JP2017135025A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2017135025A
JP2017135025A JP2016014643A JP2016014643A JP2017135025A JP 2017135025 A JP2017135025 A JP 2017135025A JP 2016014643 A JP2016014643 A JP 2016014643A JP 2016014643 A JP2016014643 A JP 2016014643A JP 2017135025 A JP2017135025 A JP 2017135025A
Authority
JP
Japan
Prior art keywords
lid member
welding
battery
injection hole
liquid injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016014643A
Other languages
Japanese (ja)
Other versions
JP6613926B2 (en
Inventor
純太 高須
Junta Takasu
純太 高須
松浦 智浩
Tomohiro Matsuura
智浩 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016014643A priority Critical patent/JP6613926B2/en
Publication of JP2017135025A publication Critical patent/JP2017135025A/en
Application granted granted Critical
Publication of JP6613926B2 publication Critical patent/JP6613926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a sealed battery which makes possible to reduce the occurrence of a defective weld by suppressing the rise in battery internal pressure in welding a sealing member with a lid member.SOLUTION: A secondary battery 10 comprises: an electrode body 12; a battery case 18 containing the electrode body 12 and having an opening face; a lid member 19 closing the opening face of the battery case 18; a liquid inlet 25 extending through the lid member 19; and a sealing member 31 fixed to the lid member 19 by welding for sealing the liquid inlet 25. In the secondary battery, a mesh part 41 is formed in the liquid inlet 25. Supposing that the air permeability of the mesh part 41 measured according to JIS L 1096 Air permeability A method (Frazier Type method) is Q, the following relation is satisfied: Q≤Vaporization volume[cc] of Electrolyte/{Liquid inlet area [cm]×Welding time [sec]}.SELECTED DRAWING: Figure 1

Description

本発明は、電池ケースに電極体及び電解液を封入してなる密閉型の電池に関する。より詳細には、電池ケース内に注液孔から電解液を注液した後、注液孔を封止部材で封止することにより密閉される密閉型電池に関するものである。   The present invention relates to a sealed battery in which an electrode body and an electrolytic solution are enclosed in a battery case. More specifically, the present invention relates to a sealed battery that is sealed by injecting an electrolyte from a liquid injection hole into a battery case and then sealing the liquid injection hole with a sealing member.

従来より、電極体を収容した電池ケース内に電解液を注液し、注液孔を封止して密閉しした密閉型電池がある。例えば、扁平角形の金属製の電池ケースを用いる二次電池として、電池ケースの開口面を閉塞する蓋部材に注液孔が設けられているものがある。そして、電池の製造時には、注液孔が形成された蓋部材が電池ケースに固定され、注液孔から電池ケース内に電解液が注液される。注液後には、注液孔に対して金属製の封止部材が被せられて、封止部材の周囲と蓋部材(注液孔周辺)とが隙間なく溶接されることで、注液孔を封止した密閉型電池がある(特許文献1参照)。   Conventionally, there is a sealed battery in which an electrolytic solution is injected into a battery case containing an electrode body, and a liquid injection hole is sealed. For example, there is a secondary battery using a flat rectangular metal battery case in which a liquid injection hole is provided in a lid member that closes an opening surface of the battery case. And at the time of manufacture of a battery, the cover member in which the injection hole was formed is fixed to a battery case, and electrolyte solution is injected in a battery case from an injection hole. After the injection, the metal sealing member is placed over the injection hole, and the periphery of the sealing member and the lid member (the periphery of the injection hole) are welded without any gaps, so that the injection hole There is a sealed battery (see Patent Document 1).

特開2014−026865号公報JP 2014-026865 A

しかしながら、上記の密閉型電池では、電池ケース内に電解液を注液した後に蓋部材の裏面に電解液が付着していると、封止部材と蓋部材とをレーザ溶接する際の入熱により、蓋部材に付着していた電解液が蒸発するおそれがある。そして、電解液が蒸発すると、図7に示すように、電池内圧が上昇して気化した電解液(気体)が注液孔を通過し、溶接部に余分な力がかかり、溶接部が変形して(押し上げられて)溶接不良となるおそれがあった。   However, in the above-described sealed battery, if the electrolyte is adhered to the back surface of the lid member after the electrolyte is injected into the battery case, the heat input during laser welding of the sealing member and the lid member There is a risk that the electrolyte attached to the lid member may evaporate. When the electrolytic solution evaporates, as shown in FIG. 7, the battery internal pressure increases and the electrolytic solution (gas) vaporized passes through the injection hole, and an excessive force is applied to the welded portion, and the welded portion is deformed. (Which was pushed up) could result in poor welding.

