JP2011093841A - Anthracene derivative and pyrene derivative - Google Patents

Anthracene derivative and pyrene derivative Download PDF

Info

Publication number
JP2011093841A
JP2011093841A JP2009249460A JP2009249460A JP2011093841A JP 2011093841 A JP2011093841 A JP 2011093841A JP 2009249460 A JP2009249460 A JP 2009249460A JP 2009249460 A JP2009249460 A JP 2009249460A JP 2011093841 A JP2011093841 A JP 2011093841A
Authority
JP
Japan
Prior art keywords
group
fluorescence
alkyl
derivative
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009249460A
Other languages
Japanese (ja)
Inventor
Genichi Konishi
玄一 小西
Makoto Uchimura
真 内村
Junji Watanabe
順次 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2009249460A priority Critical patent/JP2011093841A/en
Publication of JP2011093841A publication Critical patent/JP2011093841A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coloring matter for organic laser, having excellent durability against light irradiation and emitting light in high efficiency. <P>SOLUTION: There is provided a fluorescent coloring matter exhibiting high stability (against oxidation reaction, radical reaction, photoreaction or the like) and highly efficient light emission (high absorbance and high quantum efficiency), and capable of being dispersed in a polymer or a liquid crystal solvent in high concentration. Concretely, there is provided the compound obtained by introducing aryl groups to easily oxidizable four points of pyrene and two points of anthracene, and further introducing dissolvable long-chain alkyl groups to the aryl groups. These coloring matters especially are aimed at organic lasers oscillating at low thresholds and continuous oscillation thereof. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、好適な特性を有するアントラセンないしピレン誘導体に関する。本発明のアントラセン誘導体は、特に、有機レーザ用色素として好適に使用可能である。   The present invention relates to anthracene or pyrene derivatives having suitable properties. The anthracene derivative of the present invention can be particularly preferably used as a dye for an organic laser.

レーザ用の有機色素は、これまでに多数開発されているが(非特許文献1〜5を参照)、それらの多くは液体レーザ用であり、固体レーザ用の色素はごく少数であった。また、高安定性と高効率発光を両方とも満足する色素はかなり少なかった。したがって、コレステリック液晶レーザの開発においては、新しい色素が求められている。   Many organic dyes for lasers have been developed so far (see Non-Patent Documents 1 to 5), but most of them are for liquid lasers and very few dyes for solid-state lasers. In addition, there were very few dyes satisfying both high stability and high efficiency light emission. Therefore, new dyes are required in the development of cholesteric liquid crystal lasers.

例えば、下記式に示す従来の色素(「DCM」と称される)は、発光能は優れているものの、YAGレーザ等では、すぐに分解してしまうという欠点があった。   For example, a conventional dye represented by the following formula (referred to as “DCM”) has a defect of being readily decomposed by a YAG laser or the like, although it has an excellent luminous ability.

Figure 2011093841
Figure 2011093841

V. de Halleuxら、Adv. Funct. Mater., 14、No.7、第649〜659頁V. de Halleux et al., Adv. Funct. Mater., 14, no. 7, pages 649-659 T. M. Figueira−Duarteら、Angew. Chem., 2008,120、第10329〜10332頁T. M. Figueira-Duarte et al., Angew. Chem., 2008, 120, pages 10329-10332. M. Ozakiら、Adv. Mater., 2002、14、No.4、第307〜309頁M. Ozaki et al., Adv. Mater. 4, pages 307-309 J. Schmidtkeら、Adv. Mater., 2002、14、No.10、第746〜749頁J. Schmidtke et al., Adv. Mater., 2002, 14, No. 10, pp. 746-749 M. H. Songら、Adv. Mater., 2004、16、No.9〜10、第779〜783頁M. H. Song et al., Adv. Mater., 2004, 16, No. 9-10, 779-783

本発明の目的は、上記した従来技術の欠点を解消することができる有機化合物を提供することにある。   The objective of this invention is providing the organic compound which can eliminate the fault of the above-mentioned prior art.

光照射に対する耐久性に優れ、高効率で発光する有機レーザ用色素を提供することである。ここでいう光照射に対する耐久性とは、長時間光照射または繰り返し光照射を行っても分子結合が切れる等の分子構造が変わることがないことを意味する。具体的には、該化合物に、吸収波長の光を照射する時間または回数に対する、該化合物のNMRが変化しないことや該化合物の蛍光強度が変化しないことで評価する。   An object of the present invention is to provide an organic laser dye that is excellent in durability against light irradiation and emits light with high efficiency. The term “durability against light irradiation” as used herein means that a molecular structure such as a molecular bond is not changed even when light irradiation or repeated light irradiation is performed for a long time. Specifically, the evaluation is based on the fact that the NMR of the compound does not change and the fluorescence intensity of the compound does not change with respect to the time or number of times the compound is irradiated with light having an absorption wavelength.

本発明者は鋭意研究の結果、特定の基本骨格(すなわち、アントラセンおよび/又はピレン骨格)を有し、しかも特定位置にアリール基を有する化合物が、高エネルギー印加時における耐久性に優れることを見出した。たとえばピレンの臭素化や酸化反応は1,3,6,8位で特異的に起こることが知られており、ベンゼンやナフタレンと異なり無触媒で容易に反応が進行する(H.Maedaら、Eur.J.Chem.,2006、12,824)。そこで、該当の位置に酸化されにくいフェニル基またはナフチル基などのアリール基を導入すると、その安定性が大きく向上する。本発明者らは、上記知見に基づき更に研究を進めた結果、これらの化合物が、好適な波長で高い発光効率を有することをも見出した。   As a result of intensive studies, the present inventor has found that a compound having a specific basic skeleton (that is, anthracene and / or pyrene skeleton) and having an aryl group at a specific position is excellent in durability when high energy is applied. It was. For example, it is known that the bromination or oxidation reaction of pyrene occurs specifically at the 1, 3, 6 and 8 positions, and unlike benzene and naphthalene, the reaction proceeds easily without catalyst (H. Maeda et al., Eur J. Chem., 2006, 12, 824). Therefore, when an aryl group such as a phenyl group or a naphthyl group which is not easily oxidized is introduced at the corresponding position, the stability is greatly improved. As a result of further research based on the above findings, the present inventors have also found that these compounds have high luminous efficiency at a suitable wavelength.

本発明のアントラセン誘導体は上記知見に基づくものであり、より詳しくは、後述する一般式(1)によって示される、9、10位にアリール基を有するアントラセン誘導体である(式(1)中、Arは、後述する一般式(2)〜(14)からなる群から選ばれるいずれかのアリール基であり;該ArおよびArは全て同じでも、それらの一部が異なっていてもよい)。 The anthracene derivative of the present invention is based on the above findings, and more specifically is an anthracene derivative having an aryl group at the 9th and 10th positions represented by the general formula (1) described later (in the formula (1), Ar Is any aryl group selected from the group consisting of the general formulas (2) to (14) described later; Ar 1 and Ar 2 may be the same or a part of them may be different.

本発明によれば、更に、後述する一般式(15)によって示される、1、3、6、8−アリール基を有するピレン誘導体(式(2)中、Ar〜Arは、後述する下記一般式(2)〜(14)からなる群から選ばれるいずれかのアリール基であり;該Ar〜Arは全て同じでも、それらの一部が異なっていてもよい)が提供される。 According to the present invention, a pyrene derivative having a 1, 3, 6, 8-aryl group represented by the general formula (15) described later (in the formula (2), Ar 1 to Ar 4 are the following Any aryl group selected from the group consisting of the general formulas (2) to (14); the Ar 1 to Ar 4 may be the same or a part of them may be different.

上述したように本発明によれば、良好な特性を発揮可能な有機化合物が提供される。   As described above, according to the present invention, an organic compound capable of exhibiting good characteristics is provided.

