JP2017004917A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2017004917A
JP2017004917A JP2015121202A JP2015121202A JP2017004917A JP 2017004917 A JP2017004917 A JP 2017004917A JP 2015121202 A JP2015121202 A JP 2015121202A JP 2015121202 A JP2015121202 A JP 2015121202A JP 2017004917 A JP2017004917 A JP 2017004917A
Authority
JP
Japan
Prior art keywords
housing case
safety valve
temperature
case
sealed battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015121202A
Other languages
Japanese (ja)
Inventor
貴陽 磯部
Takaaki Isobe
貴陽 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015121202A priority Critical patent/JP2017004917A/en
Publication of JP2017004917A publication Critical patent/JP2017004917A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealed battery that can suppress internal pressure in a housing case and suppress temperature increase in the housing case when internal short-circuiting occurs in an electrode body.SOLUTION: A sealed battery includes a housing case 2, and an electrode body 3 and electrolytic solution which are housed in the housing case 2, a first safety valve 12 which is provided in the housing case 2 and causes the inside of the housing case 2 and the outside of the housing case 2 to intercommunicate with each other when the pressure in the housing case 2 exceeds a predetermined pressure, and second safety valves 14, 15 which are provided in the housing case 2 and cause the inside of the housing case 2 and the outside of the housing case 2 to intercommunicate with each other when the temperature inside the housing case 2 exceeds a predetermined temperature. When internal short-circuit occurs in the electrode body 3, the predetermined temperature is higher than the temperature inside the housing case 2 when the internal pressure inside the housing case 2 reaches a predetermined pressure at which the first safety valve 12 opens.SELECTED DRAWING: Figure 1

Description

本発明は、密閉型電池に関する。   The present invention relates to a sealed battery.

密閉型電池は、収容ケースと、収容ケース内に収容された電極体および電解液とを備え、収容ケース内には、収容ケース内の内圧が過剰に高くなることを抑制するために安全弁が設けられている。   The sealed battery includes a housing case, an electrode body and an electrolytic solution housed in the housing case, and a safety valve is provided in the housing case to prevent the internal pressure in the housing case from becoming excessively high. It has been.

電極体内で内部短絡が生じると、短絡部分に大きな電流が流れる。大きな短絡電流が流れると、電池温度が上昇する。電池温度が上昇すると、正極および負極表面に接触する電解液において分解熱反応が生じたり、電解液自体の発熱分解反応が発生したりする。このような反応が生じると、電解液の蒸発や分解により、収容ケース内の内圧が上昇する。   When an internal short circuit occurs in the electrode body, a large current flows through the short circuit portion. When a large short-circuit current flows, the battery temperature rises. When the battery temperature rises, a decomposition heat reaction occurs in the electrolyte solution contacting the positive electrode and the negative electrode surface, or an exothermic decomposition reaction of the electrolyte solution itself occurs. When such a reaction occurs, the internal pressure in the housing case increases due to evaporation and decomposition of the electrolytic solution.

安全弁は、収容ケース内の内圧が所定値以上になると、収容ケース内と収容ケースの外部とを連通する。収容ケースの内部と外部とが安全弁を通して連通することで、収容ケース内の高温ガスが外部に排出される。   The safety valve communicates between the inside of the housing case and the outside of the housing case when the internal pressure in the housing case reaches a predetermined value or more. The inside and outside of the storage case communicate with each other through a safety valve, so that the high-temperature gas in the storage case is discharged to the outside.

たとえば、特開2003−59476号公報に記載された非水電解質二次電池は、外装缶と、外装缶内に設けられた電極体および電解液と、外装缶に設けられた第1安全弁および第2安全弁とを備える。第1安全弁の耐圧強度は、第2安全弁の耐圧強度よりも低くなるように設定されている。   For example, a non-aqueous electrolyte secondary battery described in Japanese Patent Application Laid-Open No. 2003-59476 includes an outer can, an electrode body and an electrolyte provided in the outer can, a first safety valve and a first electrode provided in the outer can. Two safety valves are provided. The pressure resistance strength of the first safety valve is set to be lower than the pressure strength of the second safety valve.

特開2013−235831号公報に記載された2次電池は、電極組立体と、短絡誘導体とを備える。2次電池の釘貫通時において、短絡誘導体は短絡電流の流れを多様化させ、発熱現象の発生を抑制する。   The secondary battery described in JP2013-235831A includes an electrode assembly and a short circuit derivative. When the secondary battery penetrates the nail, the short circuit derivative diversifies the flow of the short circuit current and suppresses the generation of heat generation.