そこで、本発明は上記した問題点を解決するためになされたものであり、封止部材と蓋部材との溶接時に溶接部に対して余分な力がかかることを抑制することにより、溶接不良の発生を低減することができる密閉型電池を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and suppresses the application of excessive force to the welded portion when welding the sealing member and the lid member, thereby preventing poor welding. It aims at providing the sealed battery which can reduce generation | occurrence | production.

上記課題を解決するためになされた本発明の一態様は、電極体と、前記電極体を収納するとともに開口面を備える電池ケースと、前記電池ケースの開口面を閉塞する蓋部材と、前記蓋部材を貫通する注液孔と、前記注液孔を封止するために前記蓋部材に対して溶接で固定される封止部材とを有する密閉型電池において、前記注液孔にメッシュ部が形成されており、JIS L 1096通気性A法(フラジール形法)で測定した前記メッシュ部の通気度Qは、
Q≦電解液の気化体積[cc]/{注液孔の断面積[cm2]×溶接時間[sec]}
となる関係を満たすことを特徴とする。
なお、電解液の気化体積は、蓋部材に対して封止部材を溶接する際に気化した電解液の体積であり、溶接時間は、封止部材を蓋部材に溶接するために要する時間である。
One aspect of the present invention made to solve the above problems includes an electrode body, a battery case that houses the electrode body and includes an opening surface, a lid member that closes the opening surface of the battery case, and the lid In a sealed battery having a liquid injection hole penetrating a member and a sealing member fixed to the lid member by welding to seal the liquid injection hole, a mesh portion is formed in the liquid injection hole The air permeability Q of the mesh part measured by JIS L 1096 air permeability A method (Fragile type method) is:
Q ≦ Vaporization volume of electrolytic solution [cc] / {Cross sectional area of injection hole [cm 2 ] × welding time [sec]}
It is characterized by satisfying the following relationship.
Note that the vaporization volume of the electrolytic solution is the volume of the electrolytic solution vaporized when the sealing member is welded to the lid member, and the welding time is the time required to weld the sealing member to the lid member. .

この密閉型電池では、注液孔にメッシュ部が形成されており、そのメッシュ部の通気度Qが上記の関係を満たしているため、蓋部材の裏面に付着した電解液が、封止部材と蓋部材との溶接時における入熱により蒸発しても、蒸発した電解液(気体)のすべてが、溶接終了時までメッシュ部(注液孔)を通過しないようにすることができる。つまり、溶接時間内に気化した電解液起因のガスの一部を、溶接終了時まで電池容器内に留めておくことができる。これにより、封止部材と蓋部材との溶接時における入熱により電解液が蒸発しても、溶接部に余分な力がかかりにくくなり、溶接部が変形する(押し上げられる)ことを抑制することができる。従って、封止部材と蓋部材とを良好に溶接することができ、溶接不良の発生を低減することができる。   In this sealed battery, since the mesh portion is formed in the injection hole, and the air permeability Q of the mesh portion satisfies the above relationship, the electrolyte attached to the back surface of the lid member is separated from the sealing member. Even if it evaporates due to heat input during welding with the lid member, it is possible to prevent all of the evaporated electrolyte (gas) from passing through the mesh portion (liquid injection hole) until the end of welding. That is, a part of the gas derived from the electrolyte vaporized within the welding time can be kept in the battery container until the end of welding. As a result, even if the electrolytic solution evaporates due to heat input during welding between the sealing member and the lid member, it is difficult to apply an extra force to the welded portion, and the welded portion is prevented from being deformed (pushed up). Can do. Therefore, the sealing member and the lid member can be favorably welded, and the occurrence of poor welding can be reduced.

なお、メッシュ部の通気度は、上記の関係を満たした上で、できるだけ高く設定されていることが望ましい。このようにメッシュ部の通気度が設定されていることにより、注液性(注液効率)も確保することができる。   Note that the air permeability of the mesh portion is desirably set as high as possible while satisfying the above relationship. Thus, by setting the air permeability of the mesh part, liquid injection property (liquid injection efficiency) can also be ensured.