本発明のアントラセンないしピレン誘導体は、例えば、下記の効果を奏することができる。   The anthracene or pyrene derivative of the present invention can exhibit the following effects, for example.

(1)レーザ色素を指向した新しい高安定性・高効率発光色素が実現可能となる。 (1) A new high-stability and high-efficiency luminescent dye directed to a laser dye can be realized.

(2)レーザ色素として、高い安定性が得られる。例えば、熱、酸化反応、ラジカル反応等の、特に、レーザ照射条件下において、高い耐久性を発揮できる。 (2) High stability is obtained as a laser dye. For example, high durability can be exhibited particularly under laser irradiation conditions such as heat, oxidation reaction and radical reaction.

(3)レーザ色素として、高効率の発光が得られる。例えば、レーザ照射波長におけるモル吸光係数(ε)が10000L・M−1・cm−1以上で蛍光量子収率(Φ)が0.8以上である等の、高い発光効率を得ることができる。 (3) Highly efficient light emission can be obtained as a laser dye. For example, it is possible to obtain high light emission efficiency such that the molar absorption coefficient (ε) at the laser irradiation wavelength is 10,000 L · M −1 · cm −1 or more and the fluorescence quantum yield (Φ) is 0.8 or more.

(4)レーザ色素として、高い溶媒への相溶性が得られる。例えば、液晶相との高い相溶性を発現可能な設計が容易である。液晶と相溶性が高ければ、液晶相に溶解した状態で分子配向しやすく、レーザ発振の条件であるコヒーレントな蛍光が得られやすい。この液晶相との相溶性については、目視または倍率10倍程度の顕微鏡で観察した際に透明均一になっていること、さらに詳しくは、紫外可視吸収スペクトルが該化合物と液晶化合物の吸収スペクトルの重ね合わせとなっていることで確認できる。 (4) High compatibility with a solvent is obtained as a laser dye. For example, a design capable of exhibiting high compatibility with a liquid crystal phase is easy. If the compatibility with the liquid crystal is high, the molecules are easily oriented in a state of being dissolved in the liquid crystal phase, and coherent fluorescence, which is a laser oscillation condition, is easily obtained. As for the compatibility with the liquid crystal phase, it is transparent and uniform when observed visually or with a microscope having a magnification of about 10 times. More specifically, the UV-visible absorption spectrum overlaps the absorption spectrum of the compound and the liquid crystal compound. It can be confirmed by the combination.

実施例1で得られたH−NMRデータを示すチャートである。2 is a chart showing 1 H-NMR data obtained in Example 1. FIG. 実施例1で得られたH−NMRデータを示すチャートである。2 is a chart showing 1 H-NMR data obtained in Example 1. FIG. 実施例1で得られたUV−Vis吸光度データを示すチャートである。2 is a chart showing UV-Vis absorbance data obtained in Example 1. FIG.

実施例2で得られたH−NMRデータを示すチャートである。2 is a chart showing 1 H-NMR data obtained in Example 2. FIG. 実施例2で得られたH−NMRデータを示すチャートである。2 is a chart showing 1 H-NMR data obtained in Example 2. FIG. 実施例2で得られたH−NMRデータを示すチャートである。2 is a chart showing 1 H-NMR data obtained in Example 2. FIG.

実施例2で得られたUV−Vis吸光度データを示すチャートである。2 is a chart showing UV-Vis absorbance data obtained in Example 2. FIG. 実施例3で得られたH−NMRデータを示すチャートである。2 is a chart showing 1 H-NMR data obtained in Example 3. FIG. 実施例3で得られたUV−Vis吸光度データを示すチャートである。6 is a chart showing UV-Vis absorbance data obtained in Example 3.

実施例4で得られたH−NMRデータを示すチャートである。2 is a chart showing 1 H-NMR data obtained in Example 4. FIG. 実施例4で得られた13C−NMRデータを示すチャートである。6 is a chart showing 13 C-NMR data obtained in Example 4. FIG. 実施例4で得られたUV−Vis吸光度データを示すチャートである。6 is a chart showing UV-Vis absorbance data obtained in Example 4.

以下、必要に応じて図面を参照しつつ本発明を更に具体的に説明する。以下の記載において量比を表す「部」および「%」は、特に断らない限り質量基準とする。   Hereinafter, the present invention will be described more specifically with reference to the drawings as necessary. In the following description, “parts” and “%” representing the quantity ratio are based on mass unless otherwise specified.

(アントラセン誘導体)
本発明の第1の態様たる「アントラセン誘導体」は、下記一般式(1)によって示される、9、10位にアリール基を有するアントラセン誘導体である。
(Anthracene derivative)
The “anthracene derivative” according to the first aspect of the present invention is an anthracene derivative having an aryl group at the 9th and 10th positions represented by the following general formula (1).

Figure 2011093841
Figure 2011093841

(アリール基)
上記式中、ArおよびArは、下記一般式(2)〜(14)のいずれかによって示される基である。これら、ArおよびArはすべて同じでも、また一部もしくは全部異なっていてもよい。本発明のアントラセン誘導体を製造する際の簡便さの点からは、ArとArが同一であることが好ましい。
(Aryl group)
In the above formula, Ar 1 and Ar 2 are groups represented by any one of the following general formulas (2) to (14). These Ar 1 and Ar 2 may all be the same or may be partially or completely different. From the viewpoint of simplicity in producing the anthracene derivative of the present invention, it is preferable that Ar 1 and Ar 2 are the same.

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

(ピレン誘導体)
本発明の第2の態様たる「ピレン誘導体」は、下記一般式(15)によって示される、1、3、6、8−アリール基を有するピレン誘導体である。
(Pyrene derivatives)
The “pyrene derivative” according to the second aspect of the present invention is a pyrene derivative having a 1, 3, 6, 8-aryl group represented by the following general formula (15).

Figure 2011093841
(式中、Ar〜Arは、下記一般式(2)〜(14)からなる群から選ばれるいずれかのアリール基であり;該Ar〜Arは全て同じでも、それらの一部が異なっていてもよい)。
Figure 2011093841
(Wherein Ar 1 to Ar 4 are any aryl groups selected from the group consisting of the following general formulas (2) to (14); Ar 1 to Ar 4 may all be the same or a part thereof) May be different).

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
Figure 2011093841

Figure 2011093841
(一般式(2)〜(14)中、R〜Rは、炭素数1〜18の直鎖または分岐状のアルキル基、ベンジル基またはフェニル基およびそれらの炭化水素置換基を有する誘導体、アルキルエーテル基、アルキルエステル基、芳香族エステル基、アルキレンエーテル基、水素。更に、フッ化アルキル官能基を含むアルキル基、アルキルエーテル基、アルキルエステル基、芳香族エステル基、アルキレンエーテル基である;該R〜Rは、全てが同じでも、一部が異なっていてもよい)。
Figure 2011093841
(In General Formulas (2) to (14), R 1 to R 3 are each a linear or branched alkyl group having 1 to 18 carbon atoms, a benzyl group or a phenyl group, and a derivative having a hydrocarbon substituent thereof, An alkyl ether group, an alkyl ester group, an aromatic ester group, an alkylene ether group, hydrogen, and an alkyl group containing a fluorinated alkyl functional group, an alkyl ether group, an alkyl ester group, an aromatic ester group, an alkylene ether group; R 1 to R 3 may be all the same or partially different.

(好適なアリール基)
レーザ用色素としての高量子効率を発現する点からは、Arは、ビフェニル骨格(一般式2、4)、ターフェニル骨格(一般式3、5)、ナフチル骨格(一般式6〜8)、アントラセン骨格(一般式9〜11)であることが好ましい。
(Suitable aryl group)
From the standpoint of high quantum efficiency as a laser dye, Ar is a biphenyl skeleton (general formulas 2 and 4), a terphenyl skeleton (general formulas 3 and 5), a naphthyl skeleton (general formulas 6 to 8), anthracene. A skeleton (general formulas 9 to 11) is preferable.