特開2003−59476号公報JP 2003-59476 A 特開2013−235831号公報JP 2013-235831 A

特開2003−59476号公報に記載された密閉型電池においては、第1安全弁が開放されると、外装缶内の圧力が低下し、第2安全弁が開放され難くなる。また、第1安全弁が開放され、第2安全弁が開放されない状態において、外装缶内のガスが外部に排出されるときに、たとえば、飛散した電極体の一部が第1安全弁に詰まることで、放熱性が悪化するおそれがある。   In the sealed battery described in Japanese Patent Application Laid-Open No. 2003-59476, when the first safety valve is opened, the pressure in the outer can is reduced, and the second safety valve is hardly opened. In addition, when the gas in the outer can is discharged to the outside in a state where the first safety valve is opened and the second safety valve is not opened, for example, a part of the scattered electrode body is clogged in the first safety valve, There is a possibility that heat dissipation may deteriorate.

本発明は、上記のような課題に鑑みてなされたものであって、その目的は、電極体内で内部短絡が生じたときに、収容ケース内の内圧を抑制することができると共に、収容ケース内の温度上昇を抑制することができる密閉型電池を提供することである。   The present invention has been made in view of the above-described problems, and its purpose is to suppress the internal pressure in the storage case when an internal short circuit occurs in the electrode body, It is providing the sealed battery which can suppress the temperature rise of.

密閉型電池は、収容ケースと、収容ケース内に収容された電極体および電解液と、収容ケースに設けられ、収容ケース内の圧力が所定圧力を超えると収容ケース内と収容ケースの外部とを連通させる第1安全弁と、収容ケースに設けられ、収容ケース内の温度が所定温度を超えると収容ケース内と収容ケースの外部とを連通させる第2安全弁とを備える。上記電極体内で内部短絡が生じたときに、第1安全弁が開弁する所定圧力に収容ケース内の内圧が達したときの収容ケース内の温度よりも、所定温度の方が高い。   The sealed battery is provided in the housing case, the electrode body and the electrolyte solution housed in the housing case, and the housing case. When the pressure in the housing case exceeds a predetermined pressure, the inside of the housing case and the outside of the housing case are separated. A first safety valve to be communicated, and a second safety valve that is provided in the housing case and communicates with the outside of the housing case when the temperature in the housing case exceeds a predetermined temperature. When an internal short circuit occurs in the electrode body, the predetermined temperature is higher than the temperature in the storage case when the internal pressure in the storage case reaches the predetermined pressure at which the first safety valve opens.

上記の構成によれば、電極体内で内部短絡が生じ、収容ケース内の内圧および温度が上昇すると、第2安全弁が開弁する所定温度になる前に、第1安全弁が開弁する圧力に収容ケース内の内圧が達する。そして、第1安全弁が開弁する。たとえば、第1安全弁が開弁した際に、電極体の一部などが飛散し、第1安全弁に詰まり、第1安全弁が開弁しても、収容ケース内の温度が上昇し続ける場合がある。第1安全弁が開弁しても、収容ケース内の温度が上昇し続ける場合には、その後、収容ケース内の温度が上昇して所定温度になると、第2安全弁が開弁する。これにより、収容ケース内の通気性がさらに向上し、収容ケース内の温度上昇の抑制を図ることができる。   According to the above configuration, when an internal short circuit occurs in the electrode body and the internal pressure and temperature in the storage case rise, the first safety valve is stored at a pressure at which the first safety valve opens before reaching the predetermined temperature at which the second safety valve opens. The internal pressure in the case reaches. Then, the first safety valve is opened. For example, when the first safety valve is opened, a part of the electrode body is scattered, the first safety valve is clogged, and the temperature in the housing case may continue to rise even when the first safety valve is opened. . Even if the first safety valve is opened, if the temperature in the storage case continues to rise, the second safety valve is then opened when the temperature in the storage case rises to a predetermined temperature. Thereby, the air permeability in a storage case improves further, and it can aim at suppression of the temperature rise in a storage case.