本発明に係る密閉型電池によれば、上記した通り、封止部材と蓋部材との溶接時に溶接部に余分な力がかかることを抑制することができるので、溶接不良の発生を低減することができる。   According to the sealed battery according to the present invention, as described above, it is possible to prevent an excessive force from being applied to the welded portion when welding the sealing member and the lid member, thereby reducing the occurrence of poor welding. Can do.

実施形態に係る二次電池の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the secondary battery which concerns on embodiment. 蓋部材を示す斜視図である。It is a perspective view which shows a cover member. 注液孔周辺の拡大断面図である。It is an expanded sectional view around a liquid injection hole. メッシュ部材の平面図である。It is a top view of a mesh member. メッシュ部材の変形例を示す図である。It is a figure which shows the modification of a mesh member. メッシュ部材の別の変形例を示す図であるIt is a figure which shows another modification of a mesh member. 従来の密閉型電池における注液孔周辺の拡大断面図である。It is an expanded sectional view around the injection hole in the conventional sealed battery.

以下、本発明の密閉型電池を具体化した実施の形態について、図面に基づき詳細に説明する。本実施形態では、角形の金属ケースに電極体及び電解液を封入してなる密閉型のリチウムイオン二次電池に本発明を適用した場合について説明する。そこで、本実施形態に係るリチウムイオン二次電池について、図1〜図4を参照しながら説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment embodying a sealed battery of the present invention will be described in detail with reference to the drawings. In this embodiment, a case where the present invention is applied to a sealed lithium ion secondary battery in which an electrode body and an electrolytic solution are sealed in a rectangular metal case will be described. Then, the lithium ion secondary battery which concerns on this embodiment is demonstrated, referring FIGS. 1-4.

本実施形態に係る二次電池10は、図1に示すように、電池容器11に電極体12及び電解液13が封入されてなる密閉型の電池である。電池容器11は、金属製のものであり、扁平な角形の箱状のものである。   As shown in FIG. 1, the secondary battery 10 according to the present embodiment is a sealed battery in which an electrode body 12 and an electrolytic solution 13 are enclosed in a battery container 11. The battery container 11 is made of metal and has a flat rectangular box shape.

本実施形態の電極体12は,帯状の正極板と帯状の負極板とが、それらの間に帯状のセパレータを挟んで捲回された捲回体である。本実施形態の正極板は、アルミ箔の両面に正極活物質層を形成したものである。正極活物質層としては、リチウムイオンを吸蔵・放出可能な正極活物質による正極合剤を含むものであり、例えば、リチウム含有金属酸化物に結着剤と分散溶媒等を混練したものを使用することができる。本実施形態に負極板は、銅箔の両面に負極活物質層を形成したものである。負極活物質層は、炭素材等を含んでいる。   The electrode body 12 of this embodiment is a wound body in which a belt-like positive electrode plate and a belt-like negative electrode plate are wound with a belt-like separator interposed therebetween. The positive electrode plate of this embodiment has a positive electrode active material layer formed on both sides of an aluminum foil. The positive electrode active material layer includes a positive electrode mixture of a positive electrode active material capable of inserting and extracting lithium ions. For example, a lithium-containing metal oxide kneaded with a binder and a dispersion solvent is used. be able to. In the present embodiment, the negative electrode plate is obtained by forming a negative electrode active material layer on both surfaces of a copper foil. The negative electrode active material layer includes a carbon material and the like.

二次電池10は、電池容器11の外部に突出して設けられた正極端子15、負極端子16を有している。正極端子15は、電池容器11の内部で電極体12の正極板に接続されている。負極端子16は、電池容器11の内部で電極体12の負極板に接続されている。また、電解液13は,有機溶媒に電解質を溶解させたものであり、本実施形態では、有機溶媒としてエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)を用いている。   The secondary battery 10 has a positive electrode terminal 15 and a negative electrode terminal 16 which are provided so as to protrude outside the battery container 11. The positive electrode terminal 15 is connected to the positive electrode plate of the electrode body 12 inside the battery container 11. The negative electrode terminal 16 is connected to the negative electrode plate of the electrode body 12 inside the battery container 11. The electrolytic solution 13 is obtained by dissolving an electrolyte in an organic solvent. In this embodiment, ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) are used as the organic solvent.