更に製造法の簡便さと溶解性の点からは、Arは、ビフェニル骨格(一般式2、4)、ターフェニル骨格(一般式3、5)、ナフチル骨格(一般式6〜8)を有するものであることが特に好ましい。   Furthermore, Ar has a biphenyl skeleton (general formulas 2 and 4), a terphenyl skeleton (general formulas 3 and 5), and a naphthyl skeleton (general formulas 6 to 8) from the viewpoint of simplicity of the manufacturing method and solubility. It is particularly preferred.

(好ましい置換基)
一般式(2)〜一般式(14)中のR(R〜Rは)は、炭素数1〜18の直鎖または分岐状のアルキル基、ベンジル基またはフェニル基およびそれらの炭化水素置換基を有する誘導体、アルキルエーテル基、アルキルエステル基、芳香族エステル基、アルキレンエーテル基、水素。更に、フッ化アルキル官能基を含むアルキル基、アルキルエーテル基、アルキルエステル基、芳香族エステル基、アルキレンエーテル基である。R〜Rは、すべて同じでも、異なっていてもよい。
(Preferred substituent)
R in general formula (2) to general formula (14) (R 1 to R 3 are each a straight chain or branched alkyl group having 1 to 18 carbon atoms, a benzyl group or a phenyl group, and hydrocarbon substitution thereof. Group-containing derivatives, alkyl ether groups, alkyl ester groups, aromatic ester groups, alkylene ether groups, hydrogen. Further, an alkyl group containing a fluorinated alkyl functional group, an alkyl ether group, an alkyl ester group, an aromatic ester group, and an alkylene ether group. R 1 to R 3 may all be the same or different.

(特に好ましい置換基)
特に限定されないが、色素に高い有機溶媒への溶解性や高分子溶媒への分散、各種表面への吸着能を付与することが極めて好ましいため、下記のような条件が適当である。
(Particularly preferred substituents)
Although not particularly limited, the following conditions are suitable because it is highly preferable to impart high solubility in organic solvents, dispersion in polymer solvents, and adsorption ability to various surfaces to the dye.

Rは、溶解性の高さから好ましくは炭素数1〜18の直鎖または分岐状のアルキル基、アルキルエーテル基、アルキレンエーテル基、水素。更に、フッ化アルキル官能基を含むアルキル基、アルキルエーテル基である。   R is preferably a linear or branched alkyl group having 1 to 18 carbon atoms, an alkyl ether group, an alkylene ether group, or hydrogen because of its high solubility. Furthermore, an alkyl group containing a fluorinated alkyl functional group and an alkyl ether group.

更に原料の入手しやすさから、特に好ましくは、炭素数1〜12の直鎖または分岐状のアルキル基、アルキルエーテル基、ポリオキシエチレン基、フッ化アルキル官能基を含むアルキル基およびアルキルエーテル基である。   Furthermore, in view of the availability of raw materials, particularly preferred are linear or branched alkyl groups having 1 to 12 carbon atoms, alkyl ether groups, polyoxyethylene groups, alkyl groups and alkyl ether groups containing fluorinated alkyl functional groups. It is.

またR〜Rの種類については、製造法の簡便さから、好ましくはR〜Rが同一の成分である。もしくは異なる成分で構成される場合は、少なくとも1つがメチル基、メトキシ基、水素のいずれかであることが好ましい。 Moreover, about the kind of R < 1 > -R < 3 >, from the simplicity of a manufacturing method, Preferably R < 1 > -R < 3 > is the same component. Or when comprised by a different component, it is preferable that at least one is a methyl group, a methoxy group, or hydrogen.

(発光効率が大きい化合物)
ある物質に光を照射することで得られる蛍光の「発光効率」は、入射光量(I)と発光量(I)の比で定義され、蛍光化合物の吸収光量(I・(1−T))と発光量(I)の比である蛍光量子収率(Φ)の関数で表される。すなわち、
「発光効率」=I/I=Φ・(I・(1−T))/I=Φ・(1−T)
である。ここで、Tは該物質に照射した光量(I)と該物質を透過した光量(I)の比I/Iで定義される透過率であり、該化合物のモル吸光係数(ε[L・M−1・cm−1])が大きいほど小さい。Tの逆数の常用対数log(T−1)で定義される吸光度(Aと示す)は、化合物濃度が低い範囲(化合物に依存するが、例えばT>0.95、A<0.02となる濃度領域)では、下式のランバート・ベールの法則が成立する。
A=log(T−1)=ε・c・d (cは濃度[M・L−1]、dは光路長[cm])
(Compound with high luminous efficiency)
The “luminescence efficiency” of fluorescence obtained by irradiating a certain substance with light is defined by the ratio of the incident light amount (I 0 ) and the emitted light amount (I F ), and the absorbed light amount (I 0 · (1− T)) and the amount of luminescence (I F ), which is a function of the fluorescence quantum yield (Φ). That is,
“Luminescence efficiency” = I F / I 0 = Φ · (I 0 · (1-T)) / I 0 = Φ · (1-T)
It is. Here, T is a transmittance defined by a ratio I / I 0 of the amount of light (I 0 ) irradiated to the substance and the amount of light (I) transmitted through the substance, and the molar extinction coefficient (ε [L -M < -1 > cm <-1 >]) is so small that it is large. The absorbance (denoted as A) defined by the common logarithm log (T −1 ) of the reciprocal of T is a range where the compound concentration is low (depending on the compound, for example, T> 0.95, A <0.02) In the concentration range), Lambert-Beer's law of the following formula is established.
A = log (T −1 ) = ε · c · d (c is the concentration [M · L −1 ], d is the optical path length [cm])

従って、化合物の濃度が低いところでは、「発光効率」は下記の式となる。
「発光効率」=Φ×(1−10ε・c・d))
ランバート・ベールの法則が成立する範囲で、εが大きいほど、また、Φが大きいほど、「発光効率」が大きくなることは、上式から自明である。化合物濃度が高いところでは、照射光の全吸収や蛍光の再吸収があり上式から外れてくるが、εが大きいほど、また、Φが大きいほど、「発光効率」は大きくなるという点では変わりがない。したがって、εが大きく、Φが大きい化合物を「発光効率」が大きい化合物と称することができる。ある化合物がレーザー発振するか否かは、「発光効率」以外の要因もあるが、その「発光効率」が大きいことは、レーザー発振する必要不可欠な要因である。
Therefore, at a low concentration of the compound, “luminescence efficiency” is represented by the following formula.
"Luminous efficiency" = Φ × (1-10 - (- ε · c · d))
From the above equation, it is obvious that “luminescence efficiency” increases as ε increases and Φ increases within the range in which Lambert-Beer's law is established. When the compound concentration is high, there is total absorption of irradiation light and reabsorption of fluorescence, which deviates from the above equation, but the point is that the “emission efficiency” increases as ε increases and Φ increases. There is no. Therefore, a compound having a large ε and a large Φ can be referred to as a compound having a high “luminescence efficiency”. Whether or not a compound oscillates can be caused by factors other than “luminescence efficiency”, but the large “luminescence efficiency” is an indispensable factor for laser oscillation.

(アントラセン/ピレン誘導体の製造方法)
上記一般式(1)および(2)に記載の色素の製造法は、特に限定されないが、実施例に示すように9、10−ジブロモアントラセンや1、3、6、8−テトラブロモピレンと対応するアリール基のボロン酸またはボロン酸エステルをパラジウム(O)または(II)触媒を用いてクロスカップリングする方法(鈴木―宮浦法)がある。
(Method for producing anthracene / pyrene derivative)
Although the manufacturing method of the pigment | dye as described in the said General formula (1) and (2) is not specifically limited, As shown in an Example, it respond | corresponds with 9,10- dibromoanthracene and 1,3,6,8-tetrabromopyrene. There is a method (Suzuki-Miyaura method) in which a boronic acid or boronic acid ester of an aryl group is cross-coupled using a palladium (O) or (II) catalyst.