本発明に係る密閉型電池によれば、電極体内で内部短絡が生じたときに、収容ケース内の圧力の上昇を抑制することができると共に、収容ケース内の温度が上昇することを抑制することができる。   According to the sealed battery of the present invention, when an internal short circuit occurs in the electrode body, it is possible to suppress an increase in pressure in the housing case and to suppress an increase in temperature in the housing case. Can do.

密閉型電池1を示す斜視図である。1 is a perspective view showing a sealed battery 1. FIG. 密閉型電池1の断面図であり、電極体3の一部を破断した状態における断面図である。FIG. 3 is a cross-sectional view of the sealed battery 1 and is a cross-sectional view in a state where a part of the electrode body 3 is broken. 釘刺し試験などのように電極体3内に内部短絡が生じたときの収容ケース2内の内圧変化を模式的に示すグラフである。It is a graph which shows typically an internal pressure change in storage case 2 when an internal short circuit arises in electrode body 3 like a nail penetration test. 釘刺し試験などのように電極体3内に内部短絡が発生したときの収容ケース2内の温度変化を模式的に示すグラフである。It is a graph which shows typically the temperature change in the storage case 2 when an internal short circuit generate | occur | produces in the electrode body 3 like a nail penetration test. 安全弁12が破断した状態における密閉型電池1を示す断面図である。It is sectional drawing which shows the sealed battery 1 in the state which the safety valve 12 fractured | ruptured. 安全弁12,14,15が破断した状態における密閉型電池1の断面図である。It is sectional drawing of the sealed battery 1 in the state which the safety valve 12,14,15 fractured | ruptured. 比較例に係る密閉型電池1Aを示す斜視図である。It is a perspective view which shows 1 A of sealed batteries which concern on a comparative example. 実施例に係る密閉型電池1Bを示す斜視図である。It is a perspective view which shows the sealed battery 1B which concerns on an Example.

図1などを用いて、本実施の形態に係る密閉型電池1について説明する。図1は、密閉型電池1を示す斜視図である。この図1に示すように、密閉型電池1は、収容ケース2と、収容ケース2内に収容された電極体3および電解液4と、収容ケース2の上面に設けられた正極端子5および負極端子6とを含む。   A sealed battery 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is a perspective view showing a sealed battery 1. As shown in FIG. 1, the sealed battery 1 includes a housing case 2, an electrode body 3 and an electrolytic solution 4 housed in the housing case 2, a positive terminal 5 and a negative electrode provided on the upper surface of the housing case 2. Terminal 6 included.

電解液4は、有機溶媒系電解液であり、主溶媒としては、たとえば、主に炭酸エステル系の有機溶媒がなどが採用され、電解質としては、たとえば、LiClO,LiPF,LiBFLiPFなどのリチウム塩が採用される。 The electrolytic solution 4 is an organic solvent-based electrolytic solution. As the main solvent, for example, mainly a carbonate-based organic solvent is employed, and as the electrolyte, for example, LiClO 4 , LiPF 6 , LiBF 4 LiPF 6. Lithium salt such as is adopted.

収容ケース2は、上方が開口するように形成されたケース本体10と、ケース本体10の開口部を閉塞するように設けられた上蓋11と、上蓋11に形成された安全弁(第1安全弁)12と、上蓋11に形成された封止部13と、ケース本体10の側面に設けられた安全弁(第2安全弁)14,15とを含む。   The housing case 2 includes a case body 10 formed so as to open upward, an upper lid 11 provided so as to close the opening of the case body 10, and a safety valve (first safety valve) 12 formed on the upper lid 11. And a sealing portion 13 formed on the upper lid 11 and safety valves (second safety valves) 14 and 15 provided on the side surface of the case body 10.

収容ケース2は、たとえば、アルミニウム、アルミニウム合金またはステンレス鋼などによって形成されている。上蓋11は、ケース本体10の開口部縁部に溶接などによって接合されている。   The housing case 2 is made of, for example, aluminum, an aluminum alloy, stainless steel, or the like. The upper lid 11 is joined to the edge of the opening of the case body 10 by welding or the like.

ケース本体10は、底面板20と、ケース本体10の厚さ方向Xに配列する主面板21および主面板22と、ケース本体10の幅方向Yに配列する側面板23および側面板24とを含む。   The case main body 10 includes a bottom plate 20, main surface plates 21 and main surface plates 22 arranged in the thickness direction X of the case main body 10, and side plates 23 and side plates 24 arranged in the width direction Y of the case main body 10. .