電池容器11は、図1に示すように、一面が開口した略直方体の電池ケース18とその開口面を閉塞する蓋部材19とを有している。電池ケース18と蓋部材19とは、蓋部材19の全周囲において隙間なく溶接されることにより、互いに固定されている。   As shown in FIG. 1, the battery container 11 includes a substantially rectangular parallelepiped battery case 18 whose one surface is open and a lid member 19 that closes the opening surface. The battery case 18 and the lid member 19 are fixed to each other by being welded around the entire circumference of the lid member 19 without a gap.

そして、取付前の蓋部材19は、図2に示すように、複数の穴などが形成された細長い板状の部材である。蓋部材19は、例えば、アルミ製の板厚1mm程度のものである。蓋部材19の長手方向の両端部には、貫通穴21,22が形成されている。貫通穴21は、正極端子15(図1参照)を貫通させるためのものである。貫通穴22は、負極端子16(図1参照)を貫通させるためのものである。   And the cover member 19 before attachment is an elongate plate-shaped member in which several holes etc. were formed, as shown in FIG. The lid member 19 is made of, for example, an aluminum plate having a thickness of about 1 mm. Through holes 21 and 22 are formed at both ends of the lid member 19 in the longitudinal direction. The through hole 21 is for penetrating the positive electrode terminal 15 (see FIG. 1). The through hole 22 is for penetrating the negative electrode terminal 16 (see FIG. 1).

また、蓋部材19の中央付近には、長円形の安全弁23が形成されている。安全弁23は、貫通しているものではなく、他の箇所に比較して厚さが薄く形成されている箇所である。電池容器11の内圧が安全弁23の開弁圧を超えて高くなると、安全弁23が断裂して開弁し、内圧を上昇させているガス等が外部に放出される。そして、安全弁23の隣には、蓋部材19を貫通して、注液孔25が形成されている。注液孔25は、組み立てた電池容器11の内部へ電解液13を注液するための孔である。本実施形態では、例として注液孔25の径が4.0mmであり、その断面積SがS=0.04π[cm2 ]となっている。 An oval safety valve 23 is formed near the center of the lid member 19. The safety valve 23 is not penetrating but is a portion formed thinner than other portions. When the internal pressure of the battery container 11 becomes higher than the opening pressure of the safety valve 23, the safety valve 23 is broken and opened, and the gas or the like increasing the internal pressure is released to the outside. A liquid injection hole 25 is formed next to the safety valve 23 through the lid member 19. The liquid injection hole 25 is a hole for injecting the electrolytic solution 13 into the assembled battery container 11. In the present embodiment, for example, the diameter of the liquid injection hole 25 is 4.0 mm, and the cross-sectional area S is S = 0.04π [cm 2 ].

本実施形態の二次電池10では、図1に示すように、注液孔25に封止部材31が取り付けられている。詳細には、図3に示すように、封止部材31は、外側から注液孔25を覆うようにして配置され、封止部材31の周囲と蓋部材19(注液孔25周辺)とが溶接部35において隙間なく溶接されている。これにより、封止部材31によって注液孔25が封止されている。   In the secondary battery 10 of the present embodiment, a sealing member 31 is attached to the liquid injection hole 25 as shown in FIG. Specifically, as shown in FIG. 3, the sealing member 31 is disposed so as to cover the liquid injection hole 25 from the outside, and the periphery of the sealing member 31 and the lid member 19 (the periphery of the liquid injection hole 25) are arranged. The welded portion 35 is welded without a gap. Thereby, the injection hole 25 is sealed by the sealing member 31.

なお、溶接としては、例えば、YAGレーザ、ファイバーレーザ、又は電子ビーム等による連続したスポット溶接又はシームレス溶接によるものとすればよい。溶接の容易さの観点から、封止部材31は、蓋部材19と同じ材質であることが望ましい。   The welding may be performed by continuous spot welding or seamless welding using, for example, a YAG laser, a fiber laser, or an electron beam. From the viewpoint of ease of welding, the sealing member 31 is preferably made of the same material as the lid member 19.