その他に、アリール基のトランスメタル化剤として、マグネシウム誘導体(熊田―玉尾法)、スズ誘導体(スティレ法)、ケイ素誘導体(檜山法)、亜鉛誘導体(山本法)などを用いることができ、対応する触媒として、ニッケル錯体(熊田―玉尾法および山本法)、パラジウム錯体(スティレ法および檜山法)を用いることができる。その他、クロスカップリング法によりビアリール結合を形成する方法を適用することができる。   In addition, magnesium derivatives (Kumada-Tamao method), tin derivatives (Stille method), silicon derivatives (Hiyama method), zinc derivatives (Yamamoto method), etc. can be used as transmetallation agents for aryl groups. Nickel complexes (Kumada-Tamao method and Yamamoto method) and palladium complexes (Stille method and Hiyama method) can be used as the catalyst. In addition, a method of forming a biaryl bond by a cross coupling method can be applied.

一般式(1)および(2)に記載の色素は、アントラセンおよびピレンの最も反応性の高い位置にアリール基が導入されており、酸化反応をはじめとする多環式芳香族系化合物の分解反応が起こりにくくなっている。   In the dyes described in the general formulas (1) and (2), an aryl group is introduced at the most reactive position of anthracene and pyrene, and the decomposition reaction of polycyclic aromatic compounds including oxidation reaction Is less likely to occur.

(好ましい態様−1:一般式(1)で示されるアントラセン誘導体の蛍光挙動)
上記一般式(1)で示されるアントラセン誘導体は、300〜450nmの領域で大きなモル吸光係数(ε[L・M−1・cm−1])を示し、青色領域で大きな発光量子収率(Φ)を示すことを特徴としている。
(Preferred embodiment-1: fluorescence behavior of anthracene derivative represented by general formula (1))
The anthracene derivative represented by the general formula (1) exhibits a large molar extinction coefficient (ε [L · M −1 · cm −1 ]) in the region of 300 to 450 nm, and a large emission quantum yield (Φ) in the blue region. ).

(モル吸光係数)
照射光波長300nm以上の領域で、クロロホルム、THF、トルエンなどの有機溶媒中での最大モル吸光係数(ε[L・M−1・cm−1])は、3000L・M−1・cm−1以上であり、好ましくは6000L・M−1・cm−1以上、特に好ましくは、10000L・M−1・cm−1以上である。
(Molar extinction coefficient)
In the irradiation light wavelength 300nm or more areas, chloroform, THF, maximum molar extinction coefficient in an organic solvent such as toluene (ε [L · M -1 · cm -1]) is, 3000L · M -1 · cm -1 Or more, preferably 6000 L · M −1 · cm −1 or more, particularly preferably 10000 L · M −1 · cm −1 or more.

上記のモル吸光係数(ε[L・M−1・cm−1])は、下記の測定方法を用いて測定することができる。 The molar extinction coefficient (ε [L · M −1 · cm −1 ]) can be measured using the following measurement method.

(モル吸光係数の測定法)
モル吸光係数(ε[L・M−1・cm−1])は以下の方法で測定する。紫外可視吸光光度計(UV−Vis)を用いて、該色素化合物を測定溶媒に溶解した溶液の任意の波長における吸光度(A)を測定する。このとき、ランバート・ベールの法則
A=ε・c・d (cは濃度[M・L−1]、dは光路長[cm])
が成立する濃度範囲、すなわち、吸収スペクトルの極大波長におけるAが0.02以下となる濃度に調整した溶液を用いる。
上式より ε=A/(c・d) [L・M−1・cm−1]を得ることができる。
(Measurement method of molar extinction coefficient)
The molar extinction coefficient (ε [L · M −1 · cm −1 ]) is measured by the following method. Using a UV-Vis spectrophotometer (UV-Vis), the absorbance (A) at an arbitrary wavelength of a solution obtained by dissolving the dye compound in a measurement solvent is measured. At this time, Lambert-Beer's law A = ε · c · d (c is the concentration [M · L −1 ], d is the optical path length [cm])
Is used, ie, a solution adjusted to a concentration where A at the maximum wavelength of the absorption spectrum is 0.02 or less.
From the above equation, ε = A / (c · d) [L · M −1 · cm −1 ] can be obtained.

(蛍光量子効率)
蛍光量子効率については、クロロホルム、THF、トルエンなどの有機溶媒中(濃度1.0x10−5M・l−1以下)で、0.50以上であり、好ましくは0.60、特に好ましくは0.70である。
(Fluorescence quantum efficiency)
The fluorescence quantum efficiency is 0.50 or more in an organic solvent such as chloroform, THF or toluene (concentration: 1.0 × 10 −5 M · l −1 or less), preferably 0.60, particularly preferably 0.8. 70.

上記の蛍光量子効率は、下記の測定系を用いて測定することができる。   Said fluorescence quantum efficiency can be measured using the following measuring system.

発光量子収率(Φ)は、該色素化合物を任意の波長における吸光度が0.1になるように測定溶媒に溶解したものを、浜松ホトニクス(株)製の絶対量子収率測定装置C9920−02を用いて測定した。この方法は、幅広く利用されており、例えば特開2008−56630などにも記載されている。   The luminescence quantum yield (Φ) was obtained by dissolving the dye compound in a measurement solvent so that the absorbance at an arbitrary wavelength was 0.1, and an absolute quantum yield measurement device C9920-02 manufactured by Hamamatsu Photonics Co., Ltd. It measured using. This method is widely used and is also described in, for example, Japanese Patent Application Laid-Open No. 2008-56630.

(好ましい態様−2:一般式(15)で示されるピレン誘導体の蛍光挙動)
上記一般式(15)で示されるピレン誘導体は、300〜450nmの領域で大きなモル吸光係数(ε)を示し、青色領域で大きな発光量子収率(Φ)を示すことを特徴としている。
(Preferred embodiment-2: fluorescence behavior of pyrene derivative represented by general formula (15))
The pyrene derivative represented by the general formula (15) is characterized by exhibiting a large molar extinction coefficient (ε) in the region of 300 to 450 nm and a large emission quantum yield (Φ) in the blue region.

(モル吸光係数)
照射光波長300nm以上の領域で、クロロホルム、THF、トルエンなどの有機溶媒中での最大モル吸光係数(ε[L・M−1・cm−1])は、3000L・M−1・cm−1以上であり、好ましくは10000L・M−1・cm−1以上、特に好ましくは、15000L・M−1・cm−1以上である。
(Molar extinction coefficient)
In the irradiation light wavelength 300nm or more areas, chloroform, THF, maximum molar extinction coefficient in an organic solvent such as toluene (ε [L · M -1 · cm -1]) is, 3000L · M -1 · cm -1 Or more, preferably 10,000 L · M −1 · cm −1 or more, and particularly preferably 15000 L · M −1 · cm −1 or more.

蛍光量子効率については、クロロホルム、THF、トルエンなどの有機溶媒中(濃度1.0x10−5M・l−1以下)で、0.70以上であり、好ましくは0.80以上、特に好ましくは0.90以上である。 The fluorescence quantum efficiency is 0.70 or more, preferably 0.80 or more, particularly preferably 0 in an organic solvent such as chloroform, THF, and toluene (concentration: 1.0 × 10 −5 M · l −1 or less). .90 or more.