図2は、密閉型電池1の断面図であり、電極体3の一部を破断した状態における断面図である。この図2に示すように、電極体3は、正極シート25と、セパレータ26と、負極シート27と、セパレータ28とを順次積層した状態で巻回することで形成されており、電極体3は、幅方向Yに配列する正極芯体露出部29および負極芯体露出部30を含む。   FIG. 2 is a cross-sectional view of the sealed battery 1 and is a cross-sectional view in a state where a part of the electrode body 3 is broken. As shown in FIG. 2, the electrode body 3 is formed by winding a positive electrode sheet 25, a separator 26, a negative electrode sheet 27, and a separator 28 in a sequentially laminated state. The positive electrode core exposed portion 29 and the negative electrode core exposed portion 30 arranged in the width direction Y are included.

正極シート25は、金属箔に正極活物質などの正極材料が塗布された正極と、正極材料が塗布されずに金属箔が露出する金属露出部分とを含む。正極活物質としては、たとえば、LiCoO,LiNiO,LiMnなどのリチウム挿入化合物などが採用される。金属露出部分は、正極シート25の一辺部に形成されており、正極芯体露出部29は、金属露出部分が巻回されることで形成される。 The positive electrode sheet 25 includes a positive electrode obtained by applying a positive electrode material such as a positive electrode active material to a metal foil, and a metal exposed portion where the metal foil is exposed without applying the positive electrode material. As the positive electrode active material, for example, a lithium insertion compound such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 or the like is employed. The metal exposed portion is formed on one side of the positive electrode sheet 25, and the positive electrode core exposed portion 29 is formed by winding the metal exposed portion.

負極シート27は、金属箔に負極活物質などの負極材料が塗布された負極と、負極材料が塗布されずに金属箔が露出する金属露出部分とを含む。金属露出部分は、負極シート27の一辺部に形成されており、負極芯体露出部30は、金属露出部分が巻回されることで形成される。負極活物質には、黒鉛系材料などが採用される。   The negative electrode sheet 27 includes a negative electrode obtained by applying a negative electrode material such as a negative electrode active material to a metal foil, and a metal exposed portion where the metal foil is exposed without applying the negative electrode material. The metal exposed portion is formed on one side of the negative electrode sheet 27, and the negative electrode core exposed portion 30 is formed by winding the metal exposed portion. As the negative electrode active material, a graphite-based material or the like is employed.

正極端子5は、端子部35と、一端が端子部35に接続された接続部材36と、接続部材36の他端に接続されると共に正極芯体露出部29に接続された集電体37と、絶縁部材38とを含む。絶縁部材38は、端子部35、接続部材36および集電体37と、収容ケース2との間の絶縁性を確保する。   The positive electrode terminal 5 includes a terminal portion 35, a connection member 36 having one end connected to the terminal portion 35, a current collector 37 connected to the other end of the connection member 36 and connected to the positive electrode core exposed portion 29. And an insulating member 38. The insulating member 38 ensures insulation between the terminal portion 35, the connecting member 36, the current collector 37, and the housing case 2.

負極端子6は、端子部40と、一端が端子部40に接続された接続部材41と、接続部材41の他端に接続されると共に負極芯体露出部30に接続された集電体42と、絶縁部材43とを含む。絶縁部材43は、端子部40、接続部材41および集電体42と、収容ケース2との間の絶縁性を確保する。   The negative electrode terminal 6 includes a terminal portion 40, a connecting member 41 having one end connected to the terminal portion 40, a current collector 42 connected to the other end of the connecting member 41 and connected to the negative electrode core exposed portion 30. And an insulating member 43. The insulating member 43 ensures insulation between the terminal portion 40, the connecting member 41, the current collector 42, and the housing case 2.

図1において、安全弁12は、収容ケース2の他の部分よりも薄肉に形成されており、収容ケース2内の内圧が所定値以上になると破断するように形成されている。   In FIG. 1, the safety valve 12 is formed to be thinner than other portions of the housing case 2, and is formed to break when the internal pressure in the housing case 2 exceeds a predetermined value.

安全弁14および安全弁15は、熱可塑性樹脂によって形成されており、収容ケース2内が所定温度以上になると軟化または溶融する。安全弁14および安全弁15は、有機溶媒に対する耐薬品性に優れ、150℃以上の耐熱温度を有する材料から形成される。   The safety valve 14 and the safety valve 15 are formed of a thermoplastic resin, and are softened or melted when the inside of the housing case 2 reaches a predetermined temperature or higher. The safety valve 14 and the safety valve 15 are excellent in chemical resistance against an organic solvent and are formed of a material having a heat resistant temperature of 150 ° C. or higher.