そして、この封止部材31と蓋部材19との溶接、及び前述した電池ケース18と蓋部材19との溶接により、電池容器11が密閉される。そのため、封止部材31と蓋部材19との溶接が不良であると、液漏れが発生するおそれがある。
ここで、電池容器11内に電解液13を注液した後に蓋部材19の裏面に電解液13が付着していると、封止部材31と蓋部材19とを溶接する際の入熱により、蓋部材19に付着していた電解液13が蒸発する。そして、電解液13が気化すると、電池容器11の内圧が上昇して、溶接部35に余分な力がかかり、溶接部35が変形して(押し上げられて)溶接不良となるおそれがあった(図7参照)。
The battery container 11 is sealed by welding the sealing member 31 and the lid member 19 and by welding the battery case 18 and the lid member 19 described above. Therefore, if the welding between the sealing member 31 and the lid member 19 is poor, there is a possibility that liquid leakage occurs.
Here, when the electrolytic solution 13 is adhered to the back surface of the lid member 19 after the electrolytic solution 13 is injected into the battery container 11, due to heat input when welding the sealing member 31 and the lid member 19, The electrolytic solution 13 attached to the lid member 19 evaporates. When the electrolytic solution 13 is vaporized, the internal pressure of the battery container 11 is increased, an extra force is applied to the welded portion 35, and the welded portion 35 is deformed (pushed up) to cause poor welding ( (See FIG. 7).

そこで、本実施形態の二次電池10では、図3に示すように、注液孔25にメッシュ部材40を設けている。このメッシュ部材40は、図3、図4に示すように、円盤形状のものであり、メッシュ部41が注液孔25の開口部を覆うようにして蓋部材19に固定されている。   Therefore, in the secondary battery 10 of the present embodiment, as shown in FIG. 3, the mesh member 40 is provided in the liquid injection hole 25. As shown in FIGS. 3 and 4, the mesh member 40 has a disk shape, and the mesh portion 41 is fixed to the lid member 19 so as to cover the opening of the liquid injection hole 25.

ここで、メッシュ部材40は、図3、図4に示すものに限られることなく、例えば、図5に示すように、蓋部材19(注液孔25)の外壁側に固定されるメッシュ部材40aであってもよい。また、メッシュ部材40aのようにメッシュ部41が歪曲していてもよい。さらに、図6に示すように、蓋部材19にメッシュ部41が完全に一体成型されていてもよい。   Here, the mesh member 40 is not limited to the one shown in FIGS. 3 and 4. For example, as shown in FIG. 5, the mesh member 40 a fixed to the outer wall side of the lid member 19 (the liquid injection hole 25). It may be. Moreover, the mesh part 41 may be distorted like the mesh member 40a. Further, as shown in FIG. 6, the mesh portion 41 may be formed integrally with the lid member 19.

そして、JIS L 1096通気性A法(フラジール形法)で測定したメッシュ部41の通気度Qは、下記の関係を満たしている。
Q≦電解液の気化体積[cc]/{注液孔の面積[cm2]×溶接時間[sec]}
And the air permeability Q of the mesh part 41 measured by JIS L 1096 air permeability A method (fragile type method) satisfies the following relationship.
Q ≦ Volume of electrolytic solution [cc] / {area of injection hole [cm 2 ] × welding time [sec]}

このようにメッシュ部41の通気度Qを設定することにより、封止部材31と蓋部材19との溶接時における入熱により電解液13が蒸発しても、図3に示すように、その蒸発して気化した電解液(気体)のすべてが、溶接終了時までにメッシュ部41(注液孔25)を通過しなくなる。つまり、溶接時間内に気化した電解液起因のガスの一部を、溶接終了時まで電池容器11内(注液孔25より内側)に留めておくことができる。これにより、溶接部35における内圧の上昇を抑えることができるため、溶接部35に余分な力がかかりにくくなり、溶接部35が変形する(押し上げられる)ことを抑制することができる。従って、封止部材31と蓋部材19とを良好に溶接することができ、溶接不良の発生を低減することができる。これにより、注液孔25からの液漏れの発生を防止することができる。   By setting the air permeability Q of the mesh portion 41 in this way, even if the electrolyte solution 13 evaporates due to heat input during welding of the sealing member 31 and the lid member 19, as shown in FIG. Thus, all of the evaporated electrolyte (gas) does not pass through the mesh portion 41 (the liquid injection hole 25) by the end of welding. That is, a part of the gas derived from the electrolyte vaporized within the welding time can be kept in the battery container 11 (inside the liquid injection hole 25) until the end of welding. Thereby, since the raise of the internal pressure in the welding part 35 can be suppressed, it becomes difficult to apply excessive force to the welding part 35, and it can suppress that the welding part 35 deform | transforms (pushes up). Therefore, the sealing member 31 and the lid member 19 can be favorably welded, and the occurrence of poor welding can be reduced. Thereby, generation | occurrence | production of the liquid leakage from the liquid injection hole 25 can be prevented.

