素ポリアクリレート、ポリスチレン、ポリオレフィン、ポリビニルエーテル、及びそれらの共重合体、エポキシ樹脂等を使用することができる。もちろん、これらの2種以上を組み合わせたものであってもよい。
なお、本発明に係る円偏光発光性希土類錯体を含む透明ポリマーは、公知の文献(Hasegawa, et al. Chem. Lett. 1999, 35.)に従い調製することができる。
As the transparent polymer containing the circularly polarized light-emitting rare earth complex according to the present invention, polymethyl methacrylate, fluorine-containing polymethacrylate, polyacrylate, fluorine-containing polyacrylate, polystyrene, polyethylene, polypropylene, polybutene and other polyolefins, fluorine-containing polyolefin, Polyvinyl ether, fluorine-containing polyvinyl ether, polyvinyl acetate, polyvinyl chloride, and copolymers thereof, cellulose, polyacetal, polyester, polycarbonate, epoxy resin, polyamide resin, polyimide resin, polyurethane, Nafion, petroleum resin, rosin, silicon Resin, etc., preferably polymethyl methacrylate, fluorine-containing polymethacrylate, polyacrylate, fluorine-containing polyacrylate, polystyrene, polyester Olefin, polyvinyl ether, and copolymers thereof, may be used an epoxy resin or the like. Of course, it may be a combination of two or more of these.
The transparent polymer containing the circularly polarized light-emitting rare earth complex according to the present invention can be prepared according to a known document (Hasegawa, et al. Chem. Lett. 1999, 35.).

本発明の円偏光発光性希土類錯体は、その中心イオンとしての希土類イオンの種類や配位子の種類によって発光色が異なる。従って、本発明の円偏光発光性希土類錯体の希土類イオンの種類を適宜選択することにより、様々な色の発光を示す光学機能性材料を作製することができる。また、発光色を変化させるために有機色素を混合しても良い。   The circularly polarized light-emitting rare earth complex of the present invention has a different emission color depending on the type of rare earth ion as the central ion and the type of ligand. Accordingly, by appropriately selecting the type of rare earth ions of the circularly polarized light emitting rare earth complex of the present invention, optical functional materials that emit light of various colors can be produced. Further, an organic dye may be mixed in order to change the emission color.

本発明に係る円偏光発光性希土類錯体と共に溶解、分散させることのできる色素は、緑色系の色素としては、アルカリ土類シリコンオキシナイトライド系蛍光体、及びピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テルビウム錯体等の有機蛍光体などが挙げられる。また、赤色系の色素としては、アルファサイアロン構造をもつ酸窒化物を含有する蛍光体、及びβ−ジケトネート、β−ジケトン、芳香族カルボン酸、又は、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体などが挙げられる。さらに青色系の色素としては、アルカリ土類アルミネート系蛍光体、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラリゾン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体などが挙げられる。
円偏光発光性希土類錯体は一般にカチオン性であるので、本発明に係る円偏光発光性希土類錯体と共存させる色素としては、例えばアントラセン系色素のように炭素と水素だけで構成されている色素を用いることが好ましい。
The dyes that can be dissolved and dispersed together with the circularly polarized light-emitting rare earth complex according to the present invention include, as green dyes, alkaline earth silicon oxynitride phosphors, pyridine-phthalimide condensed derivatives, and benzoxazinones. Quinazolinone-based, coumarin-based, quinophthalone-based, naltalimide-based fluorescent dyes, organic phosphors such as terbium complexes, and the like. Further, as a red dye, a phosphor containing an oxynitride having an alpha sialon structure, and an anion such as β-diketonate, β-diketone, aromatic carboxylic acid, or Bronsted acid as a ligand. Red organic phosphors composed of rare earth element ion complexes. Further, as blue dyes, alkaline earth aluminate phosphors, naphthalimide imides, benzoxazoles, styryls, coumarins, pyralizones, triazoles, fluorescent compounds, organic phosphors such as thulium complexes, etc. Is mentioned.
Since the circularly polarized light-emitting rare earth complex is generally cationic, as the dye that coexists with the circularly polarized light-emitting rare earth complex according to the present invention, for example, a dye composed only of carbon and hydrogen, such as an anthracene-based dye, is used. It is preferable.

本発明に係る円偏光発光性希土類錯体を溶解、分散させることのできる溶剤は、上記したケトン系及び非ケトン系の溶剤の他、アルコール系溶剤、エステル系溶剤或いはこれらの混合物であることが好ましい。   The solvent that can dissolve and disperse the circularly polarized light-emitting rare earth complex according to the present invention is preferably an alcohol solvent, an ester solvent, or a mixture thereof in addition to the above-mentioned ketone-based and non-ketone-based solvents. .