図3および図4を用いて、安全弁12が開弁する所定圧力と、安全弁14および安全弁15が開弁する所定温度とについて説明する。図3は、釘刺し試験などのように電極体3内に内部短絡が生じたときの収容ケース2内の内圧変化を模式的に示すグラフである。図4は、釘刺し試験などのように電極体3内に内部短絡が発生したときの収容ケース2内の温度変化を模式的に示すグラフである。なお、図3および図4において、横軸は、内部短絡が生じたときからの経過時間を示す。   The predetermined pressure at which the safety valve 12 is opened and the predetermined temperature at which the safety valve 14 and the safety valve 15 are opened will be described with reference to FIGS. 3 and 4. FIG. 3 is a graph schematically showing a change in internal pressure in the housing case 2 when an internal short circuit occurs in the electrode body 3 as in a nail penetration test. FIG. 4 is a graph schematically showing a temperature change in the housing case 2 when an internal short circuit occurs in the electrode body 3 as in a nail penetration test. 3 and 4, the horizontal axis indicates the elapsed time from when an internal short circuit occurs.

図3において、「P0」は、安全弁12が開弁するときの収容ケース2内の圧力を示す。図4において、「T0」は、安全弁14および安全弁15が溶融するときの収容ケース2内の温度を示す。この図3および図4に示すように、釘刺し試験によって電極体3内で内部短絡が生じると、収容ケース2内の内圧が上昇する。時間t1において、収容ケース2内の内圧が圧力P0に達して、安全弁12が開弁し、収容ケース2内と収容ケース2の外部とが連通する。これにより、時間t1以降においては、収容ケース2内の内圧の上昇が抑制されている。時間t1における収容ケース2内の温度は、温度T1であり、温度T1は温度T0よりも低い。   In FIG. 3, “P0” indicates the pressure inside the housing case 2 when the safety valve 12 is opened. In FIG. 4, “T0” indicates the temperature inside the housing case 2 when the safety valve 14 and the safety valve 15 are melted. As shown in FIGS. 3 and 4, when an internal short circuit occurs in the electrode body 3 by the nail penetration test, the internal pressure in the housing case 2 increases. At time t1, the internal pressure in the storage case 2 reaches the pressure P0, the safety valve 12 is opened, and the inside of the storage case 2 communicates with the outside of the storage case 2. Thereby, after time t1, the increase in the internal pressure in the storage case 2 is suppressed. The temperature in the housing case 2 at time t1 is the temperature T1, and the temperature T1 is lower than the temperature T0.

図4に示す例においては、収容ケース2内の温度は、時間t1後においても、収容ケース2内の温度が上昇している。そして、収容ケース2内の温度が温度T0に達すると、安全弁14および安全弁15が溶融する。このように、電極体3内で内部短絡が発生したときに、安全弁12が安全弁14および安全弁15よりも先に開弁し、その後に、安全弁14および安全弁15が開弁するように、安全弁12が開弁する開弁圧力と、安全弁14,15が溶融する溶融温度とが設定される。   In the example shown in FIG. 4, the temperature in the storage case 2 rises even after the time t1. When the temperature in the housing case 2 reaches the temperature T0, the safety valve 14 and the safety valve 15 are melted. Thus, when an internal short circuit occurs in the electrode body 3, the safety valve 12 is opened before the safety valve 14 and the safety valve 15, and thereafter the safety valve 12 and the safety valve 15 are opened. Is set to a valve opening pressure at which the safety valves 14 and 15 are melted.

上記のように構成された密閉型電池1において、釘刺し試験などのように電極体3内で内部短絡が生じたときにおける安全弁12や安全弁14,15の作用・効果について説明する。   In the sealed battery 1 configured as described above, the operation and effect of the safety valve 12 and the safety valves 14 and 15 when an internal short circuit occurs in the electrode body 3 as in a nail penetration test or the like will be described.