そして、メッシュ部41の通気度Qは、上記の関係を満たした上で、できるだけ高く設定されていることが望ましい。このようにメッシュ部41の通気度Qが設定されていると、電解液13を電池容器11に注液する際の注液性(注液効率)も確保することができるからである。   And it is desirable for the air permeability Q of the mesh part 41 to be set as high as possible while satisfying the above relationship. This is because when the air permeability Q of the mesh portion 41 is set in this way, it is possible to ensure the liquid injection property (liquid injection efficiency) when the electrolyte solution 13 is injected into the battery container 11.

ここで、電解液13の気化体積Vは、気体の状態方程式に基づいて、
気化体積V=(蒸発量w×気体定数R×温度T)/(圧力P×分子量M)
と算出することができる。
なお、蒸発量w[g]は、蓋部材19に付着していた電解液13のうち、封止部材31を溶接する際に蒸発して気化した電解液13の量である。
Here, the vaporization volume V of the electrolytic solution 13 is based on the state equation of gas,
Vaporization volume V = (evaporation amount w × gas constant R × temperature T) / (pressure P × molecular weight M)
Can be calculated.
Note that the evaporation amount w [g] is the amount of the electrolyte solution 13 evaporated and vaporized when the sealing member 31 is welded out of the electrolyte solution 13 attached to the lid member 19.

この蒸発量w[g]は、注液後であって溶接直前の電池容器11における蓋部材19の重量から、溶接直後の電池容器11における蓋部材19の重量を差し引くことにより算出することができる。そして、同一仕様の電池であれば蒸発量はほぼ一定であると考えられるため、蒸発量w[g]は、試験用の電池容器を用いて予め求めておけばよい。そして、本実施形態では、例として蒸発量w[g]をw=0.03[g]としている。   The evaporation amount w [g] can be calculated by subtracting the weight of the lid member 19 in the battery container 11 immediately after welding from the weight of the lid member 19 in the battery container 11 immediately after welding after the injection. . Since the amount of evaporation is considered to be substantially constant for batteries of the same specification, the amount of evaporation w [g] may be obtained in advance using a test battery container. In this embodiment, the evaporation amount w [g] is set to w = 0.03 [g] as an example.

また、本実施形態では、例として電解液13の有機溶媒としてエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)を使用している。そこで、分子量M[g/mol]は、その平均分子量を用いて、M=100[g/mol]としている。   In this embodiment, as an example, ethylmethyl carbonate (EMC) and dimethyl carbonate (DMC) are used as the organic solvent of the electrolytic solution 13. Therefore, the molecular weight M [g / mol] is set to M = 100 [g / mol] using the average molecular weight.

そして、封止部材31を蓋部材19に溶接する際の条件として、温度Tを100℃としてT=373[K]、圧力Pを大気圧としてP=101300[Pa]とすれば、封止部材31を蓋部材19に溶接する際に蒸発する電解液13の気化体積V[cc]は、次のように算出される。
V=(0.03[g]×8.31[Pa・m3/mol・K]×373 [K])
/(101300[Pa]×100[g/mol])
=9.17956[cc]
As conditions for welding the sealing member 31 to the lid member 19, if the temperature T is 100 ° C. and T = 373 [K] and the pressure P is atmospheric pressure and P = 101300 [Pa], then the sealing member The vaporization volume V [cc] of the electrolytic solution 13 that evaporates when 31 is welded to the lid member 19 is calculated as follows.
V = (0.03 [g] × 8.31 [Pa · m 3 / mol · K] × 373 [K])
/ (101300 [Pa] × 100 [g / mol])
= 9.17956 [cc]