上記のピレン誘導体のモル吸光係数(ε[L・M−1・cm−1])および発光量子収率(Φ)は、上述したアントラセン誘導体のそれらの測定法と同様の方法で測定できる。 The molar extinction coefficient (ε [L · M −1 · cm −1 ]) and luminescence quantum yield (Φ) of the above pyrene derivative can be measured by the same method as those of the above-described anthracene derivatives.

以下、実施例により本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

<使用実験機器>
H NMR、13C NMRスペクトルはJEOL社製のLNM−EX400を用い、TMSを基準物質とし測定した。
<Experimental equipment used>
1 H NMR and 13 C NMR spectra were measured using TNM as a reference substance using LNM-EX400 manufactured by JEOL.

赤外スペクトル(IR)は、日本分光(株)製FT−IR460puls spectrometer、紫外可視スペクトルはベックマンDU700、蛍光スペクトルは日本分光FP−6500、蛍光寿命は浜松ホトニクスOB920を用いて測定した。   The infrared spectrum (IR) was measured using JASCO Corporation FT-IR460 pulses spectrometer, the ultraviolet visible spectrum was measured using Beckman DU700, the fluorescence spectrum was measured using JASCO FP-6500, and the fluorescence lifetime was measured using Hamamatsu Photonics OB920.

質量分析(HRMS)は日本電子(株)製JMS−700を用いてFAB−MASSにより測定した。   Mass spectrometry (HRMS) was measured by FAB-MASS using JMS-700 manufactured by JEOL Ltd.

リサイクル分取HPLCには、JAI社製UV−310検出器とRI−50S検出器、JAIGEL−1H−Aカラムを用い、クロロホルムを展開溶媒にして行った。   Recycle preparative HPLC was performed using a UV-310 detector, RI-50S detector, and JAIGEL-1H-A column manufactured by JAI, using chloroform as a developing solvent.

実施例1
(化合物A)
この例で用いた合成法のスキームを下記の式(16)に示す。

Figure 2011093841
Example 1
(Compound A)
The synthesis scheme used in this example is shown in the following formula (16).
Figure 2011093841

4’−heptylbiphenyl−4−ylboronic acid(A−1)
4−bromo−4’−heptylbiphenyl(1.65g、5mmol)のTHF(20ml)溶液に−78℃、アルゴン雰囲気下においてブチルリチウムの2.6mヘキサン溶液(1.2当量)を滴下した。混合溶液を−78℃において一時間攪拌した後にtrimethyl borate(1.4当量)を滴下し、室温において更に一日攪拌をおこなった。その後、2基底のHCl水溶液を加え更に18時間攪拌を行った。反応停止後、分液操作によってCHClを用いて抽出、水で洗浄を行い、得られた有機溶媒をMgSOで乾燥させたのち減圧蒸留によって溶媒を除去した。得られた固体をヘキサンとクロロホルムの混合溶液を用いて再結晶を行うことで目的の化合物を得た(0.96g、65 %)。
4'-heptylbiphenyl-4-ylboronic acid (A-1)
To a THF (20 ml) solution of 4-bromo-4′-heptylbiphenyl (1.65 g, 5 mmol) was added dropwise a 2.6 m hexane solution (1.2 equivalents) of butyllithium at −78 ° C. in an argon atmosphere. The mixed solution was stirred at −78 ° C. for 1 hour, trimethyl borate (1.4 equivalents) was added dropwise, and the mixture was further stirred at room temperature for one day. Thereafter, a 2 basis aqueous HCl solution was added and the mixture was further stirred for 18 hours. After stopping the reaction, extraction with CH 2 Cl 2 was performed by a liquid separation operation, washing was performed with water, and the obtained organic solvent was dried with MgSO 4 and then the solvent was removed by distillation under reduced pressure. The obtained solid was recrystallized using a mixed solution of hexane and chloroform to obtain the target compound (0.96 g, 65%).

H NMR(400mHz、DMSO): δ 7.83(d、J=6.64、Ar−H、2H)、7.58(t、J−=6.7、Ar−H、4H)、7.26(d、J=7.0、Ar−H、2H)、0.84(t、J=5.4、−CH、3H) 1 H NMR (400 mHz, DMSO): δ 7.83 (d, J = 6.64, Ar—H, 2H), 7.58 (t, J− = 6.7, Ar—H, 4H), 7 .26 (d, J = 7.0, Ar—H, 2H), 0.84 (t, J = 5.4, —CH 3 , 3H)

9、10−bis(4’−heptyl−1−4−biphenyl)anthracene(A)9, 10-bis (4'-heptyl-1--4-biphenyl) anthracene (A)

充分にアルゴンバブリングした1M NaCO水溶液(1ml)、トルエン(10ml)、THF(10ml)を、アルゴン雰囲気下で4’−heptylbiphenyl−4−ylboronic acid(0.29g、1mmol)、dibromoanthracene(0.17g、0.5mmol)、Pd(PPh(0.05当量)に加え、110℃で三日間攪拌した。反応停止後、分液操作によってCHClを用いて抽出、水で洗浄を行い、得られた有機溶媒をMgSOで乾燥させたのち減圧蒸留によって溶媒を除去した。ヘキサンとクロロホルムの混合溶媒で充填したシリカゲルカラムを用いて、触媒を除去し続いてHPLCを用いて目的の化合物を分取し、ヘキサンを用いて再結晶を行うことで目的の化合物をえた(20mg、6 %)。 A 1M Na 2 CO 3 aqueous solution (1 ml), toluene (10 ml), and THF (10 ml) sufficiently bubbled with argon were added to 4′-heptylbiphenyl-4-ylboronic acid (0.29 g, 1 mmol), dibromoanthracene (0 ml) under an argon atmosphere. .17 g, 0.5 mmol) and Pd (PPh 3 ) 4 (0.05 equivalent), and the mixture was stirred at 110 ° C. for 3 days. After stopping the reaction, extraction with CH 2 Cl 2 was performed by a liquid separation operation, washing was performed with water, and the obtained organic solvent was dried with MgSO 4 and then the solvent was removed by distillation under reduced pressure. The catalyst was removed using a silica gel column packed with a mixed solvent of hexane and chloroform, and then the target compound was fractionated using HPLC, and recrystallized using hexane to obtain the target compound (20 mg 6%).

H NMR(400mHz、CDCl): δ 7.29−7.85(m、Ar−H、8H)、7.70(d、J−=7.8、Ar−H、4H)、7.55(d、J=7.8、Ar−H、4H)、7.3−7.38(m、Ar−H、8H)、0.91(t、J=6.3、−CH、6H)FT−IR 1 H NMR (400 mHz, CDCl 3 ): δ 7.29-7.85 (m, Ar—H, 8H), 7.70 (d, J− = 7.8, Ar—H, 4H), 7. 55 (d, J = 7.8, Ar—H, 4H), 7.3-7.38 (m, Ar—H, 8H), 0.91 (t, J = 6.3, —CH 3 , 6H) FT-IR

HRMS(FAB)Calcd for C5254 :678.4226、
Found :678.4217
HRMS (FAB) Calcd for C 52 H 54 : 678.4226,
Found: 678.4217

ここで得られたH NMRのチャートを図1および図2に示す。 The 1 H NMR charts obtained here are shown in FIGS.

ここで得られた光物性を下記の表1および図3に示す。   The optical properties obtained here are shown in Table 1 and FIG.

Figure 2011093841
Figure 2011093841

実施例2(化合物B)
合成法のスキームを下記の式(17)に示す。
Example 2 (Compound B)
The scheme of the synthesis method is shown in the following formula (17).