電極体3内で内部短絡が生じると、正極シート25の正極と、負極シート27の負極との間で大きな短絡電流が流れる。正極および負極間で短絡電流が流れると、電池反応が急速に進行し、収容ケース2内でガスが発生する。これにより、収容ケース2内の内圧が上昇する。また、各活物質の表面において電解液が分解反応したり、各電極中の活物質が発熱したりして、収容ケース2内の温度が上昇する。   When an internal short circuit occurs in the electrode body 3, a large short circuit current flows between the positive electrode of the positive electrode sheet 25 and the negative electrode of the negative electrode sheet 27. When a short-circuit current flows between the positive electrode and the negative electrode, the battery reaction proceeds rapidly and gas is generated in the housing case 2. Thereby, the internal pressure in the storage case 2 rises. In addition, the electrolytic solution decomposes on the surface of each active material, or the active material in each electrode generates heat, so that the temperature in the housing case 2 rises.

収容ケース2内の内圧が所定値以上になると、図5に示すように、安全弁12が破断して、収容ケース2内と収容ケース2の外部とが連通し、収容ケース2内のガスが外部に排出される。ここで、ガスが外部に排気される際に、電極体3の一部が飛散して、開放された安全弁12の開口部に電極体3の一部が詰まり、放熱性が悪化する場合がある。   When the internal pressure in the storage case 2 becomes a predetermined value or more, as shown in FIG. 5, the safety valve 12 is broken and the inside of the storage case 2 communicates with the outside of the storage case 2 so that the gas in the storage case 2 is external. To be discharged. Here, when the gas is exhausted to the outside, a part of the electrode body 3 is scattered, and a part of the electrode body 3 is clogged in the opening portion of the opened safety valve 12, which may deteriorate the heat dissipation. .

特に、電池反応や短絡電流によって正極活物質自体の温度が非常に高温となった場合には、正極活物質の熱分解反応が進行して、収容ケース2内の温度が高くなる場合があり、安全弁12の開口部に電極体3の一部などが詰まると、収容ケース2内の温度が上昇する。   In particular, when the temperature of the positive electrode active material itself becomes very high due to a battery reaction or a short-circuit current, the thermal decomposition reaction of the positive electrode active material proceeds, and the temperature in the housing case 2 may increase. When a part of the electrode body 3 is clogged in the opening of the safety valve 12, the temperature in the housing case 2 rises.

そして、収容ケース2内の温度が所定温度以上になると、安全弁14および安全弁15が軟化し、安全弁14および安全弁15が破断し、図6に示すように安全弁14および安全弁15が開弁する。安全弁14および安全弁15が開弁することで、収容ケース2内と収容ケース2の外部とが連通し、収容ケース2内の熱を収容ケース2の外部に放熱することができる。   When the temperature in the housing case 2 becomes equal to or higher than a predetermined temperature, the safety valve 14 and the safety valve 15 are softened, the safety valve 14 and the safety valve 15 are broken, and the safety valve 14 and the safety valve 15 are opened as shown in FIG. By opening the safety valve 14 and the safety valve 15, the inside of the housing case 2 communicates with the outside of the housing case 2, and the heat in the housing case 2 can be radiated to the outside of the housing case 2.

このように、安全弁12が開弁することで収容ケース2の内圧が高くない状態においても、収容ケース2内の温度が高くなると、安全弁14および安全弁15を開弁させることができ、収容ケース2内の温度が過度に高くなることを抑制することができる。たとえば、図4に示す例においては、時間t1後において、収容ケース2内の温度は低下している。   In this manner, even when the internal pressure of the storage case 2 is not high due to the safety valve 12 being opened, the safety valve 14 and the safety valve 15 can be opened when the temperature in the storage case 2 increases, and the storage case 2 The inside temperature can be prevented from becoming excessively high. For example, in the example shown in FIG. 4, the temperature in the housing case 2 is lowered after time t1.

次に、比較例に係る密閉型電池と、実施例に係る密閉型電池とを用いて、釘刺し試験を実施した結果について説明する。   Next, a result of performing a nail penetration test using the sealed battery according to the comparative example and the sealed battery according to the example will be described.

釘刺し試験は、25℃の温度環境下において、各密閉型電池1をSOC80%の充電状態とした状態で実施した。具体的には、収容ケースの主面板21の中央付近にΦ6mm、先端鋭度30°の鉄製の釘を、20mm/secの速度で直角に突き刺し、貫通させた。   The nail penetration test was performed in a state where each sealed battery 1 was in a charged state of SOC 80% under a temperature environment of 25 ° C. Specifically, an iron nail having a diameter of 6 mm and a tip sharpness of 30 ° was pierced perpendicularly at a speed of 20 mm / sec and penetrated in the vicinity of the center of the main surface plate 21 of the housing case.