従って、本実施形態の二次電池10では、封止部材31の溶接時間が0.2secであるから、メッシュ部41の通気度Qは、
Q=(9.17956[cc]/(0.04π[cm2]×0.2[sec])
=365.2429[cc/cm2/sec]
となる。そのため、二次電池10においては、注液孔25に設けたメッシュ部材40におけるメッシュ部41の通気度Qが、365[cc/cm2/sec]以下であればよい。
Therefore, in the secondary battery 10 of the present embodiment, since the welding time of the sealing member 31 is 0.2 sec, the air permeability Q of the mesh portion 41 is
Q = (9.17956 [cc] / (0.04π [cm 2 ] × 0.2 [sec])
= 365.429 [cc / cm 2 / sec]
It becomes. Therefore, in the secondary battery 10, the air permeability Q of the mesh portion 41 in the mesh member 40 provided in the liquid injection hole 25 may be 365 [cc / cm 2 / sec] or less.

そして、二次電池10では、注液性も確保するために、メッシュ部41の通気度Qは、例としてQ=365[cc/cm2/sec]となっている。これにより、二次電池10では、電解液13の蒸発量wのすべてがメッシュ部41を通過することがなくなる。従って、二次電池10によれば、注液性を確保しつつ、封止部材31の溶接時に封止部材31に余分な力がかかることを抑制することができるため、溶接不良の発生を低減することができる。 In the secondary battery 10, the air permeability Q of the mesh portion 41 is, for example, Q = 365 [cc / cm 2 / sec] in order to ensure the liquid injection property. Thereby, in the secondary battery 10, the entire evaporation amount w of the electrolytic solution 13 does not pass through the mesh portion 41. Therefore, according to the secondary battery 10, it is possible to prevent an extra force from being applied to the sealing member 31 during welding of the sealing member 31 while ensuring the liquid injection property, thereby reducing the occurrence of poor welding. can do.

以上、詳細に説明したように本実施形態に係る二次電池10によれば、注液孔25にメッシュ部41が形成されており、JIS L 1096通気性A法(フラジール形法)で測定したメッシュ部41の通気度Qが、上記の所定の関係を満たしているので、蓋部材19の裏面に付着した電解液13が、封止部材31と蓋部材19との溶接時における入熱により蒸発しても、蒸発した電解液(気体)のすべてが、溶接終了時までメッシュ部41(注液孔25)を通過しないようにすることができる。従って、封止部材31と蓋部材19との溶接時における入熱により電解液13が蒸発しても、溶接部35に余分な力がかからなくなり、溶接部35が変形する(押し上げられる)ことを抑制することができる。よって、封止部材31と蓋部材19とを良好に溶接することができ、溶接不良の発生を低減することができる。   As described above, according to the secondary battery 10 according to the present embodiment, the mesh portion 41 is formed in the liquid injection hole 25, and measurement was performed by the JIS L 1096 breathability A method (Fragile method). Since the air permeability Q of the mesh portion 41 satisfies the above predetermined relationship, the electrolytic solution 13 attached to the back surface of the lid member 19 evaporates due to heat input during welding of the sealing member 31 and the lid member 19. Even so, it is possible to prevent all of the evaporated electrolyte (gas) from passing through the mesh portion 41 (the liquid injection hole 25) until the end of welding. Therefore, even if the electrolyte solution 13 evaporates due to heat input during welding between the sealing member 31 and the lid member 19, no excessive force is applied to the welded portion 35, and the welded portion 35 is deformed (pushed up). Can be suppressed. Therefore, the sealing member 31 and the lid member 19 can be favorably welded, and the occurrence of poor welding can be reduced.

なお、上記した実施の形態は単なる例示にすぎず、本発明を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。   It should be noted that the above-described embodiment is merely an example and does not limit the present invention in any way, and various improvements and modifications can be made without departing from the scope of the invention.

10 二次電池
11 電池容器
12 電極体
13 電解液
18 電池ケース
19 蓋部材
25 注液孔
31 封止部材
35 溶接部
40 メッシュ部材
41 メッシュ部
DESCRIPTION OF SYMBOLS 10 Secondary battery 11 Battery container 12 Electrode body 13 Electrolyte 18 Battery case 19 Lid member 25 Injection hole 31 Sealing member 35 Welding part 40 Mesh member 41 Mesh part

Claims (1)