Figure 2011093841
Figure 2011093841

2−bromo−6−hexyloxynaphtalene(B−1)2-bromo-6-hexyloxynaphtalene (B-1)

6−bromo−2−naphthol(1.8g 8.0mmol)、KCO(1.38g、10.0mmol)、bromohexane(1.24g、7.5mmol)にアセトニトリル(30ml)を加え混合溶液を18時間還流した。反応停止後、分液操作によってCHClを用いて抽出、水で洗浄を行い、得られた有機溶媒をMgSOで乾燥させたのち減圧蒸留によって溶媒を除去した。得られた固体をヘキサンを用いて再結晶を行うことで目的の化合物を得た。(2.63g、99%) Acetonitrile (30 ml) was added to 6-bromo-2-naphthol (1.8 g 8.0 mmol), K 2 CO 3 (1.38 g, 10.0 mmol), and bromohexane (1.24 g, 7.5 mmol) to obtain a mixed solution. Refluxed for 18 hours. After stopping the reaction, extraction with CH 2 Cl 2 was performed by a liquid separation operation, washing was performed with water, and the obtained organic solvent was dried with MgSO 4 and then the solvent was removed by distillation under reduced pressure. The target compound was obtained by recrystallizing the obtained solid using hexane. (2.63 g, 99%)

H NMR(400mHz、CDCl): δ 8.60(d、J=8.8、Ar−H、2H)、7.71(d、J−=9.0、Ar−H、2H)、7.57−7.60(m、Ar−H、2H)、7.36−7.39(m、Ar−H、2H)、7.30(d、J=8.3、Ar−H、2H)、7.11(d、J=8.5 Ar−H、2H)、4.10(t、J=6.6、Ar−O−CH、2H)、0.95(t、J−=7.8、−CH、3H) 1 H NMR (400 mHz, CDCl 3 ): δ 8.60 (d, J = 8.8, Ar—H, 2H), 7.71 (d, J− = 9.0, Ar—H, 2H), 7.57-7.60 (m, Ar-H, 2H), 7.36-7.39 (m, Ar-H, 2H), 7.30 (d, J = 8.3, Ar-H, 2H), 7.11 (d, J = 8.5 Ar—H, 2H), 4.10 (t, J = 6.6, Ar—O—CH 2 , 2H), 0.95 (t, J - = 7.8, -CH 3, 3H )

(化合物B−2)
6−hexyloxynapthtyl−2−bronic acid(B−2)
(Compound B-2)
6-hexyloxynapthtyl-2-bronic acid (B-2)

化合物A−1のボロン酸合成法と同様の操作によって目的の化合物を得た(0.50g、37 %)。使用した試薬は、2−bromo−6−hexyloxynaphthalene(1.54g、5mmol)in THF(20ml)n−BuLi and B(OMeThe target compound was obtained by the same operation as in the boronic acid synthesis method of Compound A-1 (0.50 g, 37%). The reagent used was 2-bromo-6-hexyloxynaphthalene (1.54 g, 5 mmol) in THF (20 ml) n-BuLi and B (OMe 3 ).

(化合物B)
9、10−bis(6−hexlyoxy−2−naphtyl)anthracene(B)
(Compound B)
9, 10-bis (6-hexlyoxy-2-naphtyl) anthracene (B)

化合物A−2の鈴木カップリングと同様の操作によって目的化合物を得た(50mg、16 %)。使用した試薬は、dibromoanthracene(0.17g、0.5mmol)、6−hexyloxynapthtyl−2−bronic acid(0.27g、1mmol)、Pd(PPh in 1M NaCO(1ml)、toluene(20ml) The target compound was obtained by the same operation as Suzuki coupling of Compound A-2 (50 mg, 16%). The reagents used were dibromoanthracene (0.17 g, 0.5 mmol), 6-hexyloxynapthtyl-2-bronic acid (0.27 g, 1 mmol), Pd (PPh 3 ) 4 in 1M Na 2 CO 3 (1 ml), toluene ( 20ml)

H NMR(400mHz、CDCl): δ 7.95(d、J=8.3、Ar−H、2H)、7.9(s、Ar−H、2H)、7.81(d、J=8.9.2 Ar−H、2H)、7.73−7.76(m、Ar−H、4H)、7.55−7.58(m、Ar−H、2H)、7.26−7.32(m、Ar−H、8H)、4.18(t、J=6.6、Ar−O−CH、4H)、0.95(t、J−=7.3、−CH、6H) 1 H NMR (400 mHz, CDCl 3 ): δ 7.95 (d, J = 8.3, Ar—H, 2H), 7.9 (s, Ar—H, 2H), 7.81 (d, J = 8.9.2 Ar-H, 2H), 7.73-7.76 (m, Ar-H, 4H), 7.55-7.58 (m, Ar-H, 2H), 7.26. −7.32 (m, Ar—H, 8H), 4.18 (t, J = 6.6, Ar—O—CH 2 , 4H), 0.95 (t, J− = 7.3, − CH 3, 6H)

HRM(EI)Calcd for C4646 :630.3498、
Found :630.3491
HRM (EI) Calcd for C 46 H 46 O 2: 630.3498,
Found: 630.3491

上記で得られたH NMRチャートを、図4〜6に示す。 The 1 H NMR chart obtained above is shown in FIGS.

上記で得られた光物性を、図7および下記の表2に示す。   The optical properties obtained above are shown in FIG. 7 and Table 2 below.

Figure 2011093841
Figure 2011093841

実施例3(化合物C)Example 3 (Compound C)

合成法のスキームを、下記の式(17)に示す。

Figure 2011093841
The scheme of the synthesis method is shown in the following formula (17).
Figure 2011093841

1、3、6、8−tetrabromopyrene 1, 3, 6, 8-tetrabromopyrene

ピレンの1、3、6、8位のブロモ化は、下記の(文献A)に従って行った。   Bromination of the 1, 3, 6, and 8 positions of pyrene was performed according to the following (Document A).

(文献A):S. Bernhardt,M. Kastler,V. Enkelmann, M. Baumgarten, K. Muellen, Chem. Eur.J.,2006、12、6117−6128 (Document A): S. Bernhardt, M. Kastler, V. Enkelmann, M. Baumgarten, K. Muellen, Chem. Eur. , 2006, 12, 6117-6128

ピレン(1g、4.9mmol)をニトロベンゼン(30ml)中に溶解させ、アルゴン雰囲気化において、臭素(1ml、20.3mmol)を滴下した。滴下終了後、反応温度を160℃にし3時間攪拌した。室温まで反応溶液を冷やし反応を停止させた後、反応溶液をアセトン中に注ぎ、吸引ろ過によって沈殿物を得た。得られた沈殿は一般的な有機溶媒に不溶であったため、精製せずにそのまま用いた。   Pyrene (1 g, 4.9 mmol) was dissolved in nitrobenzene (30 ml) and bromine (1 ml, 20.3 mmol) was added dropwise in an argon atmosphere. After completion of the dropwise addition, the reaction temperature was raised to 160 ° C. and stirred for 3 hours. After cooling the reaction solution to room temperature to stop the reaction, the reaction solution was poured into acetone, and a precipitate was obtained by suction filtration. Since the obtained precipitate was insoluble in a general organic solvent, it was used as it was without purification.