図7は、比較例に係る密閉型電池1Aを示す斜視図である。この図7に示すように、密閉型電池1Aは、上蓋11Aに形成された安全弁12Aを備える。その一方で、密閉型電池1Aは、側面板23A,24Aに形成された安全弁を備えていない。   FIG. 7 is a perspective view showing a sealed battery 1A according to a comparative example. As shown in FIG. 7, the sealed battery 1A includes a safety valve 12A formed on the upper lid 11A. On the other hand, the sealed battery 1A does not include safety valves formed on the side plates 23A and 24A.

図8は、実施例に係る密閉型電池1Bを示す斜視図である。この図8に示すように、密閉型電池1Bは、上蓋11Bに形成された安全弁12Bと、側面板23B,24Bに形成された安全弁14B,15Bとを含む。   FIG. 8 is a perspective view showing a sealed battery 1B according to the embodiment. As shown in FIG. 8, sealed battery 1B includes safety valve 12B formed on upper lid 11B and safety valves 14B and 15B formed on side plates 23B and 24B.

ここで、密閉型電池1Aの安全弁12Aの安全弁面積と、密閉型電池1Bの安全弁12B、安全弁14Bおよび安全弁15Bの各安全弁面積の合計の合計安全弁面積との面積比率は、安全弁12Aの安全弁面積を1とすると、安全弁12B、安全弁14Bおよび安全弁15Bの合計安全弁面積は、1.40である。   Here, the area ratio between the safety valve area of the safety valve 12A of the sealed battery 1A and the total safety valve area of the safety valve 12B, safety valve 14B, and safety valve 15B of the sealed battery 1B is the safety valve area of the safety valve 12A. Assuming 1, the total safety valve area of the safety valve 12B, the safety valve 14B, and the safety valve 15B is 1.40.

上記ように構成された密閉型電池1Aおよび密閉型電池1Bについて、上記の釘刺し試験を実施した。下記の表は、釘刺し試験時の密閉型電池1Aおよび密閉型電池1Bの最高到達温度を示す。   The above-described nail penetration test was performed on the sealed battery 1A and the sealed battery 1B configured as described above. The following table shows the maximum temperature reached by the sealed battery 1A and the sealed battery 1B during the nail penetration test.

Figure 2017004917
Figure 2017004917

上記の表1に示すように、実施例に係る密閉型電池1Bの最高到達温度は、比較例に係る密閉型電池1Bの最高到達温度よりも200℃程度低いことが分かる。   As shown in Table 1 above, it can be seen that the maximum reached temperature of the sealed battery 1B according to the example is about 200 ° C. lower than the maximum reached temperature of the sealed battery 1B according to the comparative example.

なお、上記の実施の形態および実施例においては、密閉型電池として、リチウムイオン電池に適用した例について説明したが、リチウムイオン電池に限られず、他の密閉型電池にも適用することができる。   In the above-described embodiments and examples, examples where the sealed battery is applied to a lithium ion battery have been described. However, the present invention is not limited to a lithium ion battery, and can be applied to other sealed batteries.

本発明に基づいた実施の形態および実施例について説明したが、今回開示された事項はすべての点で例示であって制限的なものではない。本発明の技術的範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Although the embodiments and examples based on the present invention have been described, the matters disclosed this time are examples in all respects and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、密閉型電池に適用することができる。   The present invention can be applied to a sealed battery.

1,1A,1B 密閉型電池、2 収容ケース、3 電極体、4 電解液、5 正極端子、6 負極端子、10 ケース本体、11,11A,11B 上蓋、12,12A,12B,14,14B,15,15B 安全弁、13 封止部、20 底面板、21,22 主面板、23,23A,23B,24,24A,24B 側面板、25 正極シート、26,28 セパレータ、27 負極シート、29 正極芯体露出部、30 負極芯体露出部、35,40 端子部、36,41 接続部材、37,42 集電体、38,43 絶縁部材、X 厚さ方向、Y 幅方向。   1, 1A, 1B sealed battery, 2 housing case, 3 electrode body, 4 electrolyte, 5 positive terminal, 6 negative terminal, 10 case body, 11, 11A, 11B upper lid, 12, 12A, 12B, 14, 14B, 15, 15B Safety valve, 13 Sealing part, 20 Bottom plate, 21, 22 Main face plate, 23, 23A, 23B, 24, 24A, 24B Side plate, 25 Positive electrode sheet, 26, 28 Separator, 27 Negative electrode sheet, 29 Positive electrode core Body exposed portion, 30 Negative electrode core exposed portion, 35, 40 Terminal portion, 36, 41 Connection member, 37, 42 Current collector, 38, 43 Insulating member, X thickness direction, Y width direction.