Claims (9)

7配位型の円偏光発光性希土類錯体であって、
一般式(7)
(式中、Ln(III)は3価の希土類イオンを表す。
で表されることを特徴とする円偏光発光性希土類錯体。
A seven-coordinate circularly polarized light-emitting rare earth complex,
General formula (7)
(Wherein, Ln (III) Table to a trivalent rare earth ion.)
In circularly polarized light emitting rare earth complex characterized by being represented.
8配位型の円偏光発光性希土類錯体であって、
一般式(11)
(式中、Ln(III)は3価の希土類イオンを表す。
で表されることを特徴とする円偏光発光性希土類錯体。
An eight-coordinate circularly polarized light-emitting rare earth complex,
Formula (11)
(Wherein, Ln (III) Table to a trivalent rare earth ion.)
In circularly polarized light emitting rare earth complex characterized by being represented.
前記希土類イオンが、Nd、Sm、Eu、Tb、Ybのいずれかのイオンであることを特徴とする請求項1又は2に記載の円偏光発光性希土類錯体。 The circularly polarized light-emitting rare earth complex according to claim 1 or 2 , wherein the rare earth ion is any one of Nd, Sm, Eu, Tb, and Yb. 請求項1〜のいずれかに記載の円偏光発光性希土類錯体を含むことを特徴とする光学機能材料。 Optical functional material comprising a circularly polarized light emitting rare earth complex according to any one of claims 1-3. 請求項1〜のいずれかに記載の円偏光発光性希土類錯体を含むことを特徴とする円偏光フィルタ。 Circularly polarized light filter which comprises a circularly polarized light emitting rare earth complex according to any one of claims 1-3. 請求項1〜のいずれかに記載の円偏光発光性希土類錯体を含むことを特徴とするセキュリティーインク。 Security ink comprising a circularly polarized light emitting rare earth complex according to any one of claims 1-3. 請求項に記載の7配位型の円偏光発光性希土類錯体及び請求項に記載の8配位型の円偏光発光性希土類錯体から選ばれる少なくとも一種の円偏光発光性希土類錯体を、ケトン系の第1溶媒及び非ケトン系の第2溶媒を0:10〜10:0の割合で混合した析出溶媒に溶解し、前記析出溶媒を除去することによって、前記7配位型の円偏光発光性希土類錯体及び前記8配位型の円偏光発光性希土類錯体を所望の比率で含む円偏光発光性希土類錯体群を得る方法。 At least one circularly polarized light emitting rare earth complex selected from 7 coordinated circularly polarized light emitting rare earth complexes and claim 2 8 coordinated circularly polarized light emitting rare earth complex according to according to claim 1, ketone The seven-coordinate type circularly polarized light emission is obtained by dissolving a first solvent of a system and a second solvent of a non-ketone system in a precipitation solvent mixed at a ratio of 0:10 to 10: 0 and removing the precipitation solvent. A method of obtaining a circularly polarized light-emitting rare earth complex group comprising a light-emitting rare earth complex and the 8-coordinated circularly polarized light-emitting rare earth complex in a desired ratio. 前記第1溶媒は、
一般式(12)
(式中、E1〜E2は同一又は異なる炭素数1〜5の基を表す。)
で表される鎖状又は環状のケトン系溶媒であることを特徴とする、請求項に記載の円偏光発光性希土類錯体群を得る方法。
The first solvent is
Formula (12)
(In formula, E1-E2 represents the same or different C1-C5 group.)
A method for obtaining a group of circularly polarized light-emitting rare earth complexes according to claim 7 , wherein the group is a linear or cyclic ketone solvent represented by the formula:
前記第2溶媒はニトリル系溶媒又はハロゲン系溶媒であることを特徴とする、請求項7又は8に記載の円偏光発光性希土類錯体群を得る方法。 The method for obtaining a group of circularly polarized light-emitting rare earth complexes according to claim 7 or 8 , wherein the second solvent is a nitrile solvent or a halogen solvent.
JP2011269916A 2011-12-09 2011-12-09 Circularly polarized light-emitting rare earth complex Active JP5849255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011269916A JP5849255B2 (en) 2011-12-09 2011-12-09 Circularly polarized light-emitting rare earth complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011269916A JP5849255B2 (en) 2011-12-09 2011-12-09 Circularly polarized light-emitting rare earth complex

Publications (3)

Publication Number Publication Date
JP2013121921A JP2013121921A (en) 2013-06-20
JP2013121921A5 JP2013121921A5 (en) 2014-12-04
JP5849255B2 true JP5849255B2 (en) 2016-01-27

Family

ID=48774130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011269916A Active JP5849255B2 (en) 2011-12-09 2011-12-09 Circularly polarized light-emitting rare earth complex

Country Status (1)