(化合物C−1)
1、3、6、8−tetrakis(4’−n−heptyl−4−biphenyl)pyrene(C)
(Compound C-1)
1,3,6,8-tetrakis (4'-n-heptyl-4-biphenyl) pyrene (C)

化合物A−2の鈴木カップリングと同様の操作によって目的化合物を得た(30mg、10 %)。使用した試薬は、1、3、6、8−tetrabromopyrene(0.13g、0.25mmol)、4’−heptylbiphenyl−4−ylboronic acid(0.29g、1mmol)、Pd(PPh in 1M NaCO(5ml)、toluene(30ml) The target compound was obtained by the same operation as Suzuki coupling of Compound A-2 (30 mg, 10%). The reagents used were 1,3,6,8-tetrabromopyrene (0.13 g, 0.25 mmol), 4′-heptylbiphenyl-4-ylboronic acid (0.29 g, 1 mmol), Pd (PPh 3 ) 4 in 1M Na. 2 CO 3 (5 ml), toluene (30 ml)

H NMR(400mHz、CDCl): δ 8.30(s、Ar−H、4H)、8.12(s、Ar−H、2H)、7.77(s、Ar−H、16H)、7.64(d、Ar−H、8H)、7.31(d、Ar−H、8H)、0.90(t、J=6.8、−CH、12H)HRMS(FAB)Calcd for C9298 :1202.7669、Found :1202.7628 1 H NMR (400 mHz, CDCl 3 ): δ 8.30 (s, Ar—H, 4H), 8.12 (s, Ar—H, 2H), 7.77 (s, Ar—H, 16H), 7.64 (d, Ar-H, 8H), 7.31 (d, Ar-H, 8H), 0.90 (t, J = 6.8, -CH 3, 12H) HRMS (FAB) Calcd for C 92 H 98: 1202.7669, Found : 1202.7628

上記で得られたH NMRチャートを、図8に示す。 The 1 H NMR chart obtained above is shown in FIG.

上記で得られた光物性を、図9および下記の表3に示す。   The optical properties obtained above are shown in FIG. 9 and Table 3 below.

Figure 2011093841
Figure 2011093841

実施例4(化合物D)Example 4 (Compound D)

合成法スキームを、下記の式(19)に示す。

Figure 2011093841
The synthesis method scheme is shown in the following formula (19).
Figure 2011093841

1、3、6、8−tetrakis(6−n−hexyloxy−2−naphtyl)pyrene(D) 1,3,6,8-tetrakis (6-n-hexyloxy-2-naphtyl) pyrene (D)

化合物2の鈴木カップリングと同様の操作によって目的化合物を得た(30mg、11 %)。使用した試薬は、1、3、6、8−tetrabromopyrene(0.13g、0.25mmol)、6−hexyloxynapthtyl−2−bronic acid(0.27g、1mmol)、Pd(PPh in 1M NaCO(5ml)、toluene(30ml) The target compound was obtained by the same operation as Suzuki coupling of Compound 2 (30 mg, 11%). The used reagents were 1,3,6,8-tetrabromopyrene (0.13 g, 0.25 mmol), 6-hexyloxynapthtyl-2-bronic acid (0.27 g, 1 mmol), Pd (PPh 3 ) 4 in 1M Na 2. CO 3 (5 ml), toluene (30 ml)

H NMR(400mHz、CDCl): δ 8.26(s、Ar−H、4H)、8.20(s、Ar−H、2H)、8.08(s、Ar−H、4H)、7.79−7.90(m、Ar−H、12H)、7.20−7.28(m、Ar−H、4H)、4.13(t、J=6.6、O−CH−、4H)、0.93(t、J=6.6、−CH、6H)ppm、13C NMR(100mHz、CDCl): δ 141.60、141.37、137.39、136.35、133.86、129.57、129.38、129.26、128.99、126.62、119.55、106.71、103.65、68.22、31.64、29.28、25.82、22.61、14.00 ppm 1 H NMR (400 mHz, CDCl 3 ): δ 8.26 (s, Ar—H, 4H), 8.20 (s, Ar—H, 2H), 8.08 (s, Ar—H, 4H), 7.79-7.90 (m, Ar-H, 12H), 7.20-7.28 (m, Ar-H, 4H), 4.13 (t, J = 6.6, O-CH 2 −4H), 0.93 (t, J = 6.6, —CH 3 , 6H) ppm, 13 C NMR (100 mHz, CDCl 3 ): δ 141.60, 141.37, 137.39, 136. 35, 133.86, 129.57, 129.38, 129.26, 128.99, 126.62, 119.55, 106.71, 103.65, 68.22, 31.64, 29.28, 25.82, 22.61, 14.00 ppm

上記で得られたH−NMRチャートを図10に、13C−NMRチャートを図11に示す。 FIG. 10 shows the 1 H-NMR chart obtained above, and FIG. 11 shows the 13 C-NMR chart.

HRMS(FAB)Calcd for C8082 :1106.6213、
Found :1106.6213
HRMS (FAB) Calcd for C 80 H 82 O 4: 1106.6213,
Found: 1106.6213

上記で得られた光物性を、図12および下記の表4に示す。   The optical properties obtained above are shown in FIG. 12 and Table 4 below.

Figure 2011093841
Figure 2011093841

Claims (8)