電極体と、前記電極体を収納するとともに開口面を備える電池ケースと、前記電池ケースの開口面を閉塞する蓋部材と、前記蓋部材を貫通する注液孔と、前記注液孔を封止するために前記蓋部材に対して溶接で固定される封止部材とを有する密閉型電池において、
前記注液孔にメッシュ部が形成されており、
JIS L 1096通気性A法(フラジール形法)で測定した前記メッシュ部の通気度をQとすると、
Q≦電解液の気化体積[cc]/{注液孔の面積[cm2]×溶接時間[sec]}
となる関係を満たすことを特徴とする密閉型電池。
An electrode body, a battery case that houses the electrode body and includes an opening surface, a lid member that closes the opening surface of the battery case, a liquid injection hole that penetrates the lid member, and a seal for sealing the liquid injection hole In a sealed battery having a sealing member fixed to the lid member by welding to
A mesh portion is formed in the liquid injection hole,
When the air permeability of the mesh portion measured by JIS L 1096 air permeability A method (fragile type method) is Q,
Q ≦ Volume of electrolytic solution [cc] / {area of injection hole [cm 2 ] × welding time [sec]}
A sealed battery characterized by satisfying the following relationship.
JP2016014643A 2016-01-28 2016-01-28 Sealed battery Active JP6613926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016014643A JP6613926B2 (en) 2016-01-28 2016-01-28 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016014643A JP6613926B2 (en) 2016-01-28 2016-01-28 Sealed battery

Publications (2)

Publication Number Publication Date
JP2017135025A true JP2017135025A (en) 2017-08-03
JP6613926B2 JP6613926B2 (en) 2019-12-04

Family

ID=59505031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016014643A Active JP6613926B2 (en) 2016-01-28 2016-01-28 Sealed battery

Country Status (1)

Country Link
JP (1) JP6613926B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4276985A1 (en) 2022-05-10 2023-11-15 Prime Planet Energy & Solutions, Inc. Battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215883A (en) * 1999-01-27 2000-08-04 Japan Storage Battery Co Ltd Battery
WO2014033822A1 (en) * 2012-08-28 2014-03-06 日立ビークルエナジー株式会社 Rectangular secondary battery
JP2015056357A (en) * 2013-09-13 2015-03-23 株式会社豊田自動織機 Power storage device
JP2015176637A (en) * 2014-03-12 2015-10-05 株式会社Gsユアサ Power storage element and method of manufacturing power storage element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215883A (en) * 1999-01-27 2000-08-04 Japan Storage Battery Co Ltd Battery
WO2014033822A1 (en) * 2012-08-28 2014-03-06 日立ビークルエナジー株式会社 Rectangular secondary battery
JP2015056357A (en) * 2013-09-13 2015-03-23 株式会社豊田自動織機 Power storage device
JP2015176637A (en) * 2014-03-12 2015-10-05 株式会社Gsユアサ Power storage element and method of manufacturing power storage element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4276985A1 (en) 2022-05-10 2023-11-15 Prime Planet Energy & Solutions, Inc. Battery

Also Published As

Publication number Publication date
JP6613926B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP6250567B2 (en) Sealed battery
US9853294B2 (en) Secondary battery and manufacturing method thereof
WO2014119309A1 (en) Hermetic battery
CN102318128B (en) Lithium ion secondary battery and production method for same
JP5456952B2 (en) Battery with safety valve
US9608239B2 (en) Battery and method for producing the battery
JP2009048968A (en) Enclosed battery
JP2018166040A (en) Square secondary battery
JP2006210031A (en) Wound type power storage device
KR101002487B1 (en) Electrode assembly and secondary battery comprising the same
US9123929B2 (en) Secondary battery
JP2007141774A (en) Manufacturing method of storage element
JP6613926B2 (en) Sealed battery
WO2019044110A1 (en) Sheet material, secondary battery and method for producing secondary battery
JP5726773B2 (en) Flat wound secondary battery and method for manufacturing the same
EP4246671A2 (en) Battery case and secondary battery including the same
WO2016147967A1 (en) Secondary cell
JP6670086B2 (en) Sealed battery
JP2017147064A (en) Secondary battery manufacturing method
JP2017004917A (en) Sealed battery
JP5784978B2 (en) Non-aqueous electrolyte battery
JP2014093124A (en) Sealed battery
JP6236292B2 (en) Method for producing film-clad battery
JP2007103162A (en) Battery pack
JP2014086162A (en) Sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R151 Written notification of patent or utility model registration

Ref document number: 6613926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151