Country Link
JP (1) JP5849255B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107081174A (en) * 2017-04-25 2017-08-22 昆明理工大学 A kind of preparation method of needle-like copper-based catalysts
US11802208B2 (en) 2017-07-28 2023-10-31 Nippon Kayaku Kabushiki Kaisha Stilbene-based compound or salt thereof, and polarizing film, polarizing plate, and display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6590254B2 (en) * 2014-02-10 2019-10-16 国立大学法人北海道大学 Ligand, polymer complex and production method thereof
JPWO2018047951A1 (en) * 2016-09-09 2019-07-25 国立大学法人北海道大学 Light emitting material, ink, and light emitting device
JP7147596B2 (en) * 2019-01-29 2022-10-05 大日本印刷株式会社 Ink composition, printed matter, and authentication method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3579744B2 (en) * 2002-03-08 2004-10-20 関西ティー・エル・オー株式会社 Complex having diastereomer structure ligand and optical functional material using the same
WO2008111293A1 (en) * 2007-03-09 2008-09-18 National University Corporation NARA Institute of Science and Technology Rare-earth complex and use thereof
JP5272343B2 (en) * 2007-07-17 2013-08-28 三菱化学株式会社 Novel rare earth complex, rare earth complex phosphor, and phosphor-containing composition, laminate, color conversion film, light emitting device, lighting device, and image display device using the phosphor
WO2010032395A1 (en) * 2008-09-19 2010-03-25 国立大学法人奈良先端科学技術大学院大学 Rare earth complex nanocrystals and applications thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107081174A (en) * 2017-04-25 2017-08-22 昆明理工大学 A kind of preparation method of needle-like copper-based catalysts
CN107081174B (en) * 2017-04-25 2019-09-27 昆明理工大学 A kind of preparation method of needle-shaped copper-based catalysts
US11802208B2 (en) 2017-07-28 2023-10-31 Nippon Kayaku Kabushiki Kaisha Stilbene-based compound or salt thereof, and polarizing film, polarizing plate, and display device

Also Published As

Publication number Publication date
JP2013121921A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
Xing et al. Design and properties of multiple-emitter luminescent metal–organic frameworks
Ahmed et al. Efficient layers of emitting ternary lanthanide complexes for fabricating red, green, and yellow OLEDs
JP5849255B2 (en) Circularly polarized light-emitting rare earth complex
Koiso et al. Eu (III) chiral coordination polymer with a structural transformation system
JP2008517891A (en) Luminescent complex salt
Yano et al. Salt–cocrystal continuum for photofunction modulation: stimuli-responsive fluorescence color-tuning of pyridine-modified intramolecular charge-transfer dyes and acid complexes
CA2816432A1 (en) Compounds and methods for enhancing metal luminescence that can be selectively turned off
JP5713360B2 (en) Circularly polarized light-emitting rare earth complex
Utochnikova et al. Lanthanide pyrazolecarboxylates for OLEDs and bioimaging
Taydakov et al. Synthesis, X-ray structure and luminescent properties of Sm3+ ternary complex with novel heterocyclic β-diketone and 1, 10-phenanthroline (Phen)
Filonenko et al. Intramolecular non-covalent interactions as a strategy towards controlled photoluminescence in copper (I) complexes
TW201237042A (en) Preparation of fac-isomers of tris homoleptic metal complexes
Horiuchi et al. Recent advances in pyrazolato-bridged homo-and heterometallic polynuclear platinum and palladium complexes
Malina et al. Luminescence properties of 2-benzoyl-1, 3-indandione based Eu3+ ternary and tetrakis complexes and their polymer films
WO2009110199A1 (en) Near infrared strongly luminous rare earth complex
KR20180004755A (en) In-base sensor for multiple solvent detection
JP5729851B2 (en) Organic light emitting diode
JP6048643B2 (en) Luminescent material
Wang et al. Synthesis, crystal structure and fluorescence properties of terbium complexes with phenoxyacetic acid and 2, 4, 6‐tris‐(2‐pyridyl)‐s–triazine
JP7269621B2 (en) Circularly polarized luminescent rare earth complexes
Liu et al. New route to strong, long-lived room-temperature phosphorescence using organic phosphor guest-friendly matrices [Al (DMSO) 6] X3 (X= Cl−, Br−)
JP7044319B2 (en) Rare earth complex polymers and illuminants
JP7274134B2 (en) Rare earth compounds, light emitters, light emitting devices, wavelength conversion materials and security materials
JP2022146969A (en) Rare earth complex with phenanthroline ligand
Brown et al. Emissive lanthanide dicyanoaurate coordination polymers with 2, 2′-bipyridine dioxide antenna groups and their hydration states

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151009

R150 Certificate of patent or registration of utility model

Ref document number: 5849255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250