下記の一般式(1)によって示される、9、10位にアリール基を有するアントラセン誘導体。
Figure 2011093841
(式中、Arは、一般式(2)〜(14)からなる群から選ばれるいずれかのアリール基であり;該ArおよびArは全て同じでも、それらの一部が異なっていてもよい)。
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
(一般式(2)〜(14)中、R〜Rは、炭素数1〜18の直鎖または分岐状のアルキル基、ベンジル基またはフェニル基およびそれらの炭化水素置換基を有する誘導体、アルキルエーテル基、アルキルエステル基、芳香族エステル基、アルキレンエーテル基、水素。更に、フッ化アルキル官能基を含むアルキル基、アルキルエーテル基、アルキルエステル基、芳香族エステル基、アルキレンエーテル基である;該R〜Rは、全てが同じでも、一部が異なっていてもよい)。
An anthracene derivative having an aryl group at positions 9 and 10 represented by the following general formula (1).
Figure 2011093841
(In the formula, Ar is any aryl group selected from the group consisting of the general formulas (2) to (14); Ar 1 and Ar 2 may be the same or a part of them may be different) Good).
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
(In General Formulas (2) to (14), R 1 to R 3 are each a linear or branched alkyl group having 1 to 18 carbon atoms, a benzyl group or a phenyl group, and a derivative having a hydrocarbon substituent thereof, An alkyl ether group, an alkyl ester group, an aromatic ester group, an alkylene ether group, hydrogen, and an alkyl group containing a fluorinated alkyl functional group, an alkyl ether group, an alkyl ester group, an aromatic ester group, an alkylene ether group; R 1 to R 3 may be all the same or partially different.
下記一般式(15)によって示される、1、3、6、8−アリール基を有するピレン誘導体。
Figure 2011093841
(式中、Ar〜Arは、下記一般式(2)〜(14)からなる群から選ばれるいずれかのアリール基であり;該Ar〜Arは全て同じでも、それらの一部が異なっていてもよい)。
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
(一般式(2)〜(14)中、R〜Rは、炭素数1〜18の直鎖または分岐状のアルキル基、ベンジル基またはフェニル基およびそれらの炭化水素置換基を有する誘導体、アルキルエーテル基、アルキルエステル基、芳香族エステル基、アルキレンエーテル基、水素。更に、フッ化アルキル官能基を含むアルキル基、アルキルエーテル基、アルキルエステル基、芳香族エステル基、アルキレンエーテル基である;該R〜Rは、全てが同じでも、一部が異なっていてもよい)。
A pyrene derivative having a 1, 3, 6, 8-aryl group represented by the following general formula (15).
Figure 2011093841
(Wherein Ar 1 to Ar 4 are any aryl groups selected from the group consisting of the following general formulas (2) to (14); Ar 1 to Ar 4 may all be the same or a part thereof) May be different).
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
Figure 2011093841
(In General Formulas (2) to (14), R 1 to R 3 are each a linear or branched alkyl group having 1 to 18 carbon atoms, a benzyl group or a phenyl group, and a derivative having a hydrocarbon substituent thereof, An alkyl ether group, an alkyl ester group, an aromatic ester group, an alkylene ether group, hydrogen, and an alkyl group containing a fluorinated alkyl functional group, an alkyl ether group, an alkyl ester group, an aromatic ester group, an alkylene ether group; R 1 to R 3 may be all the same or partially different.
少なくとも請求項1に記載のアントラセン誘導体とマトリックスを含む複合体に、波長300〜450nmの帯域を含む励起光で照射して、蛍光を発生させる方法であって;
該蛍光を発生するアントラセン誘導体のモル吸光係数(ε)が5000L・M−1・cm−1以上となる波長を励起光に用いて、該蛍光量子収率(Φ)が0.8以上の発光効率を与えることを特徴とする蛍光発生方法。
A method of generating fluorescence by irradiating a complex comprising at least the anthracene derivative according to claim 1 and a matrix with excitation light including a wavelength band of 300 to 450 nm;
Luminescence with a fluorescence quantum yield (Φ) of 0.8 or more using a wavelength at which the molar extinction coefficient (ε) of the anthracene derivative that generates the fluorescence is 5000 L · M −1 · cm −1 or more as excitation light A fluorescence generation method characterized by providing efficiency.
少なくとも請求項2に記載のピレン誘導体とマトリックスを含む複合体に、波長300〜450nmの帯域を含む励起光で照射して、蛍光を発生させる方法であって;
該蛍光を発生するピレン誘導体のモル吸光係数(ε)が5000L・M−1・cm−1以上となる波長を励起光に用いて、該蛍光量子収率(Φ)が0.8以上の発光効率を与えることを特徴とする蛍光発生方法。
A method of generating fluorescence by irradiating a complex containing at least the pyrene derivative according to claim 2 and a matrix with excitation light including a wavelength band of 300 to 450 nm;
Luminescence with a fluorescence quantum yield (Φ) of 0.8 or more using a wavelength at which the molar extinction coefficient (ε) of the pyrene derivative generating fluorescence is 5000 L · M −1 · cm −1 or more as excitation light A fluorescence generation method characterized by providing efficiency.
少なくとも請求項1に記載のアントラセン誘導体とマトリックスを含む複合体と、
該複合体を励起光で照射するための光照射手段と、
該複合体から放出された光を増幅する増幅手段とを少なくとも含むことを特徴とするレーザ発生装置。
A complex comprising at least the anthracene derivative according to claim 1 and a matrix;
A light irradiation means for irradiating the complex with excitation light;
A laser generator comprising at least amplification means for amplifying light emitted from the complex.
前記レーザ発生において、該蛍光を発生するアントラセン誘導体のモル吸光係数(ε)が5000L・M−1・cm−1以上となる波長を励起光に用いて、該蛍光量子収率(Φ)が0.8以上である請求項5に記載のレーザ発生装置。 In the laser generation, the fluorescence quantum yield (Φ) is 0 using a wavelength at which the molar extinction coefficient (ε) of the anthracene derivative generating the fluorescence is 5000 L · M −1 · cm −1 or more as excitation light. 6. The laser generator according to claim 5, wherein the laser generator is 8 or more. 少なくとも請求項2に記載のピレン誘導体とマトリックスを含む複合体と、
該複合体を励起光で照射するための光照射手段と、
該複合体から放出された光を増幅する増幅手段とを少なくとも含むことを特徴とするレーザ発生装置。
A complex comprising at least a pyrene derivative according to claim 2 and a matrix;
A light irradiation means for irradiating the complex with excitation light;
A laser generator comprising at least amplification means for amplifying light emitted from the complex.
前記レーザ発生において、該蛍光を発生するピレン誘導体のモル吸光係数(ε)が10000L・M−1・cm−1以上となる波長を励起光に用いて、該蛍光量子収率(Φ)が0.8以上である請求項7に記載のレーザ発生装置。 In the laser generation, the fluorescence quantum yield (Φ) is 0 using a wavelength at which the molar extinction coefficient (ε) of the pyrene derivative generating fluorescence is 10000 L · M −1 · cm −1 or more as excitation light. The laser generator according to claim 7, wherein the laser generator is .8 or more.
JP2009249460A 2009-10-29 2009-10-29 Anthracene derivative and pyrene derivative Withdrawn JP2011093841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009249460A JP2011093841A (en) 2009-10-29 2009-10-29 Anthracene derivative and pyrene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009249460A JP2011093841A (en) 2009-10-29 2009-10-29 Anthracene derivative and pyrene derivative

Publications (1)

Publication Number Publication Date
JP2011093841A true JP2011093841A (en) 2011-05-12

Family

ID=44111185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009249460A Withdrawn JP2011093841A (en) 2009-10-29 2009-10-29 Anthracene derivative and pyrene derivative

Country Status (1)

Country Link
JP (1) JP2011093841A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160031651A (en) * 2014-09-12 2016-03-23 삼성디스플레이 주식회사 Compounds for organic light-emitting device and organic light-emitting device comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160031651A (en) * 2014-09-12 2016-03-23 삼성디스플레이 주식회사 Compounds for organic light-emitting device and organic light-emitting device comprising the same
KR102285383B1 (en) * 2014-09-12 2021-08-04 삼성디스플레이 주식회사 Compounds for organic light-emitting device and organic light-emitting device comprising the same

Similar Documents

Publication Publication Date Title
Quant et al. Low molecular weight norbornadiene derivatives for molecular solar‐thermal energy storage
Chen et al. Ortho-substituent effect on fluorescence and electroluminescence of arylamino-substituted coumarin and stilbene
Guo et al. Room-temperature long-lived triplet excited states of naphthalenediimides and their applications as organic triplet photosensitizers for photooxidation and triplet–triplet annihilation upconversions
Zhang et al. Oligo (phenothiazine) s: twisted intramolecular charge transfer and aggregation-induced emission
He et al. Visible-light excitable europium (III) complexes with 2, 7-positional substituted carbazole group-containing ligands
Patil et al. ESIPT-inspired benzothiazole fluorescein: Photophysics of microenvironment pH and viscosity
Wang et al. Pyrene-based approach to tune emission color from blue to yellow
Natarajan et al. Photoluminescence, redox properties, and electrogenerated chemiluminescence of twisted 9, 9′-bianthryls
US7683183B2 (en) Emissive monomeric metal complexes
Yan et al. Effect of the Substitution Pattern on the Intramolecular Charge‐Transfer Emissions in Organoboron‐Based Biphenyls, Diphenylacetylenes, and Stilbenes
AU2010264403B2 (en) Blue/violet diphenylanthracene chemiluminescent fluorescers
Benelhadj et al. 2, 4 and 2, 5-bis (benzooxazol-2′-yl) hydroquinone (DHBO) and their borate complexes: Synthesis and optical properties
CN104447876A (en) Platinum (II) alkyne complex and application thereof
Nayak Synthesis, characterization and optical properties of aryl and diaryl substituted phenanthroimidazoles
Ryu et al. Ln (III)-cored complexes based on boron dipyrromethene (Bodipy) ligands for NIR emission
Sen et al. New difluoroboron complexes based on N, O-chelated Schiff base ligands: Synthesis, characterization, DFT calculations and photophysical and electrochemical properties
JP2013502485A (en) Synthesis method of core extended perylene diimide dye and novel core extended perylene diimide dye
JP4501588B2 (en) Organic nonlinear optical material
Zhang et al. Nonconjugated fluorescent molecular cages of trinuclear fluoroborate complexes with salicylaldehyde-based Schiff Base ligands
CN107759504B (en) Dual-phase organic fluorescent material with strong fluorescence in solid and liquid states and preparation method thereof
Gu et al. Synthesis and electronic properties of covalent assemblies of oligophenylenevinylene units arising from a calix [4] arene core
WO2008010532A1 (en) Compound or salt thereof, processes for producing these, aromatic azo compounds, and fluorescent material
JP2011093841A (en) Anthracene derivative and pyrene derivative
Huang et al. A fluorene-containing water-soluble poly (p-phenyleneethynylene) derivative: Highly fluorescent and sensitive conjugated polymer with minor aggregation in aqueous solution
JP2006117593A (en) New fluorescent compound and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108