Claims (1)

収容ケースと、
前記収容ケース内に収容された電極体および電解液と、
前記収容ケースに設けられ、前記収容ケース内の圧力が所定圧力を超えると前記収容ケース内と前記収容ケースの外部とを連通させる第1安全弁と、
前記収容ケースに設けられ、前記収容ケース内の温度が所定温度を超えると前記収容ケース内と前記収容ケースの外部とを連通させる第2安全弁と、
を備え、
前記電極体内で内部短絡が生じたときに、前記第1安全弁が開弁する前記所定圧力に前記収容ケース内の内圧が達したときの前記収容ケース内の温度よりも、前記所定温度の方が高い、密閉型電池。
A containment case;
An electrode body and an electrolytic solution housed in the housing case,
A first safety valve that is provided in the storage case and communicates with the outside of the storage case when the pressure in the storage case exceeds a predetermined pressure;
A second safety valve provided in the housing case, wherein the second safety valve communicates the inside of the housing case with the outside of the housing case when the temperature in the housing case exceeds a predetermined temperature;
With
When an internal short circuit occurs in the electrode body, the predetermined temperature is higher than the temperature in the storage case when the internal pressure in the storage case reaches the predetermined pressure at which the first safety valve opens. High, sealed battery.
JP2015121202A 2015-06-16 2015-06-16 Sealed battery Pending JP2017004917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015121202A JP2017004917A (en) 2015-06-16 2015-06-16 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121202A JP2017004917A (en) 2015-06-16 2015-06-16 Sealed battery

Publications (1)

Publication Number Publication Date
JP2017004917A true JP2017004917A (en) 2017-01-05

Family

ID=57754493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121202A Pending JP2017004917A (en) 2015-06-16 2015-06-16 Sealed battery

Country Status (1)

Country Link
JP (1) JP2017004917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125467A (en) * 2020-02-04 2021-08-30 エルジー エレクトロニクス インコーポレイティド Battery cell
WO2022030633A1 (en) * 2020-08-06 2022-02-10 Apb株式会社 Battery cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021125467A (en) * 2020-02-04 2021-08-30 エルジー エレクトロニクス インコーポレイティド Battery cell
JP7094406B2 (en) 2020-02-04 2022-07-01 エルジー エレクトロニクス インコーポレイティド Battery cell
WO2022030633A1 (en) * 2020-08-06 2022-02-10 Apb株式会社 Battery cell

Similar Documents

Publication Publication Date Title
US11824223B2 (en) Cylindrical sealed battery and battery pack
JP5737481B2 (en) Sealed non-aqueous electrolyte secondary battery
JP6250567B2 (en) Sealed battery
US9876206B2 (en) Cylindrical sealed battery
JP6254102B2 (en) Sealed battery
EP2924763B1 (en) Secondary battery
JP2012212645A (en) Secondary cell
JPWO2018180828A1 (en) Cylindrical battery
CN107408664A (en) Cylindrical battery and its manufacture method
JPWO2016098291A1 (en) Cylindrical battery
JP2012146664A (en) Secondary battery, assembly method thereof and battery pack including the same
WO2016143287A1 (en) Sealed battery
JPWO2013031056A1 (en) Square battery
KR102165332B1 (en) Secondary battery
US9583752B2 (en) Secondary battery
KR102248595B1 (en) Secondary Battery
JP2017004917A (en) Sealed battery
JP2015106491A (en) Secondary battery with safety valve
JP2015043258A (en) Sealed battery
JP6160513B2 (en) Power storage device and method for discharging power storage device
JP2015106490A (en) Secondary battery with safety valve
JP6304981B2 (en) Nonaqueous electrolyte secondary battery
JP2012195122A (en) Nonaqueous electrolyte secondary battery
JP2017134957A (en) Square secondary battery
JP5790602B2 (en) Secondary battery